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Abstract

This paper presents a novel partially distributed outer approximation algorithm, named
PaDOA, for solving a class of structured mixed integer convex programming problems to
global optimality. The proposed scheme uses an iterative outer approximation method for cou-
pled mixed integer optimization problems with separable convex objective functions, affine
coupling constraints, and compact domain. PADOA proceeds by alternating between solving
large-scale structured mixed-integer linear programming problems and partially decoupled
mixed-integer nonlinear programming subproblems that comprise much fewer integer vari-
ables. We establish conditions under which PaDOA converges to global minimizers after a
finite number of iterations and verify these properties with an application to thermostatically
controlled loads and to mixed-integer regression.

Keywords Mixed integer programming - Distributed optimization - Outer approximation -
Global optimization
1 Introduction

A Mixed Integer Convex Program (MICP) is an optimization problem with convex objective
and constraint functions, where the only non-convex constraint is that a subset of the opti-
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mization variables need to be integer-valued [8,36]. MICPs arise in a plethora of application
areas ranging from AC transmission expansion planning and robust power flow problems
[1,30], via thermal unit design and control [12], a variety of scheduling and layout design
problems [53], design of multi-product batch plants [50], to obstacle avoidance and robotic
motion planning problems [34].

Although MICPs are NP-hard in general, there exist a variety of algorithms for solving
MICPs to global optimality [8]. State-of-the-art MICP solvers are based on tailored methods
that exploit the fact that the integrality constraints are discrete while all other constraints
are convex. Early attempts to develop tailored Branch and Bound (B&B) methods for MICP
have been proposed in [24], mostly focussing on computational experiments and heuristics
for selecting the branching variables and nodes. Improved versions of these early B&B
methods for MICP can be found in [9,35]. Other early methods for solving MICP include
generalized Benders decomposition methods [5,23], which are, however, less frequently used
in state-of-the-art MICP solvers.!

Modern MICP implementations are often based on or related to Outer Approximation
(OA), which goes back to Duran and Grossmann [16]. In contrast to B&B, OA alternates
between solving Nonlinear Programs (NLP) with fixed integer values as well as Mixed Integer
Linear Programs (MILP), which are constructed by linearizing the objective and constraint
functions at the solutions of the NLP and which are used to update the integer variables.
A notable extension of OA has been developed by Fletcher and Leyffer [20], who suggest
to include curvature information in the relaxed integer program leading to a quadratic outer
approximation method. A more recent approach to second order outer approximation is that
of Krongvist et al. [32]. Moreover, Kesavan and co-workers [28] have studied variants of OA
for solving non-convex mixed integer problems. Another class of MICP methods are based
on (extended) cutting plane methods [59] or combination of OA and branch-and-cut [49]; see
also [56] for a general overview of polyhedral branch-and-cut methods. In recent years, there
has been considerable progress in lift-and-project methods for MICP. An excellent overview
and discussion of the state-of-the-art of such lift-and-project methods can be found in a recent
article by Kiling, Linderoth, and Luedtke [29].

Another recent trend in MICP solver development is the exploitation of separable struc-
tures by so-called extended formulations [25]. Here, the main idea is to introduce auxiliary
variables in order to bound decoupled summands in additive expressions separately [58],
which can lead to tighter polyhedral outer approximations. Such extended formulations have
not only found their way into OA methods, as discussed in [25] and [33], but they can
also be used to increase the performance of lift-and-project methods for MICP [29]. Also
of note are several algorithms that exploit separability to decompose large-scale MINLP
problems into MINLP subproblems based on block separability [41,42,45,46]. However,
extended formulations only exploit separability to construct tighter outer approximations,
but neither existing OA methods nor state-of-the-art lift-and-project methods ever attempt
to break a large-scale MICP into decoupled MICPs with fewer integer variables. This is in
contrast to distributed continuous convex optimization methods, such as dual decomposition
[19,43], Alternating Direction Method of Multipliers (ADMM) [10,17,21], or Augmented
Lagrangian based Alternating Direction Inexact Newton (ALADIN) methods [26], which can
all be used to solve large-scale convex optimization problems to global optimality by alter-
nating between solving small-scale convex optimization problems and sparse linear algebra
operations. These methods typically require communication of the solutions of the decoupled
problems between neighbours or to a central coordinator [10]. Although some researchers,

! For more details see [8].
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[39,55], have attempted to apply these distributed local optimization methods in a heuristic
manner, these methods cannot find global minimizers of non-convex problems reliably. This
is due to the fact that ADMM, ALADIN, or similar distributed convex optimization method
typically rely on strong duality results for augmented Lagrangians [52,54], which fail to hold
in the presence of integrality constraints.

After reviewing extended formulations and related existing outer approximation methods
in Sect. 2, the main contribution of this paper is presented in Sect. 3, which introduces a Par-
tially Distributed Outer Approximation (PaDOA) method for MICPs with separable objective
functions. In contrast to existing algorithms for structured MICP, PaDOA alternates between
solving MICPs with fewer integer variables and large-scale MILPs. Section 3.5 discusses
the global convergence properties of PADOA, as summarized in Theorem 3. In this context,
we additionally establish the fact that global optimality of a given feasible point of an MICP
with N separable objectives and Nn optimization variables can be computationally verified
by solving N partially-decoupled MICPs, each comprising at most n local integer variables,
and one MILP with Nn integer variables. This result is summarized in Theorem 2, which
analyzes one-step convergence conditions for PADOA. In the sense that both MICPs as well
as MILPs are NP hard in general [22,40], this result is not in conflict with existing complexity
results for mixed integer optimization problems. However, there are solvers such as CPLEX
[27], Gurobi [47], and many others [13], which are specifically designed for MIQPs and
MILPs. Thus, the fact that one can reduce the task of verifying global optimality of a feasible
point of a separable MICP with coupled affine constraints to the task of solving one MILP
of a comparable size and several smaller subproblems, is—at least from a computational
perspective—an important contribution. Notice that Sects. 2 and 3 focus on the theoretical
properties of PADOA, and consequently, a high level abstract notation is used to present these
theoretical, yet, at this stage, conceptual ideas. These derivations lead to a formal prove of
convergence, but, in general, the performance of PaDOA is problem dependent and a partial
distribution of operations can only possibly lead to practical improvements if the problems
are sufficiently structured. This aspect is illustrated by applying the method two MICP bench-
mark case studies in Sect. 4. The developments in this paper are not of pure theoretical interest
only, but actually lead to a practical framework that has potential for future investigation, as
outlined in our conclusions in Sect. 5.

1.1 Problem formulation

The present paper is concerned with mixed integer optimization problems of the form

V*= min f(x,2)
xeX,zeZ (€))
st. Ax=b

with separable objective function f(x, z) = ZlN: 1 fi(xi, z;) and separable constraint sets

X=X x...x Xy with X; CRM )
and Z=Z7;x...x Zy with Z; C 7" .

The coupling matrix A and the vector b are assumed to be given. In this context, the following
blanket assumption is used.

Assumption 1 The sets X, X», ..., Xy are non-empty convex polytopes, the sets Z;, Z,,
..., Zy are non-empty and compact, and the functions f; are convex on the convex hull of
X,‘ X Z,‘.
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The goal of this paper is to develop an efficient algorithm that finds e-suboptimal points
of (1), which are defined as follows:

Definition 1 A feasible point (x*, z*) € X x Z with Ax* = b is said to be an e-suboptimal
point of (1), with ¢ > 0, if

f&x*z2) < flx,2)+e.

for all (x, z) € X x Z with Ax = b.

Remark 1 The theoretical developments in this paper assume—for simplicity of presentation
—that all coupled constraints are linear equations in x. This is not restrictive in the sense
that coupled convex inequalities can always be reformulated by introducing slack variables
[4,11,38].

Remark 2 Instead of (1), one could also consider more general optimization problems of the
form

xer)r(l,i?ez f(x’ 2) (3)

st. Ax+Bz=b.

However, under mild regularity assumptions [44], this problem is equivalent to

N }
cex e ez El{fz(x, zi) + Aillyi — zillh} @)
s.t. Ax+By=b.

with real-valued auxiliary variables y and Li-penalty parameters A; > 0. Here, conv (Z)
denotes the convex hull of Z. Thus, for all theoretical purposes, it is sufficient to analyze
problems of the form (1), where only the real-valued variables are coupled.

Remark 3 Modern MICP formulations, algorithms, and software can deal with rather general
convex conic constraints [36]. Such constraints are left out for simplicity of presentation.
Nevertheless all results in this paper can be easily extended for general conic constraints, as
long as they are separable. From a purely theoretical perspective, one might argue that this can
always be achieved by adding suitable convex penalty functions to the functions f;, because
this paper makes no assumptions on the differentiability properties of f. However, more
tailored, practical algorithms that could exploit the structures of particular conic constraints
are beyond the scope of this paper.

1.2 Notation
‘We use the notation
dg() = [a e R |Vy € R", g = g +aT(y — )]

to denote the set of subgradients of a convex function g : R” — R with respect to the variable
X.
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2 Outer approximation

The following section reviews OA by using a slightly more abstract viewpoint that is based on
modern convex analysis notation. As mentioned in the introduction, OA has been introduced
in the 1980s by Duran and Grossmann [16] using different notation, but the following section
presents the method in a more general setting—also including Hijazi’s variants and extentions
of OA—in order to prepare the developments in Sect. 3.

2.1 Polyhedral relaxations

In order to construct polyhedral outer approximations of the epigraph of the objective function
f of (1), we consider the auxiliary optimization problem

x=y | A
ff@=min f(x,z) st. {Ay=b 5)
- yeXx.

for a fixed integer parameter ;7 € Z. Here, x and y are real valued primal optimization
variables and the notation “x = y | A” is used to say that A denotes the dual variable
associated with the constraint x = y.

Proposition 1 If Assumption 1 is satisfied, strong duality holds for (5), i.e., we have

{Ay:b

f*(z) = max min f(x,2) + A (y —x) s.t. e X

A X,y

(6)
forallz € Z.
Proof See “Appendix 1. O

Letx*(z), y*(z), A*(z) denote any primal-dual solution of (5) in dependence on z. By writing
out the optimality condition of (5) with respect to x, we find that

)\‘*(Z) € axf(X*(Z)s Z)v

i.e., A*(z) must be a subgradient of f at the optimal solution of (5). For the developments
given below it is helpful to keep in mind that the reverse statement is not correct, i.e., a
subgradient of f at (x*(z), z) is not necessarily a dual solution of (5).

In contrast to the particular choice of the subgradient A* of f with respect to x, the
construction of a subgradient of f with respect to z is less critical for the construction of
outer approximation methods.? In the following, we assume that a function

W (z2) € 9, f(x*(2), 2),

is given, which returns a subgradient of f with respect to z at the optimal solution of (5).
Because f(x,z) = ZlNzl fi(xi, z;) is separable, the ith block components, 1% (z) and 7 (z),
of the subgradients of f are subgradients of f;. Thus, the inequality

fiiz) = @+ i — @) + [ 3] @ -2

2 Note that we are referring to the relative importance of z and A and that the choice of subgradient should
in general not be neglected. For example, [18] shows that with a poor choice of subgradients OA can fail to
converge for convex nonsmooth MINLP problems.
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holds for all x; € X;, and z; € Z; and all Z € Z. Here, the shorthand
1@ = filx](2),2)

is used. In this context, it is important to notice that the function f*(%) depends on the whole
vector Z, not only on its ith component, Z;, because the equality constraints in (6) introduce
a non-trivial coupling.

More generally, if IT C Z; denotes finite set of points in Z, we associate with I a set of
hyperplane coefficients

zell
‘ _ a = A7 (2)

y = fr@ —a'xf ) — Bz

Notice that this set of hyperplane coefficients defines a polyhedral outer approximation of
the epigraph of f;. Thus, these coefficients can be used to construct a piecewise affine lower
bound on f;, which is for all (x;, z;) € X; x Z; given by

@i (x;, 20, IT) = oTxi + BTz + 7] ®)

max {
(@.B.y)Hi (IT)

Finally, we can construct the function

N
®(x,z, 1) =) ®i(xi, 2, 1) .

i=1
This function is—by construction—a piecewise affine lower bound on f,
V(x,z) € X x Z, D(x,z,IT) < f(x,2) . ()]
Next, our particular choice of the subgradient A*(z) of f as the dual solution of (5) enables

us to establish the following tightness property of the affine lower bound @.

Lemma 1 Let IT C Z be any finite set of points. If Assumption 1 holds, then

f*(z) =min &(x,z,1) st. Ax=0>b. (10)
xeX
holds for all z € I1.
Proof See “Appendix 2”. O
Note that Lemma 1 can be viewed as a special case of Theorem 2.3 in [23].

Remark 4 1f the set IT consists of m points, the computational cost for constructing the lower
bound (9) of f has order O(m N). Notice that if we would have ignored the separable structure
of f, the computational cost of computing the same lower bounding function would have
been of order O(m”™). Thus, the construction of (9) as a sum of the lower bounds of the
separable objective function is much cheaper than a direct construction of lower bounds of
f - This reduction in complexity has for the first time been observed and exploited by Hijazi
and co-workers [25]. By now, the expoitation of separability via extended formulations can
be considered as a standard that has been adopted in many modern MICP algorithms and
software tools [29,36,37].
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2.2 Outer approximation algorithm

Algorithm 1 outlines the main steps of the outer approximation algorithm. Notice that this
algorithm basically coincides with the original outer approximation algorithm that has been
proposed in [16]. The only notable differences of Algorithm 1 compared to traditional OA
are that the MILP in Step 3 uses the extended formulation based outer approximation variant
from [25]. Moreover, because we do not assume that f is differentiable, we have to use the
particular choice, 1*(z), of the subgradient, which is found as the dual solution?® of (5).

Algorithm 1: Outer Approximation for MICP

Input: Initial guess z € Z and a numerical tolerance ¢ > 0.
Initialization: Set [T = @ and U = oo.
Repeat:

1. Solve the convex optimization problem

x=y | A
ff@=min f(r.2) st yAy=b (11)
' yeX.

2. If (11) has no feasible solution, return a certificate of infeasibility and terminate. Otherwise, update
U < min{U, f*(z)} and T < I1U{z}.

3. Solve the (extended) MILP

N
Tyt zh) e argmin Yy
xeX,y,zeZ i=1
Viell,...,N),

Ve, Bis vi) € H; ()
a,Txi + ﬂ,-TZi +vi < i
Ax=b

12)

4, IfU — ZlNzl yi+ < g, terminate.

5. Update z <— z1 and go to Step 1.

Notice that Step 1 of Algorithm 1 solves (1) under the additional constraint that the integer
z is fixed. This implies that

f&*2)=v*

is an upper bound on the optimal objective value V* of (1). Thus, the current upper bound
U can be updated in Step 2. Moreover, the MILP (20) is by construction a relaxation of (1)
which implies that the solution of Step 3, ZlN: 1 yl.+ ,is a lower bound on the optimal objective
value V*. Thus, the difference, U — ZZNZI yf , between the current upper and lower bounds
can be used as a termination criterion, which is implemented in Step 3 of Algorithm 1. The

3 The idea to use dual solutions as subgradients for the construction of polyhedral outer approximation is not
new and can—in a very similar setting—be found in [36].
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following finite termination result for outer approximation is (at least in very similar versions)
well-known in the literature [16,36].

Theorem 1 If Assumption 1 is satisfied, then Algorithm 1 terminates after a finite number of
iterations.

Proof See “Appendix 3”. O

Remark5 Algorithm 1 uses Hijazi’s extended formulation [25] for constructing the
MILPs (20), which arguably exploits separability of the objective function to some extent.
However, Algorithm 1 is not a fully distributed algorithm. In fact, a major disadvantage of
Algorithm 1 becomes apparent, if one considers the special case that A = 0 and b = 0. In
this case, the optimal solution of (1) could have been found with much less effort by solving
the separable MICPs,
eXrgiez; filxi, zi)

which have much fewer integer variables. However, if Algorithm 1 is applied to such a
problem with redundant equality constraint, this property is not detected and a large number
of large-scale NLPs and large scale MILPs might have to be solved instead, until convergence
is achieved. The goal of this paper is to mitigate this limitation of Algorithm 1 by proposing a
partially distributed outer approximation algorithm that exploits the structure of the separable
objective in a better way.

3 Partially distributed outer approximation algorithm

This section introduces a partially distributed outer approximation optimization algorithm
for finding e-suboptimal solutions of (1).

3.1 Partially decoupled upper bounds

The main idea of many distributed convex and local optimization methods is to solve a set
of smaller-scale decoupled optimization problems in place of a single large one [5,10,14].
Similarly, consider partially decoupled optimization problems of the form

Vk(2) = xIr;irClk Jie ks S + Wi (x, 2)

x=y | X
Ay=b
s.L. yex 13)
Sk € Zk
fork € {1,..., N}. Note that Problem (13) regards only the local integer variables ¢y € Zy

as optimization variables, while all other integers are fixed. However, concerning the real-
valued variables, the whole vector x € X is kept as an optimization variable. In this context,
the shorthands

Vo) € XxZ, W)=Y fi(x.z))
jk
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are introduced in order to keep the x-dependence of the remaining summands, i.e., all objec-

tive terms whose index is not equal to k. As in the previous section, A denotes the dual solution

that is associated with the consensus constraint “x = y”. Because the constraint ¢ € Zj

enforces integrality, strong duality of (13) does not hold in general. However, if £;*(z) denotes

an optimal solution of (13) for the integer variable and if Assumption 1 holds, we still have
V() = max min - fi (v, & (2)) + Wi, 2) + ATy = x)

X,y

Ay=0>b
St {y =t (14)

The proof of this statement is completely analogous to Proposition 1, i.e., if the linear coupling
constraint Ax = b has a solution in X, a maximizer of (14) exists and can be used to define
a suitable subgradient. Also note that the functions Vj yield upper bounds on the objective
value of (1),

Vz e Z, mkin Vi(z) = V* (15)

At this point, it should be mentioned that one basic assumption of the algorithmic devel-
opments in this paper is that the complexity of the mixed integer optimization problems of
interest depends mostly on the number of integer variables. This is in contrast to the number
of real-valued variables, which may be assumed to have a negligible influence on the overall
complexity of the mixed-integer optimization problem. In other words, we assume that (13)
is much easier to solve than (1) in the sense that it contains much fewer integer variables,
although both problems have the same number of real-valued variables. Here, it is important
to keep in mind that, although the algorithmic developments in this paper are inspired by the
field of distributed optimization, the algorithm in this paper is (at least in the form in which
we present and analyze it) not fully distributed. This is because solving (13) requires the
evaluation of the function ¥y, which, in turn, requires the evaluation of all functions f; with

j#k.
3.2 Partially decoupled lower bounds

In this paper, we suggest to solve the decoupled MICPs (13) by lower level solvers that
implement the traditional outer approximation algorithm that has been reviewed in Sect. 2.2.
Notice that if Assumption 1 is satisfied, strong duality holds, i.e., these lower level solvers
will return piecewise affine models

O X xZr > R,
which must satisfy the condition

Vi(z) —eL < min_ OF(x,¢) st. Ax=b (16)
xeX,teZy

upon termination. Here, €1, > 0 denotes the numerical tolerance of the lower level OA solvers.
Notice that the optimization problem on the right hand of (16) corresponds to the last MILP
relaxation that is solved by the lower level OA solver. In practice the function @} can be
stored by maintaining a set of hyperplane coefficients as explained in detail in the previous

section.
The main idea of partially distributed outer approximation is to communicate the piecewise
lower bounding functions @; to a central coordinator, who constructs a piecewise affine lower
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bound on the function f, solves a master MILP problem, and updates z. Here, one option is
use the maximum over the function 6'),: in order to obtain the lower bound

Vxe€X,VzeZ, max Op(x,zk) < fx,2). a7

However, in order to arrive at a practical implementation, it is recommendable to further
refine this bound. This can be done by maintaining a collection of integers, II C Z, such
that the function

Ox,z) = max{ D(x,z, 1), mlflx O (x, zx) }, (18)

can be used as a piecewise affine lower bound on f. Recall that the function @, which has
been introduced in the previous section, exploits the separability properties of f. The integer
collection 7 is then maintained by updating

IT < [T U{c*},

where ¢* = [{f , ;5, ..., ¢y11s an integer vector, whose components are optimal solutions
for the integer variables of the partially decoupled problems (13).

3.3 Partially distributed outer approximation (PaDOA)

Algorithm 2 outlines a partially distributed algorithm for solving (1). There are four main
steps. In the first step, the partially decoupled MICPs of the form (13) are solved by using
a traditional outer approximation method. Under the assumption that the original MICP (1)
is feasible, the partially decoupled MICPs are feasible, too. Thus, the outer approximation
solvers will return optimal integer solutions ¢;* and associated piecewise affine lower bounds
©y such that (16) is satisfied. The second step of Algorithm 2 updates the associated upper
bound U based on the inequality (15) as well as the piecewise affine lower bound. In practice,
this step is implemented by storing the union of all supporting hyperplane coefficients that
are needed to represent ®@. Finally, the third step of Algorithm 2 solves a large scale MILP
problem. This MILP is constructed in analogy to the corresponding step in the traditional
outer approximation algorithm. It yields a lower bound,

Ot zh) < v,

on the objective value V* of (1). Thus, the difference between the current upper and lower
bounds,

U-0ut,zh,

can be used as a termination criterion, which is implemented in the fourth step of Algorithm 2.
If the termination is not successful, the integer variables z are updated, and the algorithm
subsequently proceeds to the next iteration.

Notice that the main difference between Algorithms 1 and 2 is the introduction of partially
decoupled MICP problems that can be solved separately and which contain much fewer
integer variables than the original MICP (1). The theoretical results in Sect. 3.5 will elaborate
further on the benefits of this alternation strategy. Moreover, in Sect. 4 a numerical case study
is examined, which illustrates the practical advantages of Algorithm 2.

Remark 6 For the special case that the functions f; are convex and piecewise affine, the
original optimization problem is an MILP, which could also be solved directly by using an
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Algorithm 2: Partially Distributed Outer Approximation (PaDOA)

Input: Initial guess z € Z and a numerical tolerance & > 0.
Initialization: Set [T = &, O (-, ) = —o0, and U = 0.
Repeat:

1. Solve forall k € {1, ..., N} the partially decoupled MICPs

Vi(z) = min  fi(xg, &) + Wi (x,2)  with  Wr(x,2) = ) fi(xj,2)) .
XY,k J#k
x=y | A
Ay=0> (19)
yeX
Sk € Zi

S.t.

If (19) is infeasible, terminate and return a certificate of infeasibility. Otherwise, update the set /T <«
nmu {{,: } and construct a piecewise affine model 6);(“ such that condition (16) is satisfied.

2. Update the upper bound U <— min {U, V1(z), ..., Vy(2)} and construct the piecewise lower bounding
function @ (x, z, IT) as in (8).

3. Update the lower bound
VxeX,VzeZ, O(x,z) < max{ Ox,z), @x,z, 1), m]iix @,:(x,zk) }

4. Solve the MILP problem

(xF.z%) e argmin O(x,2) st. Ax=b (20)
xeX,zeZ

5. IfU — @(x+, z+) < g, terminate. Otherwise, update z < zT and go to Step 1.

MILP solver. If one uses Algorithm 2 instead, this algorithms solves an MILP by solving
a sequence of MILPs—a strategy that may seem rather counter-intuitive on the first view.
However, one interesting observation of this paper is that Algorithm 2 can even for (suffi-
ciently structured) MILPs help to speed up the convergence process, because the complexity
of the MILPs in Step 4 of Algorithm 2 depends on the complexity of the current lower bound
©® and eventually is much easier to solve than the original MILP. This effect is illustrated by
numerical experiments in Sect. 4.2.

3.4 Relation to distributed local optimization methods

The idea to “augment” the local objective functions f; with a suitable function ¥; is frequently
used in the context of distributed local optimization algorithms. For example, in the context
of dual decomposition [19,43], one augments the separable functions f; with linear functions
of the form*

W (x) = o Ax,

4 In the context of convex optimization, the functions ¥; only depend on x, and Problem (1) is considered
without integer variables z.
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where o is the current dual iterate. Similarly, in the context of ADMM or ALADIN, one uses
augmented Lagrangians [3,48], as in

P
W (x, y) =aTAx+§||x—y||2, Q1)

where z and o are the current primal and dual iterates; see [10,17,26]. In fact, the con-
struction of Algorithm 2 is inspired by the distributed local nonlinear programming method
ALADIN. Here, we recall that ALADIN alternates between solving small-scale decoupled
NLPs that are augmented by terms of the form (21) and large scale equality constrained
quadratic programming problems that update o and y [26]. This is in analogy to Algorithm 2,
which alternates between solving decoupled MICPs (Step 1) and large-scale coupled MILPs
(Step 3). However, unlike ALADIN, augmented Lagrangians are not used in Algorithm 2 as
Lagrange multipliers in integer programming are not related to sensitivity and generally not
applicable.

Also note that the construction of the functions ¥; in Algorithm 2 also has similarities
with Gauss-Seidel or more general block-coordinate descent methods [57,60] in the sense
that a partial decoupling is obtained by fixing some of the integer variables while others
are optimized. However, despite all these analogies and similarities of Algorithm 2 with
methods from the field of local and convex optimization, we would like to highlight that all
these existing distributed optimization methods are not reliably applicable to Problem (1)
[55].

3.5 Convergence analysis

In this section we provide a concise overview of the convergence properties of Algorithm 2.
The following theorem establishes one of the main results of this paper, namely, that Algo-
rithm 2 converges after one iteration if the integer iterate, z, is initialized with an optimal
solution of (1). This is in contrast to Algorithm 1, which does not necessarily terminate after
a small number of steps—not even if it is initialized at an optimal solution.

Theorem 2 Let Assumption 1 be satisfied and let (x*, 7*) be a minimizer of (1). If Algorithm 2
is initialized with z = z* and if the termination tolerances of the lower level solvers satisfy
€L < €, then the termination criterion in Step 4 is satisfied. In other words, the algorithm
terminates after one step.

Proof See “Appendix 4”. O

Notice that the statement of the above theorem is of fundamental relevance and a very
favorable property of PaADOA. If we work with other global optimization methods, say branch-
and-bound, an empirical observation is that such existing global optimization algorithm often
find a global solution early on but then keep on iterating until the lower bound is accurate
enough to prove global optimality. In contrast to this, PADOA terminates as soon as a global
minimizer is added to the collection I7. In fact, Theorem 2 implies that global optimality of
a point z* € Z can be verified by solving the N instances of the partially decoupled MICPs
and the master MILP (20). Notice that this result is not in conflict with existing results from
the field of complexity theory, because the master MILP (20) remains NP-hard [22,40].

Remark 7 The result of Theorem 2 relies heavily on the convexity of the functions f; on the
convex hull of X; x Z;, although this fact is not highlighted explicitly in the proof. This
convexity assumption is first of all required implicitly by our assumption that the lower level
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solvers return piecewise level models @, which satisfy the termination condition (16) (this
assumption is only reasonable if strong duality holds) and which need to be global lower
bounds on f. These properties are in general all not satisfied if one considers more general
non-convex MINLPs.

The following theorem establishes the fact that Algorithm 2 converges after a finite number
of iterations under exactly the same conditions under which convergence of Algorithm 1 can
be established.

Theorem 3 Let Assumption 1 be satisfied. If the termination tolerances of the lower level
solvers satisfy €1, < €, then Algorithm 2 terminates after a finite number of steps (indepen-
dently of the initialization).

Proof See “Appendix 5”. O

4 Implementation and case study

This section presents two benchmark problems to assess the computational performance
of Algorithm 2. The first aims to provide a cost-optimal heater/cooler activation scheme
such that a set of temperatures remain within pre-set limits. The objective is formulatable as
an MILP, MIQP, or higher order MICP allowing for testing on a broad class of problems.
Furthermore, each problem instance is scalable both vertically (in time horizon/subproblem
size) and horizontally (number of regions/number of subproblems), which allows for an
examination of the benefit which may come from the parallelizable Step 1 of Algorithm 2.

A second benchmark example comes in the form of a mixed-integer lasso problem. This is
used to demonstrate the versatility of Algorithm 2 and verify the results of the first benchmark
problem given the presence of an Li-norm. Like the first benchmark problem, it is also
scalable both vertically and horizontally, and the results for ten unique instances of the
problem are given. The Partially Distributed Outer Approximation method is implemented in
MATLAB R2017b. The optimization subproblems are solved using Gurobi [47] implemented
via CasADi v1.9.0 [2]. All numerical experiments were run on a 2.9 GHz Intel Core i5-4460S
CPU with 8 GB of RAM.

4.1 Thermostatically controlled loads

An important problem in the planning and operation of a heating and/or cooling system is the
scheduling of so-called Thermostatically Controlled Loads (TCLs) [31]. These are devices
that are used to regulate the temperature of a room/building within a certain user-defined
interval known as a “deadband”. The optimal operation strategy is especially difficult to
determine when a non-constant cost function is introduced for a population of heterogeneous
TCLs [61]. The cost function may represent the cost of electricity or user-discomfort from
noise generation. Regardless, such devices typically only have an “on” and an “off” setting
and thus the resulting scheduling problem can be formulated as a binary MIP for R regions
with a discretized time horizon H, consisting of hour-long time steps.

R H-1

Qmin D0 eOu®) +y @) = Tirer (), (22a)

i=1 =0
subjectto Vi € {1, ..., R},
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Fig. 1 Two room configurations with controlled cooling elements u;, ambient temperature 7, and initial
temperatures 7; (0)

T,<T;t)<T;, Vtel0,...,H) (22b)
ui (1) € {0, 1}, vt e{0,...,H—1} (22¢)
vt €{0,..., H},

T; (1) + Tamp (1) + ZjeN(i) T;()
IN(@|+2

Ti(t+1)=Ti(t)+biui(l)+ai< —Ti(f)), (22d)

where c(¢) is the vector of device costs at time ¢, y is a comfort parameter, T'; and T; are
the deadband temperature limits of device i, a; and b; are heat transfer parameters, T, (¢)
is the ambient temperature at time ¢ and N (i) are the number of regions neighbouring i.
Equation (22d) models the thermodynamics of each room in a simplified manner, i.e., it
takes an average of the current and surrounding temperatures to update the temperature of
the next time step. This formulation results in H + 1 real-valued and H binary variables per
region. Figure 1 shows two possible initial configurations of (22). The ambient temperature is
taken from [15] for two days in June 2017 in the Karlsruhe (Germany) area, with a reference
temperature 7; ;o5 = 209¢¢ for each room. High prices of 25.67 cents/kWh are set from 2pm
to 8pm (time steps 6 to 12 and 29 to 35) with low and medium prices of 2.46 cents/kWh and
4.62 cents/kWh in all other time steps. Each region is initialized at 20 degrees with a¢; = 0.2
and b; = —2. As the temperature for each room is more influenced by past temperatures than
neighbouring rooms, Problem (22) is partitioned spatially for Algorithm 2, with each room
in its own partition.

4.2 Results for MILP

If the comfort parameter y is taken to be zero then Problem (22) is linear and separable
but coupled in both its discrete and real-valued variables. Shown in Tables 1 and 2 are
the simulation results for each configuration, respectively. The results of Algorithm 2 are
compared with results obtained from the MIP solver Bonmin with the Branch and Bound
(B-BB) and Outer Approximation (B-OA) algorithm settings [7] as well as the commercial
MIQP solvers Gurobi and CPLEX [27]. An example solution for the 3 room case is depicted
in Fig. 2.

At first glance, the results from Tables 1 and 2 may seem surprising since the 4 room
case has more space to keep cool but nonetheless is able to do so at a lower cost than the 3
room case. This is due to an insulation effect that the 4 room configuration enjoys. With the
activation of two coolers in the first six time steps, the room temperatures can stay within their

5 Only two temperature trajectories are visible due to both end-rooms having identical solutions.
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Fig. 2 The red dotted line is the ambient temperature, the blue dotted lines are the limits of the temperature
deadzone and the solid lines are the temperature trajectories of each region in the three room scenario.
Highlighted on the trajectories are points where the coolers are activated. (Color figure online)

TCL problem witha Sooom | mestps 8 - 48 2
configuration Alg. 2
Ob;. 0 13.86 16.32 21.23
Time (s) 0.15 0.20 0.89 5.23
Iter. 2 1 2 2
B-OA
Ob;. 0 13.86 16.32 21.23
Time (s) 0.15 31.06 1,345 52,395
B-BB
Ob;. 0 13.86 16.32 21.23
Time (s) 0.15 29.19 480.27 828.08
Gurobi
Ob;. 0 13.86 16.32 21.23
Time (s) 0.22 0.56 0.85 4.39
CPLEX
Ob;. 0 13.86 16.32 21.23
Time (s) 0.07 0.16 0.54 2.81

deadbands for the entire 48 h period. In contrast, the 3 room configuration is more susceptible
to the ambient temperature and requires more use of the coolers. This also seems to have
increased the computational complexity of the problem and requires more time for the 3
room case to be solved than the 4 room case. It should be noted that several initializations
were tested and the solution times were not significantly affected, implying that this was not
the cause of the runtime differences in the two cases.

One of the advantages of using a distributed method is the ability to solve problems
that would be otherwise intractable for a centralized solver. Tables 1 and 2 show results for
cases containing up to 496 variables, but even larger problems may be considered. Table 3
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Table 2 Results obtained for the

TCL problem with a 4-room Time steps 8 24 48 62
configuration Alg. 2
Ob;. 0 9.24 9.24 11.69
Time (s) 0.17 0.25 0.39 1.41
Iter. 2 2 2 2
B-OA
Obj. 0 9.24 9.24 11.69
Time (s) 0.14 28.34 48.42 1,610
B-BB
Ob;. 0 9.24 9.24 11.69
Time (s) 0.18 33.11 56.83 822.48
Gurobi
Ob;. 0 9.24 9.24 11.69
Time (s) 0.22 0.37 0.51 1.08
CPLEX
Ob. 0 9.24 9.24 11.69
Time (s) 0.07 0.09 0.11 0.48

Table 3 Results obtained for the TCL problem with a linear room configuration

Rooms 7 7 7 10 12 18 20
Alg. 2

Time steps 8 24 48 48 36 24 24

Obj. 0 23.1 28.02 37.26 41.88 50.82 55.44

Time (s) 0.15 1.03 4533.4 9127.5 8294 853.7 16,658

Iter. 2 2 2 2 2 2 2
B-OA

Ob;. 0 23.1 N/A N/A N/A N/A N/A

Time (s) 0.16 5134 N/A N/A N/A N/A N/A
B-BB

Obj. 0 23.1 28.02 37.26 41.88 50.82 55.44

Time (s) 0.18 690.23 1682.5 3076.0 3261.5 2999.1 4658.4
Gurobi

Ob;. 0 23.1 28.02 N/A 41.88 50.82 N/A

Time (s) 0.25 0.93 56.09 N/A 56,842 31,926 N/A
CPLEX

Ob;. 0 23.1 28.02 37.26 41.88 50.82 N/A

Time (s) 0.08 0.65 150.31 13,416 12,885 57,108 > 245,000
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Table 4 Results obtained for

Problem (22) with a 3-room Time steps 8 24 48 62
configuration Alg. 2
Ob;. 17.833 60.15 104.07 134.43
Time (s) 0.24 0.49 1.36 3.17
Iter. 4 3 3 3
B-OA
Oby;. 17.83 60.15 104.07 134.43
Time (s) 4.36 46.94 399.49 1702.60
B-BB
Oby;. 17.83 60.15 104.07 134.43
Time (s) 9.09 70.40 502.76 1152.90
Gurobi
Ob;. 17.83 60.15 104.07 134.43
Time (s) 0.44 0.50 0.66 0.83
CPLEX
Ob;. 17.83 60.15 104.07 134.43
Time (s) 0.19 0.27 0.25 0.54

shows results for a variety of time horizons and rooms. Here, the room configuration is
instead arranged such that the rooms are in a line. While unrealistic for most buildings,
this setup is realistic for the temperature control of a train or rooms next to a corridor.
Mathematically, this example differs somewhat from the other two. While the other problems
have a significant amount of coupling between the control variables, this is not the case for the
linear room configuration. The sparsity induced by this problem structure allows Algorithm 2
to outperform both Gurobi and CPLEX (applied to the centralized problem).

4.3 Results for MIQP

If the comfort parameter y is larger than zero then Problem (22) becomes a convex MIQP.
As in Sect. 4.2, the results of Algorithm 2 for each room configuration are compared with
those obtained from Bonmin, Gurobi, and CPLEX. The value of y was chosen to be one to
allow for an equal weighting of comfort and cost. These results are displayed in Tables 4, 5,
and 6.

Shown in Fig. 3 are the trajectories obtained for the three-room scenario with a tempera-
ture deviation penalization. In contrast to Fig. 2, a quadratic penalty term is used to model
discomfort caused by deviations from the set temperature. Indeed, the solution with y = 1
yields a trajectory with a similar number of activations as when y = 0 but with temperature
trajectories that stay much closer to the middle of the deadband.

6 Convex in the same notion of convexity in MICPs. That is, a problem where the continuous relaxation yields
a convex quadratic program.
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Table 5 Results obtained for

Problem (22) with a 4-room Time steps 8 24 48 62
configuration Alg. 2
Ob;. 21.68 52.26 99.68 134.43
Time (s) 0.37 0.65 8.82 31.07
Iter. 5 3 3 4
B-OA
Ob;. 21.68 52.26 99.68 134.43
Time (s) 14.61 6.78 613.95 7,024.10
B-BB
Ob;. 21.68 52.26 99.68 134.43
Time (s) 30.39 11.13 661.95 1,495.30
Gurobi
Ob;. 21.68 52.26 99.68 134.43
Time (s) 0.41 0.54 0.72 2.31
CPLEX
Ob;. 21.68 52.26 99.68 134.43
Time (s) 0.15 0.16 0.41 2.15
Iled Relodined ot fews 5w w @
room configuration Alg. 2
Ob;. 39.50 112.08 201.19 267.04
Time (s) 1.57 2.55 260.2 1022.38
Iter. 4 3 4 3
B-OA
Ob;. 39.50 112.08 N/A N/A
Time (s) 358.12 1833.9 N/A N/A
B-BB
Ob;. 39.50 112.08 201.19 267.04
Time (s) 593.17 955.77 6095.6 15,582
Gurobi
Ob;. 39.50 112.08 201.19 267.04
Time (s) 0.95 0.72 10.83 65.59
CPLEX
Ob;. 39.50 112.08 201.19 267.04
Time (s) 0.93 0.77 6.53 17.50

4.4 Higher Order Convex Problems

One of the advantages of the proposed algorithm is that it is applicable to a relatively large
class of problems (namely, MICPs). While Sect. 4.3 shows favourable results for both Gurobi
and CPLEX, if the problem were adjusted slightly such that it were no longer an MIQP then
these solvers would no longer be applicable. For example, if the objective function of Problem
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Fig. 3 The three room scenario, with the comfort parameter y = 1. The red dotted line is the ambient

temperature, the blue dotted lines are the limits of the temperature deadzone and the solid lines are the
temperature trajectories of each region in the three room scenario. Highlighted on the trajectories are points
where the coolers are activated. (Color figure online)

(22) became
H-1
min " c(Ou(®) +y (T (0) = Trer ()™,

() =
then this would still be solvable via PaDOA, but not Gurobi or CPLEX. However, Bonmin
can still be applied.” The results for a variety of such problem configurations are shown below
in Table 7. Therein it can be observed that Algorithm 2 returns the same, global solution as
Bonmin with the B&B sub-algorithm, and does so in less time. The runtime difference is
particularly striking for the 7 room scenarios as these contain the most variables and have
the greatest potential for parallelization.

4.5 Discussion of TCL Benchmark Results

Algorithm 2 is able to converge quite quickly for the MILP instance of (22) since it is
underapproximating a linear problem with linear functions and thus can prove optimality
quickly and with few iterations. More supporting hyperplanes are needed in the MIQP case
and thus we see a couple more iterations and a slightly longer runtime for Algorithm 2. As
shown in Figs. 4 and 5, the upper and lower bound converge quite quickly for the MIQP and
MINLP cases, but require several iterations to refine the solution.

Interestingly, the MIQP cases is generally obtained more quickly than the MILP case, even
though one might expect the higher order problem to be more difficult to solve. The quadratic
term should make the MIQP instance of Problem (22) more computationally difficult than the
MILP instance, but in some cases both Gurobi and CPLEX actually require less time. It may
be the case that the MILP instance of (22) is more poorly conditioned than the MIQP instance,
and thus the centralized solvers require much more effort to guarantee the optimality of a

7 1t should be noted that all results seen in this section for Algorithm 2 use Bonmin to solve the MICP
subproblems.
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Table 7 Results obtained for Problem (22), but with a 4th order objective function

Rooms Time steps Alg. 2 B-B&B B-OA
Ob;j. Time (s) Iter. Ob;j. Time (s) Ob;j. Time (s)
3 8 16.72 4.20 5 16.72 7.51 N/A N/A
3 24 76.86 19.14 4 76.86 308.64 N/A N/A
3 48 115.62 95.56 3 115.62 547.98 N/A N/A
3 62 141.44 405.19 6 141.44 779.41 N/A N/A
4 8 21.73 4.11 6 21.73 16.93 N/A N/A
4 24 44.94 6.47 3 44.94 9.93 N/A N/A
4 48 86.72 151.58 5 86.72 477.60 N/A N/A
4 62 120.71 175.78 6 120.71 781.46 N/A N/A
7 8 38.41 8.87 7 38.41 374.38 N/A N/A
7 24 122.09 34.86 3 122.09 1291.29 N/A N/A
7 48 202.54 1631.6 4 202.54 2830.93 N/A N/A
7 62 263.91 3614.54 4 263.91 9453.89 N/A N/A
400
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Fig. 4 Progression of the upper and lower bounds during each iteration while solving the 2nd-order version
of Problem (22) with 7 rooms and 48 time steps. The blue line depicts the progression of the upper bound and
the red line shows that of the lower bound. (Color figure online)

given solution. This may imply that quadratic underapproximating functions and an MIQP
coupling step could be more efficient than the current affine implementation. This would also
allow for Algorithm 2 to be applicable to a wider class of problems.

It is also worth noting that the majority of the runtime used by Algorithm 2 for the MIQP
problem instance is spent in the MILP coupling step. In contrast, the majority of the time
spent solving the 4th-order problem is in the MINLP subproblems, and the MILP coupling
problems are solved relatively quickly. A breakdown of the runtime per iteration for both of
these cases is reported in Tables 8 and 9.
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Fig.5 Progression of the upper and lower bounds during each iteration while solving the 4th-order version of
Problem (22) with 4 rooms and 8 time steps. The blue line depicts the progression of the upper bound and the
red shows that of the lower bound. (Color figure online)

Table 8 Runtime breakdown of
Iter. 1 Iter. 2 Iter. Iter. 4
Algorithm 2 applied to the ter ter ter. 3 ter
2qd-0rder version of Problerr} 22 MINLP time (s) 0.27 0.20 0.20 0.20
with 7 room TCL problem with .
48 time steps MILP time (s) 2.20 86.89 82.62 87.62
Hyperplane time (s) 0.001 0.005 0.002 0.002

Table 9 Runtime breakdown of Algorithm 2 applied to the 4th-order version of Problem 22 with 4 rooms and
8 time steps

Tter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5 Tter. 6
MINLP time (s) 0.73 0.75 0.67 0.65 0.65 0.66
MILP time (s) 0.03 0.04 0.04 0.04 0.04 0.04
Hyperplane time (s) 0.004 0.006 0.002 0.002 0.002 0.002

4.6 Mixed-Integer Lasso

As a second benchmark example we consider a mixed-integer lasso problem based on Prob-
lem (11.1) from [10]. The details of this problem are summarized below for n + N features
and M training samples:

M
min 3 4 PIE  fly + i), (23a)
j=1
subject to:
w<w <D, (23b)
zeZczV, (23¢c)

where w € R",v € R. Asin [10], the features consist of the tuple (a;, b;, c;) wherea; € R",
bj e RY, and ¢ j € {—1, 1}. The regularization parameter A is chosen as described in [10].
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Table 10 Results obtained for Problem (24) using Algorithm 2 and Bonmin

n M N PaDOA PaDOA PaDOA B-BB B-BB
(Alg. 2) Obj. (Alg. 2) Time (ms) (Alg. 2) iter. Obj. Time (ms)

40 100 2 36.42 47,686 392 N/A 4618
100 300 5 105.72 40,925 216 N/A 23,615
40 500 10 284.65 1306 23 284.44 18,723
40 100 10 49.60 742 11 49.53 2055
200 500 10 142.69 20,551 97 N/A 38,050
400 500 10 232.77 352,616 255 N/A 123,071
400 1200 20 361.97 30,473 74 N/A 82,512
600 1800 30 534.71 42,988 66 N/A 228,656
800 2800 40 1029.70 61,997 61 N/A 143,999
1000 2500 50 791.95 66,445 55 N/A 334,536

Assuming that M > N, Problem (23) can be decomposed into a collection of smaller
problems of the form (23) with appropriate consensus constraints. Given the structure of
Algorithm 2, it is logical to decompose (23) such that only one integer variable is present per
subproblem:

N M;
]
: —a; wi—bjzi—cjv;
min D2 3T i1+ ), (242)
i=1 j=1

subjectto Vi € {1,..., N}:

w; < w;, v < W, (24b)
zi € Z; C 7, (24¢)
w; = W, zi = 2k, andv; = v, Yk e {l,..., N}. (244d)

That is, the collection of M = ZlN: | M; training samples is decomposed into N (evenly
sized) parts, all of which must be in consensus.

4.7 Numerical Results for Mixed-Integer Lasso

To test Algorithm 2 on Problem (24) the results for a variety of problem and partition sizes
are presented, with features generated according to [10]. These are displayed in Table 10
with the results of Bonmin used for comparison.

Note that Bonmin with standard settings fails for most of the benchmark problems.
Nonetheless, the time spent by Bonmin to attempt a solution is still recorded in Table 10.
Overall, Algorithm 2 tends to perform much better with a highly partitioned problem (large
N), where each partition contains relatively few decision variables (low n).

Much like the 4th order instance of the TCL problem, the mixed-integer lasso problem
requires many iterations until PADOA converges. Likewise, the upper and lower bounds
converge in a similar manner as shown in Fig. 6. That is, the lower bound increases much
more quickly than the upper bound decreases.

One interesting difference between the results for the mixed-integer lasso and TCL prob-
lems is that the runtime for the TCL problem is much more balanced between the MILP and
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Fig. 6 Progression of the upper and lower bounds during each iteration while solving the Problem (24) with

n =40, M = 100, and N = 10. The blue line depicts the progression of the upper bound and the red shows
that of the lower bound. (Color figure online)

Table 11 Runtime breakdown of Algorithm 2 applied to Problem (24) with n = 40, M = 100, and N = 10

Iteration 1 2 3 4 5 6 7 8 9 10 11

MINLP time (ms) 142 15 13 102 13 12 13 14 15 12 17
MILP time (ms) 16 18 15 18 20 19 23 25 26 30 33
Hyp. time (ms) 19 11 11 10 10 11 11 11 11 12 13

MINLP steps, as shown in Table 11. This may be due to the chosen problem partitioning,
wherein each MINLP subproblem only requires the solution to a collection of continuous
variables and a single integer variable.

5 Conclusions

This paper has introduces a new method (PaDOA) for partially distributing MICP solvers
to find e-suboptimal points of the structured MICP (1). PaDOA proceeds by alternating
between solving partially decoupled MICPs that comprise m integer variables and large
scale MILPs with n N variables. Finite termination conditions for PADOA are established in
Theorem 3. Moreover, we discuss the major theoretical and practical advantages of PADOA
compared to exising extended formulation based OA solvers. In particular, Theorem 2 states
that PaDOA terminates after the first iteration, if it is initialized at a global minimizer—an
important property that is neither shared by existing OA nor by existing branch-and-bound
based methods for MICP.

In Sect. 4, first, second and fourth order mixed integer problems are used to demonstrate the
practical performance of PADOA compared to other state of the art solvers by application to a
scheduling problem of thermostatically controlled loads. While the solution and runtime are
competitive for each of the case studies considered, the best performance occurs for problems
with sparse Hessians and coupling constraints. Furthermore, it is observed that PaDOA is
able to return a solution in several cases where the centralized approach fails due to memory

@ Springer



Journal of Global Optimization

constraints. These results are confirmed with a second benchmark example in Sect. 4.6. It
remains to be seen what the specific limitations of this method for distributing MICP solvers
are, and a full investigation of PaADOA and a more mature software implementation is still
subject to future work.

As shown in Sect. 4, the MIQP implementation of Problem (22) is solved more efficiently
than the MILP implementation. Thus, it may be the case that quadratic underapproximating
functions and an MIQP coupling step could actually be more efficient for certain problems
than the current implementation with affine supporting hyperplanes. This would also have
the added benefit of allowing for applicability to a larger problem class. Future work will
investigate the use of other under-approximating functions and an extension of Algorithm 2
to non-convex MINLPs. Furthermore, Step 4 requires full constraint information in order to
return a feasible solution. This restricts the applicability in terms of fully distributed settings
and future work will focus on sidestepping this restriction.
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Proofs
Proof of Proposition 1

Ifthereisnox € X with Ax = b, both sides of (6) are equal to infinity and the statement of the
proposition holds in the extended value sense. Thus, we may assume that the constraints in (6)
are feasible. Consequently, Assumption 1 implies that (5) is a convex optimization problem
with compact and non-empty feasible set. Moreover, since X is a polytope, all constraints
in (5) are linear. It is well-known [6,51] that strong duality holds under these conditions. O

Proof of Lemma 1

If there is no x € X with Ax = b, both sides of (10) are equal to infinity and the statement of
the lemma holds in the extended value sense. Thus, we may assume that the equation Ax = b
has a solution in X. Next, because we have z € [T, our particular construction of @ implies
that

o,z 1) > f*O+[M@] k=2 @)+ [ @] -2 (25)
—~—
=0

Thus, we have

] ] * * T *
s T
—min .0+ @] G -x st (TP
_I/Irl’lyn X,z z y—x) s.t. yex
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Ay=b

_ ; Ty
= max r}cn\n fx,2)+A2(y—x) st {yeX

Since Assumption 1 holds, we may substitute (6) (see Proposition 1), which yields the
equation

Vzell, min @ (x,z, ) = f*(2) .
xeX,Ax=b

Proof of Theorem 1

Notice that if the equation Ax = b has no solution in X, this will be detected immediately by
Step 2 of Algorithm 1, which causes termination. Thus, we may assume that all optimization
problems are feasible. Now, the main idea of the proof is to show that the cardinality of the
set IT is strictly increasing in every iteration, if the algorithm does not terminate. For this
aim, we first notice that any solution (x™, y*, zT) of the MILP (12) satisfies the equation

N
oGtz M) =)yt (26)
i=1

by construction. Moreover, because we have Ax* = b, the inequality

min ®(x,zT, M) <@(x",zH, M) 27)
x,Ax=b

holds. If we further assume that the termination criterion is not satisfied, we must have
N
Doy <U-
yi<U-—e (28)
i=1

Thus, if we had z+ € [T, then the result of Lemma 1 would imply that

DY min @@t ) (29)
x,Ax=b

aswellas U < f(z1), since z* has already been added to the collection IT. By substituting
all the above relations we would then find that

1@ (29)’5(27) otz m COLY e < f@hH —e
which is a contraction. Thus, either our assumption that the algorithm does not terminate or
our assumption z* € IT must be wrong. In other words, if the algorithm does not terminate
in the current step, then the cardinality of the set /T increases by 1 in the next step, because
7 is added to the collection [T C Z. But this is only possible for a finite number of steps,
because the set Z contains only a finite number of points. Thus, Algorithm 1 must terminate
after a finite number of iterations. O

Proof of Theorem 2

Let V* = ZlN: 1 fi(x}, z7) denote the optimal value of (1). Because we assume that such an
optimal solution exists while Assumption 1 is satisfied, the partially decoupled optimization
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problems are all feasible and return piecewise affine lower bounds that satisfy the termination
condition (16) with Vi (z*) = V*, i.e., we have

V¥*—e < min_ OF(x,f) st. Ax=b (30)
xeX,[eZy
forallk € {1, ..., N}. Because the function @ is by construction an upper bound on &, (for
any k), we further have
i OF(x, §) < i O(x,2) = 0", "),
reX.(o2p Axmb (8 = reX aeT Axmb (x.2) 7,27

where (xT, z*) denotes the solution of the master MILP (20). By substituting the above
inequalities we find that

V¥—e <0Gt zh).
Because we assume that €1, < €, this implies that
U-0at,H=v-0uatH=zea=<e.

Thus, the termination condition is satisfied and Algorithm 2 terminates after the first step. O

Proof of Theorem 3

We may assume that the coupled equality constraint is feasible, as infeasibility would be
detected immediately in Step 1 of Algorithm 2. Similar to the proof of Theorem 1, we need
to keep track of the integer solutions of the master MILPs. For this aim, we introduce the
following “artificial” additional step:

Step 3'): After solving (20), update /T = IT U {zT}.

If the set /7 is initialized with the empty set and if Step 3’ is inserted in Algorithm 2 immedi-
ately after Step 3, the iterates of this algorithm remain unaffected. The main idea of the proof
is now to show that the cardinality of the set IT increases in every iteration of Algorithm 1
under the assumption that the termination criterion is not satisfied. Let us assume that the
solution z* satisfies z+ € IT (before I7 is updated in Step 3'). Then we have

(16)
U<Vi(z") < e+ min OF(x,0),
=V = a xeX,;€Zy,Ax=b k( é‘)

Because ® is an upper bound on &y, this implies that we also have

min O (x,0) < min O*(x,0) = (xT, z),

xeX,teZy,Ax=b k( §) = xeX,zeZ,Ax=b . &) ( )
which yields U — @(x™, z7) < e < €. Thus, either the termination criterion is satisfied
or we have z* ¢ IT. In the latter case, the cardinality of IT increases by 1 in the current
iteration. As this is only possible for a finite number of steps, Algorithm 2 must terminate. O
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