KIT | KIT-Bibliothek | Impressum | Datenschutz

Quadrature by parity asymptotic expansions (QPAX) for scattering by high aspect ratio particles

Carvalho, Camille; Kim, Arnold D. Kim; Lewis, Lori; Moitier, Zoïs

Abstract:

We study scattering by a high aspect ratio particle using boundary integral equation methods. This problem has important applications in nanophotonics problems, including sensing and plasmonic imaging. Specifically, we consider scattering in two dimensions by a sound-hard, high aspect ratio ellipse. For this problem, we find that the boundary integral operator is nearly singular due to the collapsing geometry from an ellipse to a line segment. We show that this nearly singular behavior leads to qualitatively different asymptotic behaviors for solutions with different parities. Without explicitly taking this nearly singular behavior and this parity into account, computed solutions incur a large error. To address these challenges, we introduce a new method called Quadrature by Parity Asymptotic eXpansions (QPAX) that effectively and efficiently addresses these issues. We first develop QPAX to solve the Dirichlet problem for Laplace’s equation in a high aspect ratio ellipse. Then, we extend QPAX for scattering by a sound-hard, high aspect ratio ellipse. We demonstrate the effectiveness of QPAX through several numerical examples.


Volltext §
DOI: 10.5445/IR/1000132779
Veröffentlicht am 18.05.2021
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 05.2021
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000132779
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 21 S.
Serie CRC 1173 Preprint ; 2021/22
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Externe Relationen Siehe auch
Schlagwörter Boundary integral methods, asymptotic analysis, numerical quadrature, scattering
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page