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Electron-beam broadening in electron microscopy by solving the electron transport equation
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Scanning transmission electron microscopy (STEM) and scanning electron microscopy (SEM) are prominent
techniques for the structural characterization of materials. STEM in particular provides high spatial resolution
down to the sub-ångström range. The spatial resolution in STEM and SEM is ultimately limited by the electron-
beam diameter provided by the microscope’s electron optical system. However, the resolution is frequently
degraded by the interaction between electron and matter leading to beam broadening, which depends on the
thickness of the analyzed sample. Numerous models are available to calculate beam broadening. However, most
of them neglect the energy loss of the electrons and large-angle scattering. These restrictions severely limit
the applicability of the approaches for large sample thicknesses in STEM and SEM. In this work, we address
beam broadening in a more general way. We numerically solve the electron transport equation without any
simplifications, and take into account energy loss along the electron path. For this purpose, we developed the
software package CeTE (Computation of electron Transport Equation). We determine beam broadening, energy
deposition, and the interaction volume of the scattered electrons in homogeneous matter. The calculated spatial
and angular distributions of electrons are not limited to forward scattering and small sample thicknesses. We
focus on low electron energies of 30 keV and below, where beam broadening is particularly pronounced. These
electron energies are typical for SEM and STEM in scanning electron microscopes.
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I. INTRODUCTION

Scanning electron microscopy (SEM) and scanning trans-
mission electron microscopy (STEM) are prominent tech-
niques to study the structural properties of solids and soft
matter materials. Spectacular results were obtained in the
more recent past by STEM, which has revealed details of the
atomic structure of materials [1–4]. This can be attributed
to the success in correcting aberrations of electron lenses
that has led to electron beam diameters distinctly below the
sub-ångström range [5–7]. However, the spatial resolution
of images and analytical techniques in electron microscopy
does not only depend on the beam diameter provided by
the microscope’s condenser-lens system but is also strongly
affected by the broadening of the electron beam while passing
through matter. This is particularly relevant if the primary
electron energy in transmission electron microscopes is low-
ered from standard values between 80 and 300 keV. The
reduction of the electron energy came into focus in the more
recent past, because knock-on damage can be avoided and
contrast-to-noise-ratio of weakly scattering materials is en-
hanced [8,9]. With growing interest in low-energy electron
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microscopy, more attention is paid to the calculation and
measurement of beam broadening [10–12]. The mean-free-
path length of electrons decreases with the electron energy,
yielding an increasing number of scattering events. This de-
grades STEM resolution because substantial beam broadening
occurs already at small sample thicknesses. We note that beam
broadening also limits STEM resolution for large sample
thicknesses at standard electron energies of 80 keV and above
[13].

Compared to STEM, SEM is an even more wide-spread
technique in materials characterization. Electron energies of
30 keV and below are generally used to study the near-
surface properties of bulk materials. The resolution in the
1-nm range is strongly influenced by the interaction volume,
i.e., the volume in the sample where primary, secondary, and
backscattered electrons are located. In SEM, the reduction of
the electron energy to even lower values than 30 keV is favor-
able because the size of the interaction volume decreases. This
is particularly relevant for SEM imaging with backscattered
electrons (defined as electrons with energies between 50 eV
and the primary electron energy), which is applied to obtain
SEM images showing material contrast. The size and shape of
the interaction volume in dependence of the primary electron
energy were revealed by exposing a layer of positive electron
resist to an electron beam [14]. However, the spreading of the
primary electrons within a sample cannot be directly visual-
ized and must be calculated.

Concerning electron-beam broadening in STEM, several
analytical models were elaborated to calculate the electron-
beam diameter at the exit plane of electron-transparent
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samples by considering differential scattering cross sections to
describe multiple scattering [15,16]. Further early approaches
describe beam broadening by assuming a Gaussian distribu-
tion of the electrons after passing through matter [17,18]. A
more general model dealing with a wider range of collision
numbers up to 25 has been proposed by Gauvin and Rudin-
sky [10]. All analytical approaches mentioned here require
approximations to model the complex multiple scattering of
electrons because large-angle scattering and energy loss are
neglected. While the approaches above describe electron-
transparent samples and neglect energy loss, the calculation of
the electron range for bulk samples requires the consideration
of energy loss. Reimer has summarized various definitions
of the electron range and gave estimation formulas for the
range-energy relation [18].

Monte Carlo simulations were established already decades
ago and are well suited to calculate beam broadening in STEM
and the size of the interaction volume in bulk samples in
SEM [19]. More recent applications concern the calculation
of beam broadening in STEM by, e.g., Gauvin and Rudinsky,
Drees et al., Hugenschmidt et al., and de Jonge et al. [10–11].
Monte Carlo simulations generally can avoid restrictive sim-
plifications. However, to obtain statistically relevant data, a
large number of electron trajectories have to be simulated
[19]. This can be time-consuming if simulations have to be
performed for a large parameter range.

A more general way of treating electron scattering and
beam broadening is based on the solution of the electron trans-
port equation in the formulation of Goudsmit and Saunderson
and of Lewis [20,21]. The Lewis formalism is more elaborate
and accounts for energy loss by the slowing down of the elec-
trons along the path length. It also yields analytical equations
for the moments of the spatial electron distribution like the
mean and variance of the electron displacement and scattering
direction. First- and second-order moments can be determined
in a generalized formulation by solving the electron transport
equation [22]. Unlike the Monte Carlo formalism, the solution
of the transport equation provides results without dividing
the electron path into consecutive steps, which affects the
computation, particularly at large path lengths. In addition,
the direct solution of the transport equation is not subjected
to statistical errors.

An attempt to solve the electron transport equation for
multiple scattering was implemented by Rez to address beam
broadening [23]. This approach is based on Fourier transfor-
mations of the transport equations but neglects large-angle
scattering and energy loss.

We note that all the above-mentioned methods provide
probability distributions for electrons by considering electrons
as particles. Thus, the influence of electron channeling and
diffraction effects on beam broadening cannot be taken into
account by the models considered in this work. Electron chan-
neling and diffraction are interference phenomena and require
the treatment of electrons as waves as shown by Voyles et al.
and Wu et al. [24,25]. These effects can be neglected for the
discussion of beam spreading and of the interaction volume as
soon as the ratio of coherent to incoherent scattering becomes
small. Coherence prevails only for very thin specimens, where
the sample thickness does not significantly exceed the mean-
free path length for electron scattering.

Besides Monte Carlo calculations, all other descriptions
for beam broadening discussed above neglect energy loss
and high-angle scattering. In this work, we address beam
broadening in STEM and SEM in a more general way. The
electron transport equation in Lewis’s formulation [21] is
solved numerically without any simplifications and by con-
sidering energy loss and energy straggling along the electron
path. Electron ranges are determined numerically by calcu-
lating the path length where the electrons completely lose
their energy. The new approach of this work is to use the
moments obtained from the solution of the transport equation
[21,22,26] to determine beam broadening, energy deposi-
tion, and the interaction volume of the scattered electrons.
The calculated spatial and angular electron distributions are
not limited to forward scattering but apply also to electron
backscattering. Beam broadening is studied by the method
of moments (MM) for all scattering regimes, applicable both
for electron-transparent samples and bulk materials where no
electrons are transmitted. Representative results are shown for
silicon, copper, and platinum, which differ significantly in
atomic number and material density. We focus on low electron
energies of 30 keV and below, which are typical for SEM and
STEM in scanning electron microscopes.

II. METHODS

A. Basics of electron transport in matter

To determine the spatial and angular distribution of elec-
trons after multiple scattering along a traveled path, the
electron transport theory is considered in the exact formula-
tion of Lewis [21] and its generalization given by Kawrakow
and Bielajew [22]. Assuming that an electron impinges per-
pendicular on the sample surface in the direction of the z axis,
the probability density f of finding the electron after traveling
the path length s at the position x moving in direction
v is denoted by f (s,x,v). The electron transport process is
described by

∂ f (s, x, v)

ds
+ v · ∇ f (s, x, v)

= N
∫

dv′[ f (s, x, v′) − f (s, x, v)]σ (|v − v′|), (1)

where σ (|v − v′|) denotes the differential scattering cross
section per unit scattering angle d�, corresponding to the
deflection v′ → v. N is the number of atoms per unit volume.

By expanding f (s, x, v) in spherical harmonics, Lewis ob-
tained general expressions for the angular distribution and the
moments of the spatial distribution [21]. The angular distribu-
tion after a path length s is given by

F (θ, s) =
∫

f (s, x, v) dx =
∞∑

l=0

2l + 1

4π
exp(−sQl ) Pl (cos θ )

(2)
and corresponds to the result found also by Goudsmit and
Saunderson [20].

Pl are the Legendre polynomials and Ql is the l th transport
coefficient given by

Ql = 2π

λ

∫ 1

−1
[1 − Pl (cos θ )] f1(cos θ )d (cos θ ), (3)
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with the single scattering function

f1(cos θ ) = 1

σ

dσ (cos θ )

d�
. (4)

Here λ denotes the mean-free path length given by λ =
1/(Nσ ), where σ is the total (elastic and inelastic) scattering
cross section. The solid angle is given by d�.

The Lewis approach accounts additionally for the energy
loss of the multiple-scattered electrons using a slowing-down
approximation. The transport coefficients from Eq. (3) are
considered as energy-dependent and connect the energy loss
of the electrons with the traveled path length s. They are
rewritten as Gl :

Gl =
∫ s

0
Ql (s

′)ds′ =
∫ E0

E
Ql (E

′)
dE ′

S(E ′)
. (5)

The stopping power S(E ) = −dE/ds is given by the average
energy loss dE per path length ds. In the formulation of Joy
and Luo [27], the energy loss dE in eV per unit path length ds
in cm is

dE

ds
= −7.85 × 1010 Zρ

AE
ln

(
1.166

E

J ′

)
, (6)

with the mean ionization potential J ′ in eV given by

J ′ = 1

1 + kJ/E
, (7)

containing k = 0.731 + 0.0688 × log(Z ) and J = 9.76Z +
58.5Z−0.19 [28]. A is the atomic mass, Z the atomic number,
and ρ the density of the material in g/cm3.

The transport coefficients Gl have the dimension of an in-
verse length and are related to the inverse transport mean-free
path: λ−1

l = Gl [29]. In particular, we have

λ−1
1 = 2π

λ

∫ 1

−1
(1 − cos θ ) f1(cos θ )d (cos θ ) = 1 − 〈cos θ〉

λ
,

(8)

λ−1
2 = 2π

λ

∫ 1

−1
(1 − cos2θ ) f1(cos θ )d (cos θ ) = 1 − 〈cos2θ〉

λ
.

(9)

The inverse of the first transport mean-free path λ−1
1 gives

the average angular deflection per unit path length and is
sometimes called the “scattering power,” in analogy to the
“stopping power,” which is defined as mean energy loss per
unit path length [29].

In this work, the extended versions of Lewis’s first-
and second-order moments are used in the formulation of
Kawrakow and Bielajew [22] with the notation

kl (s) = exp

[
−

∫ s

0
Ql (s

′)ds′
]

= exp[−Gl (s)]. (10)

The moments are given by

〈cos θ〉 = k1(s) = exp[−G1(s)], (11)

〈z〉 =
∫ s

0
k1(s′)ds′, (12)

〈z2〉 = 2

3

∫ s

0
ds′

∫ s′

0
k1(s′ − s′′)[1 + 2k2(s′′)]ds′′, (13)

〈x2〉 = 2

3

∫ s

0
ds′

∫ s′

0
k1(s′ − s′′)[1 − k2(s′′)]ds′′, (14)

The mean deflection angle after multiple scattering events is
given by its mean cosine 〈cos θ〉. The first moment 〈z〉 denotes
the mean depth in the sample where the electron can be found
after traveling a path length s. The second-order moments
〈z2〉 and 〈x2〉 give the mean squared longitudinal and lateral
displacement of the electrons.

Considering energy loss for the calculation of the transport
coefficients Gl determined by Eq. (5), the angular distribution
of the electrons after p = s/λ scattering events, i.e., their
fraction N scattered per unit solid angle d�, is given by [21]

F (θ, s) = dN (θ )

d�
=

∞∑
l=0

2l + 1

4π
exp (−Gl ) Pl (cos θ ). (15)

This solution of the transport equation is exact but can be
calculated only numerically. While the first- and second-order
moments are determined by the first two transport coefficients
G1 and G2, the summation in the angular distribution must
be performed up to a high number of terms, typically several
hundred [30]. Additionally, due to the expansion in fast os-
cillating Legendre polynomials, the difficulty to calculate the
transport coefficients increases with their order and requires
careful numerical techniques. We note that the application of
this method is limited by the difficulty to solve the transport
equation for electron scattering in inhomogeneous materials,
which contain defects or interfaces between different materi-
als.

In the following paragraph, we outline approximations of
earlier approaches for the solution of the electron transport
equation that were not made in the present work. Simpler
analytical expressions for the moments and the angular dis-
tribution of the transport equation are obtained by assuming
small-angle scattering and neglecting backscattering. In the
small-angle approximation, the cosine of the scattering angle
θ is expanded into a Taylor series:

cos θ ≈ 1 − θ2

2
+ · · · . (16)

The Legendre polynomials and the transport coefficients in
the small-angle approximation are given by [21]

Pl (cos θ ) ≈ 1 − l (l + 1)

4
θ2, (17)

Gl = l (l + 1)

2
G1. (18)

Thus, the transport coefficients are completely determined by
the value of the first transport coefficient G1 [see Eq. (8)]:

G1 = 2π

λ

∫ 1

−1
(1 − cos θ ) f1(cos θ )d (cos θ ), (19)

with f1 given by Eq. (4).
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The angular distribution then simplifies to the Fokker-
Planck formulation, as described by Wang and Guth [31]:

FFP(θ, s) =
∞∑

l=0

2l + 1

4π
exp

[
− l (l + 1)

2
G1

]
Pl (cos θ ). (20)

While the first transport coefficient in the small-angle approx-
imation is similar to the exact one, the approximated second
transport coefficient is always G2 = 3G1 and for the moderate
electron energies considered in this work larger than the exact
value given by Eq. (5). Thus, the first-order moments, like the
mean penetration depth 〈z〉, will not vary, but the second-order
moments, i.e., the variances of the longitudinal and lateral
displacements 〈z2〉 and 〈x2〉 will change. Also, the angular
distribution will provide lower values than the exact solution,
due to the general larger values of the transport coefficients Gl

in the small-angle approximation.
In the small-angle approximation, the Fokker-Planck for-

mulation simplifies and leads to a Gaussian solution [21].
Thus, neglecting large-angle scattering and energy loss, the
Gaussian angular distribution of the scattered electrons is [17]

FG(θ, s) = 1

2πθ2
m

exp

(
− θ2

2θ2
m

)
, (21)

where the mean-square scattering angle θ2
m can be approxi-

mated by

θ2
m = 1.2 × 107 Z1.5

AE
ρs, (22)

with the atomic number Z, the atomic mass A in atomic mass
units, the electron energy E in eV, and the mass density ρs
in g/cm2. The angular distribution in this analytical Gaussian
formulation does not need any numerical computation and can
be plotted directly as a function of the scattering angle.

The drawbacks of the models, which assume small-angle
scattering, led to Lewis’s intention to formulate the solution
of the transport equation without these limitations [21].

B. Analytical models for beam broadening

Several analytical approaches for electron-beam broaden-
ing in matter were proposed. Usually, they neglect large-angle
scattering and energy loss. This means that the models are
limited to electron-transparent samples in STEM where the
majority of the electrons are scattered in forward direction.
Reimer calculated the beam broadening by giving the root
mean square of the variance of the lateral displacement [18].
By assuming a Gaussian scattering distribution and integrat-
ing over the sample thickness t, he obtained

rrms =
√

2 × 1.05 × 105 Z

E0

(
ρ

A

)0.5

t1.5, (23)

with the beam radius rrms and the thickness t in cm, the
primary electron energy E0 in eV, the material density ρ in
g/cm3, the atomic number Z, and the atomic mass A in g/mol.

Goldstein et al. assumed electron scattering in the mid-
dle of a foil with thickness t and integrated the unscreened
Rutherford differential scattering cross section up to a defined
scattering angle, which defines the width of the beam b [15].
They found for the beam width at the exit surface of the

sample:

b = a
Z

E0

(
ρ

A

)0.5

t1.5, (24)

with the sample thickness t and beam broadening b in units
of nm and E0 in keV. The factor a depends on the fraction
of beam intensity considered for the definition of the beam
diameter. For a beam diameter containing 68% of the total
beam intensity, corresponding to the variance of a Gaussian
distribution, the constant is a = 0.11 nm keV. Assuming
constant probability for electron scattering at each sample
depth and integrating over the sample thickness leads to a
slightly modified factor a = 0.13 nm keV [16].

A more sophisticated model was proposed by Gauvin and
Rudinsky, valid for a large range of the number of elastic
collisions p = t/	el with the mean-free path length for elastic
scattering 	el [10]. They calculated the width of the beam at
a thickness t by

b = K ′ Z (4H+1)/3

E (2H+1)/2
0

(
ρ

A

)H

t1+H , (25)

with

K ′ = 0.11671−2H 39437H

√
R

1 − R
, (26)

where the Hurst exponent H is characteristic for different
scattering regimes depending on the number of collisions p.
R denotes the fraction of the total electron beam intensity that
defines the beam diameter. In this work, it is set to R = 0.68.
The constants in Eq. (25) are calculated to yield beam broad-
ening in units of cm with the material density ρ in g/cm3 and
E0 in units of keV. The Hurst exponent approaches 1 for small
sample thicknesses with p → 0 in the ballistic regime where
electrons may not be scattered at all. For plural and multiple
scattering, the electrons reach random walk behavior which
is characterized by H = 0.5. In this case, Eq. (25) reduces to
Eq. (24) but with a different factor a.

C. Numerical solution of the electron transport equation

The solution of the electron transport equation is imple-
mented numerically to calculate the angular distribution for
multiple scattering, similar to the approach of Negreanu et al.
[30]. It is extended by routines for computation of the mo-
ments of the spatial electron distribution. For this purpose,
we developed the software package CeTE (Computation of
electron Transport Equation). The code is written in Java
(Java Software, Oracle) and can be executed on any common
personal computer.

First, the mean range of electrons, where their residual
energy goes to zero, is determined by the continuous-slowing-
down approximation of Joy and Luo depending on the primary
electron energy [27]. Up to this mean range, energy loss is
calculated for path steps ds = 10 nm and the residual energies
of the electron after traveling γ steps corresponding to the
path s = γ ds are stored in an array. To account for energy
straggling determined by the distribution of the path lengths
around their mean value, the list of the residual energy values
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is convoluted with a Poisson function, as proposed by Reimer
and Senkel [32]. Then the residual energy at the position γ in
a new array is

E (γ ) =
3γ∑

n=0

P(n, γ )E (n), (27)

with the Poisson distribution

P(n, γ ) = γ n

n!
e−γ . (28)

The summation over n is performed from 0 to 3γ , where
the Poisson distribution with the variance

√
γ gives negli-

gible values. For values of n > 30 the Poisson distribution
is calculated by a Gaussian approximation with σ 2 = γ . A
new array for the residual energy as a function of the traveled
path is obtained, with an extended range, where the residual
energy vanishes. This new maximum range of the electrons in
the corresponding material determines the traveled distance
where all electrons are absorbed.

The transport coefficients Gl (Ei ) are calculated in steps
of 1 keV for Ei up to the primary electron energy E0 and
are interpolated linearly for intermediate values. An N-point
Gauss-Legendre quadrature formula is used to evaluate the
integral in Eq. (5) and Eq. (3), as described by Negreanu et al.
[30].

The Legendre polynomials are calculated by their recur-
rence relations:

P0(x) = 1, P1(x) = x,

Pl (x) = 1

l
[(2l − 1)xPl−1(x) − (l − 1)Pl−2(x)]. (29)

The maximum number Nl of Legendre coefficients is selected
in advance and determines the upper limit of the summa-
tion in Eq. (2). For low electron energies and typically short
mean-free path lengths in solids, Nl = 500 is sufficient for
the convergence of the series. This number also determines
the number of intervals N in the N-point quadrature formula
[30]. The moments given by Eqs. (11)–(14) are obtained
by evaluating the integrals as Riemann sums, in steps of
1 nm. For each step, the energy loss is calculated and the
corresponding transport coefficients Gl (Ei ) are summed up,
yielding the coefficients given by Eq. (5). The moments 〈z2〉
and 〈x2〉 determine the interaction volume and the beam radius
at the mean depth 〈z〉. For calculation of energy deposition in
matter, the traveled path length s and the reached depth 〈z〉 are
used.

Subsequently, the angular scattering distribution is ob-
tained for each sample thickness and primary electron energy
according to Eq. (15). Separating the contribution of the un-
scattered electrons from the summation, the convergence of
the serial expansion is improved by writing [30]

F (θ, s) = exp

(
− s

λ

)
δ(cos θ − 1)

π

+
Nl∑

l=0

2l + 1

4π

[
exp(−Gl ) − exp

(
− s

λ

)]
Pl (cos θ ),

(30)

where δ(cos θ − 1) is the Dirac delta function. Various differ-
ential screened Rutherford scattering cross sections and the
Mott cross sections tabulated by Czyzeweski et al. (1990)
were implemented in the code and can be selected accord-
ingly. The contribution of inelastic scattering to the angular
distribution is considered by multiplying the screened Ruther-
ford cross sections by (1 + 1/Z), where Z is the average
atomic number of the material [18].

The transport coefficients Gl from Eq. (5) are generally
calculated in this work as a function of the energy loss deter-
mined by the continuous-slowing-down approximation. Only
for comparison with the analytical models, which neglect
energy loss, the Gl are calculated for constant electron energy
along the path.

The angular distribution of electrons after traveling a path
length s according to Eq. (30) is determined in this work
typically for angular step sizes of 0.01 rad, but can be varied
accordingly, if necessary.

For comparison, the Fokker-Planck small-angle approxi-
mation Eqs. (16)–(20) is also implemented in the code.

D. Comparison of calculated beam broadening
from different models

We first compare calculated beam radii from the models of
Reimer, Goldstein, and Gauvin [cf. Eqs. (23)–(25)]. In Sec. III
these models will be compared to solutions of the electron
transport equation. For this, the beam diameter is defined as
the radius of the volume containing 68% of the electrons of
the primary beam after traveling a path length s. The constants
in the Goldstein and Gauvin models are adapted accordingly
[cf. Eqs. (24) and (25)]. In Reimer’s model, the beam diameter
is already defined as the variance of the Gaussian distribution,
which comprises 68% of the primary electrons. As a measure
for the beam broadening, Reimer’s approach gives the radius
of the beam while propagating into the sample whereas the
other analytical models describe the total width of the beam
by its diameter b, which is twice the radius. Therefore, we
compare the beam radius rrms of Reimer’s Eq. (23) with b/2
of the other models expressed by Eqs. (24) and (25).

Figure 1 shows calculated beam radii obtained by applying
the models of Reimer, Goldstein, and Gauvin according to
Eqs. (23)–(25) as a function of the sample thickness for silicon
with Z = 14, A = 28.09, and ρ = 2.33 g/cm2 and electron
energies between 10 keV and 30 keV. For the Gauvin model,
we assumed H = 0.5 corresponding to plural and multiple
scattering. For these scattering regimes that are relevant for
the considerations of this work, the Reimer and Gauvin ap-
proaches give almost identical results. Therefore, we will only
consider the data obtained by the Reimer and Goldstein mod-
els in the following. In general, the Goldstein model yields a
slightly stronger beam broadening than the Reimer model.

The analytical models considered here do not take into ac-
count energy loss and large-angle scattering. The small-angle
approximation implies that the path length traveled between
two consecutive deflections is equal to its projection onto the
z axis. This assumption is not generally valid, which will be
illustrated in Fig. 2. For this purpose, we present results for
beam broadening using the solution of the transport equation
outlined in Secs. II A and II C. Here, the variances of the
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FIG. 1. Beam radii in silicon as a function of sample thick-
ness calculated by the indicated analytical models for different
primary electron energies. Energy loss and large-angle scattering are
neglected.

longitudinal and lateral displacement 〈z2〉 and 〈x2〉 are calcu-
lated from Eqs. (13) and (14). The root mean squares of the
displacements σz =

√
〈z2〉 − 〈z〉2 and σx = σy =

√
〈x2〉 deter-

mine the region where the electron is less than one standard

FIG. 2. Spatial distribution of 20 keV electrons after traveling
different path lengths s in silicon. Ellipses centered at the mean
penetration depth 〈z〉 (indicated by dashed-dotted horizontal lines)
for s = 300, 600, and 900 nm show the distribution of the electrons
less than one standard deviation away from the mean displacement.

deviation away from the mean displacement. These zones
are shown in Fig. 2 for the example of silicon and 20 keV
electrons for different traveled path lengths s = 300, 600, and
900 nm as ellipses with the center at the mean penetration
depth 〈z〉 and with the major axis given by σx and the minor
axis by σz.

We note that the beam radius r =
√

x2 + y2 at the depth 〈z〉
calculated by solving the electron transport equation is given
by the root mean square of a lateral displacement:

σr =
√(

∂r

∂x
σx

)2

+
(

∂r

∂y
σy

)2

= σx = σy. (31)

For Poisson-distributed paths, which become Gaussian-like
for plural and multiple scattering, 68% of the electrons are
within a spheroid with the radius r.

Figure 2 also illustrates that the electron reaches a depth
〈z〉 below the sample surface, related to the sample thickness,
which differs from the traveled path length s. For example,
the dash-dotted line in the ellipse in the center of the image
indicates 〈z〉 = 520 nm, which is considerably smaller than
s = 600 nm in this case. The discrepancies between 〈z〉 and s
increase with increasing path length as shown by the ellipses
in Fig. 2.

In the following, the results of this work are illustrated by
calculations for silicon with low atomic number and moder-
ate material density, for copper with higher atomic number
Z = 29, atomic mass A = 63.54 and material density ρ =
8.96 g/cm2, and for the strongly scattering platinum with Z =
78, A = 195.08, and ρ = 21.45 g/cm2, representing main
parameters for electron scattering in matter. The thickness
ranges are chosen with regard to the primary electron energies
so that all main scattering regimes are covered, i.e., single,
plural, and multiple scattering and at least for some cases
diffusion and absorption. The diffusion regime is character-
ized by isotropic scattering of the electrons, while absorption
occurs when the electron has completely lost its energy and
its maximum range is reached.

III. RESULTS AND DISCUSSION

A. Mean penetration depth and mean scattering angles

Solving the transport equation and calculating the first mo-
ments 〈z〉 and 〈cos θ〉 of the spatial distribution shows that the
electrons are scattered away from the initial direction defined
as the z axis of the coordinate system. The mean penetration
depth 〈z〉, i.e., the average distance of all electrons from the
surface of the sample, is smaller than the path length s as
shown for silicon in Fig. 3(a). The depth corresponding to
a value equal to the path length is indicated by a dashed
line, while values for the mean penetration depth for different
primary energies are plotted by colored lines. The difference
between reached depth and overall traveled path increases
with the number of scattering events, which is higher for lower
primary electron energies and increasing path lengths. The
mean penetration depth approaches a constant value, as it can
be seen best for 10 keV electrons. Here the diffusion regime
is reached already at comparably small s values, where the
electrons are scattered isotropically and continue traveling in
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FIG. 3. (a) Mean penetration depth in silicon for electrons of different primary energies as a function of the traveled path length. The
dashed-dotted line indicates a depth equal to the path length. (b) Mean cosine of the scattering angle as a function of the traveled path length
in silicon for electrons of different primary energies.

all directions, but in average their penetration depth 〈z〉 below
the surface remains constant.

The difference between s and 〈z〉, the so-called path length
correction, must be taken into account when analyzing the
propagation of the electrons in the initial incidence direction.
The traveled path determines the number of elastic and inelas-
tic collisions and affects explicitly the spatial, angular, and
energy distribution. The reached depth is the projected path in
the direction of increasing sample thickness. The mechanism
of beam broadening is usually described by a function of the
sample thickness, i.e., at depths below the surface, but must
be calculated in terms of effective traveled path lengths.

The mean cosine of the scattering angle 〈cos θ〉 is a mea-
sure for the spreading of the initial small-diameter electron
beam due to multiple scattering. For a strongly forward
peaked beam, 〈cos θ〉 is close to unity and its value approaches
zero if the diffusion regime is reached. Figure 3(b) shows
〈cos θ〉 for electrons of different energies as a function of
the traveled path length in silicon. With decreasing initial
electron energy, 〈cos θ〉 drops faster and approaches zero for
the diffusion regime. The 10 keV curve in Fig. 3(a) shows
that a constant value of the mean penetration depth is reached
for a path length of approximately 700 nm. A small value of
0.2 for the mean cosine of the scattering angle is found for
s = 700 nm in Fig. 3(b), indicating a diffusion-like scattering
regime. For the diffusion regime the angular distribution of
the electrons from Eq. (15) becomes an isotropic distribution
with F (θ, s) = 1/(4π ).

B. Beam broadening and comparison with analytical models

The electron beam radius r at the mean penetration depth
〈z〉 obtained in this work by the method of moments (MM)
is compared with the calculations of Reimer and Goldstein
[15,18]. As outlined before, it was assumed for the calculation
with the analytical equations that the thickness t , i.e., 〈z〉, cor-
responds to the traveled path length s. The results of Gauvin’s
model are not shown here because they essentially agree with
Reimer’s model (see Fig. 1).

Figure 4(a) shows the beam radius as a function of 〈z〉 in
silicon for different primary electron energies. For comparison
and discussion reasons, only for this figure, the moments were
calculated with the small-angle approximation and energy
loss was neglected along the electron path, corresponding to
the assumptions of the two analytical models. The curves
show similar behavior with beam broadening b ∼ t1.5 up to
a relatively large penetration depth. Then the beam radius
calculated by MM increases more pronounced than those of
the analytical methods, which is observed for the 10 keV
curve at penetration depths beyond 500 nm. Obviously, the an-
alytical models do not consider that the electrons approach the
diffusion regime, where the scattering becomes isotopic, and
the mean penetration depth approaches a final constant value
for all electrons on average. This becomes clearer in Fig. 4(b)
where the moments were calculated without restriction to
small scattering angles and the energy loss was also taken
into account, whereas the analytical curves still contain the
approximation for small-angle scattering and neglect energy
loss. For 10 keV electrons, the final mean penetration depth
from MM is reached already at about 400 nm. Although most
electrons can be found on average at this depth limit, they still
move, spreading laterally to r = 600 nm until their energy is
zero (indicated by the termination of the yellow line), where
the traveled path reaches the total range. With increasing pri-
mary energy, the maximum mean penetration depth increases,
and the diffusion range is reached at larger depth

Similarly, Fig. 4(c) shows the radius of the electron beam
in copper as a function of the penetration depth. For 10 keV
electrons, the beam width increases up to 180 nm until the
total traveled path s approaches the maximum range and the
electrons are absorbed. The diffusion regime is reached al-
ready at a depth of about 70 nm. Platinum was considered as
an example for a strongly scattering material [Fig. 4(d)] where
the diffusion regime commences already at 17 nm depth for
10 keV and at 120 nm for 30 keV. We conclude from the
results in Fig. 4 that beam broadening calculated by the MM
and the analytical models is in very good agreement up to the
penetration depth where the diffusion regime is reached.
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FIG. 4. Beam radius as a function of penetration depth 〈z〉 for the Reimer (dashed), Goldstein (dashed-dotted), and MM (continuous lines)
formalisms for primary electron energies of 10, 20, and 30 keV indicated by different colors. (a) Beam radius in Si for the small scattering-angle
approximation and neglecting energy loss. (b)–(d) Beam radius in Si, Cu, and Pt, respectively, taking into account energy loss along the electron
path and without limitation to small scattering angles for the MM.

Figures 5(a) and 5(b) show the spatial displacement of
10 and 30 keV electrons in copper with increasing 〈z〉. El-
lipses with centers at different mean penetration depth 〈z〉
and the semiaxes σr and σz in lateral and depth directions,
respectively, indicate a 68% probability to find the electron in
this zone. This corresponds to 68% of the interaction volume

at a certain 〈z〉. The increasing size of the interaction volume
shows electron propagation up to a final extension, where the
electrons approach their total range. The interaction volume
is larger at higher primary electron energies, as shown in
Fig. 5(b) for 30 keV in comparison to 10 keV in Fig. 5(a).
We emphasize that the total traveled path is always larger or

FIG. 5. Time evolution of beam spreading in Cu for (a) 10 keV and (b) 30 keV. The ellipses drawn with centers at different mean penetration
depths contain 68% of the scattered electrons.
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FIG. 6. Energy dissipation in copper as a function of (a) traveled path length s and (b) depth 〈z〉 + σz below the sample surface for primary
electron energies of 10 and 20 keV.

equal to the sum of r and 〈z〉. Moreover, the ellipses do not
correspond to the angular distribution of the electrons, which
is isotropic only when the diffusion regime is reached.

C. Energy dissipation in matter

The residual energy of the electrons after traveling a
distinct path was calculated numerically and by taking into ac-
count Poisson-distributed straggling as previously described.
The gradient of the residual energy with respect to s provides
the energy loss per unit path length dE(s)/ds corresponding
to the distribution of the dissipated energy. Figure 6(a) shows
the energy per step of path length ds deposited in copper for
10 and 20 keV electrons. The energy dissipation increases
to a maximum at a certain path length, depending on the
material properties and the primary electron energy follow-
ing Eq. (6). Beyond this maximum, the dissipated energy
decreases strongly towards a smooth tail due to the Gaussian-
like distribution of the path lengths at the range limit. The
path length, where the energy dissipation is zero, represents
the maximum range, where all electrons are absorbed. As
shown in Fig. 3(a), the difference between traveled path length
and mean reached depth increases with the number of colli-
sions. Also, the step ds differs from the thickness step dt and
therefore dE(s)/ds does not represent the energy deposited in
equidistant layers of thickness below the surface. The more
informative deposited energy dE(t)/dt in steps of depth dt
below the surface is given with the notation of this work by
the energy loss as a function of steps of penetration depths d
〈 z〉. Plotting the energy dissipation only as a function of 〈z〉,
without taking into account its variance, would give rise to
a meaningless peak close to the diffusion regime due to the
constant value of the mean penetration depth and the singular-
ity of the derivative at dt = 0. Therefore, the distribution of
the energy dissipation is plotted in Fig. 6(b) as a function of
the sum of mean penetration depth 〈z〉 and its standard devia-
tion

√
〈z2〉 − 〈z〉2 , i.e., dE (t ′)/d (t ′) where t ′ = 〈z〉 + σz. The

depth reached in the sample is lower than the path length s
and therefore the energy dissipation curve is more compressed
than in Fig. 6(a), while its maximum is much sharper. On the
other hand, the deposited energy per unit volume, obtained

by dividing the dissipated energy by the cross section of the
beam πr2, decreases continuously due to the increasing radius
of the electron beam.

D. Angular distribution of multiple-scattered electrons
and comparison with approximating models

The ellipses in Fig. 5. indicate the interaction volume
and the position of 68% of the electrons after traveling a
distinct path. The electrons are isotropically distributed in
these regions only in the diffusion case. In general, before
the diffusion regime is reached, the direction of motion of the
scattered electrons is given by the angular distribution F (θ, s)
determined by Eq. (30) from the transport equation, or by the
approximations mentioned before [Eq. (20) and (21)]. F (θ, s)
is shown in Fig. 7 for 20 keV electrons in silicon. Results
calculated by CeTE are plotted with a continuous black line,
while the data obtained by Cosslett’s Gauss and the Fokker-
Planck approximations are shown by a dotted and a dashed
line respectively. Figure 7(a) shows the results after a path
length s = 300 nm in silicon. For small scattering angles, both
the Fokker-Planck and the Gaussian approximations yield
substantially lower values than the exact (CeTE) ones. Fig-
ure 7(b) shows the angular distribution after traveling a path
length s = 500 nm in silicon. Forward scattering decreases
with larger traveled path lengths, and more electrons are scat-
tered into higher angles. The Fokker-Planck approximation
shows the same behavior as before, yielding lower values at
smaller angles and slightly higher ones than the exact solution
at higher scattering angles. The Gauss approximation is close
to the exact solution, suggesting that this approximation is
valid for materials with sufficiently high material thicknesses
and moderate primary electron energies. However, at higher
thicknesses the Gaussian angular distribution deviates from
the distribution calculated by CeTE because it shows more
pronounced forward-scattering, as illustrated in Fig. 7(c).

Knowing the distribution of the emitted electrons helps to
interpret the intensities measured by different detectors since
those collect electrons usually within a defined angular range.
This corresponds to an integration of the curves in Fig. 7 over
d� for defined limits of the scattering angle θ .

043313-9



MÜLLER, HUGENSCHMIDT, AND GERTHSEN PHYSICAL REVIEW RESEARCH 2, 043313 (2020)

FIG. 7. Angular distribution of 20 keV electrons after traveling a
path length s of (a) 300 nm, (b) 500 nm, and (c) 700 nm in silicon
obtained by the exact solution of the transport equation (continuous
line), Cosslett’s Gaussian distribution (dotted line), and the solution
with the Fokker-Planck approximation (dashed line).

IV. CONCLUSIONS

The interaction of a focused electron beam impinging on a
solid is described in this work in a general way by solving the
electron transport equation in the formulation of Lewis [21].
The numerical calculations were performed similar to the ap-
proach of Negreanu et al. [30], but in this work we have taken
into account energy loss by the continuous-slowing-down ap-
proximation [27]. Exact solutions for all scattering regimes
(single scattering and multiple scattering) are obtained with-
out approximations such as dominant forward scattering and
negligible energy loss. The extended versions of Lewis’s first-
and second-order moments in the formulation of Kawrakow
and Bielajew [22] were calculated in this work to determine
electron-beam broadening, the size of the interaction vol-
ume, and the energy dissipation of the electrons for bulk and
electron-transparent samples. The results are not limited to
electrons energies between 10 and 30 keV, which are typical
for scanning electron microscopes, but apply also to higher
electron energies used in transmission electron microscopes as
long as the contribution of coherence effects can be neglected.

The results obtained in this work differ significantly from
other models which are based on simplifications like forward
scattering and negligence of energy loss. One important
finding is that the mean penetration depth of the electrons,
corresponding to the sample thickness t , is always smaller
than the traveled path length s. The difference between s
and t increases with the sample thickness. Beam broadening,
energy dissipation, and interaction volumes are typically
analyzed in terms of t , which approaches a constant value
although s and the lateral displacement of the electrons still
increase until the maximum range is reached. The calculated
energy dissipation dE/ds has to be transformed into dE/dt,
resulting in energy loss at smaller sample thicknesses as
predicted by analytical models.

The first- and second-order moments obtained from the
spatial electron distribution can be used for the calculation of
the size of the interaction volume of the scattered electrons
within the material. This corresponds to the volume contain-
ing 68% of the electrons after traveling a distinct path length
s. The direction of motion of the electrons in the interaction
volume is obtained by their angular distribution.

This work will allow a more differentiated view on reso-
lution, which depends not only on the instrumental properties
but also on the analyzed sample as well.
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