
R E S E A R CH A R T I C L E

Lateral terrestrial water flow contribution to summer
precipitation at continental scale – A comparison between
Europe and West Africa with WRF-Hydro-tag ensembles

Joël Arnault1 | Benjamin Fersch1 | Thomas Rummler2 | Zhenyu Zhang1,2 |

Gandome Mayeul Quenum3 | Jianhui Wei1 | Maximilian Graf1,2 |

Patrick Laux1,2 | Harald Kunstmann1,2

1Institute of Meteorology and Climate

Research, Karlsruhe Institute of Technology,

Garmisch-Partenkirchen, Germany

2Institute of Geography, University of

Augsburg, Augsburg, Germany

3National Institute of Water, Laboratory of

Applied Hydrology, University of Abomey-

Calavi Faculty of Science and Technology,

Cotonou, Benin

Correspondence

Joël Arnault, Institute of Meteorology and

Climate Research, Karlsruhe Institute of

Technology, Kreuzeckbahnstraße

19, Garmisch-Partenkirchen, Germany.

Email: joel.arnault@kit.edu

Funding information

German Science Foundation, Grant/Award

Number: DFG, AR 1183/2-1)

Abstract

It is well accepted that summer precipitation can be altered by soil moisture condi-

tion. Coupled land surface – atmospheric models have been routinely used to quan-

tify soil moisture – precipitation feedback processes. However, most of the land

surface models (LSMs) assume a vertical soil water transport and neglect lateral ter-

restrial water flow at the surface and in the subsurface, which potentially reduces the

realism of the simulated soil moisture – precipitation feedback. In this study, the con-

tribution of lateral terrestrial water flow to summer precipitation is assessed in two

different climatic regions, Europe and West Africa, for the period June–September

2008. A version of the coupled atmospheric-hydrological model WRF-Hydro with an

option to tag and trace land surface evaporation in the modelled atmosphere, named

WRF-Hydro-tag, is employed. An ensemble of 30 simulations with terrestrial routing

and 30 simulations without terrestrial routing is generated with random realizations

of turbulent energy with the stochastic kinetic energy backscatter scheme, for both

Europe and West Africa. The ensemble size allows to extract random noise from

continental-scale averaged modelled precipitation. It is found that lateral terrestrial

water flow increases the relative contribution of land surface evaporation to precipi-

tation by 3.6% in Europe and 5.6% in West Africa, which enhances a positive soil

moisture – precipitation feedback and generates more uncertainty in modelled pre-

cipitation, as diagnosed by a slight increase in normalized ensemble spread. This

study demonstrates the small but non-negligible contribution of lateral terrestrial

water flow to precipitation at continental scale.
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1 | INTRODUCTION

The interaction between soil moisture and climate has been a subject

of debate in the scientific community for several decades

(e.g., Seneviratne et al., 2010), as a better knowledge of the state of

the land surface can potentially improve climate model skills

(e.g., Berg et al., 2016; Dirmeyer et al., 2009; Zhou et al., 2019). This

is especially relevant in the context of global warming and drying

trend in soils, which creates more locations with soil moisture-limited

evaporation regime and enhances the soil moisture – precipitation

feedback (e.g., Berg et al., 2016; Dirmeyer et al., 2012, 2013; Zhou

et al., 2019).

According to a recent analysis from Hsu et al. (2017), two concur-

rent soil moisture – precipitation feedback processes can affect the

amount of precipitation in a region. On the one hand, an increase in

soil wetness can favour an increase in precipitation through a positive

feedback process. On the other hand, an increase in soil dryness and

soil moisture heterogeneity can also favour an increase in precipita-

tion through a negative feedback process involving a change in low-

level moisture convergence, as was also pointed out by Taylor

et al. (2012). Nevertheless, at global scale the positive feedback pro-

cess is expected to dominate, and the global negative trend in soil

moisture is expected to reduce the overall land precipitation (Berg

et al., 2016; Zhou et al., 2019).

The control of soil moisture on precipitation can also act

remotely, as precipitation can be much sensitive to nonlocal land sur-

face evaporation in a radius of the order of 1000 km (Wei &

Dirmeyer, 2019). Soil moisture variability even has the potential to

modify the large-scale atmospheric circulation and further impact pre-

cipitation remotely (e.g., Berg et al., 2017; Koster et al., 2016; Teng

et al., 2019).

Berg et al. (2016) and Zhou et al. (2019) recommended that

future developments in climate modelling should focus on improving

the representation of land processes in order to better constrain the

simulated soil moisture – precipitation feedback and improve

the accuracy of the simulated climate. Traditional climate models use

a soil column in order to represent terrestrial hydrology, which

assumes that soil moisture can be transported only vertically. Such an

approximation oversimplifies the terrestrial water compartment and

may distort the entire hydrologic cycle in the model, especially precip-

itation in case of strong land – atmosphere coupling.

Coupled atmospheric-hydrological models have been developed

in order to relax the purely vertical terrestrial water flow hypothesis

with the description of lateral terrestrial water flow (e.g., Anyah

et al., 2008; Davison et al., 2018; Gochis et al., 2018; Larsen

et al., 2016; Maxwell et al., 2011; Rahman et al., 2015; Wagner

et al., 2016). In particular, the hydrologically-enhanced WRF-Hydro

model allows to consider overland and subsurface flow within the

modelled land – atmosphere system (Gochis et al., 2018).

Arnault et al. (2018), Arnault, Wagner, et al. (2016), Fersch

et al. (2020), Larsen et al. (2016), Rummler et al. (2019), Sulis

et al. (2018), Zhang et al. (2019), among others, found that the consid-

eration of lateral terrestrial water flow generally increases the soil

water storage and surface evaporation, which potentially affects pre-

cipitation through regional recycling (e.g., Trenberth, 1999). In the

case of Central Europe, Arnault et al. (2018) showed that the largest

impact of lateral terrestrial water flow on modelled precipitation

uncertainty occurs when surface flux spatial heterogeneity is high and

the weather regime is dominated by local processes.

The contribution of a region's surface evaporation to a region's

precipitation, namely the regional precipitation recycling, can be

assessed with a tagging procedure within a climate model

(e.g., Arnault et al., 2019; Arnault, Knoche, et al., 2016; Dominguez

et al., 2016; Insua-Costa & Miguez-Macho, 2018; Knoche &

Kunstmann, 2013; Sodemann et al., 2009; Wei et al., 2015, 2016).

This procedure consists in selecting a source of tagged evaporation

and following the fate of the tagged water through the atmospheric

water compartments of the climate model. Applying the version of

WRF-Hydro enhanced with a tagging procedure (WRF-Hydro-tag,

Arnault, Knoche, et al., 2016; Arnault et al., 2019) to the land surface

evaporation occurring in a 10 000 km2 drainage area in northern

China, Zhang et al. (2019) found that lateral terrestrial water flow

increases the regional precipitation recycling from 1.3% to 1.7% dur-

ing the summer time.

Regional precipitation recycling increases with the region's size

(e.g., Arnault, Knoche, et al., 2016; Trenberth, 1999). Therefore, a sim-

ulation domain covering a large land surface area, such as a

continental-scale domain, would be necessary in order to fully repre-

sent the land surface evaporation change driven by lateral terrestrial

water flow and assess the resulting impact on precipitation. In a

continental-scale coupled atmospheric-hydrological simulation for

North America, Anyah et al. (2008) found a larger control of ground-

water table depths on surface evaporation and convective precipita-

tion in the arid west.

The present paper aims at further evaluating the contribution of

lateral terrestrial water flow to precipitation for two continental-scale

regions: Europe and West Africa, using simulations' ensembles with

WRF-Hydro-tag. The choice of a mid-latitude and a tropical region

aims at highlighting a potential climate-dependency of the role of lat-

eral terrestrial water flow in the hydrologic cycle. The study period is

set to four summer months from June to September 2008, in order to

assess the connection between lateral terrestrial water flow and pre-

cipitation at a time of the year when the coupling between the land

surface and the atmosphere is most active (e.g., Gerken et al., 2019).

The aim of generating simulations' ensembles is twofold, (1) to disen-

tangle the respective effects of modelled atmospheric randomness

(e.g., Rasmussen et al., 2012) and lateral terrestrial water flow on pre-

cipitation, and (2) to assess the effect of lateral terrestrial water flow

on modelled precipitation uncertainty as in Arnault et al. (2018). The

choice of WRF-Hydro-tag to generate the simulations' ensembles is

motivated by two model options: (1) to activate or deactivate over-

land and subsurface flow routing during the model run, which facili-

tates the sensitivity analysis of model results to lateral terrestrial

water flow; and (2) to tag and trace land surface evaporation, which

allows to evaluate the differences in atmospheric water pathways

between simulations including lateral terrestrial water flow or not.
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Details on the numerical simulations and method of analysis are given

in Section 2. Results are discussed in Section 3, and conclusive

remarks are finally provided in Section 4.

2 | METHOD

2.1 | Model description

WRF-Hydro-tag is a version of the Weather Research and Forecast-

ing model (WRF, Skamarock & Klemp, 2008) enhanced with the

description of lateral terrestrial water flow (Gochis et al., 2018) and

with a soil-vegetation-atmosphere water tagging procedure (Arnault

et al., 2019). This tagging procedure consists in implementing prog-

nostic equations of tagged water, defining a source of tagged water

for a given area and a given period in order to initialize the tagged

water cycle, and assessing the fate of the water source via the

tagged water cycle during the model run. Two tagging options are

currently considered in the tagging procedure of WRF-Hydro-tag,

the surface evaporation tagging option which consists in tracing a

region's surface evaporation in the atmosphere, and the precipita-

tion tagging option which consists in tracing a region's precipitation

in the soil and in the atmosphere for the evaporated part. In this

study, WRF-Hydro-tag is used with the surface evaporation tagging

option.

As WRF, WRF-Hydro-tag is a limited-area modelling system

which requires three-dimensional meteorological driving data and

allows to simulate the land – atmosphere system of a selected region

for a selected time period. WRF-Hydro-tag can be run with or without

spatial re-distribution of terrestrial water through overland or subsur-

face flow. In the following, the model configuration with disabled

computation of lateral terrestrial water flow is referred to as WRF-

tag, and the model configuration with enabled computation of lateral

terrestrial water flow is referred to as WRF-Hydro-tag.

The original development of WRF-tag and WRF-Hydro-tag

(Arnault et al., 2019) was based on WRF version 3.7, hydrological

modules of WRF-Hydro version 3.0, and the following setup of WRF

physics parameterisation options: six-class WSM6 microphysics

scheme of Hong and Lim (2006), ACM2 planetary boundary layer

scheme of Pleim (2007), and Noah land surface model (LSM) of Chen

and Dudhia (2001). For this study the tagging procedure of WRF-

Hydro-tag is adapted to the WSM6 scheme, ACM2 scheme, and the

community Noah LSM with multi-parameterization options (Noah-

MP, Niu et al., 2011) of WRF version 4.0, and the hydrological module

of WRF-Hydro version 5.0.

2.2 | Study regions and observational datasets

Summer precipitation in Europe is governed by a weak westerly flow

regime and local processes (e.g., Zveryaev & Allan, 2010), whereas

summer precipitation in West Africa is governed by a steady easterly

flow regime and a monsoonal circulation, and local processes as well

(e.g., Xue et al., 2012). In order to simulate these two summer precip-

itation regimes with WRF-tag and WRF-Hydro-tag, the two domains

depicted in Figure 1 are selected. These two domains are character-

ized by the same size and cover an area of 3500 km

� 2500 km each.

For Europe, most of the land area in the selected domain is sur-

rounded by sea and ocean water, especially at the western border

where the large-scale atmospheric disturbances originate from. This

suggests that the domain size is enough to assess the full effect of lat-

eral terrestrial water flow on land surface evaporation and precipita-

tion in Europe.

For West Africa, the eastern part of the African continent is not

included in the selected domain. This means that, with this domain

size, it would not be possible to evaluate the contribution of land sur-

face evaporation changes induced by lateral terrestrial water flow in

East Africa to precipitation in West Africa. Still, we emphasize that

using the same domain size for both study regions facilitates the com-

parison of model results, with the final objective to better understand

the specific physical processes through which lateral terrestrial water

flow contributes to precipitation in these two different climatic

regions.

The skill of WRF-tag and WRF-Hydro-tag in correctly rep-

resenting coupled land – atmosphere processes occurring in the study

regions is assessed by comparing the simulated land surface evapora-

tion and precipitation with gridded datasets. For land surface

evaporation, we use the product from the FLUXNET Model Tree

Ensemble (MTE, Jung et al., 2009, 2010) which provides a global cov-

erage of monthly sums of land surface evaporation at a spatial resolu-

tion of 0.5�. For precipitation in Europe, we use the product from the

European Climate Assessment & Dataset project (Haylock

et al., 2008) which provides daily precipitation sums at a spatial reso-

lution of 0.25� over the European region. For precipitation in West

Africa, we use the climate hazards infrared precipitation with stations

(CHIRPS, Funk et al., 2015) dataset which provides daily precipitation

sums at a spatial resolution of 0.05� within the latitudinal band

between 50�S and 50�N. In the following, observational land surface

evaporation is named EOBS (m/s), and observational precipitation

POBS (m/s).

2.3 | Model setup

For both Europe and West Africa, we use the same WRF-tag and

WRF-Hydro-tag setups. Concerning the atmospheric part in WRF-tag

and WRF-Hydro-tag, the equations of atmospheric motions are

resolved on a three-dimensional grid characterized by 700 � 500 hor-

izontal grid points with a 5 km grid spacing and 50 vertical levels from

the near-surface up to 10 hPa, using a timestep of 30 s. The subgrid-

scale atmospheric processes accounted for are the long and short

wave radiative fluxes with the schemes of Mlawer et al. (1997) and

Dudhia (1989), microphysics with the WSM6 scheme, and atmo-

spheric turbulence with the ACM2 scheme. The lateral boundary con-

dition of atmospheric variables is prescribed at a 6 hourly time
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interval with the ERA5 reanalyses (Copernicus Climate Change Ser-

vice, 2017). The simulation period extends from 1 January to

1 October 2008, the first 5 months being considered as a spinup

period for the simulated land – atmosphere exchange processes. The

last 4 months from June to September is the study period. Arnault

et al. (2018) and Arnault, Wagner, et al. (2016) brought evidence that

a spinup period of a few months is sufficient to simulate realistic land

surface conditions in Europe and West Africa with WRF-Hydro. In

this study, the five-month spinup period is chosen as a compromise

between the two-week spinup period employed for example in Cam-

era et al. (2020), and a one-year spinup period employed for example

in Rummler et al. (2019).

For the water tagging procedure, the tagged atmospheric water

variables are initially set to zero and the land surface evaporation

occurring over the simulation's domain during the model run is set as

the source of tagged water vapour. The tagged water variables in

model outputs allow to assess the fate of land surface evaporation

in the simulated atmosphere, until it reaches the lateral boundary of

the simulation's domain or reaches the surface as precipitation

(e.g., Arnault, Knoche, et al., 2016; Zhang et al., 2019).

Concerning the land surface part commonly shared by WRF-tag

and WRF-Hydro-tag, Noah-MP (Niu et al., 2011) is chosen in order to

describe the fate of snow cover, vegetation canopy, and soil moisture

within a soil column of 2 m-depth, and to provide the land surface

boundary condition of atmospheric fluxes. Distributed model parame-

ters, such as the roughness length, root depth or soil hydraulic con-

ductivity, are prescribed as a function of landuse classes from the

moderate resolution imaging spectroradiometer (MODIS) land cover

map (Friedl et al., 2002), and soil classes from the State Soil Geo-

graphic / Food and Agriculture Organization soil database

(FAO, 1991). The Noah-MP parameterisation options selected are the

default ones, as described in Cuntz et al. (2016), except for the activa-

tion of a dynamic vegetation model (Niu et al., 2011) which provides

estimates of vegetation cover and leaf area index independently of

table values, the leaf area index being initialized with the satellite-

derived climatology from Kumar et al. (2014). The other land surface

variables of Noah-MP are initialized with the ERA5 reanalyses. The

equations describing the fate of these land surface variables are

resolved using a timestep of 30 s, as for the atmospheric processes, in

order to reduce numerical uncertainty in the modelled land – atmo-

sphere coupling.

Using the WRF-Hydro hydrological modules (Gochis et al., 2018),

WRF-Hydro-tag, further considers the description of overland and

subsurface flow on a subgrid. This subgrid is generated with the

WRF-Hydro Pre-processing Tool and using the digital elevation data

from the hydrological data and maps based on Shuttle Elevation

Derivatives at Multiple Scales (HydroSHEDS) data base (Lehner

et al., 2008), and is characterized by 14 000 � 10 000 horizontal grid

points with a 250 m grid spacing and a minimal number of pixels to

define a stream set to 16. The location of the main river channels

obtained with this method are displayed in Figure 1. At each timestep,

surface water and liquid soil moisture variables are disaggregated to

the finer subgrid using linear weighting factors. Surface and subsur-

face routing is then performed by taking into account exfiltration from

saturated soil columns and river channel inflow, resulting in updated

fields for liquid soil moisture content and surface water amounts.

Finally, these fields are aggregated back to the coarser grid of the

LSM by simple averaging and an updated set of weighting factors is

calculated accordingly.

It is highlighted that the simulation of river discharge with WRF-

Hydro-tag would require to activate an additional routing module in

the river channels. Several studies have assessed the skill of WRF-

Hydro in reproducing observed discharge (e.g., Camera et al., 2020;

Fersch et al., 2020; Li et al., 2020; Senatore et al., 2020). In this study,

the focus is on the contribution of lateral terrestrial water flow to the

atmospheric branch of the hydrologic cycle, and no channel routing is

considered.

With respect to model parameter calibration, it is recognized that

for a fair comparison of model performances with a simulation includ-

ing lateral terrestrial water flow, the Noah-MP parameters of a simula-

tion with purely vertical terrestrial water flow should probably be

calibrated differently in order to compensate for the effect of lateral

F IGURE 1 (a) Terrain elevation of the simulation's domain for Europe, given in meter above sea level. The solid black lines delineate the
political boundaries, and the solid blue lines indicate the river channels with Strahler stream order equal to or above 7. (b) As in (a) except for
West Africa. Magenta labels indicate locations of mountain ranges quoted in the text: A, Alps; AP, Adamawa Plateau; BM, Balkan Mountains; CM,
Carpathian Mountains; FJ, Fouta Djallon; JP, Jos Plateau; MC, Massif Central; P, Pyrenees; SH, Scottish Highlands
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terrestrial water flow (e.g., Arnault, Wagner, et al., 2016; Fersch

et al., 2020; Rummler et al., 2019). However, the aim of this study is

to compare simulations with and without lateral terrestrial water flow

in order to extract the effect of lateral terrestrial water flow on precip-

itation. In order to extract this effect without ambiguity, it is chosen

to keep the default values of the Noah-MP parameters for all simula-

tions. It is acknowledged that the estimation of the uncertainty in

such a model comparison would benefit from the consideration of

several plausible Noah-MP parameters sets in an ensemble of simula-

tions. It is noted that the following uncertainty analysis is limited to

the atmospheric part. Other potential sources of uncertainty, such as

from the land surface part, are likely to further increase uncertainty

ranges.

The same model outputs are used for the WRF-tag and WRF-

Hydro-tag simulations, except for the surface runoff. The WRF-tag

surface runoff is computed as the surface infiltration excess (Schaake

et al., 1996), whereas the WRF-Hydro-tag surface runoff is computed

as the surface water which flows out of a grid cell, either through

overland flow or through river channel inflow (Arnault et al., 2019).

The saved model outputs include land surface variables and vertically-

integrated terms of the total and tagged atmospheric water budgets,

saved at an hourly time interval.

2.4 | Ensemble generation strategy

It is well known that a numerical simulation of atmospheric processes

contains a part of randomness (e.g., Lorenz, 1969). Accordingly, the

difference in precipitation between WRF-tag and WRF-Hydro-tag

simulations may be due to both lateral terrestrial water flow and mod-

elled atmospheric randomness. Therefore, the estimation of the effect

of modelled atmospheric randomness is crucial in order to extract the

real contribution of lateral terrestrial water flow to the precipitation

difference between WRF-tag and WRF-Hydro-tag simulations. Such a

modelled atmospheric randomness effect is usually assessed with sim-

ulations' ensembles (e.g., Errico et al., 2002; Hohenegger et al., 2008).

The WRF model provides a tool to generate such an ensemble based

on the stochastic kinetic energy backscatter scheme (SKEBS, Berner

et al., 2009; Shutts, 2005). SKEBS allows to slightly perturb the wind,

temperature and geopotential variables with a random noise through the

model run, in order to represent atmospheric random variability.

For the purpose of disentangling the respective effects of mod-

elled atmospheric randomness and lateral terrestrial water flow on

precipitation, an ensemble of 30 WRF-tag simulations and 30 WRF-

Hydro-tag simulations is generated with 30 different realizations of

the random noise in SKEBS, for both Europe and West Africa, and for

the study period from June to September 2008. The initial condition

of the WRF-tag and WRF-Hydro-tag sub-ensemble members, that is

on 1 June 2008, is obtained with WRF-tag and WRF-Hydro-tag single

runs for the spinup period from January to May 2008.

2.5 | Convergence criteria

The aim of generating an ensemble mean is to reduce the influence of

modelled atmospheric randomness (e.g., Hohenegger et al., 2008).

Still, it is not known which is the minimal ensemble size required so

that differences between WRF-tag and WRF-Hydro-tag sub-

ensemble means would be mainly the effect of lateral terrestrial water

flow. In order to quantify the influence of modelled atmospheric ran-

domness on ensemble-mean difference in precipitation, we consider

the following convergence criterion cspatialpattern (�) as a function of

ensemble size n:

cspatialpattern is the spatially-averaged signal-to-noise ratio of

ensemble-mean differences in precipitation between WRF-tag and

WRF-Hydro-tag sub-ensembles, the signal-to-noise ratio being here

defined as the ratio between the ensemble mean and the ensemble

spread, as an adaptation from Laux et al. (2017). Pi,j,kW (m/s) and Pi,j,kWH

(m/s) are the precipitation rates at grid point i, j for the WRF-tag sub-

ensemble member k and the WRF-Hydro-tag sub-ensemble member

k, respectively, temporally averaged for the study period. Ε(n, p) refers

to the list of indexes of the n members of sub-ensemble p, these n

members being randomly selected between 1 and the full ensemble

size nENS, nENS being equal to 30 in this case. The index p varies

between 1 and nb nð Þ¼ nENS !
n! nENS !�n!ð Þ, that is the number of possible combi-

nations of sub-ensembles of size n within the full ensemble. Techni-

cally, this number of sub-ensemble combinations is truncated at

1 000000 for computational reasons. By definition, cspatialpattern can

only be calculated for n between 1 and nENS�1. Furthermore, the

number of sub-ensemble combinations for the calculation of

cspatialpattern is much smaller for small and large values of n than for

middle values of n, which implies an overestimation of the signal-to-

noise ratio especially for n values close to nENS�1. The aim of

cspatialpattern is to measure the dependency of the spatial differences

between WRF-tag and WRF-Hydro-tag sub-ensemble means of pre-

cipitation to n. For sufficiently large n and nENS, the effect of modelled

cspatialpattern nð Þ¼
X

i,jð Þ � land

1
nb nð Þ

Pnb nð Þ

p¼1

1
n

P
k � Ε n,pð Þ

Pi,j,kWH�Pi,j,kW

 !

max
1≤ p≤ nb nð Þ

1
n

P
k � Ε n,pð Þ

Pi,j,kWH�Pi,j,kW

 !
� min

1≤ p≤ nb nð Þ
1
n

P
k � Ε n,pð Þ

Pi,j,kWH�Pi,j,kW

 !
0
BBBB@

1
CCCCA ð1Þ
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atmospheric randomness on these spatial differences is expected to

become negligible and cspatialpattern to reach values beyond 1.

The influence of modelled atmospheric randomness on ensemble-

mean results is assessed with the following convergence criterion

cmean (�):

cmean is the signal-to-noise ratio of the spatially-averaged

ensemble-mean differences in precipitation between WRF-tag and

WRF-Hydro-tag sub-ensembles. In comparison to cspatialpattern, cmean

measures the dependency of the spatially-average difference between

WRF-tag and WRF-Hydro-tag sub-ensemble means of precipitation

to n. As for cspatialpattern, the effect of modelled atmospheric random-

ness is also expected to become negligible and cmean to reach values

beyond 1 for growing n.

Both cspatialpattern and cmean are used to evaluate the contribution

of modelled atmospheric randomness to the difference between

WRF-tag and WRF-Hydro-tag sub-ensemble means, and better quan-

tify the overall contribution of lateral terrestrial water flow to

summer-mean precipitation.

2.6 | Ensemble-mean differences

The role of lateral terrestrial water flow in the summer-mean hydro-

logic cycle can be assessed by comparing ensemble means of water

fluxes between the WRF-tag and WRF-Hydro-tag sub-ensembles,

temporally averaged for the study period from June to September

2008. In the following, the water fluxes are computed as rates. The

selected measures are the ensemble-mean differences in surface run-

off ΔR (m/s), land surface evaporation ΔE (m/s), atmospheric water

content ΔW (m), total precipitation ΔP (m/s), precipitation originating

from land surface evaporation ΔPland (m/s), precipitation

originating from remote water sources ΔPremote (m/s), and land precipi-

tation recycling ratio Δρ (%), defined as follows:

ΔR¼RENS,WH�RENS,W ð3Þ

ΔE¼ EENS,WH�EENS,W ð4Þ

ΔW¼WENS,WH�WENS,W ð5Þ

ΔP¼PENS,WH�PENS,W ð6Þ

ΔPland ¼PtagENS,WH�PtagENS,W ð7Þ

ΔPremote ¼ PENS,WH�PENS,Wð Þ� PtagENS,WH�PtagENS,W

� �
ð8Þ

Δρ¼100
PtagENS,WH

PENS,WH|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
ρENS,WH

�100
PtagENS,W

PENS,W|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ρENS,W

ð9Þ

Subscripts ENS, W and ENS, WH stand for WRF-tag and

WRF-Hydro-tag sub-ensemble means. RENS,W (m/s), RENS,WH (m/s),

EENS,W (m/s), EENS,WH (m/s), WENS,W (m), WENS,WH (m), PENS,W (m/s),

PENS,WH (m/s), PtagENS,W , and PtagENS,WH (m/s) are sub-ensemble

means of surface runoff, land surface evaporation, atmospheric water

content, precipitation, and tagged precipitation, all computed with

the 30 available members and temporally averaged for the study

period.

ΔR , ΔE, ΔW, ΔP, ΔPland, ΔPremote, and Δρ quantify the impact of lat-

eral terrestrial water flow on the summer-mean terrestrial and atmo-

spheric branches of the hydrologic cycle. More particularly, ΔPland

represents a direct atmospheric water pathway linking a lateral terres-

trial water flow-induced change in land surface evaporation with a

change in precipitation. ΔPremote is the fraction of the difference in

precipitation induced by lateral terrestrial water flow which does not

originate from land surface evaporation, but instead originates from

sea surface evaporation or from atmospheric water vapour entering

the simulations' domain at the lateral boundaries. Therefore, ΔPremote

represents an indirect atmospheric water pathway linking a lateral ter-

restrial water flow-induced change in land surface evaporation with a

change in precipitation through remote water sources contribution.

Finally, Δρ represents the impact of lateral terrestrial water flow on

the amount of land precipitation recycling, which is a measure of the

coupling strength between land and atmosphere at continental-scale

(e.g., Brubaker et al., 1993).

2.7 | Normalized ensemble spread

Following Keil et al. (2014) and Arnault et al. (2018), the impact of lat-

eral terrestrial water flow on modelled precipitation uncertainty is

evaluated with the normalized ensemble spread of daily precipitation.

The method is to compare the normalized ensemble spreads SdailyENS,W

(�) and SdailyENS,WH (�) from the WRF-tag and WRF-Hydro-tag sub-

ensembles, defined as:

SdailyENS,W ¼ 1

PdailyENS,W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nENS�1

XnENS

k¼1
Pdaily,kW �PdailyENS,W

� �2s

cmean nð Þ¼
1

nb nð Þ
Pnb nð Þ

p¼1

P
i,jð Þ � land

1
n

P
k � Ε n,pð Þ

Pi,j,kWH�Pi,j,kW

 ! !

max
1≤p≤ nb nð Þ

P
i,jð Þ � land

1
n

P
k � Ε n,pð Þ

Pi,j,kWH�Pi,j,kW

 ! !
� min

1≤ p≤ nb nð Þ
P

i,jð Þ � land
1
n

P
k � Ε n,pð Þ

Pi,j,kWH�Pi,j,kW

 ! ! ð2Þ
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SdailyENS,WH ¼ 1

PdailyENS,WH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nENS�1

XnENS

k¼1
Pdaily,kWH �PdailyENS,WH

� �2s
ð10Þ

Pdaily,kW (m/s) and Pdaily,kWH (m/s) are the daily precipitation rates for

the WRF-tag ensemble member k and the WRF-Hydro-tag ensemble

member k, respectively. Pdaily,ENS,W (m/s) and Pdaily,ENS,WH (m/s) are the WRF-

tag and WRF-Hydro-tag sub-ensemble means of daily precipitation

rate, respectively, and nENS is the full ensemble size. SdailyENS,W and SdailyENS,WH

are computed for the grid cells receiving an ensemble-mean precipita-

tion larger than 1mm/day, and can be visualized as maps. The

summer-mean impact of lateral terrestrial water on modelled precipi-

tation uncertainty is assessed with SENS,W (�) and SENS,WH (�), that are

the values of SdailyENS,W and SdailyENS,WH temporally averaged for the study

period, and with ΔS (%), that is the normalized difference between

SENS,W and SENS,WH.

2.8 | Hydro-specific land precipitation recycling
difference

In the case of Central Europe, Arnault et al. (2018) found that lateral

terrestrial water flow noticeably increases modelled precipitation

uncertainty when local processes dominate the weather regime and

moist convection initiation is favoured by enhanced surface flux het-

erogeneity, which in fact characterizes an enhanced land – atmo-

sphere coupling situation.

In this study, the relationship between the strength of the land –

atmosphere coupling and the impact of lateral terrestrial water flow

on modelled precipitation uncertainty is evaluated with the so-called

hydro-specific land precipitation recycling difference Δρhydro (%), cal-

culated as the difference in ensemble-mean daily land precipitation

recycling between the days when SdailyENS,WH exceeds SdailyENS,W by more than

20%, and the days when SdailyENS,W exceeds SdailyENS,WH by more than 20%.

This threshold of 20% is arbitrarily chosen and was originally pro-

posed by Arnault et al. (2018). This threshold does not need to be pre-

cisely set to 20%, as for example very similar results to those

presented in this study have been obtained with a threshold of 15%

(not shown). The formulation of Δρhydro is:

Δρhydro ¼
P

days100
Ptag,daily
ENS

Pdaily
ENS

�H SdailyENS,WH�1:2SdailyENS,W

� �
P

daysH SdailyENS,WH�1:2SdailyENS,W

� �

�
P

days100
Ptag,daily
ENS

Pdaily
ENS

�H SdailyENS,W �1:2SdailyENS,WH

� �
P

daysH SdailyENS,H�1:2SdailyENS,WH

� � ð11Þ

PdailyENS is the ensemble mean of daily precipitation and Ptag,dailyENS is

the ensemble mean of daily tagged precipitation. H is the Heaviside

function and H SdailyENS,WH�1:2SdailyENS,W

� �
and H SdailyENS,W �1:2SdailyENS,WH

� �
are

two Boolean numbers which are used to assess for which days the

above conditions on SdailyENS,W and SdailyENS,WH values are met. Δρhydro quan-

tifies the relative strength of land – atmosphere coupling for the days

when lateral terrestrial water flow noticeably increases modelled pre-

cipitation uncertainty.

2.9 | Hydro-specific atmospheric water content
difference

Moist convection is sensitive to environmental humidity

(e.g., Derbyshire et al., 2004). Therefore, the impact of lateral terres-

trial water flow on modelled precipitation uncertainty may be related

to the potential increase in atmospheric water content induced by lat-

eral terrestrial water flow. This relationship is evaluated with the so-

called hydro-specific atmospheric water content difference ΔWhydro

(m), calculated by subtracting (1) the difference between the WRF-tag

and WRF-Hydro-tag sub-ensemble mean daily atmospheric water

content for the days when SdailyENS,W exceeds SdailyENS,WH by more than 20%,

to (2) the difference between the WRF-tag and WRF-Hydro-tag sub-

ensemble mean daily atmospheric water content for the days when

SdailyENS,WH exceeds SdailyENS,W by more than 20%. The formulation of

ΔWhydro is:

ΔWhydro ¼
P

days Wdaily
ENS,WH�Wdaily

ENS,W

� �
�H SdailyENS,WH�1:2SdailyENS,W

� �
P

daysH SdailyENS,WH�1:2SdailyENS,W

� �
�
P

days Wdaily
ENS,WH�Wdaily

ENS,W

� �
�H SdailyENS,W �1:2SdailyENS,WH

� �
P

daysH SdailyENS,W �1:2SdailyENS,WH

� � ð12Þ

Wdaily
ENS,W and Wdaily

ENS,WH are the WRF-tag and WRF-Hydro-tag sub-

ensemble means of daily atmospheric water content. ΔWhydro quan-

tifies the relative intensity of the atmospheric water content perturba-

tion induced by lateral terrestrial water flow for the days when lateral

terrestrial water flow noticeably increases modelled precipitation

uncertainty.

3 | RESULTS AND DISCUSSIONS

3.1 | Comparison to observation

The skill of WRF-tag and WRF-Hydro-tag is evaluated for the two

study regions by comparing ensemble means of land surface evapora-

tion and precipitation to gridded datasets, temporally averaged for the

study period in Figures 2 and 3.

For Europe, the land surface evaporation is generally under-

estimated, except in the Alpine region. The land surface evaporation

bias is comparable in magnitude to climate simulations' results for

Europe in summer (Knist et al., 2017). Precipitation is much closer to

the observational dataset, except for the southern parts where the

observed low precipitation rates are much overestimated. Comparable

precipitation biases have been obtained with climate simulations for

Europe in summer (Prein et al., 2016).

For West Africa the land surface evaporation is close to the

observational dataset (as in Arnault, Wagner, et al., 2016), except in

ARNAULT ET AL. 7 of 19



the northern part of the Sahel between 15�N and 20�N where

observed low rates in land surface evaporation are remarkably over-

estimated. The overall bias in precipitation for West Africa is also

quite low, which confirms the potential of explicitly resolved moist

convection in realistically representing West African monsoonal rain-

fall (e.g., Marsham et al., 2013).

Quantitatively, the spatially averaged bias in land surface evap-

oration is �24% for Europe and 6% for West Africa, whereas the

spatially averaged bias in precipitation is �0.5% for Europe and

�4% for West Africa. The relatively small precipitation biases are

related to the fact that much larger biases of the order of ±50% can-

cel after spatial averaging. Still, this relatively good agreement

between ensemble-mean results and observations suggests that the

model setup is suitable for representing the summer-mean charac-

teristics of the land – atmosphere system in both Europe and West

Africa.

It is noted that single ensemble members may have a better

spatially averaged bias in precipitation in comparison to the

ensemble mean, although there is a large spread among ensem-

ble members with bias values ranging from �6% to 7% for

Europe, and from �11% to 4% for West Africa. Nevertheless,

the spatial root mean square deviation of the precipitation bias

from the ensemble mean is generally lower than that from each

ensemble member, with a relative difference ranging from

�34% to 2%. This confirms that the ensemble mean is suitable

for smoothing random errors in modelled precipitation

(e.g., Hohenegger et al., 2008).

Daily time series of land-average precipitation sums in Figure 4

demonstrate that the model setup is able to produce a realistic history

of the daily precipitation events having occurred in Europe and West

Africa between June and September 2008. In particular, the correla-

tion coefficient between modelled and observational

F IGURE 2 (a,b) Maps of observational land surface evaporation EOBS and ensemble-mean land surface evaporation EENS temporally averaged
for the 4-month period from June to September 2008 and given in mm/day, for Europe. (c) Ensemble-mean bias EbiasENS given in %. (d–f) As in (a–c),
except for West Africa. The areas with temporally averaged EENS or EOBS lower than 0.1mm/day are shaded in grey in the bias maps. In all panels
the data has been resampled on a grid with a 50 km grid spacing for visualization purpose. A similar resampling is applied to all maps shown in the
following of this study
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precipitation time series is 0.84 for Europe, and 0.78 for West Africa.

This suggests that the model setup is also suitable for representing

the daily variability of the land – atmosphere system in both Europe

and West Africa.

3.2 | Atmospheric randomness

The effect of modelled atmospheric randomness on mean-ensemble

results is evaluated for the case of the ensemble-mean difference in

F IGURE 3 (a,b) Maps of observational precipitation POBS and ensemble-mean precipitation PENS temporally averaged for the 4-month period
from June to September 2008 and given in mm/day, for Europe. (c) Ensemble-mean bias PbiasENS given in %. (d–f) As in (a–c), except for West Africa.
The areas with temporally averaged PENS or POBS lower than 0.1mm/day are shaded in grey in the bias maps

F IGURE 4 Daily time series of ensemble-
mean and observed precipitation, PENS and POBS,
spatially averaged over the land in the simulation's
domain and displayed from June to September
2008 for (a) Europe and (b) West Africa
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precipitation ΔP, using the convergence criteria cspatialpattern and cmean

displayed in Figure 5. cspatialpattern confirms that the dependency of

ΔP's spatial variability to modelled atmospheric randomness decreases

with the size of the ensemble. However, for n equal to nENS�1,

cspatialpattern hardly reaches 0.9 in the case of Europe, and 0.6 in the

case of West Africa, which implies that the spatial features of ΔP are

partially related to modelled atmospheric randomness, and that a

larger ensemble size would be required in order to isolate the pure

effect of lateral terrestrial water flow on the spatial distribution of

precipitation. Due to interdependency between water compartments

in the hydrologic cycle, this result suggests that the spatial features of

ΔR, ΔE, ΔW, ΔPland, ΔPremote, and Δρ are also partially related to mod-

elled atmospheric randomness.

cmean is an increasing function of n as cspatialpattern with values

much above those of cspatialpattern. Particularly, cmean reaches 1 for an

ensemble size of 12 in case of Europe, and for an ensemble size of

20 in the case of West Africa. The lower signal-to-noise ratio in the

case of West Africa is related to the large atmospheric random vari-

ability associated with tropical convection (e.g., Peters et al., 2013).

This indicates that modelled atmospheric randomness has a major

impact on spatially-averaged mean differences of precipitation when

the ensemble size is small, especially for West Africa, and that this

impact can be much reduced for a sufficiently large ensemble size, like

30 in this case. Accordingly, spatially averaged values of the above-

mentioned ensemble-mean differences can be used to isolate the

effect of lateral terrestrial water flow on the spatially averaged hydro-

logic cycle at continental scale.

The model uncertainty associated with these ensemble-mean dif-

ferences is evaluated with the range of all possible sub-ensemble-

mean differences using a slightly reduced sub-ensemble size, arbi-

trarily set to 27, which corresponds to 4060 combinations. A lower

sub-ensemble size would increase the computational time of the

uncertainty calculation, and would also increase the value of the cal-

culated uncertainty, which may not be a fair estimation of the

uncertainty related to the full-size ensemble-mean differences. In the

following, this uncertainty is indicated in parenthesis of each

ensemble-mean difference value, such as in Table 1.

3.3 | Surface runoff

As shown by ΔR in Figure 6, WRF-Hydro-tag produces more surface

runoff than WRF-tag in mountainous areas, such as the Scottish High-

lands, Pyrenees, Massif Central, Alps and the Carpathian Mountains in

Europe, and Fouta Djallon, Jos Plateau and Adamawa Plateau in West

Africa (see locations of these mountain ranges in Figure 1). The

enhanced mountainous surface runoff generation in WRF-Hydro-tag

is related to steep topography gradients which favour the exfiltration

from saturated soil columns (e.g., Arnault et al., 2019).

WRF-Hydro-tag produces less surface runoff than WRF-tag in

areas where the re-infiltration of infiltration excess occurs more fre-

quently than channel inflow, in relation to either moderate terrain or

F IGURE 5 Convergence criteria cspattialpattern and cmean plotted as a function of ensemble size for (a) Europe and (b) West Africa. The
threshold of 1 is indicated by the dotted red line. The threshold of 1 is indicated by the dotted red line. For cspattialpattern above 1, the effect of
lateral terrestrial water flow on the spatial patterns of the difference between the WRF-tag and WRF-Hydro-tag ensemble-means is larger than
the atmospheric random variability. For cmean above 1, the effect of the lateral terrestrial water flow on the spatially-averaged difference between
the WRF-tag and WRF-Hydro-tag ensemble-means is larger than the atmospheric random variability

TABLE 1 Normalized ensemble-mean differences in surface
runoff (ΔR/PENS), land surface evaporation (ΔE/PENS), precipitation
originating from land surface evaporation (ΔPland/PENS), and
precipitation originating from remote water sources (ΔPremote/PENS),
spatially averaged for the land in the simulation's domain for Europe
and West Africa and given in %

Europe West Africa

ΔR/PENS �2.6 (±0.1) % �6.9 (±0.1) %

ΔE/PENS 3.5 (±0.1) % 2.2 (±0.1) %

ΔPland/PENS 0.8 (±0.1) % 1.0 (±0.1) %

ΔPremote/PENS 0.8 (±0.2) % �0.2 (±0.2) %

Note: The uncertainty range, which is provided in parenthesis, is derived

from all the combinations of sub-ensemble-mean differences with an

ensemble subset of 27 members out of the 30 members available.
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reduced precipitation amounts. This latter effect is well illustrated

with the case of southern Europe, such as the Balkan Mountains,

where topography gradients are relatively steep but the particularly

low precipitation amounts during the study period weaken the surface

runoff generation in WRF-Hydro-tag.

3.4 | Land surface evaporation

The decrease in surface runoff induced by lateral terrestrial water

flow is associated with an increase in soil water storage and in land

surface evaporation, which is a well-documented effect (e.g., Arnault

et al., 2018; Arnault, Wagner, et al., 2016; Fersch et al., 2020;

Rummler et al., 2019; Sulis et al., 2018; Zhang et al., 2019) and is

mostly verified in this case, as shown by ΔE in Figure 7. Still, there are

few areas in Figure 7 where WRF-Hydro-tag produces less land sur-

face evaporation in comparison to WRF-tag, such as the above-

described mountainous areas where WRF-Hydro-tag produces more

surface runoff and less soil water storage, but also the areas where

WRF-Hydro-tag produces less precipitation in comparison to

WRF-tag.

As illustrated in Table 1, the decrease in surface runoff in Europe

is overbalanced by an increase in land surface evaporation, which

demonstrates that a soil moisture-limited evaporation regime

(e.g., Dirmeyer et al., 2012) is at stake in this region during the study

period. In comparison, the decrease in surface runoff in West Africa is

much larger although the increase in land surface evaporation is much

smaller. Indeed, during the study period West Africa receives

much larger precipitation amounts than Europe, which reduces the

root zone transit times (Sprenger et al., 2016) and enhances percola-

tion. This suggests that in comparison to Europe during the study

period, the soil columns in West Africa are much closer to saturation

and the evaporation regime is less soil moisture-limited.

3.5 | Atmospheric water content

As shown by WENS,W in Figure 8, the atmosphere in tropical West

Africa is much more moist than in the mid-latitude Europe during the

study period, which is expected. ΔW in Figure 8 further shows that

the increase in surface evaporation induced by lateral terrestrial water

flow mostly wets the entire atmosphere in both study regions.

In Europe, there is a blocking effect south of the Alps and

around the Carpathian Mountains which enhances the accumulation

of atmospheric water content originating from lateral terrestrial

water flow. In West Africa, there is an enhanced accumulation of

atmospheric water content north of 12�N. This accumulation is

related to the south-westerly monsoonal flow pushing low-level

F IGURE 6 Maps of the ensemble-mean difference in surface runoff ΔR temporally averaged from June to September 2008 for (a) Europe and
(b) West Africa, given in mm/day

F IGURE 7 Maps of the ensemble-mean difference in surface evaporation ΔE temporally averaged from June to September 2008 for
(a) Europe and (b) West Africa, given in mm/day
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moisture towards the inland area, and the monsoonal squall lines

north of 12�N (Laing et al., 2008) which slow down the progression

of the enhanced atmospheric water content by partially converting it

into precipitation.

3.6 | Atmospheric water pathways

The direct and indirect pathways of the atmospheric water which

becomes precipitation are evaluated with ΔPland and ΔPremote in Figure 9.

F IGURE 8 (a,b) Maps of (a) WRF-tag sub-ensemble mean of atmospheric water WENS,W and (b) ensemble-mean difference in atmospheric
water ΔW, both temporally averaged from June to September 2008 for Europe and given in mm. (c,d) As in (a,b), except for West Africa

F IGURE 9 (a,b) Maps of ensemble-mean differences in (a) precipitation originating from land surface evaporation ΔPland and (b) precipitation
originating from remote water sources ΔPremote, both temporally averaged from June to September 2008 for Europe and given in mm/day. (c,d) As
in (a,b), except for West Africa
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The dominant positive areas in ΔPland for both Europe and West Africa

demonstrate that in both study regions the soils are sufficiently wet in

order to support a summer-mean positive soil moisture – precipitation

feedback (Hsu et al., 2017), and ensure that the soil moisture-increase

induced by lateral terrestrial water flow leads to an increase in the

summer-mean precipitation.

In comparison to ΔPland, ΔPremote features much more spatial

variability, which is assumed to be partially the effect of model

atmospheric randomness. In the case of Europe, as shown in

Table 1, spatially averaged values of ΔPland and ΔPremote are close,

which means that lateral terrestrial water flow contributes to pre-

cipitation also through an indirect pathway linking remote water

sources to a change in precipitation. A possible mechanism to

explain this would be that in average the increase in land surface

evaporation increases the size of the precipitating systems, which

makes them more efficient in collecting water from remote sources

and generating more precipitation.

ΔPremote spatial variability in West Africa is enhanced in compari-

son to Europe. The above-described indirect pathway of precipitation

enhancement occurs north of 12�N in West Africa. An opposite effect

can be seen south of 12�N, where an enhancement of the land sur-

face evaporation contribution to precipitation is associated with a

decrease of the remote water contribution to precipitation. However,

the ensemble size is not large enough to guarantee that these spatial

distribution characteristics of the indirect pathway in West Africa are

not triggered by modelled atmospheric randomness.

3.7 | Land precipitation recycling ratio

As shown by ρENS,W in Figure 10, land precipitation recycling in Europe

is larger in Central Europe, with maxima up to 30% and a spatially

averaged value around 16%, which is in the range of published conti-

nental precipitation recycling estimates (e.g., Brubaker et al., 1993;

van der Ent et al., 2010). For West Africa, land precipitation recycling

is also larger towards the inland area, with maxima up to 30% and a

spatially averaged value around 19%. The land area of the simulation's

domain has a size of about 6 000 000 km2. In comparison, Arnault,

Knoche, et al. (2016) found a regional precipitation recycling of about

12% for a squared 1 000 000 km2 area in West Africa. Such a scaling

effect is expected (e.g., Trenberth, 1999).

Lateral terrestrial water flow increases land precipitation recycling

in most regions of Europe and West Africa, as shown by Δρ in

Figure 10. In West Africa, a relative increase in land precipitation

recycling by up to 10% is found north of 12�N, which suggests an

enhanced sensitivity of monsoonal squall lines to lateral terrestrial

water flow. Overall, lateral terrestrial water flow increases the spa-

tially averaged value of the land precipitation recycling ratio from 15.9

(±0.1)% to 16.5 (±0.1)% in Europe, which corresponds to a relative

increase of 3.6 (±0.2)%, and from 18.9 (±0.1)% to 20.0 (±0.1)% in

West Africa, which corresponds to a relative increase of 5.6 (±0.2)%,

the uncertainty ranges being deduced from all combinations of sub-

sets of 27 members out of 30 as detailed above. This result means

that lateral terrestrial water flow enhances the strength of the land –

F IGURE 10 (a,b) Maps of (a) WRF-tag sub-ensemble mean of land precipitation recycling ρENS,W and (b) ensemble-mean difference in land
precipitation recycling Δρ, both temporally averaged from June to September 2008 for Europe and given in %. (c,d) As in (a,b), except for West
Africa
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atmosphere coupling, and that this enhancement is slightly more pro-

nounced in West Africa.

3.8 | Modelled precipitation uncertainty

The impact of lateral terrestrial water flow on modelled precipitation

uncertainty is evaluated with the normalized ensemble spread SENS,W

and normalized difference ΔS in Figure 11. In order to increase the

statistical significance of the displayed values of ΔS, only the areas

which receive an ensemble-mean daily precipitation amount above

1 mm/day for at least 20 days out of the 4-month study period are

considered in Figure 11.

The normalized ensemble spread is generally much larger in

West Africa than in Europe, which means that the weather regime

in West Africa is less constrained by the large-scale atmospheric

condition in comparison to the weather regime in Europe. Never-

theless, the normalized ensemble spread is reduced in the moun-

tainous areas of both regions, which shows that the strong

orographic forcing on precipitation discussed by Arnault

et al. (2018) in the case of Central Europe is also taking place in a

tropical region.

ΔS in Figure 11 displays positive and negative areas for both

Europe and West Africa, which means that lateral terrestrial water

flow does not systematically enhance the modelled precipitation

uncertainty. Still, the spatially averaged value of SENS,WH exceeds the

spatially averaged value of SENS,W by 1.3% for Europe, and by 1.9% for

West Africa.

In order to evaluate the model uncertainty associated with this

result, the spatially-averaged difference in normalized ensemble

spread is computed for all sub-ensemble combinations of size

27 within the full ensemble of size 30. It is found that this spatially-

averaged difference in normalized ensemble spread varies between

0.4% and 2.5% for Europe, and between 1.4% and 2.4% for West

Africa, which confirms the impact of lateral terrestrial water flow on

modelled precipitation uncertainty at continental-scale.

3.9 | Land – Atmosphere coupling strength

The dependency of the impact of lateral terrestrial water flow on

modelled precipitation uncertainty to the strength of the land – atmo-

sphere coupling is assessed with the hydro-specific land precipitation

recycling difference Δρhydro in Figure 12. For Europe, Δρhydro displays

much more positive areas than negative areas, with a spatially aver-

aged value of 5%. This is a clear signal that, in Europe, lateral terres-

trial water flow mostly increases the modelled precipitation

uncertainty when the coupling between the land and the atmosphere

is enhanced, in agreement with Arnault et al. (2018)'s findings for

Central Europe.

For West Africa, Δρhydro displays much smaller values in compari-

son to the case in Europe, with rather randomly distributed positive

F IGURE 11 (a,b) Maps of (a) the normalized WRF-tag sub-ensemble spread of daily precipitation SENS,W (�) and (b) normalized spread
difference ΔS given in %, both temporally averaged from June to September 2008 for Europe. (c,d) As in (a, b), except for West Africa. The areas
where an ensemble mean of daily precipitation amount above 1 mm/day occurs for less than 20 days out of the 4-month period are shaded in
grey. This grey-shading is also applied to Figures 12 and 13
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and negative areas and a spatially averaged value below 0.1%. This is

an indication that the impact of lateral terrestrial water flow on mod-

elled precipitation uncertainty does not depend much on the strength

of the land – atmosphere coupling in West Africa. An implication of

this result is that no weather situation in West Africa particularly

modulates the strength of the land – atmosphere coupling in such a

way that it would prohibit an enhanced impact of lateral terrestrial

water flow on modelled precipitation uncertainty. This is an opposite

situation to that in Europe, where this impact is much reduced during

weather situations characterized by a strong synoptic forcing and a

weak influence of local processes (Arnault et al., 2018).

3.10 | Atmospheric wetting intensity

The dependency of the impact of lateral terrestrial water flow on

modelled precipitation uncertainty to the atmospheric wetting inten-

sity is assessed with the hydro-specific atmospheric water content

difference ΔWhydro in Figure 13. ΔWhydro displays mostly positive

values in Europe and West Africa. This means that a noticeable

increase in modelled precipitation uncertainty induced by lateral ter-

restrial water flow is mostly associated with a comparatively larger

increase in atmospheric water content induced by lateral terrestrial

water flow, in both regions. Since it is known that enhanced

environmental humidity favours moist convective instabilities

(e.g., Derbyshire et al., 2004), we argue that the enhanced modelled

precipitation uncertainty induced by lateral terrestrial water flow is a

direct consequence of the atmospheric wetting effect of lateral ter-

restrial water flow.

4 | SUMMARY AND PERSPECTIVES

This study provides the first model evaluation of the contribution of

lateral terrestrial water flow to precipitation at continental scale for

Europe and West Africa. Two land surface – atmospheric models have

been considered for this study, WRF-Hydro-tag which includes over-

land and subsurface flow, and WRF-tag which neglects lateral terres-

trial water flow. WRF-tag and WRF-Hydro-tag have been set up in

order to tag and trace the evaporated water from the land surface and

quantify atmospheric water pathways. The evaluation of the contribu-

tion of lateral terrestrial water flow to precipitation has been achieved

by comparing sub-ensembles of 30 WRF-tag simulations and

30 WRF-Hydro-tag simulations for the period June–September 2008.

For Both Europe and West Africa, lateral terrestrial water flow

mostly increased land surface evaporation and precipitation through a

summer-mean positive soil – moisture precipitation feedback at conti-

nental scale. In terms of ensemble mean, it was found that the relative

F IGURE 12 Maps of the hydro-specific land precipitation recycling difference Δρhydro temporally averaged from June to September 2008 for
(a) Europe and (b) West Africa, given in %

F IGURE 13 Maps of the hydro-specific atmospheric water content difference ΔWhydro temporally averaged from June to September 2008
for (a) Europe and (b) West Africa, given in mm
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increase in total precipitation was of the order of 1 (±0.2)% in both

continental regions, in association with a relative increase in mean

land precipitation recycling by 3.6 (±0.2)% in Europe and 5. 6 (±0.2)%

in West Africa. These uncertainty ranges were deduced from all com-

binations of subsets of 27 members out of 30. In West Africa, the rel-

ative increase in land precipitation recycling locally reached 10%

north of 12�N, which suggests an enhanced sensitivity of monsoonal

squall lines to lateral terrestrial water flow.

In the case of Europe, the fact that the increase in total precipita-

tion was about two times higher than the increase in land

precipitation recycling was related to an indirect pathway linking

remote water sources to a change in precipitation. Indeed, the

increase in land surface evaporation wetted the atmosphere, which in

average increased the ability of the precipitating systems in collecting

more water from remote sources and generating more precipitation.

This effect could also be seen in West Africa north of 12�N. An oppo-

site effect occurred south of 12�N, where an enhancement of the land

surface evaporation contribution to precipitation was associated with

a decrease of the remote water contribution to precipitation. How-

ever, the size of the ensemble was deemed to be insufficient in order

to ensure that this regional dependency of the indirect pathway was

not the product of modelled atmospheric randomness. Future studies

addressing the spatial distribution of the indirect pathway should con-

sider a larger ensemble size.

In both regions, lateral terrestrial water flow increased modelled

precipitation uncertainty when the accumulation in atmospheric water

content induced by enhanced land surface evaporation was largest,

with an average increase in normalized ensemble spread of daily pre-

cipitation by 1.3% for Europe, and by 1.9% for West Africa. For

Europe, the impact of lateral terrestrial water flow on modelled pre-

cipitation uncertainty was additionally modulated by the strength of

the land – atmosphere coupling.

As perspective, the methodology developed in this study could be

adapted in order to analyse the sensitivity of the modelled land –

atmosphere system to other land processes. Ideas for future studies

could be to (1) further investigate the contribution of lateral terrestrial

water flow to summer precipitation with the consideration of irriga-

tion, deep groundwater and phreatophytic plants (e.g., Boucher

et al., 2004; Steward & Ahring, 2009), (2) extend the analysis of soil

moisture – precipitation feedback mechanisms in Europe and West

Africa for particularly dry and wet years (e.g., Gbode et al., 2019),

(3) further assess the impact of vegetation dynamics on the atmo-

spheric branch of the hydrologic cycle (e.g., Klein et al., 2017), and

(4) quantify the change in simulated land – atmospheric water path-

ways induced by the action of constraining modelled land processes

with calibrated parameters (e.g., Fersch et al., 2020). Finally, in the

context of climate change mitigation, a detailed understanding of

the water pathways linking a modified landuse to a precipitation

change would be relevant.
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