KIT | KIT-Bibliothek | Impressum | Datenschutz

Nitrat-Monitoring 4.0 – Intelligente Systeme zur nachhaltigen Reduzierung von Nitrat im Grundwasser

Liesch, Tanja; Bruns, Julian; Abecker, Andreas; Hilbring, Désirée; Karimanzira, Divas; Martin, Tobias; Wagner, Martin; Wunsch, Andreas ORCID iD icon; Fischer, Thilo

Abstract:
Nitrat im Grundwasser stellt weltweit unter anderem für die Trinkwasserversorgung ein großes Problem dar. Die Verteilung von Nitrat im Grundwasser ist dabei das Ergebnis eines komplexen Zusammenspiels vieler Einflussfaktoren, welches sich mit herkömmlichen Modellen für große Gebiete aufgrund der hohen Komplexität der Domäne nur schwer modellieren lässt. KI-Anwendungen, insbesondere Neuronale Netze bzw. Deep Learning Verfahren, lassen als datenbasierte Modelle, die komplexe Zusammenhänge aus einer großen Datenmenge extrahieren und übertragen können, hier einen deutlichen Mehrwert bei der zeitlich-räumlichen Vorhersage von Nitratwerten erwarten. Im vorliegenden Projekt soll daher ein übergreifendes System entwickelt werden, welches KI Verfahren mit Methoden der Umweltinformatik und speziell der Wasserdomäne kombiniert. Hierzu kommen State-of-the-Art Machine Learning Methoden wie Convolutional Neural Networks und Long short-term Memory Netzwerke zum Einsatz, um so eine verbesserte räumliche und zeitliche Vorhersage von Nitrat im Grundwasser zu erzielen und damit zur effizienten und nachhaltigen Nitrat-Reduzierung beizutragen. Diese werden mit Methoden des Operation Research und der semantischen Datenintegration erweitert, um damit einen Endnutzer bei der Entscheidungsfindung intelligent zu unterstützen.


Originalveröffentlichung
DOI: 10.18420/inf2020_101
Zugehörige Institution(en) am KIT Institut für Angewandte Geowissenschaften (AGW)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2021
Sprache Deutsch
Identifikator ISBN: 978-3-88579-701-2
ISSN: 1617-5468
KITopen-ID: 1000132639
Erschienen in INFORMATIK 2020 - Back to the future. Hrsg.: R.H. Reussner
Veranstaltung 50. Back to the future. 50. Jahrestagung der Gesellschaft für Informatik (Informatik 2020), Online, 28.09.2020 – 02.10.2020
Verlag Gesellschaft für Informatik e.V.  (GI)
Seiten 1069-1079
Serie GI Edition : lecutre notes in informatics / Proceedings ; 307
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page