

Implementation of the System Thermal-Hydraulic code
TRACE into SALOME Platform for Multi-Scale Coupling

*Kanglong Zhang, Victor Hugo Sanchez Espinoza, Robert Stieglitz

Karlsruhe Institute of Technology (KIT)
Hermann-von-Helmholtz-Platz 1

76344 Eggenstein-Leopoldshafen, Germany
kanglong.zhang@kit.edu; victor.sanchez@kit.edu; robert.stieglitz@kit.edu

The paper discusses the procedures to implement the best-estimated system thermal
hydraulic code TRACE into the open-source platform SALOME in order to enable
TRACE for multi-scale coupling with other thermal-hydraulic solvers such as sub-
channel or CFD codes. For this purpose, the source code of TRACE was re-
organized and modularized as the primary step in order to meet the functional
modularization request of SALOME-YACS module, which is the GUI-based
supervision tool of the SALOME-platform. First of all, the TRACE-source code was
wrapped with a newly-developed C++ envelope which supplies an interface between
the basic Python layer of SALOME and the Fortran calculation engine of TRACE.
With another newly developed SWIG-file, the communication channel between the
C++ envelope and the SALOME Python layer was established. As a result, TRACE
was fully implemented into SALOME as a component. An explicit mesh generation
capability was also developed for TRACE in order to map the computational domains
(meshes) between different codes and also for post-processing purpose. This
capability is based on SALOME-MED module. After the implementation, the code
was then tested with a 3D problem of the reactor pressure vessel. The verification
work is undergoing and the current results are very encouraging, which show that the
developmental work discussed here is consistent.

Key Words: TRACE, SALOME, MED, YACS

Simulation tools in engineering science are becoming more sophisticated and
detailed regarding the spatial discretization thanks to the advances in the involved
physical fields and the increasing computer power: a notable trend also in nuclear
engineering. Different thermal hydraulic simulation tools with rather different spatial
nodalization were developed over the past decades in order to improve the
description of the complex fluid dynamic and thermal hydraulic taking place within the
primary/secondary circuit including the core of nuclear power plant. For example, the
system thermal hydraulic codes are focused on simulation of the integral behavior of
a nuclear power plant. Hence the models are mainly one dimensional or coarse
mesh-3D for some part of a NPP e.g. the reactor pressure vessel. On the other hand,

the sub-cannel codes are developed to enhance the thermal hydraulic phenomena
within the reactor core and for this purpose they rely on quasi-3d model (singe and
two-phase flow). Finally, the use of the general purpose computational fluid dynamic
(CFD) codes is rapidly increasing in the nuclear community for both design
optimization and safety-related investigations. However, two-phase flow models are
still not yet mature for the application in the nuclear industry. On the other hand, the
simulation of a complete nuclear power plant with a detailed core model that permits
the prediction of local safety parameters is not yet possible since the problem is too
large to be loaded in the memory of current computers. Consequently, for the time
being KIT is engaged in the development of multi-scale simulation tools to take profit
of the best features of system, sub-channel and CFD codes in solving the key-safety
relevant phenomena of different reactor concepts.
Considering the peculiarities of the open-source SALOME-platform regarding the
meshing, coupling options and post-processing, the investigations of KIT are
concentrated in the multi-scale coupling of the system code TRACE, the sub-channel
code SUBCHANFLOW and the open-source CFD code TrioCFD. Especially, the
SALOME-platform provides powerful in-build functions for standardized coupling
approaches of different solvers using the modules such as YACS and MED. Lots of
codes were already successfully implemented into the SALOME platform for coupling
purpose, including TrioCFD [1-5]. The work of this paper integrated the best-estimate
system thermal hydraulic code TRACE developed by U.S. NRC into the SALOME-
platform for multi-scale coupling e.g. with CFD or sub-channel codes.

2.1 TRACE
TRACE is the abbreviation of TRAC/RELAP Advanced Computational Engine which
is formerly called TRAC-M. It is the latest in a series of advanced, best-estimate
reactor systems codes developed by U.S. NRC for analyzing neutronic thermal-
hydraulic behavior in light water reactors. TRACE takes a component-based
approach to modeling a reactor system. Each physical piece of equipment in a flow
loop can be represented as some type of component. VESSEL is the special 3D
component which can model the Reactor Pressure Vessel and other components in
which 3D phenomena take place. The basic governing equation set of TRACE
includes six equations which can simulate a full two-fluid hydrodynamic like the gas-
liquid flow. In addition, two more equations are applied to describe the non-
condensable gas field and to track dissolved solute [6].

2.2 SALOME
The SALOME platform is an open source software framework for numerical pre- post
processing and integration of numerical solvers in various scientific domains. It is
supported by CEA, EDF and OPENCASCADE. SALOME has already been
employed to perform a wide range of simulations, which are typically related to
industrial equipment in power plants (nuclear power plants, wind turbines, dams...).
SALOME is mainly composed of 8 modules (Figure 1), among which, KERNEL and
GUI provide the core functionalities of SALOME, GEOM is for CAD usage, MESH is
in charge of generating computational grids, PARAVIS is nothing but PARAVIEW
which is post processing professional, MED contains lots of mesh interpolation tools
and also supplies a universal data format standard for all other modules, YACS is
used to organize and monitor calculation chains, the last stands for the user-

developed modules. In sum total, KERNEL and GUI are the base, GEOM, MESH
and PARAVIS are for pre and post processing, MED, YACS and user-module are
closely related to coupling issues.

Figure 1. Diagram of SALOME architecture

For a successful coupling, physical field mapping between different code meshes is
one of the critical issues, which largely determines the efficiency and even validity of
the coupling. But first of all, the meshes should be properly and explicitly defined as
the essential prerequisites, no matter in a file or in the memory. Almost all CFD
codes have their own meshes isolated from the physical fields and the numerical
definition of a problem. But for TRACE, the mesh is implicitly defined in the input file
which mixes the numerical data and mesh description together. Thus the overriding
work is developing an explicit TRACE mesh based on MED format. Specially, since
the coupling only concerns the VESSEL component, only the MED mesh of VESSEL
should be developed. SALOME-MED principally supports five cell types: tetrahedron,
triangular prism, hexahedron, hexagonal prism and polyhedron. The former four
(Figure 2.a)
the cells in TRACE are quite unusual, which are either fan-shaped or annular (Figure
2.b). So, the only remaining option is polyhedron.

 a. SALOME-MED supported cell types b. TRACE cells

Figure 2. Cells of SALOME-MED and TRACE

Normally, only four points could be derived from TRACE input file for one single cell
(Figure 3.a). But they are not sufficient to form an unbroken cell which contains
space curves. Some assistant points should be inserted to complete the cell (Figure
3.b). Finally, a multi-faces wrapped TRACE cell could be built (Figure 3.c).

 a. b. c.

Figure 3. Building process of a TRACE typical cell

Up to this point, a TRACE mesh could be explicitly built from the input file with the
help of SALOME-MED capabilities. No additional definitions are required. A VVER
model was utilized to test the newly-developed mesh generation function of TRACE.
Figure 4 presents the normal-cell-based TRACE mesh for cell-data (pressure,
density .et al) post-processing. Figure 5 displays the tetra-cell-based TRACE mesh
which was expressly developed for mesh-interpolation purpose, since the
interpolation tools of SALOME- fan-
shaped and annular cells). Moreover, an edge-based mesh (Figure 6) has to be
developed for both post-processing and interpolation of edge-data like velocity and
mass flow. Completed with the development of some other key functions, totally 21
kinds of data could be written to the three meshes for both post processing and data
interpolation.

Figure 4. MED normal-cell-based-mesh of TRACE for VVER

Figure 5. MED tetra-cell-based-mesh of TRACE for VVER

Figure 6. MED edge-based-mesh of TRACE for VVER

-

SALOME-YACS provides user a friendly GUI to organize the calculation by dragging
and connecting some basic functional-components, just as Figure 7 shows.
Apparently, only explicit mesh is not enough to achieve a successful coupling. The
single TRACE executable has to be further divided into several basic functional

on. This operation is compulsory because TRACE has to supply various accessible
input and output spots in order to be able to interact with other codes flexibly.

Figure 7. Typical calculation chain in SALOME-YACS

The implementation of TRACE to SALOME-YACS is a little bit complicated.
Nevertheless, with the help of SALOME-tools (a toolkit aims to standardize
developing work within SALOME), the entire process could be generalized into four
main steps (Figure 8).

1) Re-written and re-organize the original TRACE source code to meet the
functional modularized request of SALOME-YACS.

2) Develop a C++ envelope to wrap the lower TRACE Fortran computing engine
forming a so called TRACE-SALOME internal object.

3) Develop a SWIG file to stick the internal object to SALOME-YACS python
layer forming a so called TRACE-SALOME local python object.

4) Develop a CORBA file to establish the communication channels for TRACE
module forming the final so called TRACE-SALOME Component.

Figure 8. Four steps of implementing TRACE into SALOME

Step 4 could be automatically done by SALOME-
need to pay any attention on the CORBA layer despite its enormous complexity. The
SWIG file of step 3 has to be developed by users but this is relatively simple since

there are already some off-the-shelf templates available. The real challenges are
step 1 and 2 which calls for in-depth knowledge of TRACE source code and involves
substantial programming effort. The discussion is not only appropriate for TRACE but
also applies to other codes-to-SALOME implementation work. The completed
functional components of TRACE in SALOME-YACS are listed in Table 1. Details of
the components are not further described due to the lack of space. Nevertheless,
their key functions could be perceived at once from the names.

Table 1. Functional components of TRACE in SALOME

setDataFile presenttime getOutputFieldsNames
initialize isStationary getOutputMEDField
computeTimeStep getInputFieldsNames terminate
initTimeStep getInputMEDFieldTemplate
solveTimeStep setInputMEDField

A simple 3D coolant mixing case was built to test TRACE-SALOME. The model
includes four primary loops, corresponds to four sectors of the VESSEL component
(Figure 9). The transient process is described in Table 2.

Table 2. Transient process of coolant mixing

 Loop #1 Inlet Loop #2 #3 #4 Inlet
Time (t) 0s ~ 20s 20s ~ 30s 30s ~ 50s 0s ~ 50s

Temperature 400K 400 + (t-20)*100K 500K 400K
Velocity 5m/s 5m/s

Solute mass ratio 0.01 0.01

Figure 9. Coolant mixing test case for TRACE-SALOME

Curves in Figure 10 displays the coolant temperature changes over time at the four
hot legs, covering both TRACE standalone and TRACE-SALOME. The various
degrees of coolant temperature rise at hot leg 2, 3 and 4 come from the coolant
mixing effect in the VESSEL. It could be found that the temperature curves of
TRACE-SALOME perfectly cover the curves of TRACE standalone. This is obvious
because nothing was done to the underlying calculation engine. What had been
performed are just some modifications and supplements .
Now, results of TRACE are more easily accessible thanks to the explicit mesh and
field extraction capabilities. Figure 11 presents the coolant temperature together with
the mesh in the VESSEL. All of the current out comings indicate that the
implementation of TRACE to SALOME was correctly done.

Figure 10. Coolant temperature curves at hot legs of TRACE and TRACE-SALOME

Figure 11. Post processing of coolant temperature in VESSEL of TRACE-SALOME

In this paper, the implementation of the system code TRACE in the SALOME-
platform for multi-scale coupling is described. As a result, three different meshes
were developed for the TRACE VESSEL-component based on SALOME-MED: the

normal-cell-mesh for the post-processing of cell-based data, the tetra-cell-mesh for
mesh interpolation of cell-based data (code coupling) and the edge-mesh for both
post-processing and mesh interpolation of edge-based data. In addition, the TRACE
code was modularized into 13 functional components, which is an important
prerequisite for a flexibly coupling of TRACE with other thermal hydraulic odes. The
new TRACE-functionalities inside the SALOME-platform e.g. the supervision YACS-
module were used to defined four main computational steps in the GUI. Finally, a 3D
coolant mixing problem in a VVER RPV was simulated and the new functionalities
were successfully demonstrated. Summarizing it can be stated that the TRACE code
is ready for coupling with another thermal hydraulic solver using the SALOME
functionalities.

1. B. Chanaron, C. Ahnert, N. Crouzet and V. Sanchez Advanced multi-physics
simulation for reactor safety in the framework of the NURESAFE project Annals of
Nuclear Energy, Volume 84, October 2015, Pages 166-177.

Development of a Multi-Physics, Multi-Scale simulation tool for LWR
safety analysis Munich, Technical University Munich, 2016.

Integration of the DRAGON5/DONJON5 codes in the SALOME
platform for performing multi-physics calculations in nuclear engineering Joint
International Conference on Supercomputing in Nuclear Applications and Monte
Carlo 2013 (SNA + MC 2013),
October 27 31, 2013.
4. M. Calleja, V. Sanchez, J. Jimenez and U. Imke, Coupling of
COBAYA3/SUBCHANFLOW inside the NURESIM platform and validation using
selected benchmarks Annals of Nuclear Energy, Volume 71, March 2014, Pages
145-158.
5. A. Cervone, D. Cerroni, R. Da Vià and F. Menghini,
Code in the Salome Platform September 2014, ENEA, CIRTEN.
6.

