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1 Introduction

For the last decades, scientific and technological advances have been driven by
classical computers based on semiconductor circuits. The steady growth of their
computational power was promoted by a continuous increase of the transistor
density in these devices, which, for the last 50 years, has approximately followed
the exponential Moore’s law [Our17]. However, a fundamental limit to further
growth is imminent in the near future: When the underlying semiconducting
circuit elements (currently on the scale of a few nanometers) reach the size of
several atoms, quantum effects start to set in and may cause a loss of functionality.
Even before this point is reached, it may not be viable from an economic point
of view to cling to the man-made Moore’s law [Wal16]. While future advances
can still be expected to a certain extent, they will likely rely on innovations or the
specialization of the processing units, such as the ray tracing acceleration units
implemented in modern graphics cards [Nvi18].

In the light of this impending development, the demand for increasingly pow-
erful computers has sparked the interest in an idea that has been around since
the early 1980s [Fey82], that is, computing based on quantum states, rather than
classical systems. In analog to their classical counterpart, the central building
blocks of a quantum computer are quantum bits, or short - qubits. Qubits are
quantum systems with two isolated energy eigenstates, replacing the classical 0
and 1 of a bit. Naturally, they can be initialized in an arbitrary superposition of
their eigenstates. Multiple qubits can be entangled with each other, resulting in
the exponential growth of the underlying Hilbert space. This enables a massive
parallelization during computation, which is exploited by quantum algorithms, for
example, for integer factorization [Sho97] and database search [Gro96]. A univer-
sal quantum computer with &50 ideal qubits can outperform the most powerful
classical computers at selected tasks [Boi+18].

But what kind of hardware is used to implement a quantum computer? A quantum
system is suitable as a qubit if it has two individually addressable energy levels,
which are distinguishable in a projective measurement to extract the current state.
Many systems, such as trapped ions [CZ95; Mon+95; MK13], cold atoms [Blo08],
and nitrogen-vacancy centers in diamond [JW06], come with intrinsically good
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1 Introduction

coherence properties, i.e., a measure for how long the system retains its quantum
information. In superconducting qubits, on the other hand, the quantum state is
encoded in the phase and charge degrees of freedom of an artificially patterned cir-
cuit [MSS01; Wen17; Kja+20]. These devices are operated at ultra-low temperatures
just above absolute zero in order to reduce noise caused by thermal excitations.
Nevertheless, early qubit implementations struggled with high energy and coher-
ence loss rates. Over the last two decades, this has been improved dramatically:
State of the art qubits feature coherence times on the order of 100− 300 µs [Ner+19;
Zha+20; Pla+20], which is long enough to execute several thousand qubit gates
[Kja+20]. Most recently, a quantum advantage over classical computers was for the
first time demonstrated on a superconducting quantum processor [Aru+19].

A key factor of the stellar success of superconductor-based quantum information is
a meticulous fabrication of the structures encoding their quantum properties. The
center piece of (almost) all superconducting quantum circuits are Josephson junc-
tions. In qubits, these nonlinear elements are used to isolate the two computational
states from the rest of the complex energy spectrum. In practice, the Josephson
contacts are realized with a simple superconductor-insulator-superconductor inter-
face. Due to the simplicity of the surrounding circuitry, scaling up to larger devices
with more qubits often boils down to streamlining the fabrication of the Josephson
junctions, while maintaining or improving qubit coherence times [Wu+17; For+19b;
Kre+20; Tsi+20]. The widespread shadow-evaporation techniques exploit free-
standing bridges [Dol77] or overhangs [Lec+11] in conjunction with multi-angle
evaporation to generate the desired interface in situ. This comes at the cost of a
systematic angle-dependent parameter spread, especially for large-scale wafers.
Sub-micron sized overlap junctions do not suffer from this effect and, therefore,
have started to attract attention in recent years [Wu+17].

In the context of this thesis, we developed a subtractive process for patterning over-
lap Josephson junctions, compatible with standardized nanofabrication methods.
In contrast to existing overlap or shadow evaporation techniques, resist masks are
eliminated from the evaporation chamber during the barrier growth. The process
is angle-independent and enables metal deposition at elevated temperatures or in
the presence of reactive gases. This lifts preexisting restrictions on the choice of
material, as well as the employed deposition and growth methods. Concurrently,
subtractive patterning allows for smaller, more coherent junctions, which can be
fabricated in the same process step with large contacts, utilized in quantum limited
amplifiers for qubit readout [Roc+12; Mac+15; Win+20]. In conjunction with the
angle-independence and scalability, this enables the integration into a streamlined
and large-scale processing platform for arbitrary quantum circuits.
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1 Introduction

While the development of fabrication tools is one crucial ingredient for building
systems comprising hundreds or thousands of qubits, an error-corrected universal
quantum computer is still a dream of the future. However, already current and
upcoming noisy intermediate-scale quantum (NISQ) devices with several decent
qubits and imperfect gates are expected to exceed the capabilities of classical
computers at certain tasks [Pre18]. Here, a great interest lies in quantum chemistry,
where the advantage over classical simulations is rather apparent: Quantum state
based computing can directly infer the energy spectrum or time evolution of the
underlying systems, which obey the laws of quantum mechanics [Asp+05; Cao+19;
McA+20].

Analog quantum simulators have advanced rapidly over the last years and can
now tackle problems which are hard to solve, even for modern supercomputers
[Ber+17; Zha+17]. Here, the simulator emulates the Hamiltonian of a model system
and, thereby, mimics its properties and time dynamics. Since the simulators are
tailored to a given problem, they lack the flexibility of a gate-based quantum pro-
cessor. However, no sophisticated error-correction schemes are needed. Therefore,
analog quantum simulation is useful, particularly for the study of universal effects.
Especially, open quantum systems are an appealing target for analog quantum
simulation, since they are hard to model with classical [Mos+17] and even quantum
computers [GRM20]. In these open quantum systems, a small subsystem interacts
with a structured environment. Typically, they are used to describe energy loss
and decoherence in real quantum systems [Man20] and can be employed to study
non-Markovian physics [OIL13; Pue+19]. An implementation based on supercon-
ducting circuits seems ideal, due to their tailored functionality and broad tool box,
including qubits, bosonic modes, and additional drive tones.

In this work, we built a quantum simulator comprising a superconducting qubit
coupled to an artificial environment composed of several bosonic modes to study
the multistate Landau-Zener model. The underlying Hamiltonian describes the
transient dynamics of at least two coupled quantum states, where an order param-
eter is used to tune the energy separation of the states linearly with time [Lan32;
Zen32; Stü32]. Due to its simplicity and generality, the Landau-Zener model has
a wide range of application. It is used to model molecular collisions [Chi96] and
chemical reaction dynamics [Nit06]. Landau-Zener tunneling can be employed to
measure the energy splitting of interacting quantum states, for example in magnetic
molecular clusters [WS99]. Recently, its ubiquity in artificial quantum devices has
revitalized the broad interest in the model: Mach-Zehnder-like interference effects
were observed in superconducting flux [Oli+05; Ber+08] and charge qubits [Sil+06],
but also in semiconductor qubits [PLG10; OHM18] and nitrogen-vacancy centers in
diamond [CM10; Fuc+11]. Experimentally, the time evolution of the Landau-Zener
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model was investigated to some extent at the hand of Helium Rydberg atoms
[YSK92], superconducting flux qubits [Ber+08], accelerated optical latices [Zen+09],
and single electronic spins [Hua+11], albeit only with two involved quantum levels.
In this work, we expand these studies to the multistate model and particularly
its transient dynamics, which have also found great interest in theoretical works
[Vit99; ZHK08; OIL10; OIL13].

This thesis is organized as follows: In the first chapter, I provide a short introduction
to superconductivity and the experimental methods needed to reach the ultra-
low temperatures at which superconducting quantum devices are operated. The
following chapter comprises a comprehensive introduction to the mathematical
framework of qubits, particularly those based on superconducting circuits. Here, I
put an emphasis on dispersive qubit readout, the most common method employed
in superconducting devices. This is expanded upon in the next chapter, where the
microwave circuits used to implement and operate superconducting qubits are
described. Thereafter, the experimental realization of these devices is discussed.
Here, I focus on the subtractive fabrication process for nanoscaled Josephson
junctions published in Ref. [Ste+20], which was developed in the context of this
thesis. Subsequently, the analog quantum simulation of the multistate Landau-
Zener model is presented. The final chapter concludes this work with a short
summary and an outlook on upcoming projects.
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2 Superconductivity

The macroscopic quantum phenomenon "superconductivity" describes the com-
plete loss of resistance of a material below a certain critical temperature Tc. For
over four decades after its discovery, that is, until the development of the standard
Bardeen–Cooper–Schrieffer (BCS) theory [BCS57], it was one of the most challeng-
ing problems in solid-state physics. Even today open questions remain, particularly
on the topic of high-temperature superconductors. Nevertheless, superconductiv-
ity has become technologically relevant in several areas: While the most obvious
application - energy transport in power grids - is still pending, magnets with
high magnetic fields are almost exclusively implemented with superconducting
wires, for example in magnetic resonance imaging or particle accelerators [BK12].
Superconducting devices are used to measure magnetic fields, both in science
and technology [Fag06] or as particle detectors [ZR04]. Replacing large-scale,
semiconductor-based servers and computers with systems based on rapid single
flux quantum (RSFQ) logic promises a drastic reduction of energy consumption
[LS91]. Currently, the most popular prospect also relevant in the context of this
work is the realization of a quantum computer using superconducting circuits
[GCS17].

Superconductivity is a broad research area and a thorough discussion far exceeds
the frame of this thesis. In this chapter, I discuss some of its fascinating aspects,
with a focus on those relevant for quantum applications. Here, the Josephson
effect is examined in more detail, justified by its key role in most superconducting
quantum circuits. Finally, the experimental low-temperature setup employed in the
presented experiments, the dilution refrigerator, is discussed.

2.1 Properties of superconductivity

In a superconducting material below a critical temperature Tc, the electrons ex-
perience an effective attraction, mediated by virtual phonons. This results in a
two-electron bound state, the Cooper pairs, where the two constituents have an
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2 Superconductivity

opposing spin and momentum [BCS57]. The boson-like Cooper pairs themselves
condense into a macroscopic wave function, often simplified as [BK12]

Ψ(rrr, t) =
√

ρ(rrr, t)eiθ(rrr,t), (2.1)

where the density ρ and phase θ are generally position- and time-dependent. The
pairing goes hand in hand with the formation of an energy gap 2∆(T) at the Fermi
surface of the superconductor, which is proportional to the binding energy of a
Cooper pair. In contrast to an insulator, global shifts of the Fermi sphere, where all
Cooper pairs share the same momentum, are still allowed. This helps to illustrate
the loss of resistance in superconductors: In a normal metal, the electrons on the
Fermi surface can scatter inelastically, thereby relaxing the sphere back to the
origin, where no mean current flows. In a superconductor, however, the bandgap
provides a forbidden region for these processes. In this picture, paired electrons
can only scatter around the Fermi sphere, such that no mean momentum is lost.
This results in a lossless current, carried by the BCS condensate. Inelastic scattering
is only possible if the energy transfer is sufficiently large to overcome the bandgap,
which corresponds to breaking a Cooper pair. The intrinsic coherence of the wave
function is crucial for macroscopic quantum systems based on superconducting
circuits. The existence of an energy gap also implies that energy transitions of such
a device should reside below the superconducting bandgap (typically on the order
of ∼ 100 GHz).

Another byproduct are quasiparticle excitations of the condensate. In a simplified
picture, they can be imagined like hole and electron excitations in a semiconductor.
Their energy is always larger than ∆ and their charge continuously transitions
from −e, far above, to +e, far below the energy gap. In contrast to the Cooper
pairs, quasiparticles can scatter inelastically. Therefore, they impose a potential
loss mechanism for quantum circuits, see Sec. 3.2.2 for additional information.

Other interesting properties include the Meissner-Ochsenfeld effect, describing
the perfect diamagnetism up to a critical external magnetic field Hc, the quan-
tization of magnetic flux, most apparent in closed loops, Josephson junctions,
and type-II superconductors, and of course the Josephson effect, discussed in the
following section [GM12].

2.2 The Josephson effect

The Josephson effect is crucial for almost all superconducting quantum devices.
It was first described theoretically by Brian Josephson in 1962 [Jos62], which later
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2.2 The Josephson effect

awarded him the Nobel Price in Physics. The Josephson effect makes predictions
about the current flow and voltage difference across a weak link, coupling the wave
functions Ψ1 and Ψ2 of two adjacent superconductors, see Fig. 2.1. While Josephson
derived the effect specifically for the superconducting phase, it can be shown that
it is prevalent in other systems, for example, superfluid helium-4 [Suk+01]. The
two Josephson equations read

I = Ic sin ϕ,

ϕ̇ =
2π

Φ0
V,

(2.2)

where the flux quantum is given by Φ0 = h/2e, with the elementary charge e and
Planck’s constant h. The gauge-invariant phase difference ϕ across the weak link is
defined as [BK12]

ϕ = θ2 − θ1 −
∫ 2

1
AAAdlll, (2.3)

with the vector potential AAA. The second Josephson equation predicts a time-
dependent phase across the junction in response to an applied voltage and vice
versa. Due to its high precision, this effect is used to define the (Josephson) voltage
standard [BK12]. The first Josephson equation describes the flow of a lossless
current I up to a maximum value of Ic across the junction, as response to a phase
difference across the weak link. Here, Ic can be inferred from the normal state
resistance Rn of the contact from the Ambegaokar-Baratoff relation [AB63; BK12]

IcRn =
π∆(T)

2e
tanh

(
∆(T)
2kBT

)
≈ π∆

2e
, (2.4)

with the Boltzmann constant kB. Experimentally, this is particularly useful in the
pre-characterization of the critical current via a simple resistance measurement at
room temperature, see Sec. 5.3.3.

The supercurrent I across the junction is associated with the energy

EJ(ϕ) =
∫

VIdt = −EJ cos ϕ + const., (2.5)

which is calculated using the Josephson equations, see Eq. (2.2). Herein, the Joseph-
son energy is given by EJ = Φ0 Ic/2π. In the limit of small ϕ, the energy EJ(ϕ) is
comparable to that of the magnetic energy stored in a conventional inductor with
inductance LJ = Φ0/2π Ic, see Appendix B.

In the quantum limit, the gauge-invariant phase ϕ̂ does not commute with the
Cooper pair number operator n̂ and [Dev97]

[ϕ̂, n̂] = i. (2.6)
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2 Superconductivity

Figure 2.1: Visualization of the Josephson weak link and SQUID. (a) The wave functions Ψ1 and
Ψ2 of the two superconducting slabs are coupled via a weak link. The resulting overlap of Ψ1 and Ψ2

enables coherent Cooper pair tunneling across the barrier, which is the underlying mechanism of
the Josephson effect. Experimentally, the weak link is typically implemented with a superconductor-
insulator-superconductor interface. (b) Sketch of a dc SQUID. Due to the interference of the
superconducting wave function, the critical current across the SQUID can be adjusted by an external
flux Φext.

Similar to the position and momentum of a particle, wave functions and operators
can be expressed in either basis, with the transformation [Dev97]

|n〉 = 1
2π

∫ 2π

0
e−inϕ |ϕ〉dϕ. (2.7)

In the charge basis, the Hamiltonian associated with EJ(ϕ) in Eq. (2.5) reads

ĤJ =
EJ

2

∞

∑
n=−∞

(|n + 1〉〈n|+ |n〉〈n + 1|) . (2.8)

This illustrates that the supercurrent is a result of coherent Cooper pair tunneling
across the barrier.

In quantum devices, the non-linearity introduced by the Josephson effect is em-
ployed to isolate two energy levels of a circuit, usually ground and first excited
state, which may then be used as logical quantum states for computation, see
Sec. 3.4. Experimentally, Josephson junctions are typically implemented using a
superconductor-insulator-superconductor interface. Therefore, the junction is natu-
rally shunted by a capacitor. In this work, the intrinsic capacitance of the contact
is always merged with that of parallel capacitors of the quantum circuit, unless
stated otherwise.

2.3 The dc SQUID

In superconducting quantum interference devices (SQUIDs) a loop is used as an
effective Mach-Zehnder interferometer for the superconducting wave function.

8



2.4 Dilution refrigerators

This becomes interesting when external magnetic flux can penetrate the loop by
interrupting it with one or more Josephson junctions. For example, the dc SQUID
comprises two Josephson junctions, one either side of the loop, which separate
the wave functions on in- and output by weak links, see Fig. 2.1. For a negligible
inductance of the loop and with equal critical currents Ic of both junction, the total
current I and phase ϕ across the device are connected by the equation

I = 2Ic cos
(

π
Φext

Φ0

)
sin
(

ϕ + π
Φext

Φ0

)
. (2.9)

This is similar to the behavior of a single junction, however, the effective critical
current can be manipulated via the external magnetic flux Φext.

In many superconducting quantum devices, this effect is capitalized upon to enable
in situ control over some of their properties, for example, the transition frequency
of a qubit, see Sec. 3.4.2.

2.4 Dilution refrigerators

In the final section of this chapter the technical aspects of working with supercon-
ducting devices are discussed, that is, how to get them cold. Most metals employed
for these quantum circuits transition to the superconducting phase at "moderately
low" temperatures of few degree Kelvin, e..g., ∼ 1.2K for Aluminum[Phi59]. In
order to reduce relaxation and decoherence due to thermal photons and quasi-
particles, see Sec. 3.2, their operation regime lies significantly lower at around
20 mK. There are several commercially available types of refrigerators, which easily
reach these temperatures on the timescale of several hours and maintain them for
months at a time.

For superconducting quantum circuits, dilution refrigerators are most commonly
used. The underlying cooling mechanism is based on the continuous endothermic
dilution of mixtures of helium-3 and helium-4. Consequently, a pre-cooling down to
∼ 2 K, i.e., the transition temperature of liquid to superfluid helium-4, is required.
Modern commercial dilution refrigerators utilize at least two stages of pulse tube
coolers to reach these temperatures. The device employed in this work uses thermal
baths of liquid nitrogen (TLN2 = 77 K) and helium-4 (TL4He = 4.2 K), acting as heat
sinks for the circulating gas. The helium bath is connected to the so-called 1 K
pot. Here, a small volume of liquid is subjected to a low pressure generated by a
rotary pump, resulting in evaporation cooling. Temperature and cooling power are
adjusted by a sensitive valve, managing the flow from the helium bath.

9



2 Superconductivity

Figure 2.2: Schematic diagram of a dilution refrigerator. Helium-3 acts as the coolant and circu-
lates through the cryostat in a closed cycle. It is pre-cooled by thermal baths of liquid nitrogen and
helium, at the 1 K pot, at the still, as well as in a counter-current heat exchanger just ahead of the
base stage. Here, in the mixing chamber, the main cooling mechanism comes into play: Helium-3
"evaporates" into the helium-4 rich phase, which results in a cooling of the mixture. Heat shields
(gray) protect each stage from thermal radiation. Figure taken from Ref. [Sch20] with permission of
S. Schlör.
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2.4 Dilution refrigerators

Figure 2.21 shows a sketch of the cooling cycle [Sch20]. In operation mode, the
mixing chamber gathers helium in a concentrated phase and a dilute phase, sepa-
rated by a phase boundary. The helium-4 rich phase, composed of 93.4% superfluid
helium-4 and ∼ 6.6% helium-3, extends up to the still. Here, at temperatures of
∼ 600mK, the partial pressure of helium-3 is greater than that of helium-4. By
pumping on the still, helium-3 is distilled from the dilute phase, where the flow rate
is adjusted by the still heater. The result is twofold: An osmotic pressure is created,
leading to a net flow of helium-3 from mixing chamber to still. Additionally, the
temperature of still is reduced by evaporation cooling. Before the gaseous helium-3
is cycled back into the cryostat, it is purified in a liquid nitrogen and helium cold
trap. Subsequently, it is pre-cooled by the nitrogen and helium bath. It condenses
to a liquid in a reservoir, thermally coupled to the 1 K pot. From here on, large flow
impedances guide it back to the mixing chamber. On the way, a heat exchanger
at still and a counter-current heat exchange with the helium-3 rising from the
mixing chamber lead to additional cooling. At base, the helium-3 enters the mixing
chamber into the concentrated phase, which is practically void of helium-4. As
helium-3 is removed from the dilute phase through the still, additional helium-3
may traverse the phase boundary in the mixing chamber. Hereby, the entropy of
the dilute phase increases, which, at constant heat, leads to a cooling of the mixture
[EH05]. In this continuous operation mode, base temperatures of 10−20 mK are
achieved.

1 Figure taken from Ref. [Sch20] with permission of S. Schlör.
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3 Qubits and their environment

Quantum bits (qubits) are the central building blocks for quantum information
processors. In contrast to their classical counterparts, they can be prepared in an
arbitrary superposition of their two states. This allows for a massive parallelization
during computation, enabling few (∼ 50) qubits to outperform classical supercom-
puters at selected tasks [Pre18]. Prominent examples are algorithms for integer
factorization [Sho97] and database search [Gro96], however, currently the greatest
interest is applications in quantum chemistry [Asp+05; Cao+19; McA+20].

Several platforms compete in the race for a quantum computer: trapped ion systems
[CZ95; Mon+95; MK13] and qubits based on semi- [Col+01; Pet+05; Yon+18] or
superconducting circuits [MSS01; Wen17; Kja+20] are the strongest candidates.
In recent years, superconducting qubits seem to have taken the lead [Aru+19].
The micro-fabricated electrical circuits encoding the qubit states can be fabricated
in large numbers [For+19b; Kre+20] and are just as easily coupled to each other
[Kra+19; Kja+20]. This makes them appealing to construct quantum meta materials
[ZFR16; Bre+21]. The surrounding circuits offer a tailored functionality of the
quantum chip, which makes them particularly attractive for analog quantum
simulation [GAN14; Bra+17; Lam+18].

This chapter comprises the basic mathematical tools needed to work with su-
perconducting qubits. I start with a recapitulation of the platform-independent
mathematical framework used to describe a qubit, including gate operations and
the concept of energy relaxation and decoherence. In this context, I also briefly
discuss the most relevant loss channels in superconducting qubits. This is followed
by an introduction to circuit quantum electrodynamics with a focus on disper-
sive readout - the most widespread method for inferring the quantum state of a
superconducting qubit. Finally, I give a brief description of arguably the most suc-
cessful superconducting qubit architecture, also employed throughout this work:
the transmon qubit.
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3 Qubits and their environment

3.1 Mathematical framework and operation

This section contains the mathematical tools to describe qubits from an arbitrary
platform. We start with the Bloch sphere representation, followed by the imple-
mentation of single-qubit gates.

3.1.1 Qubit state representation

Independent of the physical realization of a qubit, the state of an arbitrary two-level
system is mathematically represented by [Kra+19]

|ψ〉 = α |e〉+ β |g〉 , (3.1)

where the state vector |ψ〉 is a superposition of the ground state |g〉 and excited
state |e〉. The coefficients α and β are complex numbers fulfilling

|α|2 + |β|2 = 1, (3.2)

such that |ψ〉 is normalized. A more convenient notation, obeying Eq. (3.2) by
default, reads

|ψ〉 = cos
θ

2
|e〉+ eiφ sin

θ

2
|g〉 . (3.3)

Both notations are in principle equivalent, apart from a global phase, which can
be omitted without loss of generality. An intuitive representation of Eq. (3.3) can
be found by interpreting the two angles θ and φ as those of a spherical coordinate
system. Every point on this so-called Bloch sphere corresponds to a quantum state
and every state is unambiguously represented on the sphere, see Fig. 3.1.

Especially when working with gates, it is advantageous to express the qubit state
in a vector notation, where

|e〉 =
(

1
0

)
and |g〉 =

(
0
1

)
. (3.4)

While it may seem counter-intuitive at first, states on opposing sites of the sphere
are orthogonal, as is the case for |g〉 and |e〉. The choice of north and south pole as
excited and ground state is arbitrary, however, it also determines the states pointing
in x- and y-direction (if a right handed coordinate system is desired).
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3.1 Mathematical framework and operation

Figure 3.1: Bloch sphere representation of a quantum state. Each point on the Bloch sphere cor-
responds to a quantum state |ψ〉, unambiguously defined by the angles θ and φ. Vectors in x-, y-,
and z-direction are eigenvectors of the respective Pauli matrix.

3.1.2 Operating a qubit

Inspired by classical computing, operations performed on quantum bits are de-
noted as gates. As shown in the previous chapter, an arbitrary qubit state can be
represented by a complex two-component vector. Naturally (i.e., due to its quantum
nature), operations on the qubit can be represented by a two-dimensional Hermi-
tian matrix [Kra+19]. Consequently, all qubit gates are reversible by their Hermitian
conjugate. Likewise, multi-qubit gates are represented by 2n-dimensional matrices,
where n is the number of participating qubits. For both classical and quantum
computation, a set of universal gates is needed to perform arbitrary computations.
Classically, this means that any Boolean computation can be performed. For qubits,
all conceivable superposition states need to be reachable by a combination of
gates from a universal set [Kra+19]. In this section, we focus on the description of
single-qubit gates, as all systems investigated in this work comprise only a single
qubit.

Arbitrary rotations

Many single-qubit operations are denoted after the axis and angle of rotation on the
Bloch sphere. For example, rotating a state by 180◦ around the x-axis is referred to
as a πx-pulse. Oftentimes, the angle denominator is omitted and may be interpreted
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3 Qubits and their environment

as a rotation around x, unless stated otherwise. Neglecting a global phase, arbitrary
rotations of a state vector are performed by the operator [Lan17]:

e−i α
2 nnnσ̂̂σ̂σ = 1 cos

α

2
− innnσ̂̂σ̂σ sin

α

2
, (3.5)

where α is the angle of rotation, nnn is a (three-dimensional) normal vector around
which a state is rotated, and σ̂̂σ̂σ =

(
σ̂x, σ̂y, σ̂z

)ᵀ is constituted from the Pauli matrices,
which read:

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
. (3.6)

The Pauli matrices are the generators of rotations in the SU(2) vector space all state
vectors reside in [Lan17]. Therefore, it is obvious that the vectors in x-, y-, and
z-direction are eigenvectors of the Pauli matrices to eigenvalues ±1 (depending on
their direction), e.g., σ̂x (|g〉 ± |e〉) = ± (|g〉 ± |e〉).1

Frame of reference and zzz-rotation

The Hamiltonian of a simple two-level system or qubit reads

Ĥq

h̄
=

ωq

2
σ̂z. (3.7)

Here, our choice of north and south pole proves advantageous, as it ensures that
the excited state is energetically higher than the ground state while maintaining a
right-handed coordinate system. The probability to find the qubit in the excited
state is given by nq = 1

2 (1 + 〈σ̂z〉), which is equal to the number of photons in the
qubit, typically denoted as qubit population. Here, 〈σ̂z〉 is the expectation value of
the σ̂z operator.

From the Schrödinger equation, we find the time evolution operator
Û = exp

(
−iωqtσ̂z/2

)
, which amounts to a continuous rotation around the z-axis at

frequency ωq in the so-called laboratory frame of reference, i.e., a reference frame
which is at rest. However, in a frame rotating at the frequency ω, Eq. (3.7) reduces
to

Ĥq

h̄
=

ωq −ω

2
σ̂z. (3.8)

For more details on going into the rotating frame, see Appendix A. In the qubit
frame of reference, that is, for ω = ωq, the time evolution operator is given by the

1 Vector norm omitted for better readability
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3.1 Mathematical framework and operation

unit matrix and all states on the Bloch sphere are time-independent.2 Herewith,
it becomes clear that arbitrary state rotations around the z-axis are simply imple-
mented by either changing the qubit frequency for a certain time or by offsetting
the laboratory frame of reference.

Another implication is that uncontrolled variations of the qubit frequency lead to
arbitrary rotations of the Bloch vector, causing a loss of phase information across
multiple measurements, see Sec. 3.2 for details.

Rabi oscillations and xyxyxy-rotation

Experimentally, x- and y-rotations are often implemented using Rabi oscillations.
The Hamiltonian of a qubit interacting with an oscillating photon field, e.g., a
microwave tone or laser, reads [GKK05]

ĤRabi
h̄

=
ωq

2
σ̂z + Ω0σ̂x

(
â†eiωt + âe−iωt

)
, (3.9)

where ωq is the qubit frequency and Ω0 is the coupling strength between the
qubit and the photon field, oscillating with the frequency ω. Photons are created
(annihilated) by the operator â†(â). In the rotating frame of the drive, Eq. (3.9)
simplifies to

ĤRabi
h̄

=
ωq −ω

2
σ̂z + Ω0

(
σ̂+eiωt + σ̂−eiωt

) (
â†eiωt + âe−iωt

)
. (3.10)

Here, σ̂± = (σ̂x ± iσ̂y)/2 are related to the bosonic creation and annihilation op-
erators, in the sense that they raise or reduce the eigenstates of σz, for example,
σ̂+ |g〉 = |e〉. In a rotating wave approximation, fast rotating terms with a frequency
of 2ω are neglected, which yields

ĤRabi
h̄
≈ δ

2
σ̂z + Ω0

(
σ̂+ â + σ̂− â†

)
. (3.11)

This approximation is valid for
√

NΩ0 � ωq, ω. Here, the total photon number is
given by N = nd + nq, where nd = 〈â† â〉 is the photon number of the driving field.
Taking a closer look at Eq. (3.11), it becomes clear that the total photon number
is conserved and the Hamiltonian can be solved block-wise for constant N. In the

2 This is obvious, as the operator for transforming into the rotating frame is simply the inverse time
evolution operator.

17



3 Qubits and their environment

basis {|nq, nd〉 , |nq − 1, nd + 1〉} and writing Ω =
√

NΩ0, the 2× 2 Hamiltonian
reads

ĤN
h̄

=

(
δ
2 Ω

Ω − δ
2

)
. (3.12)

Comparing with Eq. (3.5), the time evolution operator

Û = exp
(
− iĤNt

h̄

)
= exp

(
−i

ΩRt
2

nnnσ̂̂σ̂σ

)
(3.13)

is identified as a rotation around nnn = (2Ω/ΩR, 0, δ/ΩR)
ᵀ at the Rabi frequency

ΩR =
√

δ2 + 4Ω2. (3.14)

With the qubit initially in the ground state, its time dependent population is given
by [Rab37]

Pe(t) =
1
2

(
1−

(
δ

ΩR

)2
)
(1− cos (ΩRt)) , (3.15)

Figure 3.2(a) displays the qubit population during these Rabi oscillations as a
function of detuning and time. For large detuning, the Rabi frequency increases,
and asymptotically approaches δ, see Fig 3.2(b), which comes at the cost of a
reduced oscillation amplitude.

Notably, for resonant driving (δ = 0), Eq. (3.13) amounts to a rotation around
the x-axis3 at the Rabi frequency ΩR = 2Ω = 2

√
NΩ0. As Ω0 is usually fixed by

the experimental setup, qubit gates are defined by adjusting the duration ∆t and
photon number of the driving field. For example, applying the field for a short
time ∆t = π/2ΩR yields a πx-pulse. Rotations around the y-axis are implemented
similarly, by adding a π/2-phase shift to the driving field.

3.2 Real qubits and their dynamics

Previous discussions were limited to ideal qubits. Real systems, however, are
prone to external perturbations [Kra+19]. Inevitably, this leads to a deterioration
of the quantum state: spontaneous loss of the qubit excitation into various loss
channels may occur and fluctuations of the qubit frequency destroy the phase
information of superposition states. Here, we briefly describe how these effects
are introduced mathematically to a quantum system and how energy loss and
decoherence are determined experimentally. Finally, the most relevant sources of
energy and coherence loss in superconducting qubits are discussed.

3 In the qubit frame of reference
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3.2 Real qubits and their dynamics

Figure 3.2: Rabi oscillations induced by a photon field with drive strength ΩΩΩ. (a) Qubit popula-
tion as a function of time and detuning δ from the drive frequency, see Eq. (3.15). The population
oscillates harmonically with time t. (b) Oscillation frequency ΩR (blue) and maximal excited state
population Pmax

e (red) depend strongly on δ. For large detuning, ΩR asymptotically approaches δ

(blue dashed line).

3.2.1 Time evolution of a Bloch vector

The time evolution of a real qubit is best captured by an ensemble, i.e., several
identical, or a single system across multiple measurements. This statistical mixture,
or mixed state, is encoded by the density operator [GKK05]

ρ̂ = ∑
i,j

ρij |ψi〉 〈ψj| , (3.16)

where all |ψi〉 form an arbitrary orthonormal basis of the Hilbert space, and the
components of ρ̂ fulfill Tr(ρ̂) = ∑i ρii = 1. For a qubit, the density operator of an
arbitrary mixed state reads

ρ =

(
ρ11 ρ10
ρ∗10 1− ρ11

)
=

1
2
(1 +mmmσ̂̂σ̂σ) , (3.17)

in the {|e〉 , |g〉} basis. In general, the vector mmm does not need to be normalized. In
fact, for |mmm| = 1, the density matrix belongs to a pure state, described by Eq. (3.3).
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3 Qubits and their environment

For an ideal system, the time dynamics of the density operator is given by the von
Neumann equation [GKK05]

∂

∂t
ρ̂ = − i

h̄
[
Ĥ, ρ̂

]
, (3.18)

which is inferred from Eq. (3.16) in conjunction with the Schrödinger equation.
Introducing the effects of an arbitrary environment generally proves to be a dif-
ficult mathematical exercise. If the coupling between system and environment is
sufficiently small and either frequency-independent or has a fixed frequency, the
dynamics are described by the Lindblad equation in the form[Bal+19; Man20]

∂

∂t
ρ̂ = − i

h̄
[
Ĥ, ρ̂

]
+ ∑

i
L̂i ρ̂L̂†

i −
1
2
{L̂†

i L̂i, ρ̂}, (3.19)

with the anticommutator notation {â, b̂} = âb̂ + b̂â. In Eq. (3.19), the environment
is traced out and its effect on the original system is fully captured by the jump
operators L̂i.

Neglecting thermal excitations of the quantum state, two mechanisms impair the
performance of a two-level system: energy relaxation from excited to ground state
and a variation of the qubit transition frequency, which leads to a loss of phase
information across the ensemble. The jump operators for these processes are given
by [Man20]

L̂1 =
√

Γ1σ̂− and L̂2 =

√
Γϕ

2
σ̂z, (3.20)

with the energy relaxation rate Γ1 and pure dephasing rate Γ2. Inserting the defini-
tions of the density matrix from Eq. (3.17), the jump operators from Eq. (3.20), and
the single-qubit Hamiltonian from Eq. (3.8) into Eq. (3.19) yields

∂mmm
∂t

σ̂̂σ̂σ = −Γ1 (1 + mz) σ̂z −
(

Γ1

2
+ Γϕ

) (
mxσ̂x + myσ̂y

)
+ δ

(
mxσ̂y −myσ̂x

)
(3.21)

for the equation of motion of the Bloch vector in a reference frame rotating at ω,
where δ = ωq−ω. Since the Pauli matrices are linearly independent, the differential
equation for mz can be separated. From Section 3.1.2 it is known that the qubit
rotates around the z-axis at the frequency δ in the reference frame. This motivates
the ansatz

(
mx, my

)
= mϕ (cos(δt + ϕ0), sin(δt + ϕ0))

ᵀ. Overall, this yields

mmm =

m0
ϕ cos(δt + ϕ0)e−Γ∗2 t

m0
ϕ sin(δt + ϕ0)e−Γ∗2 t

m0
ze−Γ∗1 t

 , (3.22)

for the time evolution of the Bloch vector mmm, where m0
ϕ, m0

z , and ϕ0 determine its
initial state at t = 0. The dephasing rate is defined as Γ∗2 = Γ1/2 + Γϕ. Both, qubit
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3.2 Real qubits and their dynamics

Figure 3.3: Exemplary measurements of energy relaxation and decoherence times. Measurement
of a qubit’s energy lifetime T1 (a), Ramsey coherence time T∗2 (b), and spin-echo coherence time T2

(c). Insets show a schematic drawing of the gate sequences. The measurements were performed on
the quantum device presented in [Ste+20], see Sec. 5.3.

energy (proportional to the z-component of the Bloch vector), and phase informa-
tion decay exponentially on the timescales T1 = 1/Γ1 and 1/T∗2 = 1/2T1 + 1/Tϕ,
respectively, with Tϕ = 1/Γϕ. Apparently, the dephasing time is fundamentally
limited by T∗2 ≤ 2T1.

On a final note, thermal excitation of an ensemble of two-level systems results,
on average, in a finite excited state population. For a single qubit, the underlying
quantum jumps (which are actually coherent Rabi transitions [Min+19]) between
|g〉 and |e〉 can be tracked to infer the rates of spontaneous emission and thermal
excitation [VSS11].

3.2.2 Measuring characteristic timescales

Due to the quantum nature of qubits, only a projection of the state vector can be
measured. This is usually referred to as qubit state readout. Reconstructing the
whole trajectory of a Bloch vector requires a projection of all three components
across consecutive measurements [Kat+06; Ste+06; Kra+19]. However, the charac-
teristic time scales for energy loss and decoherence can be extracted in more basic
experiments.

Figure 3.3 displays the three most common measurements, at the example of a
superconducting qubit. Here, the projection axis coincides with the z-axis of the
Bloch sphere. Consequently, a T1T1T1-measurement of the (energy) lifetime boils down
to preparing the qubit in the excited state and projecting at various times t across
several measurements, see Fig. 3.3(a).
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3 Qubits and their environment

Information on the coherence time T∗2 can only be inferred from Bloch vectors with
components in x-, or y-direction. In a Ramsey measurement, the qubit is prepared
on the equator of the Bloch sphere, using a π/2-pulse. After free evolution for
a certain time t, another π/2 rotation about the same axis is performed. In the
qubit frame, i.e., for δ = 0 in Eq. (3.22), this yields exponential decay with a time
constant T∗2 down to half population. If the drive is slightly detuned from the
qubit frequency, the rotation around the z-axis at δ corresponds to a sinusoidal
oscillation of the qubit population after the second π/2-pulse. Experimentally,
this is advantageous, as the qubit frequency can be inferred from the oscillations
with high accuracy and the baseline for fitting the measurement signal is fixed, see
Fig. 3.3(b).

Figure 3.3(c) displays a spin-echo experiment. Compared to a Ramsey measure-
ment, an additional π-pulse (around an arbitrary equatorial axis) is inserted in
between the π/2-pulses. The "echo"-pulse flips the state vectors in the measure-
ment ensemble around the x-axis, changing the direction of rotation around the
z-axis. Herewith, low-frequency noise, i.e., variations of the qubit frequency slower
than the measurement time, is eliminated, as the state vectors constituting mixed
state re-phase. Therefore, the timescale T2 at which the qubit population decays is
usually greater than T∗2 , however, is still limited by 2T1.

Finally, as discussed in the previous section, an exponential decay of energy or
coherence only holds if the corresponding loss channel is frequency-independent
or has contributions at only one frequency.

3.2.3 Sources of noise and decoherence in superconducting
qubits

Whether a certain loss channel leads to energy relaxation or dephasing is deter-
mined by the coupling mechanism to the qubit. Longitudinal coupling (σ̂z-type)
results in dephasing, transverse coupling (σ̂x,y-type) reduces the energy lifetime.
Superconducting qubits are macroscopic objects made up of a combination of
capacitors, inductors, and Josephson junctions or SQUIDs. The coupling type to
external perturbations crucially depends on the arrangement of these components.
In fact, most modern qubit architectures are designed to specifically suppress the
influence of certain loss channels [Koc+07; Man+09; Yan+16; Gye+19]. Over the past
two decades, significant and ongoing efforts were directed at improving qubit life-,
and coherence times. Here, we touch on some of the most relevant loss mechanisms
in superconducting circuits - and ways to circumvent them.
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3.2 Real qubits and their dynamics

In small capacitors, fluctuations of local charges can lead to drastic changes in
the associated charging energy. This charge noise may be avoided by increasing
the capacitor size, as was done for the transmon qubit [Koc+07], see Sec. 3.4, or
C-shunted flux qubit [Yan+16].

Josephson junctions and especially SQUIDs are prone to variations of the external
magnetic field, altering the Josephson energy. Among others, this flux noise can be
caused by current noise in the tuning coil or even flipping of microscopic surface
spins [Bra+20]. Therefore, careful filtering of all flux bias lines is needed. The
effects of surface spins may be mitigated by surface treatment [Kum+16].

Another noise channel is provided by quasiparticle excitations of the super-
conducting condensate tunneling across a Josephson junction [Mar+05; Cat+11;
Cat+12]. This is particularly relevant for low gap superconductors like Aluminum
used in the junction of almost all state of the art qubits. An architecture with sup-
pressed quasiparticle tunneling is the fluxonium qubit (biased to its flux sweet spot)
[Pop+14]. Moreover, direct and indirect trapping of quasiparticles, for example,
using metallic traps, is heavily investigated [Wan+14; Riw+16; RC19; Hen+19].

Many, if not all, superconducting quantum circuits are hosts to parasitic two-level-
systems (TLS), which interact via their electric dipole moment [Gra+12; MCL19].
Especially inside the junction, TLS greatly impair qubit performance [Sim+04;
Mar+05; Sch+19; Bur+19]. While the influence of TLS on surfaces and interfaces
is smaller, it may be one of the main limiting factors for current superconducting
qubits [Bil+20]. Reducing the electrical field on the qubit surface, as well as a metic-
ulous fabrication of the circuit [Dun+17; Gam+17; Ner+19] and surface treatment
[Kum+16; Gra+17] can help to mitigate this effect. Additionally, there is an ongoing
quest for materials less prone to forming TLS [Vis+13; McR+20; Pla+20].

In circuit and cavity quantum electrodynamics (cQED/CQED) systems, qubits are
coupled to at least one bosonic mode, usually serving as a tool for state readout
[Bla+04; Wal+04], see Sec. 3.3 for additional information. The resonator itself is
coupled to the continuous and broad spectrum of a transmission line. Especially for
strong qubit resonator coupling, energy relaxation of the qubit into the transmission
line via the resonator is enhanced [EDM86]. This Purcell loss [PTP46] is discussed
in more detail in Sec. 3.3.2 and 4.3.4. Similarly, direct coupling to the mode spectrum
of a transmission line, e.g., employed as a port to drive gates, leads to an enhanced
energy decay rates, see Sec. 4.4.3. Overall, proper attenuation and thermalization of
all lines going to and coming from a cQED setup is crucial. Populating a readout
resonator with thermal photons can lead to additional dephasing, see Sec. 3.3.1, as
does direct irradiation of the qubit.
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3 Qubits and their environment

On a final note, noise is generally frequency-dependent, also in superconducting
circuits. The study of the noise power spectral density is a vital tool for under-
standing and ultimately mitigating or eliminating sources of decoherence [Kra+19].

3.3 Circuit quantum electrodynamics

In circuit quantum electrodynamics (cQED), a bosonic mode is coherently coupled
to a two-level system. From an academic point of view, these artificial systems are
interesting study subjects, as they map directly on light-matter interaction [Bra+17;
Sch+18; Kri+20; Wol+20]. In quantum engineering, the harmonic oscillators are
repurposed for qubit state readout [Bla+04; Wal+04]. Dispersive readout of the
qubit state can achieve readout fidelities around ∼ 87% [Ree+10]. This is further
improved in conjunction with superconducting amplifiers [Aum20], operating
near the quantum limit of added noise [Roc+12; Mac+15; Win+20]. Additionally,
dispersive readout is a non-demolition measurement, that is, the qubit does not
escape the computational basis due to the readout, but rather remains in the state
it is projected to by the measurement. While slight modifications may be needed,
dispersive readout is applicable to all (current) superconducting qubit architectures,
such as the transmon, see Sec. 3.4, used throughout this work.

3.3.1 Jaynes–Cummings model and dispersive readout

The Jaynes-Cummings model describes the interaction of a bosonic mode with a
two-level system and therefore is ubiquitous in nature - and cQED. The Jaynes-
Cummings Hamiltonian reads [GKK05]

ĤJC

h̄
=

ωq

2
σ̂z + ωr â† â + g

(
σ̂− â† + σ̂+ â

)
, (3.23)

where a rotating wave approximation was already applied and is valid for√
Ng� ωq, ωr, with the total photon number N = nq + nr. Here, g is the cou-

pling strength between the qubit and bosonic mode. It is not surprising that
this Hamiltonian is practically identical to that of the Rabi model introduced in
Eq. (3.11), which also describes light-matter interaction. In contrast to Sec. 3.1.2,
we are now interested in the energy dispersion of the system rather than its time
evolution. Once again, in the basis {|nq, nr〉 , |nq − 1, nr + 1〉} of constant N, the
Hamiltonian

ĤN
h̄

=

(
ωq + (N − 1) ωr

√
Ng√

Ng Nωr

)
. (3.24)
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can be solved block-wise. Introducing the detuning as δ = ωq − ωr, its energy
eigenvalues read

E±N
h̄

= Nωr +
δ

2
±

√(
δ

2

)2
+ Ng2, (3.25)

E0 = 0, (3.26)

For small detuning, the coupling between bosonic mode and qubit leads to an
avoided level crossing and strong hybridization of the participating quantum states
of each photon manifold. For tunable qubits, Eq. (3.25) can be used to experimen-
tally extract the coupling strength from the dispersion, see Fig. 3.4(a). Especially
for δ = 0, the two states are fully hybridized and their energy spitting is given
by (E+

N − E−N)/h̄ = 2
√

Ng. Qubit readout is typically performed in the dispersive
regime where 2

√
Ng/δ� 1 [Bla+04]. Here, Eq. (3.25) can be approximated as

Enq,nr

h̄
≈ nq

(
ωq +

g2

δ

)
+ nrωr + (2nq − 1)nr

g2

δ
(3.27)

which corresponds to the Hamiltonian [Bla+04]

Ĥdisp

h̄
=

ω̃q

2
σz + ωr â† â + χσz â† â. (3.28)

The qubit frequency ω̃q = ωq + χ is "dressed" by the presence of the bosonic mode,
with

χ =
g2

δ
. (3.29)

Figure 3.4(b) displays a sketch of the energy diagram in the dispersive regime for
ωr > ωq. The frequency of both qubit and bosonic mode are mutually dependent on
the number of photons in the other system. Consequently, measuring the transition
frequency of the oscillator is equivalent to a projective measurement of the qubit
state, i.e., qubit state readout. In the experiment, this is only possible in the strong
coupling regime, where g > Γ1, κ [Bla+04] with the qubit and resonator decay rates
Γ1 and κ. For increasing drive power, the oscillator decouples from the qubit, see
Sec. 3.4.3.

On the other hand, measuring the qubit transition frequency projects the photon
number of the oscillator and its state can be inferred [Sch+07]. An exemplary
measurement is displayed in Fig. 3.4(c). By continuous driving of a lossy bosonic
mode we, naturally, prepare it in an eigenstate |α〉 of the annihilation operator with
â |α〉 = α |α〉, typically referred to as a coherent state. In the basis of the oscillators
Fock states |n〉, the coherent state reads [GKK05]

|α〉 = e−
|α|2

2

∞

∑
n=0

αn
√

n!
|n〉 . (3.30)
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3 Qubits and their environment

Figure 3.4: Frequency spectrum and dispersive shift in the Jaynes-Cummings model. (a) Fre-
quency spectrum of a microwave resonator coupled to a transmon qubit for small detuning
δ = ωq − ωr and in the single-photon manifold. Following Eq. (3.38), we tune the transmon’s
frequency by applying an external flux, which results in several avoided level crossings with
the resonator. On resonance, qubit and resonator are fully hybridized with a level splitting of
(E+

1 − E−1 )/h̄ = 2g. (b) Schematic energy diagram of the Jaynes-Cummings model in the dispersive
regime for ωq < ωr, thus, χ < 0. Depending on the qubit state, the frequency of the bosonic mode
is red or blue shifted. The qubit frequency depends on the number of photons in the harmonic
mode. (c) Qubit spectrum with the resonator prepared in a coherent state with average photon
number 〈nr〉. Each peak corresponds to a Fock state, where neighboring peaks are separated
by 2χ/2π = (13.7± 0.4) MHz. The resonator has a frequency of ωr/2π = 6.860 GHz. (d) The
Fock states follow a Poisson distribution, see Eq. (3.30). From a fit (dashed lines) we extract 〈nr〉.
Neighboring traces are offset by 1 to improve visibility.
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3.4 The transmon qubit

Here, n is Poisson distributed, with an average photon number 〈nr〉 = |α|2. Owed
to the dispersive shift, this distribution is captured by the qubit spectrum, with
a peak separation of 2χ, see Fig. 3.4(d). Experimentally, this provides a unique
method to calibrate incident drive power at the oscillator.

3.3.2 Purcell loss

One drawback of cQED architectures is the introduction of Purcell loss. The bosonic
mode used for qubit state readout inevitably has to be coupled to the environment,
i.e., the continuous mode spectrum of the vacuum or a transmission line, see
Sec. 4.1. Therefore, even in the absence of intrinsic loss channels (which most
physical systems are prone to), the resonator has a finite decay rate κ, see Sec. 4.3 for
details. Consequently, a dressed qubit can decay into the environment seen through
the bosonic mode. In the simplest case where the oscillator couples directly to a
continuous mode spectrum, this can be interpreted as the decay of the resonator’s
contribution to the dressed qubit state |ẽ〉, with rate κ. For the Hamiltonian in
Eq. (3.24), first order perturbation theory predicts a Purcell rate of [Bla+04]

ΓP = κ|〈g, 1|ẽ〉|2 = κ
( g

δ

)2
, (3.31)

contributing to the total energy relaxation rate.

In modern cQED architectures, the additional contribution to the decay rate is
addressed with Purcell filters, see Sec 4.3.4. Here, the bosonic mode used for qubit
state readout is coupled to a broadband (high κ) oscillator, rather than directly to a
transmission line. As a result, the environment seen by the qubit is reduced to the
spectrum of the Purcell filter [Jef+14; SMK15]. This is particularly efficient when
the qubit is far detuned from the filter. Of course, the readout mode has to be on
(or close to) resonance with the filter to retain its coupling to the environment,
needed for dispersive qubit state readout.

3.4 The transmon qubit

The transmon qubit [Koc+07] has been adapted by global players such as Google
[Bar+13] and IBM [McK+16] in their effort to build a universal quantum com-
puter. Therefore, it is one of the most successful qubit implementations across all
platforms. One reason for this stellar success is its simplicity - it is made up of a ca-
pacitor and a Josephson junction, or SQUID for the tunable version. Consequently,
the transmon is also a good platform to study sources of decoherence and find
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3 Qubits and their environment

ways to eliminate them. Recent optimizations of the electrode material have led
to record-breaking coherence times around 300 µs [Pla+20], which is on the order
of several thousand qubit gates [Kja+20]. Nevertheless, the transmon has certain
drawbacks, i.e., its large size and low anharmonicity, which may ultimately lead to
its replacement by other superconducting qubit architectures.

The transmon qubit is also used in this work. Therefore, this section is aimed at
providing a basic understanding of the transmon qubit’s working principle and,
thereby, its perks and perils. Equations and explanations in this section are inspired
by the work of Koch et al. [Koc+07], where the concept of the transmon qubit was
established theoretically.

3.4.1 Mathematical treatment and relation to the harmonic
oscillator

The transmon qubit is assembled from a capacitor and a Josephson junction. Using
circuit quantization, see Sec. 4.4.1, its Hamiltonian is derived as [Koc+07]

Ĥ = 4ECn̂2 − EJ cos ϕ̂. (3.32)

Here, the charge number n̂ and phase operator ϕ̂ do not commute, see Eq. (2.6). The
charging energy EC = e2/2Cq is associated with a single charge e on the capacitor
with capacitance Cq and EJ is the Josephson energy, see Sec. 2.2 for details. Overall,
this can be understood as a virtual particle interacting with a cosine potential,
where the particle mass is proportional to Cq. An extreme case is the so-called
"transmon limit", where the charging energy is much smaller than the Josephson
energy, typically, EJ/EC > 30. In this regime, the virtual particle is trapped at the
bottom of the cosine potential

cos ϕ̂ = 1 +
ϕ̂2

2
− ϕ̂4

24
+O

(
ϕ̂6
)

, (3.33)

and higher orders O
(

ϕ̂6) can be neglected. Apart from a constant energy offset,
equation (3.32) may be rewritten as

Ĥ ≈ 4ECn̂2 +
EJ

2

(
ϕ̂2 − ϕ̂4

12

)
, (3.34)

which bears a striking resemblance to the quantum mechanical harmonic oscillator,
see Appendix B, where the inductor is replaced by the Josephson inductance
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3.4 The transmon qubit

Figure 3.5: Energy eigenvalues, eigenstates, and transitions of the transmon qubit. (a) Harmonic
oscillator (gray) and transmon qubit potentials (red) as a function of the phase. Shaded areas
indicate the (real part of the) wave functions of the oscillator (light gray) and transmon (light
red). The transmon potential flattens towards higher energies, shifting its eigenstates to lower
energies compared to their counterpart in the harmonic oscillator, with a greater effect for higher
states. Consequently, the degeneracy of the transition frequency is lifted, allowing for a selective
excitation of the eigenstates. The difference between ω01 and ω12 is denoted as anharmonicity α.
(b) Measurement of a transmon qubit’s transition frequencies. At greater drive power, i.e., larger
number of photons, multi-photon transitions become possible (indicated by black arrows in (a)).
Their frequency is given by ω0n/n, where n is the state number and number of photons needed
to drive the transition. Using Eq. (3.37), the anharmonicity of this particular device is extracted as
α/2π = −241 MHz.

LJ = Φ0/2π Ic. It is intuitive to rewrite the Hamiltonian in Eq. (3.34) in the basis of
the harmonic annihilation and creation operators, which read

b̂ =

(
EJ

32EC

) 1
4
(

n̂ + i
(

8EC

EJ

) 1
2

ϕ̂

)
. (3.35)

It can be shown that terms which do not conserve photon number may be neglected.
This yields

Ĥ =
√

8EJECb̂† b̂− EC

2

((
b̂† b̂
)2

+ b̂† b̂
)

, (3.36)

Figure 3.5(a) displays the (exact) energy eigenvalues and eigenstates of the trans-
mon in comparison to those of the harmonic oscillator. The most apparent distinc-
tion to the harmonic oscillator is the loss of degeneracy of the transition frequency,
see Fig. 3.5(b) for a measurement of the transmon’s spectrum. Typically this is
labeled as a qubit’s anharmonicity, and is defined as

α = ω12 −ω01 = ω02 − 2ω01 ≈ −EC/h̄, (3.37)
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3 Qubits and their environment

where ωij is the transition frequency from state i to j. The approximation holds for
EJ/EC & 20. In fact, α is always smaller than −EC in this regime.

This loss of degeneracy is a crucial feature for systems operated as qubits, as it
allows for a systematic state preparation, i.e., the implementation of gate operations,
see Section 3.1.2. Evidently, the anharmonicity reduces with increasing capacitance:
As the virtual particle’s mass increases, it is trapped deeper inside the cosine
potential. Here, higher orders of the Tailor expansion play a minor role and the
Hamiltonian asymptotically approaches that of the harmonic oscillator.

Generally, a larger anharmonicity reduces gate errors and allows for faster qubit
control [Kja+20]. However, a large capacitance is advantageous for one simple
reason: superior qubit coherence. This becomes clear when comparing even some
of the earliest transmons [Hou+07; Sch+08] with charge qubits, which essentially
share the same Hamiltonian. Due to the charge qubit’s small capacitance, even
slight fluctuations in the local charge environment have great effects on the qubit
frequency, drastically impairing its phase coherence. In the transmon, the sen-
sitivity to charge is suppressed exponentially with ∼ exp

(√
8EJ/EC

)
[Koc+07].

Additionally, the large metallic electrodes of the capacitor allow for a dilution of the
electric fields of the qubit. In contrast, the capacitance of the charge qubit is only
given by the capacitance of its Josephson junction. As was described in more detail
in Section 3.2.3, this also reduces the transmon’s coupling to two-level systems,
which seem to be one of the main limiting factors for the coherence of modern
qubits [MCL19].

3.4.2 Tunability

Achieving tunability for a transmon qubit is just as straightforward as building a
single transmon qubit. In Section 2.3, the working principle of a dc SQUID was
discussed. By replacing the single Josephson junction of the transmon with this
device, the Josephson energy can be controlled in situ by applying an external
magnetic field. Mathematically, this is expressed as

EJ, tot = (EJ1 + EJ2)

∣∣∣∣cos
(

πΦext

Φ0

)∣∣∣∣
√

1 + d2 tan2
(

πΦext

Φ0

)
, (3.38)

see [Koc+07] for a proper derivation. Here, EJ1 (EJ2) is the Josephson energy of the
first (second) SQUID junction. The asymmetry of the SQUID is captured in the
coefficient d = (EJ1 − EJ2) / (EJ1 + EJ2), which is typically on the order of 1-30%,
depending on the junction fabrication, see Sec. 5.3. By varying the external flux
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Figure 3.6: Qubit transition frequency as a function of external flux. By applying flux through
the SQUID loop of a transmon qubit, its frequency is tuned. This comes at the cost of additional
flux noise, reducing the qubit’s coherence time. (a) Qubit dispersion as a function of external flux
and the asymmetry parameter d = (EJ1 − EJ2) / (EJ1 + EJ2). A second sweet spot can be engineered
by increasing the asymmetry of the SQUID while maintaining the same total Josephson energy.
(b) Measurement of a transmon qubit’s dispersion. Applying a current to an on-chip magnetic coil
generates the flux needed to tune the qubit frequency. Already without externally applied flux, the
dispersion is slightly offset towards positive currents. This is a result of stray flux coupling into the
SQUID loop. Around the sweet spot, the dispersion is well-approximated by a parabola (see blue
dashed line).

Φext, the Josephson energy and thereby the qubit frequency can be changed over
the range of several GHz, see Fig. 3.6.

An obvious drawback of tunable, compared to fixed frequency qubits, is a stronger
coupling to flux noise, see Sec. 3.2.3. The longitudinal coupling to external flux (and
thus flux noise) leads to increased dephasing rates and reduced qubit coherence
times. The magnitude of this effect is proportional to the flux derivative of the qubit
dispersion ∂ω01/∂Φext [Kra+19]. A steeper dispersion results in greater variations
of the qubit frequency and thus stronger dephasing. This gives rise to a sweet spot
at Φext = 0, where the derivative, and thereby the flux noise, vanishes. Additionally,
a second (energetically lower) sweet spot can be engineered at Φext = Φ0/2 by
systematically adding a junction asymmetry [Hut+17], see Fig. 3.6. Here, good
control over the fabrication, particularly, a low spread of the Josephson junctions’
critical current, is needed.

In this work, tunability of the qubit is vital for the realization of the analog quantum
simulator of the Landau-Zener model.
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3 Qubits and their environment

Figure 3.7: Bosonic mode for state readout. (a) Readout of a transmon qubit. The frequency of
the oscillator changes depending on the qubit state. Therefore, the reflected amplitude of a fixed-
frequency signal applied to the oscillator gives information on the qubit population. (b) Power
dependence of the amplitude |S11| of a signal reflected on the readout mode. For large input power,
qubit and oscillator decouple and the states are no longer dressed. The shift χ01 of the readout
mode can be used to extract the coupling strength to the qubit.

3.4.3 Modification of the dispersive readout

Owed to the multi-level structure of the transmon qubit, the dispersive shift in
a Jaynes-Cummings system is modified. The higher levels of the transmon also
couple to the bosonic mode, effectively reducing the dispersive shift to [Koc+07]

χ = α
g2

δ (δ + α)
, (3.39)

where g is the coupling strength to the first excited state and δ = ωq − ωr is
the frequency difference of the qubit and readout resonator. Figure 3.7 displays
the readout signal of the bosonic mode, implemented by a microwave resonator,
depending on the quantum state of the transmon qubit.

For α/δ � 1 the scaling is rather close to that of Purcell loss, see Eq. (3.31).
Particularly for high-quality transmons, maintaining a good readout signal while
avoiding a limitation of T1 by the Purcell effect is challenging. This makes Purcell
filters indispensable for transmon circuits.

Additionally, the bosonic mode is dressed by the qubit, and its frequency becomes

ω′r = ωr −
g2

δ + α
. (3.40)
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3.4 The transmon qubit

Experimentally, the oscillator can be decoupled from the qubit by applying strong
drive fields. For a given δ, the frequency difference of the resonator after and before
decoupling is

χ01 = ωr − (ω′r − χ) = g2/δ, (3.41)

which, for a given detuning, yields the coupling strength. This is in analog to
Eq. (3.29) for the Jaynes-Cummings model with an ideal two-level qubit.
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4 Microwave circuits for quantum
devices

Nowadays, all superconducting quantum circuits are characterized and addressed
by microwave photons [Gu+17]. As described in the previous section, additional
energy relaxation and decoherence are introduced by coupling a qubit to its en-
vironment. This, however, is inevitable for both qubit state control and readout.
Performance-impairing effects can be kept at a minimum if proper precautions are
taken. Here, a sufficient understanding of the microwave environment qubits are
embedded in is needed, which is provided in this chapter.

This chapter starts with a brief introduction to the concept of impedance in these
circuits, followed by the S-matrix formalism - a vital tool for the characterization
of microwave circuits. Thereafter, I shortly discuss microwave resonators, which
are key components for the analog quantum simulation experiments presented in
chapter 6 and for qubit state readout, see Sec. 3.3. Next, I talk about the design of
microwave circuits. Finally, I give an overview of the measurement setup, both, in-
and outside the cryostat.

4.1 Impedance

The concept of impedance is an extension of dc resistance for time-dependent
signals. This becomes crucial, when the wavelength of voltage and current is on
the scale of a network’s circuit elements, as is the case for the quantum circuits
investigated in this work. Consequently, the impedance matrix Z of a microwave
network links the (frequency-dependent) voltage response VVV to an applied current
III via [Poz11]

VVV = ZIII, (4.1)

where the components Vi (Ii) are voltage (current) at port i of the network, see
Fig. 4.1(a). Particularly, Vi = V+

i + V−i and Ii = I+i − I−i where in- and outgoing
signal are denoted by + and −, respectively. For microwave photons, impedance
plays a role similar to the refractive index of optical light. For example, with a
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4 Microwave circuits for quantum devices

Figure 4.1: Network impedance and reflection. (a) The impedance of a microwave network con-
nects in- and outgoing voltages and currents via Eq. (4.1). (b) A discontinuous impedance mismatch
between two ports leads to partial reflection of incoming signals. (c) Schematic diagram of the
cross-section of a coplanar waveguide. For a substrate of height h and relative permittivity εr, the
line impedance can be adjusted via the ratio of track width w to gap width g.

discontinuous impedance mismatch between two ports of a network, see Fig. 4.1(b),
the reflection coefficient for an incident microwave is given by [Poz11]

Γ =
V−in
V+

in
=

Zout − Zin

Zout + Zin
. (4.2)

Here, Zin is the impedance of the in- and Zout of the output line. It becomes
immediately clear that an industry standard for the impedance of all commercial
transmission lines and cables, in fact all microwave devices, is needed. In modern
microwave engineering, this is set to Z0 = 50 Ω. Therefore, the impedance of the
on-chip circuits employed in this thesis are also matched to 50 Ω. In comparison,
the impedance of free space Zvac ≈ 377 Ω is higher [Mes06].

Two-dimensional transmission lines are typically implemented as metallic striplines.
The go-to architecture for modern quantum circuits, are coplanar waveguides
(CPW), see Fig. 4.1(c). Here, a central conductor of width w is surrounded by an
on-chip ground plane, separated by a gap of width g. Occasionally, an additional
backside metallization is added. For lossless lines, capacitance and inductance per
length, Cl and Ll, respectively, define the line impedance Z =

√
Ll/Cl. Typically

w, g� h, and the impedance is largely determined by the ratio of g and w. For a
perfect conductor on c-plane sapphire substrate (εr ≈ 10), a 50 Ω line impedance is
achieved for g/w ≈ 0.5 [Sim01; Che].

In coplanar waveguides, electric and magnetic fields are strongly confined, resulting
in lower crosstalk compared to other architectures if a proper grounding is ensured.
This also enables a tighter packaging and thus superior scalability. Therefore, CPW
circuits are also employed throughout this work.
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4.2 Scattering matrix formalism

Figure 4.2: Simple networks as examples for the SSS-matrix formalism. (a) Schematic diagram of a
simple one-port reflection network. The S-matrix of a load ZL connected to a transmission line is
equal to the reflection coefficient Γ, see Eq. (4.2). (b) Simple network for a two-port measurement,
with a load shunting the two conductors of a continuous transmission line. Here, the S-matrix is
given by Eq. (4.6). If the load is a resonator, see Sec. 4.3, this is called a notch-type configuration.
(c) Circuit diagram of a capacitively coupled microwave resonator. Inserting the total resonator
impedance Zres as the load in Eq. (4.5) or Eq. (4.6) yields the S-matrix of the resonator circuit.

4.2 Scattering matrix formalism

An equivalent description of a microwave network using impedance is provided by
the scattering matrix formalism. For an arbitrary network, Eq. (4.1) can be rewritten
as [Poz11]

VVV− = SVVV+, (4.3)

connecting in- (VVV+) to output voltage (VVV−). Analytically, the coefficients Sij are
calculated by determining the outgoing voltage V−i at port i with an applied voltage
V+

j to port j, i.e.,

Sij =
V−i
V+

j
. (4.4)

Here, all other ports of the network are terminated by a fixed load Z0, typically the
standard 50 Ω impedance. In practice, the S-matrix can be measured more easily
and is more intuitive to use than Z: Sii is the reflection coefficient Γi of port i and
Sij is the transmission from port j to i. For reciprocal networks, it is obvious that
Sij = Sji for all ports. In contrast to the transfer matrix, the scattering matrix is not
linear: for a serial circuit, the total S-matrix is not a product of its constituents.

For example, using Kirchhoff’s laws the S-matrices of a load ZL connected to a
one-port transmission line, see Fig. 4.2(a) is calculated as

Srefl = S11 =
ZL − Z0

ZL + Z0
= Γ, (4.5)

the reflection coefficient from Eq. (4.2). The S-matrix of a load, shunting a two-port
transmission line, see Fig. 4.2(b) reads

Snotch =

(
(1 + 2ZL

Z0
)−1 (1 + Z0

2ZL
)−1

(1 + Z0
2ZL

)−1 (1 + 2ZL
Z0

)−1

)
. (4.6)
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4.3 Microwave resonators

As elaborated in Sec. 3.3, the state readout of superconducting qubits is typi-
cally performed using harmonic resonators. The most prominent examples are
microwave cavities and CPW resonators. Especially three-dimensional cavities pro-
vide a good isolation from the environment [Pai+11; Rig+12] and boast low internal
losses. However, their large size hampers scaling up to larger systems. Coupling a
single qubit to several resonators or shaping a mode spectrum also proves difficult.
In two-dimensional cQED setups, such as those employed throughout this work,
transmission line or lumped element resonators are used. While greater efforts are
needed to achieve a low energy decay rate, they offer a good control and flexibility
of all relevant parameters.

In this thesis, microwave resonators are employed for dispersive readout and as
components in the analog quantum simulator described in chapter 6. Therefore, the
basics tools needed to work with on-chip microwave resonators are presented in this
section. Starting with their implementation, we discuss the definition of linewidth
and quality factors, and the S-matrix of reflection- and notch-type resonators.
Finally, the implementation of Purcell filters, see Sec. 3.3.2 on Purcell loss, is
presented.

4.3.1 Planar resonators

On-chip microwave resonators are typically implemented as distributed or lumped
element RLC-circuits, see Fig. 4.3(a, b). The frequency of a lumped element res-
onator is connected to its capacitance C and inductance L via

ωr =
1√
LC

. (4.7)

The more common, distributed or transmission line resonators consist of a simple
metal strip, with a continuous field distribution along its length, similar to an
antenna, see Fig. 4.3(c). Grounding either end of the strip forces a voltage node
and current anti-node. This allows for the implementation of both λ/2- and λ/4-
resonators. Their frequency

ωr

2π
=

c0√
εeff

1
xl

(4.8)

depends on the strip length l and effective dielectric constant εeff ≈
(
εvac

r + εsubst
r

)
/2,

which is approximately the mean value of the vacuum and substrate dielectric
constants [Göp+08]. The vacuum speed of light is denoted as c0 and x ∈ {2, 4}
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4.3 Microwave resonators

Figure 4.3: Microwave resonators in a two-dimensional circuit architecture. Optical micrograph
of a distributed (a) and lumped element resonator (b) implemented in a CPW circuit. The resonators
(blue) are coupled capacitively to a transmission line (red). (c) Spatially resolved voltage V of a λ/2-
transmission line resonator of length l for the first three modes (blue, red, orange in ascending order).
(d) Translation from a distributed to an effective lumped circuit. Here, the effective capacitance C
and inductance L of the stripline resonator mainly depend on its length.

for a λ/x-resonator. In conjunction with the line impedance Z =
√

Ll/Cl of the
resonator, Eq. (4.8) can be used to assign an effective capacitance and inductance,
translating the distributed resonator to an RLC-circuit, see Fig. 4.3(d). Whether
this results in a parallel or series RLC-circuit depends on the coupling to the trans-
mission line, which is discussed in Sec. 4.3.3. In stark contrast to (ideal) lumped
element resonators, their distributed cousins also feature higher modes. Electric
and magnetic fields are only fixed at the current or voltage nodes at the ends of
the strip. Consequently, the circuit can accommodate additional resonances with
a higher frequency and node number than the fundamental mode. If capacitance
and inductance are linear and distributed homogeneously along the transmission
line, the frequency ωn

r of higher modes is given by

ωn
r = ω0

r

(
1 +

nx
2

)
, (4.9)

where ω0
r is the fundamental frequency of the oscillator from Eq. (4.8). With increas-

ing mode number n an additional node is added and the wavelength decreases.
This is illustrated in Fig. 4.3(c), which displays the first three resonances of a λ/2-
transmission line resonator. Experimentally, higher modes are usually ignored, as
they are far detuned from the lowest resonance frequency.
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4 Microwave circuits for quantum devices

Finally, transmission line resonators can also host so-called slotline modes [Poz11].
These resonances live in the gap of a CPW resonator (neglecting the inner con-
ductor). If they couple to the qubit, they introduce additional Purcell loss, see
Sec. 3.3.2, which can be detrimental to the qubit’s energy lifetime. Slotline modes
are suppressed by ensuring a proper galvanic connection of the opposing ground
planes of a CPW structure, for example, by using airbridges, see Sec. 5.2.

4.3.2 Resonator linewidth and quality factors

Generally, a transition subjected to energy decay suffers from spectral broadening.
The linewidth κ of the transition is then proportional to the decay rate. Especially
if the latter is frequency-independent, this results in a Lorentzian line shape. For a
full width at half maximum of κ, the decay rate is identified as κ/2, using Fourier
transformation. The linewidth of microwave resonators comprises both irradiation
loss into the transmission line and internal losses. This is captured by the quality
factors Qi and Qc for internal and coupling loss, respectively, which are defined
as [Poz11]

Qn = ωr
stored energy

energy loss rate via channel n
=

ωr

κn
. (4.10)

The stored energy is the sum of the (time-averaged) electric and magnetic field
energies. The internal quality factor Qi is calculated via the dissipation of the
resistor R in the circuit. Interpreting the resonator as a generator, Qc is calculated
from the power lost in the load of the transmission line.

Decay rates add up linearly. The total or loaded quality factor is therefore given by

QL =

(
1

Qi
+

1
Qc

)−1
=

ωr

κ
. (4.11)

It is clear that the ratio of Qi and Qc plays a major role in the frequency response
of a resonating system. Here, Qi < Qc is denoted as under-coupled and Qi > Qc

as over-coupled. At critical coupling Qi = Qc, a resonator dissipates all incoming
photons, as the energy uptake rate is equal to the dissipation rate.1

1 This is the optimal operation regime of an antenna.
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4.3.3 Scattering coefficients of reflection- and notch-type
resonators

The scattering matrix of a resonating circuit is independent of the resonator im-
plementation, i.e., if it is a lumped or distributed circuit. Additionally, it remains
largely unaffected by the coupling type to the transmission line: For example, an
inductively coupled λ/4-resonator results in the same S-matrix as a capacitively
coupled λ/2-resonator in an equivalent circuit. Overall, it proves more relevant to
distinguish between the setup of the network, that is, if a resonator is embedded in
a single- or two-port network. Here, it can be distinguished between reflection-,
notch-type, and inline-resonators. In the context of this work, the latter do not find
an application. For a more elaborate treatment, it is referred to the literature, e.g.,
Refs. [Poz11; Bra17].

As their name indicates, reflection-type resonators are coupled to a transmission
line with a single port and addressed in reflection. Notch-type resonators are side-
coupled to a continuous transmission line with two ports. Around the resonance
frequency ωr, their impedance can be approximated as [Bra17]

Zrefl/Z0 =
Qc

Qi
+ 2iQc

∆ω

ωr

Znotch/Z0 =
Qc

2Qi
+ iQc

∆ω

ωr
,

(4.12)

with ∆ω = ω−ωr. Evidently, Znotch is equal to Zrefl when Qc → Qc/2. In contrast
to the reflection-resonator, the notch-type can irradiate into two ports. Intuitively,
the coupling relaxation rate is doubled, hence, reducing Qc by a factor of 2.

By inserting Eq. (4.12) into Eq. (4.5) and 4.6, S11 for a reflection- and S21 for the
notch-type resonator are calculated as

Srefl
11 = 1− 2QL/Qc

1 + 2iQL
∆ω
ωr

,

Snotch
21 = 1− QL/Qc

1 + 2iQL
∆ω
ωr

.
(4.13)

Figure 4.4 displays the absolute value or amplitude (a, d), phase (angle in the
complex plane) (b, e), and complex-valued Srefl

11 (c) and Snotch
21 (f) for several values

of QL/Qc. In the complex plane, the S-parameter forms a circle with diameter
2QL/Qc for reflection- and QL/Qc for notch-type resonators. In both cases, the
square of the amplitude signal follows a Lorentzian line shape with a full width at
half maximum of κ. Especially for notch-type resonators, it is tempting to extract the
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Figure 4.4: Response S11S11S11
refl of reflection- (top, blue) and S21S21S21

notch of notch-type resonators (bot-
tom, red) featuring various QQQL/QQQc. The amplitude signal of both reflection- (a) and notch-type
resonators (d) follows a Lorentzian shape. Due to energy conservation, the reflection signal is unity
in the absence of internal losses (Qi = ∞), whereas the input energy is fully dissipated at critical
coupling. A lossless notch-type resonator achieves perfect reflection (i.e., no transmitted signal)
on resonance, while dissipating 1/2 of the input power at critical coupling. The phase roll-off of
reflection-type resonator (b) is 2π for over-coupled resonators. At critical coupling, a discontinuous
jump reduces the phase shift to π. Here, it becomes identical to that of a notch-type resonator
(e) with Qi = ∞. For increasing internal loss, the phase shift becomes less prominent (for both
configurations) and vanishes at Qi = 0, together with the amplitude signal. (c, f) In the complex
plane, the S-parameter forms a circle with diameter 2QL/Qc for Srefl

11 and QL/Qc for Snotch
21 .

resonance frequency and quality factors from a simple one-dimensional fit of the
Lorentzian function. However, a more reliable and accurate method is provided by
the circle fit routine, which considers the full, complex-valued S-parameter [Pro+15].

Resonators for qubit state readout are preferably operated in the over-coupled
regime. Here, more photons couple out of the resonator and therefore the signal-
to-noise ratio (SNR) is greater. Due to the loss of their dc resistance, the internal
quality factor of superconducting resonators is intrinsically high and over-coupled
devices are achievable, even for large Qc.
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4.3 Microwave resonators

Figure 4.5: Purcell filter for reflection measurements. (a) Chip layout of a Purcell filter (pink) for
reflection experiments. The linewidth of the filter has to be large enough to accommodate all four
resonators (blue) at a sufficient frequency spacing. This is ensured by the large coupling capacitance
to the input line (purple). The on-chip ground plane of the CPW is displayed in light gray, the qubit
electrodes are colorized in dark gray. (b) Phase of the reflected signal. In the inset the signal around
the four resonators is magnified. They are located comfortably in the center of the Purcell filter with
a linewidth of κf = (689± 10)MHz, extracted from a fit (pink), much larger than the linewidth of
the individual resonators. The qubits (gray) are inactive in the experiment.

4.3.4 Purcell filters

As discussed in Sec. 3.3.2, Purcell loss significantly contributes to the energy
relaxation of superconducting qubits, most notably for state of the art devices.
However, it can be suppressed efficiently by employing Purcell filters [Jef+14]. As
displayed in Fig. 4.5(a), the readout resonator is coupled to a broadband oscillator,
acting as a bandpass. Thereby, the qubit is screened from the transmission line’s
mode spectrum while maintaining a fast state readout, see Fig. 4.5(b).

The effective decay rate seen by the readout resonator and qubit reads [SMK15]

κeff
r,q =

4|G|2
κf

1

1 +
((

ωr,q −ωf
)

/κf
)2 , (4.14)

where ωf and κf are the frequency and bandwidth of the filter and G � κf is
the coupling strength between readout resonator and filter. Choosing ωf ≈ ωr

results in a large decay rate κeff
r of the resonator, while suppressing κeff

q seen by the
qubit. For a transmon qubit with low anharmonicity α compared to the detuning
δ = ωq −ωr, this leads to a Purcell decay rate of [SMK15]

ΓP ≈ κeff
r

(κf
δ

)2 ( g
δ

)2
, (4.15)
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4 Microwave circuits for quantum devices

where g is the coupling strength between qubit and readout resonator. The ap-
proximation holds for α, κf � δ. Compared to a setup without Purcell filter, ΓP is
suppressed by an additional factor of (κf/δ)2. For transmon circuits in particular,
Purcell filters are indispensable due to the weaker scaling of the dispersive shift,
which demands a larger qubit-resonator coupling to achieve a strong readout
signal.

4.4 Circuit design and tools

Apart from material science and cleanroom engineering, novel circuit designs such
as the transmon, see Sec. 3.4, or fluxonium qubit have been crucial to the improve-
ment of qubit life-, and coherence times. Modern qubit architectures can reach
T1 and T2 times on the order of several hundred microseconds [Pai+11; Bar+13;
Pop+14; Ner+19; Zha+20; Pla+20]. Here, clever circuit designs enable a resistance to
some of the most relevant loss channels. Nevertheless, current designs are far from
perfect: Nowadays, theoreticians and experimentalists work towards topologically
protected qubits, virtually immune to external perturbations, for example, the 0−π

qubit [Kit06; BKP13; Gye+19]. As of late, automated tools, quantifying the energy
levels of a circuit based on its geometry, can be consulted when developing new
qubit architectures [GS20]. Independent of the qubit architecture, an improperly
designed environment can prove detrimental to the coherence of the system. Op-
timizing the coupling of a qubit to its readout and control circuitry is therefore
essential.

This section outlines the most commonly used formalism to quantize a circuit (i.e.,
circuit quantization). Furthermore, it provides a set of tools and formulas, which
help to design coherent qubit circuits.

4.4.1 From circuit to quantum Hamiltonian

In a given circuit, quantum properties can emerge if the thermal energy kBT
is smaller than the energetically lowest (relevant) transition of the circuit. For
superconducting circuits installed in a dilution cryostat, see Sec. 2.4, the base
temperature of 20 mK corresponds to a frequency of ∼ 400 MHz.2 Additionally,
a clear separation of the circuit’s energy eigenstates is needed, which is typically

2 Operating qubits with a lower frequency is only possible with additional cooling or outside of the
thermal equilibrium, see, e.g., Ref. [Zha+20].
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4.4 Circuit design and tools

Figure 4.6: Schematic circuits. (a) Schematic circuit of a transmon qubit. Two floating electrodes
with capacitance C1 and C2 to ground and a mutual capacitance C12 are shunted via a Josephson
junction with inductance LJ. Assuming that q1 = q2 for the node charges, one degree of freedom
can be eliminated, yielding the effective qubit capacitance Ceff

q = C12 + (1/C1 + 1/C2)
−1. (b) Circuit

diagram of a transmon qubit coupled to a microwave resonator. The capacitance Cc determines the
coupling strength g between the two systems.

achieved by exploiting the non-linear current-phase relation of one or several
Josephson junctions.

The Hamiltonian of a quantum device can be derived using circuit quantization,
outlined in this section. For a detailed discussion, it is referred to the literature,
e.g., Ref. [Dev97]. In principle, any classical circuit can be quantized: Each node
of the network has a node charge and flux degree of freedom, summarized in the
operators q̂qq and φ̂φφ. The Hamiltonian takes the form [Dev97]

Ĥ =
1
2

q̂qqC−1q̂qq + ∑
k,l

Ek,l
L (φ̂k, φ̂l , Φk,l

ext), (4.16)

where C is the Maxwell capacitance matrix [Di 11]. The flux energy Ek,l
L depends on

the phase drop between nodes k and l, thus also on the external flux Φk,l
ext enclosed

by the loop. For example, a linear inductance L connecting two nodes results in
Ek,l

L = (φ̂k − φ̂l + Φk,l
ext)

2/2L, whereas a Josephson junction with Josephson energy
EJ yields Ek,l

L = −EJ cos(φ̂k − φ̂l + Φk,l
ext). Naturally, the external flux is zero in the

absence of a closed loop or bias current.

Figure. 4.6 displays the circuit diagram of (a) a floating transmon qubit and (b) a
transmon coupled capacitively to a resonator. Here, the 2× 2 capacitance matrix is
easily inverted, uncovering (a) the transmon Hamiltonian from Eq. (3.32) with the
effective qubit capacitance Ceff

q = C12 + (1/C1 + 1/C2)
−1,3 and (b) of a transmon

coupled to a resonator

Ĥ =
q2

q

2Ceff
q
− EJ cos

(
2π

φq

Φ0

)
+

q2
r

2Ceff
r

+
φ2

r
2L

+
qqqr

Ceff
c

. (4.17)

3 Here C12 includes the junction capacitance CJ
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Here, qi is the charge on the effective capacitance Ceff
i . For Cc � Cq, Cr, the effective

qubit, resonator, and coupling capacitance can be approximated as

Ceff
q ≈ Cq + Cc, Ceff

r ≈ Cr + Cc and Ceff
c ≈

CqCr

Cc
. (4.18)

After a short mathematical exercise, the Jaynes-Cummings Hamiltonian from
Eq. (3.23) is recovered, see Appendix C.

Once a solution is found, it becomes a simple engineering problem to map the
schematic onto a physical circuit. Using finite element method (FEM) solvers, for
instance, Ansys MaxwellTM, the Maxwell capacitance matrix of a model circuit
can be simulated directly. The same applies for distributed inductances. Alterna-
tively, microwave-simulations with SonnetTM (2.5-dimensional model) or Ansys
HFFSTM (3-dimensional model) directly yield the transition frequency of resonant
systems. This is applicable to microwave resonators, but also allows to extract the
effective capacitance Ceff

q of transmon qubits, by replacing the Josephson junction
with a lumped element with the inductance LJ, see Sec. 3.4.1. Especially CPW
circuits benefit from this method: If the coupling capacitance does not disrupt the
ground plane, adding, removing, or changing a coupler barely affects the total
qubit capacitance.

4.4.2 Dispersive state readout with microwave resonators

Regardless of the resonator type, the S-parameter changes the most, when the
dispersive shift χ and resonator linewidth κ fulfill

χ = κ/2, (4.19)

which corresponds to two opposing sides of the circle in the complex plane. Since
the linewidth is proportional to the photon decay rate, larger κ allow for a faster
state readout [Jef+14]. Additionally, a greater drive power can be applied without
increasing the average photon number in the resonator, thus further improving
the SNR. This of course comes at the cost of increased Purcell loss, see Eq. (3.31).
Particularly for transmon qubits Eq. (4.19) imposes a fundamental lower limit of
ΓP ≈ κ2/2α to the Purcell decay rate, even at infinite detuning. Once again, this
underlines the importance of Purcell filters for transmon qubits of a certain quality.

For a given κ, the qubit-resonator coupling is adjusted, such that Eq. (4.19) is
fulfilled. The coupling strength g is calculated using the Maxwell capacitance
matrix or extracted by simulating the avoided crossing with the readout resonator,
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4.4 Circuit design and tools

Figure 4.7: Simulation of circuit parameters. (a) Scheme of the circuit. In the simulation, the
transmon (orange) qubit’s Josephson junction is replaced by a lumped element inductance LJ. The
(now harmonic) transmon is probed either directly to extract Ceff

q from Eq. (4.7) or, as done here,
is coupled to a resonator (blue). (b) Phase of the signal reflected at the input port (purple). By
sweeping LJ, the qubit is tuned on resonance with the microwave resonator. The coupling strength
gsim is extracted from the emerging avoided level crossing using Eq. (3.25), from a fit (pink).

see Fig. 4.7. Notably, g is frequency-dependent for the transmon circuit displayed
in Fig. 4.6(b), see Appendix C. Equation (C15) yields the target coupling strength

gt ≈ gsim

√
ωq

ωr
, (4.20)

at the qubit’s working point ωq from the simulated coupling coefficient gsim at the
resonator’s frequency.

A proper mathematical treatment of pulsed dispersive readout shows that, for a
given χ/κ, optimal readout conditions also depend on the frequency and length of
the readout tone [Sok16].

4.4.3 Qubit drive lines

Qubit drive lines are in principle one-port transmission lines, coupled only to the
qubit. In comparison to qubit manipulation via the resonator port, a dedicated
drive line mitigates crosstalk with other circuit elements. Furthermore, the field
seen by the qubit is only perturbed by the transfer function of the cryostat wiring.
In contrast, pulses routed via the readout line see the qubit through the resonator,
which acts as a band-pass filter. However, coupling the qubit directly to the mode
spectrum of the drive line also induces additional energy decay and decoherence

47



4 Microwave circuits for quantum devices

from thermal radiation [Kra+19]. The relaxation is comparable to κc of a reflection-
type resonator. For the qubit, this results in an additional energy relaxation rate
of

Γd =
ωq

Qc
=

C2
dw2

qZ0

2Ceff
q

, (4.21)

where Cd is the capacitance between qubit and drive line, Z0 is the line impedance,
and Ceff

q is the total qubit capacitance. A larger coupling capacitance allows for
faster xy-gates at the same input power, see Sec. 3.1.2, but at the same time results
in additional Purcell loss.

4.4.4 On-chip flux bias

Flux-tunable superconducting quantum circuits, e.g., the tunable transmon dis-
cussed in Sec. 3.4.2, require magnetic bias fields. Often, external coils are used to
apply a flux bias to SQUIDs. Du its higher inductance, an external coil provides
a more stable field than an on-chip coil, however, fast flux tuning is not possible.
Impedance-matched on-chip coils, i.e., transmission lines shunted to ground, can
carry both radio-frequency (rf) and dc current biases to tune a SQUID via its
mutual inductance M to the line. For thin conductors, the mutual inductance is in
good approximation calculated with [Neu46]

M =
µ0

2π

∫
Cbias

∮
CSL

dxxxSLdxxxbias
|xxxSL − xxxbias|

. (4.22)

Here, µ0 is the vacuum permeability and the vector xxxi traces the contour Ci, of
SQUID loop (SL) and bias line, respectively.

4.5 Microwave packaging and measurement setup

After having discussed the optimization of on-chip circuitry, we also need to focus
on the measurement setup and sample mounting to achieve a good performance of
our quantum devices. Particularly, poorly filtered control lines and noisy electronics
can be detrimental to qubit coherence. To prevent a deterioration of the performance
of quantum circuits, it is important to optimize the sample mounting and cryostat
wiring [Lie+19; Yan+18; Kri+19]. Even the measurement routines are designed to
impair qubit performance as little as possible.
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4.5.1 Sample mounting

Sample boxes are the immediate interface connecting a quantum chip with its
control lines and the cryostat they reside in. A good thermal coupling to the
cryostat’s base stage ensures proper thermalization. High electrical conductivity
reduces energy loss due to surface currents in the holder. For example, gold-
plated copper offers both, good thermal and electrical conductivity [Lie+19]. Most
importantly, the sample box should be free of resonances (in the relevant frequency
range), which could result in additional Purcell loss.

Figure 4.8 displays the image of a typical sample holder used in this work. Here, we
opted for superconducting aluminum sample boxes. While the thermal conductivity
is lower than that of copper, they have a higher electrical conductivity. Intrinsically,
they offer magnetic shielding due to the Meissner-Ochsenfeld effect when operated
below the critical temperature of aluminum, see Sec. 2.1. Permalloy shields can
provide additional protection, especially at T > Tc, Al. Samples are glued to the
holder using silver conductive paste and are connected to a copper-plated printed
contact board (PCB) made of TMM® 10 with a relative permittivity of εr = 9.2
[Cor20]. Wire bonding ensures the galvanic connection of on-chip control lines and
ground plane to their counterpart on the PCB. The latter is soldered to standard
SMA connectors, linking the sample to the outside world.

4.5.2 Microwave measurement setup

Low temperature setup

Cryogenic control lines are the only interconnection of a quantum chip with the
outside world. To preserve quantum coherence while still allowing to probe the
system, this interaction has to be kept at a minimum. A photograph and schematic
diagram of the microwave wiring of our setup is displayed in Fig. 4.8(b) and
Fig. 4.9(b), respectively. The working principle of the cryostat is summarized in
Sec. 2.4.

On the input lines, a sequence of attenuators on multiple temperature stages in
conjunction with high-pass and infrared filters on the base stage is employed to
shield the sample from photons outside the measurement band, including thermal
radiation. The attenuation chain reduces incoming signals to the single-photon
regime. Additionally, each attenuator thermally anchors the central conductor
of the coaxial lines to the stage it is installed on. Thermal radiation can be a
primary source of qubit dephasing [Yan+18]. Operating state of the art qubits at
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4 Microwave circuits for quantum devices

Figure 4.8: Sample holder and cryogenic microwave setup. (a) Microchip installed in an aluminum
sample holder. Aluminum wire bonds ensure the galvanic connection of sample box and PCB with
the on-chip ground plane and control lines. SMA plugs are soldered to the PCB, connecting the
sample to the outside world. The thick lid ensures a small mode volume. In the experiment, the
holder is installed on the base stage of the cryostat, indicated by the red arrow. (b) Microwave
control lines in the cryostat. Attenuators on the 4 K, intermediate, and base stage protect the sample
from thermal radiation.

the fundamental limit of T2 = 2T1, see Sec. 3.2.1, is only feasible with sufficient
attenuation. Assuming perfect thermalization, the number of incident thermal
photons ni at stage i is calculated recursively from [Kri+19]

ni =
Ai − 1

Ai
nBE(ω, Ti) +

ni−1

Ai
, (4.23)

where nBE(ω, T) is the Bose-Einstein distribution at the working frequency ω

and stage temperature Ti and Ai is the power attenuation coefficient. For the
cryogenic microwave setup sketched in Fig. 4.9(b), a thermal photon number of
nbase ≈ 3 · 10−4 is expected at ω = 5 GHz. This corresponds to a noise temperature
of Tnoise = 20.14 mK, i.e., only marginally above the nominal base temperature.
Experimentally, the circuit temperature is slightly higher due to nonequilibrium
effects [Jin+15; Ser+18; Sci+20].

Outgoing signals are typically only few photons strong. On the 4 K stage, a high-
electron mobility transistor amplifier (HEMT) provides about 40 dB amplification.
The sample is protected from thermal radiation and noise coming from the HEMT
using high-pass filters together with non-reciprocal microwave circuits, such as
circulators or isolators. Further amplification is provided by two 26 dB room tem-
perature amplifiers.
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Figure 4.9: Microwave measurement setups. (a) Measurement setup for time domain experiments.
rf and dc current biases for z-control are combined on the base stage using a bias tee. Single-
sideband pulses for qubit manipulation and readout are synthesized using a continuous microwave
tone and in-phase (I) and quadrature (Q) components of a pulse with a low carrier frequency in the
MHz regime. This conversion is reverted before analyzing the returning signal. (b) Microwave setup
inside the dilution refrigerator. Attenuators on three temperature stages mitigate thermal radiation
from the z-control and input line. On the output line, two circulators and a high-pass filter protect
the sample (measured in reflection) from thermal and HEMT noise. Incoming dc lines are low-pass
filtered on 4 K and base stage with an RCR- and a copper powder filter, respectively. (c) Setup for
two-tone qubit spectroscopy. Using the VNA, the dispersive shift of a readout resonator in response
to an applied microwave tone can be monitored. This figure is adapted from our work in [Ste+20].
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For tunable samples, bias currents are applied using dc lines with appropriate
low-frequency filtering. They are attenuated at the 4 K stage using a current divider
to ground. Large biases at room temperature lead to small currents at the sample,
which helps to mitigate the noise of the current source. Additional capacitors
to ground reduce high frequency noise. Additionally, an RCR T-filter eliminates
high-frequency noise above 25 kHz. At the base stage, a copper powder filter fulfills
the same purpose. Thereafter, a bias tee combines the constant bias with incoming
rf pulses for fast qubit control.

Spectroscopy setup

Figure 4.9(c) displays a simple spectroscopy setup. A vector network analyzer
(VNA), is employed to directly measure the transmission coefficient S21 of the
cryostat which, with proper wiring and sample packaging, is dominated by the
response of the quantum chip. Additional drive tones can be routed to the sample
using a directional coupler or power divider.

Particularly, two-tone experiments are vital tools for the characterization of qubit
circuits. Here, the VNA is used to monitors the readout resonator’s dispersive shift,
while the frequency of a local oscillator (LO) is swept around the expected qubit
transition. Once the LO’s microwave tone comes in the vicinity of qubit frequency
ωq, the average qubit population increases. The resulting dispersive shift of the
readout resonator is registered by the VNA. An example hereof is displayed in
Fig. 3.5(b) and Fig. 3.6(b).

Time domain setup

Many superconducting qubits, including the transmon, are operated in the GHz-
regime. Unlike continuous drive tones, generating well-defined control pulses at
these frequencies is challenging for semiconducting electronics. A workaround
is provided by single-sideband mixing. In an IQ-mixer, a continuous microwave
tone with the frequency fLO is multiplied with in-phase (I) and quadrature (Q)
components of a pulse with a carrier frequency fIQ in the MHz-regime. Here,
Q is phase-shifted by 90◦ with respect to I. Choosing a common envelope for
in-phase and quadrature results in an output pulse with the shared envelope and a
carrier frequency of fout = fLO + fIQ. In this scheme, power leakage is practically
non-existent at the target frequency fout and strongly suppressed at fLO.

A schematic diagram of the time domain setup used in this work is displayed
in Fig. 4.9(a). We employ single-sideband mixing for both qubit state readout
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( f r
IQ = 30 MHz) and manipulation ( f q

IQ = 40 MHz). Here, I and Q are produced
with arbitrary waveform generators (AWGs). In the absence of a dedicated qubit
drive line, qubit control and readout pulses are admitted via a common input
line using a power divider or directional coupler. The analog-to-digital converter
(ADC) monitoring incoming signals has a sampling rate of 500 MS/s. Therefore,
the mixing has to be reverted before feeding the signal to the ADC. This process is
less susceptible to errors when a common LO is employed for pulse generation and
down-conversion, especially phase stability is ensured. Before signal acquisition,
I and Q are filtered with a 32 MHz low-pass to remove higher harmonics and
amplified.

All input/output devices comprising the time domain setup are connected to a
common 10 MHz clock reference to ensure phase stability and operated by the
home-made software package qKIT, freely available under Ref. [Qki20].

Bias tee operation

In this work, we employ a bias tee to combine dc and rf flux biases at the base
stage. This allows for optimal filtering up until the sample of both input lines,
tailored to their specific needs. Unfortunately, the capacitance C on bias tee’s rf
input is accompanied by discharging effects, resulting in the decay of applied
current pulses [Bra+16]. In the bias tee circuit, the capacitor discharges via the line
resistance R, see Fig. 4.10(a).

Here, the goal is to find the voltage Vawg needed to drive a given current pulse I.
Kirchhoff’s law yields the the differential equation [Bra+16]

İ + τ I =
1
R

d
dt

Vawg (4.24)

for the current across the flux bias coil, with the time constant τ = 1/RC. The
general solution of the homogeneous differential equation reads Ip = I0 exp(t/τ),
where I0 is arbitrary but constant. By inserting Is = c(t)Ip into Eq. (4.24), we infer

d
dt

Vawg = RIp
d
dt

(
Is

Ip

)
. (4.25)

Together with the solution of the homogeneous differential equation, the voltage
needed to produce a given current pulse Is at the sample is calculated from

Vawg = R
(

Is +
1
τ

∫
Isdt

)
. (4.26)
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Figure 4.10: Bias tee calibration. (a) Circuit diagram of the bias tee. When applying a voltage Vawg,
the capacitor discharges via the inline resistance R. A large inductance L is used to feed dc biases.
This does not impair short pulses admitted via the rf line. (b) Measurement of the bias tee’s time
constant τ. Applying a constant voltage results in an exponentially decaying current at the sample.
We monitor the qubit frequency by probing the system with a π-pulse with variable frequency. The
bias tee decay rate is inferred from the qubit frequency’s trajectory as τ = (718± 6) ns.

In the context of this work, two crucial special cases are

Vc
awg = V0

t
τ

,

Vl
awg = v0

(
t +

t2

2τ

)
,

(4.27)

which result in a constant and linearly increasing current bias, respectively. The
total current through the on-chip coil is the sum of Is and the dc current admitted
to the bias tee.

Experimentally, there are several approaches to measure the time constant τ of
the bias tee. For example, a constant voltage pulse can be applied to the bias tee,
resulting in a current I = Ip + Idc at the sample. For a sufficiently linear dispersion
(i.e., off sweet spot), the qubit frequency ωq follows an exponential function. The
time constant τ can be extracted by monitoring ωq, see Fig. 4.10. For the bias
tee employed in this work, this yields τ = (718± 6) ns. Particularly for "long"
experiments (i.e., few micro-seconds), the voltage needed to maintain a constant
electrical current exceeds the capabilities of the AWG. This can be a severe limiting
factor.
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5 Fabrication of quantum circuits
with coherent Josephson junctions

A key ingredient for superconducting quantum circuits is a meticulous fabrication
with a steadily growing library of techniques and materials. Qubit coherence
can be improved drastically by optimizing the electrode material and growth,
mitigating the detrimental influence of TLS. Currently, coherence times in the
range of 10− 300 µs [Pai+11; Bar+13; Ner+19; Zha+20; Pla+20] allow for several
hundred or thousand qubit gates [Kra+19; Kja+20]. Great efforts are also directed
at establishing a scalable processing platform for quantum processors. This often
boils down to streamlining the fabrication of Josephson junctions - the centerpiece
of most superconducting qubits - while maintaining or improving qubit coherence
[Wu+17; For+19b; Kre+20; Tsi+20].

I start this chapter with a brief introduction into basic cleanroom techniques needed
to fabricate the quantum circuits presented in this work. Next, I summarize my
implementation of airbridges, following the work of Chen et al. [Che+14], at our
local cleanroom facility. Finally, I discuss the contents of Stehli et al. [Ste+20]: a
scalable fabrication method for Josephson junctions developed in the context of
this thesis.

5.1 Fabrication of thin film circuits

Many fabrication tools and techniques for superconducting circuits are adapted
from well-established processes of the semiconductor industry, including film
growth and patterning, which are discussed in this section. All samples measured
in the context of this thesis were fabricated in the Nanostructure Service Laboratory
with partial support from the technical staff.
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5 Fabrication of quantum circuits with coherent Josephson junctions

Film growth

Growing thin films of pristine quality is important to build superconducting
qubits with low loss and decoherence rates, since impure or contaminated metals
promote TLS. However, if proper precautions are taken to reduce residues, TLS are
suppressed, to the benefit of qubit coherence and energy lifetime [Pla+20].

In this work, we utilize aluminum (Al), which is superconducting below 1.2 K,
for all circuit elements including the Josephson junctions (JJ). Due to its reactiv-
ity, aluminum films (and bulk Al) immediately form an AlOx oxide layer, when
exposed even to small quantities of oxygen. This makes aluminum ideal for gener-
ating the superconductor-insulator-superconductor (Al-AlOx-Al) interface of a JJ.
Furthermore, the inert oxide film acts as a protective layer for the film, preventing
corrosion.

For film growth, our substrate of choice is c-plane sapphire (εc
r ≈ 11.5) at a thick-

ness of ∼ 430 µm. We grow aluminum films in high vacuum (∼ 10−8 mbar) in a
PlassysTM MEB 550S shadow evaporation machine. Here, the Al is melted and
evaporated from a crucible using an electron-beam. We ensure a clean metal-
substrate interface by piranha cleaning the sapphire substrate before processing
the wafer. The deposition rate of 1 nm/s is monitored by a quartz crystal oscillator.
Apart from the obvious advantage of faster processing, a larger rate also results in
more homogeneous aluminum films [Fri+19].

Thin film patterning

Metal films can be structured with either lift-off or etching technologies, both of
which rely on electron or optical lithography. Here, a polymer resist, comprising
reactive components, is thin- and evenly spread across a chip with a spin coater.
Exposure to either UV-light or an electron-beam activates a chemical reaction.
Depending on the resist, this leads to poly- (negative resist) or de-polymerization
(positive resist). By applying a developer short molecules are dissolved, leaving
photo resist only at the exposed area (negative) or its counterpart (positive). A
schematic diagram of optical lithography is displayed in Fig. 5.1(a). While electron-
beam exposure is significantly slower and more expensive, the shorter wavelength
enables smaller feature sizes. This is particularly important for structuring Joseph-
son junctions. Technical details on optical and electron-beam lithography are listed
in Appendix D.

In a lift-off process, the wafer is covered with metal after lithography. Subsequently,
the resist is dissolved leaving a metallic negative of the mask, see Fig. 5.1(b). In
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5.1 Fabrication of thin film circuits

Figure 5.1: Thin film patterning technologies. (a) Flow diagram of optical lithography. Developing
positive resist removes the polymers on exposed areas. For negative resist it is the opposite. Flow
diagram of film patterning by lift-off (b) and etching (c).

Table 5.1: Parameters for reactive ion etching. Gas flow is given in cm3/min. Rf-power for plasma
generation (PICP) and acceleration (Pacc) are individually adjustable.

type Ar (sccm) Cl (sccm) O2 (sccm) PICP (W) Pacc (W)
e-beam litho. 15 2 - 100 100
optical litho. 15 3 1 100 100

AB litho. 12 2 - 100 100
AB res. burn 15 - 15 50 100

subtractive patterning, the film is applied first and removed by etching wherever
it is not protected by the structured resist, see Fig. 5.1(c). Compared to lift-off,
this results in more pristine substrate-metal interfaces, since no resist was present
during the deposition.

Therefore, in this work, structures are transferred from resist masks by reac-
tive ion etching, using an inductively coupled plasma, generated in an Oxford
InstrumentsTM Plasmalab 100 ICP. Here, the plasma is generated and accelerated
by a microwave-field with power PICP and Pacc, respectively. It is composed of
argon, chlorine, and, for optical lithography, oxygen ions. Table 5.1 comprises the
parameters of the processes relevant to this work. After etching, resist residues are
removed in acetone and N-ethyl-pyrrolidone (NEP) baths, assisted by ultrasonic
cleaning. A detailed list of the parameters of the cleaning process can be found in
Appendix D.
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5 Fabrication of quantum circuits with coherent Josephson junctions

5.2 Airbridges for quantum circuits

As their name suggests, airbridges (ABs) are microscopic constructs connecting two
metal slabs. They are employed to ensure a proper galvanic connection of the CPW
ground planes. Therefore, they are a crucial ingredient for reducing crosstalk and
suppressing unwanted slotline modes, see Sec. 4.3.1. This is especially important
for densely packed circuits, such as those investigated in Sec. 6.

Our adaptation of ABs in the local cleanroom facility closely follows the work of
Chen et al. [Che+14]. A flow diagram of the fabrication process is displayed in
Fig. 5.2. The bridge pedestals are generated using optical lithography of a ∼ 3 µm
thick optical resist (AZ5214E). The bridge arc is shaped with a flow bake at 130 °C
for 60 seconds. The ABs are formed from a 350 µm thick aluminum metallization.
Here, galvanic contact to the ground plane is ensured by in-situ argon ion beam
milling directly before metal deposition [Grü+17]. The resist mask for etching
the bridge structure is generated again from a ∼ 3 µm thick optical resist, which
enhances the mask’s uniformity. After the development, the ABs are defined with

Figure 5.2: Flow diagram for airbridge fabrication. (b) The mask for the bridge pedestals and
arc are formed from optical resist and shaped with a flow bake (c). (d) The galvanic connection
of the 350 µm thick aluminum metallization producing the air bridge is ensured by an argon
milling process [Grü+17]. (e,f) Using optical lithography, the mask for the bridge is patterned and
transferred to the metal with an Ar/Cl plasma (g). (h) The remaining resist is removed in a heated
bath NEP.
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5.2 Airbridges for quantum circuits

Figure 5.3: Airbridges in the experiment. (a) SEM image of an airbridge. ABs ensure a galvanic
connection of the ground plane(s) next to a CPW resonator. During the electron microscopy, the
(floating) λ/2-resonator accumulates charges, reducing its brightness compared to the ground
plane. (b) Coupling and internal quality factors of CPW resonators. Fit errors from the circle fit, see
Sec. 4.3.3, are indicated by the shaded areas. Since Qc is solely determined by the geometry, it is
approximately power independent. Due to the saturation of surface TLS, Qi improves slightly with
increasing input power.

an AR/Cl plasma etch. The resist is removed using an Ar/O plasma in the same
device, followed by a 90 °C NEP bath for several hours. The process parameters of
the etch process for patterning and resist removal are listed in table 5.1.

Utilizing scanning electron microscopy (SEM), we confirm that the resist is com-
pletely removed by the cleaning procedure, both under and on top of the bridge,
see Fig 5.3(a). The ABs are extremely stable: Across multiple samples, we have yet
to find a single broken or collapsed bridge. In low temperature measurements, we
investigate the quality factors of five resonators with airbridges, see Fig 5.3(b). Here,
we find decent Qi, which are enhanced for increasing input power. A likely cause
is the saturation of surface TLS [Bre+17]. The presented results are comparable to
those of our resonators without airbridges.
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5 Fabrication of quantum circuits with coherent Josephson junctions

5.3 Coherent superconducting qubits from a
subtractive junction fabrication process

"Josephson tunnel junctions are the centerpiece of almost any superconducting electronic
circuit, including qubits. Typically, the junctions for qubits are fabricated using shadow
evaporation techniques to reduce dielectric loss contributions from the superconducting
film interfaces. In recent years, however, sub-micron scale overlap junctions have started
to attract attention. Compared to shadow mask techniques, neither an angle dependent
deposition nor free-standing bridges or overlaps are needed, which are significant limitations
for wafer-scale processing. This comes at the cost of breaking the vacuum during fabrication,
but simplifies integration in multi-layered circuits, implementation of vastly different
junction sizes, and enables fabrication on a larger scale in an industrially-standardized
process. In this work, we demonstrate the feasibility of a subtractive process for fabrication of
overlap junctions. In an array of test contacts, we find low aging of the average normal state
resistance of only 1.6% over 6 months. We evaluate the coherence properties of the junctions
by employing them in superconducting transmon qubits. In time domain experiments, we
find that both, the qubit life- and coherence time of our best device, are on average greater
than 20 µs. Finally, we discuss potential improvements to our technique. This work paves
the way towards a more standardized process flow with advanced materials and growth
processes, and constitutes an important step for large-scale fabrication of superconducting
quantum circuits." - Stehli et al. [Ste+20]

5.3.1 Josephson junction fabrication

Josephson junctions (JJ) are the centerpiece of almost all superconducting quantum
circuits. In qubits, these nonlinear elements are used to isolate two distinct energy
levels, usually ground and first excited state, which are then operated as logical
states for quantum computation or simulation. Currently, all technologies used
to produce the superconductor-insulator-superconductor interface of the JJ rely
on lift-off processes. The widespread shadow-evaporation techniques exploit free-
standing bridges [Dol77] or overhangs [Lec+11] in conjunction with multi-angle
evaporation to generate the JJ in situ.

In the commonly used shadow-evaporation processes, free-standing bridges [Dol77]
or overhangs [Lec+11], and multi-angle evaporation are exploited to generate the
desired interface in situ in a single process step. Due to the angle-dependence,
the direction the material is evaporated from is critical. Thus, only point-like
evaporation sources with inhomogeneous deposition can be utilized, limiting the
applicable JJ materials. Typically, polymer resist masks are used in favor of hard
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5.3 Coherent superconducting qubits from a subtractive junction fabrication process

masks [Dol+03; Tsi+20]. Therefore, only superconductors with low melting points
are applicable. Additionally, outgassing of the resist mask can deteriorate the JJ.
Last but not least, shadow-evaporation processes (with a point-like source) come
at the cost of a systematic angle-dependent parameter spread. Especially for larger
wafers, great efforts are needed to mitigate this effect [For+19b; Kre+20].

An alternative technology are overlap JJ generated in a two-step process. His-
torically, dielectric loss in superconducting qubits with micron sized overlap JJ
was a severe limiting factor to qubit life- and coherence times [Ste+06; Wei+11b;
Bra+15]. This had initially motivated the application of electron-beam lithography,
also for shadow-evaporation techniques, which enables JJ with smaller feature size
and therefore lower loss [Mar+05; Wei+11a]. Recently, it was shown that qubits
with nanoscaled overlap contacts are indeed competitive with in situ fabricated JJ
from angle-dependent processes [Wu+17]. However, this process established by Wu
and colleagues still relies on lift-off patterning which can impair the fabrication
yield and is a potential source of contamination of the Josephson junction [Pop+12;
Qui+14].

Structuring the JJ subtractively rather than by lift-off has several merits: First of
all, resist is completely eliminated from the processing chamber and the JJ vicinity.
Particularly, the superconductor-insulator-superconductor interface is generated in
complete absence of polymer resist. This opens the door to previously disregarded
deposition methods, like the addition of reactive gases to the evaporation chamber.
With the removal of both angle-dependence and the restrains on temperature, the
choice of material is practically free of restrictions. The same goes for their growth
mode: For example, epitaxial growth of the JJ can be explored [Fri+19]. Especially
in the light of recent studies, it becomes evident that superconducting qubits can
still benefit from exploring new types of materials [Pla+20]. Generally, subtractive
patterning concurrently allows for smaller, more coherent, as well as larger JJ. On
the one hand, etching can result in a reduced feature size compared to lift-off
technologies. On the other hand, unlike for shadow evaporation techniques, there
is no upper limit for junctions with a large area, which are typically employed in
quantum amplifiers [Roc+12; Mac+15; Win+20]. In principle, small and large con-
tacts can even be patterned on a common wafer and in parallel by the same process
steps. In conjunction with the angle-independence, this enables full scalability and
integration into a streamlined and large-scale processing platform for arbitrary
quantum circuits.

61



5 Fabrication of quantum circuits with coherent Josephson junctions

5.3.2 Subtractive Al-AlOx-Al Josephson junctions

In the context of this thesis, we implemented a subtractive fabrication process and
demonstrated its capabilities at hand of Al-AlOx-Al Josephson junctions. Due to its
compatibility with standardized nanofabrication methods, our process constitutes
an important ingredient for large-scale fabrication of superconducting quantum
processors [Ste+20].

Figure 5.4 displays a flow diagram of our JJ fabrication process. First, a sapphire
wafer is prepared as described in Sec. 5.1, with a 50 nm aluminum film. From
this Al layer both, the JJ bottom electrode and the main structures of the circuit
are defined. This is beneficial for two reasons: First of all, it saves time, since an
additional evaporation step can be omitted. Secondly, without preceding process
steps, the first metal layer on the wafer has the highest quality. Particularly, the
capacitor electrodes, where most a circuit’s electrical field accumulates, profit from
a low TLS density. For patterning the bottom electrode of the JJ, electron-beam
lithography with a ∼ 180 nm thick PMMA resist provides a polymer mask for the
subsequent subtractive process. In principle, the choice of resist is flexible, if it
musters a sufficiently large resistance to the etch-plasma. However, employing a
positive resist decreases electron-beam writing times. As described in Sec. 5.1, an
Ar/Cl-plasma is used to transfer the structures from the resist to the aluminum
film, followed by ultrasonic cleaning in an NEP bath. A proper removal of resist
residues is crucial for high quality JJ.

The top electrode is applied in a PlassysTM MEB550S, capable of milling and oxi-
dizing the bottom layer in situ before evaporation. Any remaining resist residuals
are incinerated by an Ar/O plasma. For a controlled growth of the tunnel barrier,
it is crucial to remove the native oxide of the first Al layer, which is achieved
by Ar sputtering for 180 seconds [Grü+17]. The tunnel barrier is grown in quick
succession by admitting a continuous flow of 12 sccm O2 to the load lock, while
keeping a chamber pressure of pLL ≈ 0.0195 mbar. This yields a rough estimation
of the oxidation time needed to achieve a given critical current [KMM95]. Next, an
80 nm thick aluminum layer is deposited, as described in Sec. 5.1. The top electrode
of the JJ is structured using electron-beam lithography and an Ar/Cl plasma. Apart
from the duration of the plasma, this process is identical to the patterning of the
bottom layer. Finally, larger circuit elements of the sample can be structured from
the first Al layer, for example, utilizing optical lithography. Note that the process
also introduces a stray junction to the sample. The additional dielectric loss and
coupling to TLS can impair qubit life-, and coherence times [Lis+19]. This effect is
reduced by shorting the stray JJ with a bandaging technique [Dun+17].
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5.3 Coherent superconducting qubits from a subtractive junction fabrication process

Figure 5.4: Flow diagram of the subtractive JJ fabrication process. We pattern both JJ electrodes
using electron-beam lithography and an Ar/Cl plasma. Before depositing the top electrode, we
perform argon ion milling to remove native oxides. This allows us to grow the AlOx-tunnel barrier
in a controlled environment. Figure adapted from Ref. [Ste+20].

Finally, structuring the JJ electrodes with electron-beam lithography, needed to
achieve small feature sizes, is both expensive and time-consuming. However, in
contrast to shadow-evaporation techniques, our processing platform is ab initio
compatible with modern fabrication tools, such as the extreme ultraviolet lithogra-
phy used in the semiconductor industry [Bak08]. This makes our technique ideal
for large scale fabrication of superconducting quantum circuits.

5.3.3 Room temperature characterization

Figure 5.6(d) displays an SEM micrograph of a JJ, fabricated from our subtractive
process. In comparison to the design parameters, we find a process bias of ∼ 10%
towards reduced junction edge width. A likely cause is isotropic etching of the
film due to the chlorine, resulting in sloped side-walls and under-etching of the
aluminum films. Employing thinner metal films would reduce the exposure to the
Ar/Cl-plasma and thereby mitigate the aforementioned effects. As a result, thinner
masks with reduced etch resistance can be used. This allows for a better resolution
and smaller feature size, reducing loss in the junction.

As described in Sec. 2.2, a Josephson junction’s normal state resistance Rn at T = 0
is inversely proportional to its critical current Ic, see Eq. (2.4). Here, Rn is dominated
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5 Fabrication of quantum circuits with coherent Josephson junctions

Figure 5.5: Room temperature resistance the test JJ. (a) Resistance variations of the test junctions
across the wafer. The resistance is normalized to the JJ area which is varied from 150 nm to 300 nm
in 50 nm increments. We find a slight gradient from the top left to bottom right corner of the wafer.
Potential causes are an unisotropic oxidation, development, or variations during electron-beam
writing [Kre+20]. (b) Histogram of the resistance area product (Rn A). After ∼ 6 months of aging
in ambient conditions, Rn A increases by only 1.6%, indicating a clean JJ barrier. Figure adapted
from Ref. [Ste+20].

by the tunnel resistance of the JJ and thus approximately temperature independent.
Therefore, room temperature characterization is an established method to estimate
a junction’s critical current and its spread across a wafers.

For this purpose, we prepared a test wafer featuring a 6× 6 grid of JJ, fabricated in
the same batch as the qubits, see Sec. 5.3.4. The JJ area was varied from 150 nm to
300 nm in 50 nm increments, which are evenly distributed across the array. Due to
the large resistance of our JJ (> 4 kΩ), a two-point measurement provides sufficient
accuracy to determine Rn. Across the 36 test contacts, we find an average nor-
mal state resistance times area product of Rn A = (0.474± 0.099) Ω mm2. A slight
gradient across the wafer indicates inhomogeneities, see Fig. 5.5(a), potentially
caused by unisotropic oxidation, development, or variations during electron-beam
writing [Kre+20]. Otherwise, the resistance spread is comparable to established
technologies, before a meticulous optimization of the process parameters. The
∼ 20% spread in the normal state resistance is likely caused by the under-etching,
in particular, the nonuniformity it introduces to the edges of the JJ. Due to the
relatively large film thickness, these edges constitute ∼ 25− 40% of the total JJ
area. Again, this effect can be addressed by employing thinner metal films for both,
top and bottom electrode.
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5.3 Coherent superconducting qubits from a subtractive junction fabrication process

Another vital aspect is JJ aging, that is, unwanted drifts of a junction’s critical
current with time. Figure 5.5(b) shows a histogram of the normal state resistance,
immediately after fabrication and after ∼ 6 months of aging in ambient conditions.
Neglecting measurement inaccuracies, we find Rn A = (0.482± 0.108) kΩ mm2 on
average, which amounts to an increase of Rn of only 1.6% over this period. Aging
is presumed to be driven by resist residues within the JJ [Pop+12]. The low aging
observed in our devices is a strong indicator of clean JJ interfaces. This long-term
stability further promotes our platform for the fabrication quantum processors on
a larger scale. The low aging is confirmed by the long-term stability of our qubits’
transition frequencies, see Appendix E.

5.3.4 Qubit measurements

We prepared a sample comprising a total of four transmon qubits, embedded in
a coplanar microwave environment. All qubit junctions are fabricated using the
subtractive process described in Sec. 5.3.2. However, the top electrode is applied
only in a small window above the JJ, using a lift-off process with S1805 (optical)
resist. Thereby, electron-beam exposure time is reduced. Furthermore, an internal
AlOx-layer in all structures which could be detrimental to qubit coherence and the
readout resonators’ Qi is avoided. We note that the lift-off step is not mandatory,
as the same result can be achieved by utilizing a negative tone resist. In any case,
the edges of the optical window are far away from the JJ. The main structures,
including resonators, transmission line, and qubit electrodes are patterned with
optical lithography using S1805 resist and an Ar/Cl/O-plasma, for details, see
Sec. 5.1. Here, the resist mask also protects the JJ from exposure to the plasma.
Airbridges ensure a good galvanic connection of the ground plane and suppress
slotline modes.

An overview of the sample is displayed in Fig. 5.6(a). Here, two of the qubits
feature an interdigitated capacitor (devices q1 and q2), see Fig. 5.6(b), while the
other two are of a concentric design [Bra+16] (devices q3 and q4), see Fig. 5.6(c).
Each qubit is capacitively coupled to a dedicated λ/4-resonator for dispersive state
readout, which is addressed in reflection measurements. The parameters of the
underlying Jaynes-Cummings model are summarized in table 5.2.

In time domain measurements, see Sec. 4.5.2 for a schematic diagram of the setup,
we characterize the lifetime T1, Ramsey decay time T∗2 , and spin-echo decay time
T2 of all qubits. Here, we implement an interleaved measurement scheme where
the data is taken simultaneously, alternating between the three experiments. This
allows us to resolve fluctuations of the qubit frequencies, life-, and coherence times,
slower than the repetition rate [Sch+19; Bur+19; Hon+20]. Here, 103 point averages
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Figure 5.6: Qubit microchip. (a) Overview of the sample. Each qubit is capacitively coupled to
a microwave resonator for dispersive state readout via the on-chip transmission line. In total,
the sample comprises two transmon qubits with interdigitated capacitors (b) and two concentric
transmons (c). The qubit capacitors and bottom electrode are structured from the same metal layer
(blue). (d) SEM micrograph of the overlap junction. The JJ electrodes (blue and red) are 180 nm
wide, which is ∼ 10% less than the designed value. Figure adapted from Ref. [Ste+20].

Table 5.2: Device parameters in MHz. This includes the qubits’ first transition frequency ωq

and the frequencies ωr and linewidths κr of the readout resonators. For each device, the qubit
anharmonicity α is determined from a spectroscopy measurement. The coupling strength g to
the first qubit transition is calculated from the decoupling shift χ01 of the readout resonator, see
Eq. 3.41. Data published in Ref. [Ste+20].

device ωr/2π κr/2π ωq/2π α/2π χ01/2π g/2π

q1 6460 1.579 3548 −257 0.915 47.5
q2 6632 0.524 3950 −262 0.514 45.6
q3 6462 1.306 3161 −294 0.350 50.6
q4 6457 0.184 3324 −300 0.774 49.3
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Figure 5.7: Qubit performance in time domain experiments. (a) Qubit population of a typical mea-
surement set for T1, T∗2 , and T2. From fits (dashed lines), we find a lifetime of T1 = (22.0± 0.9) µs,
and coherence times T∗2 = (30.1± 3.7) µs (Ramsey experiment) and T2 = (42.3± 2.9) µs (spin-echo
experiment). (b) Box plot of each qubit’s life-, and coherence times, collected over several hours.
The box encloses the second and third quartile, whereas the whiskers indicate 2σ, i.e., 95% of the
data. The median of each data set is indicated by a colored line. (c-f) Histograms of the qubits’
life-, and coherence times. Decay times of devices q1, q2, and q4 approximately follow a normal
distribution. Two meta-stable states, one with low and another with high coherence, indicate the
presence of a TLS close to the resonance frequency of q3. Figure adapted from Ref. [Ste+20].

Table 5.3: Parameters of the time domain measurements. Overview of the measurement duration,
total number of measurements Ntot, and successful number of measurements N. Data published in
Ref. [Ste+20].

device measurement duration (h) Ntot N
q1 29.8 1700 1589
q2 17.6 2000 1382
q3 35.3 2502 1744
q4 69.6 10337 7013

result in an acquisition time of ∼ 30s for a measurement set of T1, T∗2 and T2, see
Fig. 5.7(a) for a typical time trace.

We monitor the coherence properties of each qubit for an extended time (> 16 h),
see table 5.3. In the analysis, we exclude unphysical data sets, where T2, T∗2 > 2T1
or T∗2 > T2. Likely causes are fast qubit fluctuations during the measurement or fit
errors due to a low SNR. Additionally, data sets with a fit uncertainty exceeding
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Table 5.4: Average qubit performance. Overview of the qubits’ median lifetime T̃1, and median
coherence times T̃∗2 , and T̃2 in µs, extracted from the data displayed in Fig. 5.7(b). Data published
in Ref. [Ste+20].

device T̃1 T̃∗2 T̃2

q1 11.3 4.9 16.3
q2 8.7 7.7 12.5
q3 9.0 9.9 15.3
q4 21.8 24.1 33.3

50% are excluded.1 The accumulated results are displayed in Fig. 5.7(b) as a box
plot. We find decent life-, and coherence times of all qubits, on the order of several
microseconds, see table 5.4. For each qubit, Fig. 5.7(c-f) displays histograms of
T1, T∗2 , and T2, which mostly follow a normal distribution. The coherence time
distribution of q3 hint towards the existence of two states, one with high and
another one with low coherence. This is an indicator for a TLS in close proximity
(in frequency space) to the qubit’s transition frequency [Sch+19; Bur+19].

Regarding qubit performance, life-, and coherence times of transmon q4 are signifi-
cantly higher than those of q1 − q3. With optical microscopy, we identify aluminum
residues in the JJ vicinity as a probable cause. Otherwise, the coherence properties
of our best device (q4) approach those of qubits with JJ stemming from a lifted
overlap or shadow evaporation technique. State of the art transmons still perform
better by a factor of ∼ 5− 10. Closing the gap needs further improvements of our
circuits, for example, a reduction of surface loss [Gam+17], shunting the stray JJ
with a bandaging technique [Dun+17], or an optimization of the qubit electrode
material [Pla+20].

5.3.5 Qubit identification

Due to a sizable deviation of the experiment from the microwave simulations, it
proves challenging to identify which readout resonator belongs to which qubit.
On another sample from the same fabrication run, we shifted the frequency of the
readout resonators, thereby identifying the corresponding qubit. For this purpose,
a droplet of varnish was applied on top of the resonator, see Fig. 5.8(a). The
large electric permittivity of the varnish increases the capacitance of the resonator,
reducing its frequency. Figure 5.8(b, c) displays the reflection spectrum of the

1 This mostly affects data sets with extremely long T1 or T2
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Figure 5.8: Varnish induced shift of the readout resonator frequencies. (a) In order to identify the
the qubits, we shift the frequency of one readout resonator by applying a drop of varnish and identify
the change in the reflection coefficient |S11|. (b) Shift of the highest frequency resonator. The varnish
was applied to the readout resonator of a qubit with interdigitated capacitor. (c) Subsequently,
the lowest frequency resonator was shifted, thereby revealing that the corresponding qubit is a
concentric transmon. Figure adapted from Ref. [Ste+20].

sample with and without the varnish, which is applied, one resonator at a time, in
consecutive cooldowns. We repeated this process for two resonators and inferred
the remaining qubit-resonator pairs from the qubit anharmonicity, see table 5.2.

5.3.6 Conclusion

In this chapter, we present a subtractive fabrication platform for coherent Josephson
junctions. As described in Sec. 5.3.1, subtractive patterning of the JJ has several
advantages over lifted overlaps or shadow evaporation: Our process has no restric-
tions on the junction size and is angle independent, which is integral for a scalable
fabrication platform. A negligible aging of our JJ indicates clean superconductor-
insulator-superconductor interfaces, which is owed to the elimination of a resist
mask in close proximity to the junctions during the evaporation. Therefore, material
deposition at elevated temperatures or in reactive gases becomes possible. This
can be exploited to investigate different growth modes and materials, other than
the ubiquitous Al-AlOx-Al stacks, for the JJ electrodes, with potential benefits to
qubit coherence. While the contacts presented in this work are of average size,
subtractive patterning in general allows for smaller and, thereby, more coherent JJ
compared to lift-off processes.

Qubits made with our process feature life-, and coherence times competitive with
existing technologies, which we establish at hand of four transmon qubits, in
an extended time domain characterization. On average, both energy loss and
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decoherence time of our best device exceed 20 µs. In conjunction with its scalability,
this makes our technology an important ingredient for a streamlined and large
scale fabrication of superconducting quantum circuits.
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6 Quantum simulation of the
multistate Landau-Zener model

Universal quantum computing promises an exponential computational advantage
at selected tasks, compared to current computers based on classical logic. While
these devices are still a long way down the road, noisy intermediate-scale quantum
(NISQ) technologies offer a quantum advantage over classical systems in the
near future [Pre18]. Particularly, analog quantum simulation (AQS) has advanced
rapidly over the last years and can, even with today’s imperfect qubits, tackle
problems which are hard to solve, even for modern supercomputers [Ber+17;
Zha+17]. Open quantum systems are of exceptional interest for AQS: In nature,
any quantum system is coupled to its environment, resulting in energy decay
and decoherence of the quantum state [Man20]. AQS can be used to model these
open quantum systems and thereby gain unique insights into the underlying
loss mechanisms. Furthermore, the simulation of open quantum systems offers
a platform to study non-Markovian physics [OIL13; Pue+19]. Last but not least
they are a challenging problem, even for digital quantum computers [GRM20]. The
multistate Landau-Zener model is such a system, where a two-level atom traverses
several or a continuum of bosonic modes, forming its spectral environment.

This chapter begins with a short introduction to AQS, especially in the context of
open quantum systems. Thereafter, I briefly introduce the Landau-Zener model,
which, when expanded to the multistate case, is a special case of the Spin-Boson
model. In the following sections, I pave the way towards the AQS of this model,
starting with the simulation device and its characterization in spectroscopy and
time domain measurements. Experimentally, the multistate Landau-Zener model, in
particular the qubit’s time evolution, is studied depending on the system initializa-
tion. Throughout this chapter, the experimental results are backed with numerical
simulations. Finally, I conclude the chapter with a summary of the findings and
give a short outlook on future plans of AQS of open quantum systems.
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6.1 Analog quantum simulation of open quantum
systems

AQS is in stark contrast to quantum computation. Rather than employing gate-
based operations to derive the result of a calculation, analog simulators rely on
the intrinsic time evolution dictated by the Schrödinger equation. The principle is
rather simple, see Fig. 6.1(a): An analog simulator synthesizes a Hamiltonian, which
maps onto that of the quantum system under investigation. Ideally, the simulator
can be prepared in an arbitrary initial state and a projective measurement yields
its current state at any given time. By reversing the mapping, the time evolution of
the simulated system is inferred [GAN14]. This approach is particularly relevant if
the original system is hard or impossible to measure. Although analog quantum
simulators can be susceptible to external perturbations and suffer from inaccuracies
with respect to the implemented model, they allow for solid qualitative studies,
especially of universal effects [Pre18]. This makes AQS ideal to study open quantum
systems.

Every real quantum system couples to an environment of some sort and is therefore
an open quantum system. The goal of open quantum theory is to describe the
dynamics of a system of interest, without having to solve the equation of motion

Figure 6.1: AQS of open quantum systems. (a) Flow diagram of AQS. The Hamiltonian of the
simulator maps onto that of the model system it synthesizes, which is therefore also true for the time
evolution with the operator Û′ and Û, respectively. State preparation and readout of the quantum
simulator in conjunction with the mapping allows to infer the time evolution of the system of
interest and to study its properties. (b) Schematic diagram of an open quantum system. The system
of interest (ĤS) is coupled to its environment (ĤE) via the Hamiltonian ĤC. In open quantum
theory, the time evolution of the environment is truncated. For example, this introduces effective
dissipation rates for energy and coherence to the eigenstates of ĤS, see Sec. 3.2.1.
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of the surrounding environment [Man20]. This problem, sketched in Fig. 6.1(b),
is often addressed by the Lindblad equation, see Sec. 3.2.1. By using AQS, a
system of interest, e.g., a qubit, can be directly studied in the presence of a tailored
environment. Herewith, a more profound understanding of the loss mechanisms
and dynamics in real systems can be gained. Depending on the coupling regime,
AQS also offers the possibility to simulate challenging and exciting open systems
phenomena. For example, a simulator with ultra-strong coupling [Lep+18; For+19a]
between a qubit and several bosonic modes enables the investigation of the Kondo
effect [Leg+87; Le 12; Gol+13], proton transfer reactions in the presence of solvents
[CM89], and allows to study non-Markovian physics [Pue+19].

6.2 The Landau-Zener model

The Landau-Zener model describes the transition dynamics of at least two coupled
quantum states, where an order parameter is used to tune the energy separation
of the states linearly with time [Lan32; Zen32; Stü32]. Due to its simplicity and
generality, the model has a wide range of applications. For example, it is used
to model molecular collisions [Chi96] and chemical reaction dynamics [Nit06].
It is also ubiquitous in cQED, where the underlying Jaynes-Cummings model
produces an avoided crossing of qubit and readout resonator [Bla+04; Wal+04].
This can be expanded to the interaction with not one, but several bosonic modes.
The Hamiltonian of the multi-mode system reads

ĤLZ

h̄
=

vt
2

σ̂z + ∑
n

ωn â†
n ân + gnσ̂x

(
â†

n + ân

)
, (6.1)

where v is the Landau-Zener velocity and gn is the coupling strength to the n-th
bosonic mode with frequency ωn and creation operator â†

n. This is schematically
displayed in Fig. 6.2(a). Generally, the Schrödinger equation of a time-dependent
system is hard to solve, especially if [Ĥ(t), Ĥ(t′)] 6= 0 for t 6= t′, as is the case for
ĤLZ in Eq. 6.1. Nevertheless, a closed expression for the Landau-Zener tunneling
probability PLZ (probability to remain in the initial state) was found for a two-level
crossing in the limit of t→ ∞, as PLZ = exp

(
−2πg2/|v|

)
[Lan32; Zen32]. In several

more recent works, this was expanded for an arbitrary number of crossings [Shy04;
Wub+06; Sai+07]:

PLZ = ∏
n

exp
(
−2π

|v| g
2
n

)
. (6.2)

Each avoided crossing can be interpreted as a beamsplitter for incoming pho-
tons [Oli+05]. Therefore, multiple crossings consecutively reduce the probability of
the excitation to remain in the initial mode, see Fig. 6.2(a). It is also intuitive that
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6 Quantum simulation of the multistate Landau-Zener model

Figure 6.2: Multistate Landau-Zener model. (a) Sketch of the energy levels in the single-photon
manifold of a qubit coupled to three bosonic modes. At resonance, a transverse coupling to the
oscillators results in avoided crossings with the qubit. In the Landau-Zener Hamiltonian, each
crossing acts as a beamsplitter for the photon stored in the qubit. (b) Qubit population at t→ ∞ as
a function of the Landau-Zener velocity v, see Eq. (6.2). A fast transit of the bosonic modes results
in a low probability to transfer the photon. In the opposing adiabatic limit of v→ 0, the qubit is
depopulated with an efficiency approaching unity.

the probability to traverse the crossing without changing the initial state is lower
for a larger level splitting 2gn and a low Landau-Zener velocity, which corresponds
to the adiabatic limit. On the other hand, large v increase the probability to remain
in the initial state, in accord with the sudden approximation [Sch07], see Fig. 6.2(b).
In many systems, for example magnetic molecular clusters [WS99], the splitting
2g of two quantum states can be extracted experimentally by capitalizing on the
strong dependence of PLZ on the coupling strength. In a cQED setup, the Landau-
Zener tunneling was utilized upon to realize fast and high-fidelity C-phase gates
and Bell state preparation between two transmon qubits coupled via a three-stage
microwave filter [McK+15].

Across the two branches of the beamsplitter given by a single avoided crossing of
two states |0〉 and |1〉, a phase of

Θ(t) =
∫ t

t0

(ω0(t)−ω1(t)) dt (6.3)

is gathered [Oli+05]. Here, ωi is the eigenfrequency of state i and t0 marks the
moment in time when the two levels cross. Therefore, repetitive transitions of the
avoided crossing lead to an interference, similar to Mach-Zehnder interferometry.
For example, in superconducting flux [Oli+05; Ber+08] and charge qubits [Sil+06],
but also in semiconductor qubits [PLG10; OHM18] and nitrogen-vacancies in
diamond [CM10; Fuc+11], this Landau-Zener-Stückelberg interferometry can be
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exploited for fast quantum state preparation. The time dynamics of a single Landau-
Zener transition has also found great interest in theoretical works [Vit99; ZHK08;
OIL10; OIL13]. Experimentally, the coherent oscillations emerging during the
transition of the avoided crossing have been studied to some extend at hand of
Helium Rydberg atoms [YSK92], superconducting flux qubits [Ber+08], accelerated
optical latices [Zen+09], and single electronic spins [Hua+11].

In this work, we employ a superconducting circuit to study the transient dynamics
of the Landau-Zener model with multiple modes, each corresponding to an inde-
pendent beamsplitter. As described in the following section, the underlying cQED
architecture offers good control of both, Landau-Zener velocity v (in situ control)
and coupling coefficients gn (fixed by the circuit design).

6.3 The quantum simulation device

In this work, an analog quantum simulation of the multistate Landau-Zener model
was performed. Due to their tailored functionality, flexibility, and good control of
all circuit parameters, superconducting quantum devices are an ideal platform to
implement the Hamiltonian of Eq. 6.1. The three main ingredients are an ensemble
of bosonic modes, a tunable two-level system, which interacts via a transverse
coupling with the ensemble, and a dedicated resonator for dispersive readout of
the qubit state.

Figure 6.3 displays a micrograph of the simulation device. Here, a transmon
qubit takes the role of the two-level system. The dispersive readout scheme is
implemented with a capacitively coupled λ/4-resonator. Excess photon loss due
to strong coupling to the readout resonator is mitigated with a Purcell-filter, see
Sec. 4.3.4. The qubit’s dc SQUID, and thereby its frequency, is tunable via magnetic
flux induced by an on-chip flux bias line, see Sec. 4.4.4. A dedicated drive port,
as described in Sec. 4.4.3, reduces crosstalk of the applied qubit gates with other
circuit elements. From FEM simulations, we extract the coupling quality factor
between drive port and qubit. This yields a contribution of ΓP,d ≈ 1/281 µs−1 to
Purcell loss.

The bosonic modes in the model are emulated by, in this case five, lumped element
oscillators. Choosing lumped element over distributed CPW resonators facilitates
to engineer a dense and even spacing of their resonance frequencies, which is on
the order of the coupling strength gn to the qubit. Direct characterization and state
preparation of the bosonic modes is realized by a common transmission line. By
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6 Quantum simulation of the multistate Landau-Zener model

Figure 6.3: Micrograph of the measurement device. (a) Overview of the chip (stitched image). An
ensemble of five lumped element resonators (orange) with a dedicated transmission line (red) is
coupled capacitively to a transmon qubit (blue). Fast tunability is achieved with an impedance
matched flux bias line (cyan) coupled to the SQUID of the qubit. Ac and dc flux bias are decoupled
using a bias tee. Qubit gates are admitted to the qubit via a dedicated drive port (green). Purcell
loss through the readout line (purple) is mitigated by a broadband Purcell filter. The qubit state is
measured dispersively, using a λ/4-resonator. (b) Closeup of the qubit and its control lines.
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6.3 The quantum simulation device

Figure 6.4: Characterization of the bosonic mode ensemble. (a) Amplitude signal of the reflection
measurement. Two out of the five lumped element resonators seem to have hybridized, likely due
to a fabrication error. This is indicated by the weak coupling of the b∗ mode to the waveguide. (b)
Quality factors of the bosonic modes, excluding b∗ .

choosing large coupling quality factors Qc additional Purcell-loss is kept at a mini-
mum and unwanted resonator-resonator crosstalk is reduced. Nevertheless, a finite
resonator-resonator interaction remains, especially due to the coupling capacitance
to the qubit, which mediates the transverse coupling in the Landau-Zener model.
By design, the gn increase with decreasing frequency of the corresponding bosonic
mode. The amplitude signal of a reflection measurement on the bath-port, where
the qubit is far detuned from the ensemble, is displayed in Fig. 6.4(a). Four of the
five modes, labeled b1-b4, are clearly visible. Their parameters, extracted from a
circle fit to the complex reflection signal [Pro+15], are shown in Fig. 6.4(b) and listed
in table 6.1. The fifth mode, however, couples only weakly to the transmission line.
It is conceivable that two of the microwave resonators are close in frequency space
and have hybridized, owed to the indirect and weak but non-vanishing resonator-
resonator coupling. Here, the ∼180◦ phase-shifted dipole of the antisymmetric
mode strongly suppresses the coupling quality factor. A small, but finite interaction
with the transmission line is retained, due to the phase-difference between the
resonators with respect to a photon traveling through the waveguide.

Obviously, this also affects the coupling to the qubit, since the antisymmetric
mode barely interacts with the transmon. In a two-tone experiment, see Fig. 6.5(a),
the transmon is tuned on resonance with the resonator ensemble, revealing the
mode spectrum of the single-photon manifold of the underlying Jaynes-Cummings
model.

77



6 Quantum simulation of the multistate Landau-Zener model

Table 6.1: Properties of the resonator ensemble. These parameters are also employed throughout
all numerical QuTiP simulations.

resonator ωr/2π (GHz) Qi
(
×103) QL

(
×103) gn/2π (MHz)

b1 5.507 402 329 14.6
b2 5.513 368 251 12.1
b3 5.518 268 221 14.4
b4 5.531 396 287 6.3

In a two-tone experiment, see Fig. 6.5(a), the dispersive shift of the readout resonator
is monitored while a second microwave tone is admitted via the qubit drive
port. When the transmon is tuned in and out of resonance with the resonator
ensemble, the mode spectrum of the single-photon manifold of the underlying
Jaynes-Cummings model is revealed by the dispersive shift of the readout resonator.
The transverse interaction of bath and qubit results in four avoided level crossings.
The coupling coefficients are extracted by a fit to the avoided crossing [Qki20] and
are summarized in table 6.1. Since they are on the same order as the frequency
spacing of the modes, the hybridized states are collective excitations of the qubit
and/or several resonators. Naturally, the contribution of each mode depends on
the qubit frequency. At certain frequencies the photonic excitation in the system is
exclusively shared between the resonators while the qubit remains in the ground
state. Therefore, the resulting dark states are no longer detectable by dispersive
qubit state readout. Figure 6.5(b) displays a similar measurement, however, at a
higher sample temperature. This is realized by removing (some of the) attenuators
on the base stage. Higher transitions of the thermally excited system become visible.
Additionally, the linewidth is generally larger, due to the increased relaxation rate.

From spectroscopic measurements we find the transmon qubit’s flux sweet spot at
ωmax

q /2π = 10.56 GHz, see Fig. 3.6. A power scan reveals the two-photon transition
from ground to second excited state and thereby yields a qubit anharmonicity
of α/2π = −241 MHz, see Fig. 3.5. The working point of the qubit at ∼ 5.3 GHz,
situated close to the bosonic bath, lies considerably lower in frequency than the
sweet spot. The steep slope of the dispersion makes the qubit extremely susceptible
to flux noise. Most likely, the flux noise is the limiting factor of our low qubit
coherence time T2 ≈ 0.2 µs, which is not limited by the energy relaxation time
T1 ≈ 6 µs. On the bright side, this is accompanied by a large qubit tunability, even
for small bias currents. As described in Sec. 4.5.2, fast flux tunability is achieved
with a bias tee, installed on the cryostat’s base stage. At the working point, the
qubit is rf tunable over a frequency range of ∼ 400 MHz. On the scale of the
bath-qubit coupling strength, this is large enough to tune the qubit to the other
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Figure 6.5: Avoided level crossings of the qubit and resonator ensemble. (a) Energy transitions in
the single-photon manifold, measured with two-tone spectroscopy, as a function of the bias current
at the flux coil. The coupling coefficients to the mode ensemble are extracted from a fit to the
characteristic line shape of the avoided crossing (black dashed lines). At several points, some of the
modes seem to disappear. In these dark states, the photonic excitation is exclusively shared between
the resonators while the qubit remains unpopulated. Therefore, the state becomes "invisible" to the
dispersive readout. (b) Measurement at an elevated temperature. The effective sample temperature
is increased by removing attenuators on the base stage. Therefore, single-photon transitions of
higher photon-manifolds become visible.

side of the resonator ensemble, i.e., at ∼ 5.7 GHz, while retaining a small dressing
at both minimum and maximum qubit frequency.

6.4 Swap spectroscopy of the bosonic mode ensemble

Another interesting experiment to characterize the bosonic bath, is a swap spec-
troscopy, oftentimes used to identify TLS in a qubit chip [Sha+10; MCL19]. Initially,
the qubit with a frequency ωi is prepared in the excited state using a π-pulse.
Thereafter, a fast z-pulse is employed to tune the qubit, more or less instanta-
neously, to a frequency ω, where it can interact with its surroundings for a time
t. Finally, the qubit is biased to a frequency ωf (which can be identical to ωi) to
halt the time evolution. Notably, the qubit Hamiltonian at ωi,f should feature a
negligible coupling to the environment, to ensure that the qubit is initially prepared
in the excited state (at ωi) and stops to evolve (at ωf).
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6 Quantum simulation of the multistate Landau-Zener model

In the Jaynes-Cummings model with a single resonator, this would lead to vacuum
Rabi oscillations: Due to the similarity of the Jaynes-Cummings and the Rabi
Hamiltonian in Eq. 3.11, coherent oscillations of the qubit population emerge. In
contrast to the Rabi cycle displayed in Fig. 3.2, the qubit starts in the excited state1

and the coupling strength g between qubit and resonator takes the role of the drive
strength Ω0.

This situation can change drastically when more than one bosonic mode is involved.
Figure 6.6 displays numerical simulations of vacuum Rabi oscillations between
an ideal two-level system and two bosonic modes. In our simulations, we find
that the behavior of the system dramatically depends on the ratio ξ = g/∆ωr

of mean coupling strength g (here, equal for both resonators) to the frequency
spacing ∆ωr of the modes. For small ξ, there is practically no interplay of the
two single-photon Fock-states the qubit couples to and the resonators can be
distinguished clearly, see Fig. 6.6(a). For larger ξ interference effects start to occur,
most notable in the region around ξ ≈ 0.5, where the two pattern start to merge.
Initially, this gives the impression that the qubit "skips" a beat when tuned to ωr, see
Fig. 6.6(b). If the coupling strength is increased even further, the modes are almost
indistinguishable by the qubit and the suppressed oscillation becomes brighter,
see Fig. 6.6(c). Finally, for ξ = 2 most of the interference effects have receded, see
Fig. 6.6(d). Here, the vacuum Rabi oscillations resemble those of a qubit coupled
to a single bosonic mode with an enhanced coupling strength of

√
2g. This is the

typical
√

n-enhancement, which is also observed in the Tavis-Cummings model
[Aga84; Yan+20]. In its essence, the observed interference effects are similar to the
collapse and revival dynamics in the Jaynes-Cummings model, where higher Fock
states play the role of our circuit’s multi-mode structure [Gea90]. In the simulations
displayed in Fig. 6.6, the bosonic modes were truncated at the three-photon state
to reduce the simulation time. Furthermore, energy relaxation and decoherence
were neglected.

Figure 6.7(a) displays the swap spectroscopy measurement of the qubit with the
resonator ensemble. In contrast to the preceding numerical analysis, four modes
with a non-uniform frequency spacing interact with the qubit, each with a different
coupling strength. While a quantitative interpretation becomes challenging, we
are qualitatively in the regime of ξ & 1. Here, the ensemble already starts to act
more uniformly and strong interference effects are suppressed. Nevertheless, the
interplay of multiple Fock states leads to intricate features such as bright and dark
spots, and the coalescence of Rabi fringes. This is accompanied by a much higher
effective coupling strength geff/2π ≈ 25 MHz. We find good agreement with a

1 qubit population is the inverse of that in Eq. 3.15
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6.4 Swap spectroscopy of the bosonic mode ensemble

Figure 6.6: Numerical simulations of vacuum Rabi oscillations with two bosonic modes. The
simulations show oscillations of the qubit population as a function of time and detuning from
central frequency ωr of the two resonators. The coupling strength g to the qubit is equal for both
modes. The time evolution critically depends on the ratio ξ = g/∆ωr, where ∆ωr is the spacing of
the resonators. Their frequency is indicated by dashed white lines. (a) For ξ = 0.1, the interference
pattern of the two modes can be distinguished clearly, each closely resembling that of vacuum Rabi
oscillations with a single mode. (b) At ξ = 0.5, the two oscillation pattern have already started
to merge. Here, interference effects are most prominent. (c) As the two modes close in on each
other, these effects become more subtle, here shown for ξ = 1. (d) At ξ = 2, interference effects
have receded almost completely. The observed vacuum Rabi oscillations closely resemble those of a
qubit coupled to a single mode with an increased coupling strength geff =

√
2g.
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6 Quantum simulation of the multistate Landau-Zener model

Figure 6.7: Vacuum Rabi oscillations between the qubit and resonator ensemble. (a) The qubit
is prepared in the excited state and tuned in (or close to) resonance with the bosonic bath. It
evolves freely until the evolution is stopped by biasing it to a different frequency, far away from the
ensemble (relative to the gn). For each resonator, a white dashed line indicates its bare transition
frequency, listed in table 6.1. Interference of the qubit with multiple Fock states leads to several
intricate features such as bright and dark spots, and the coalescence of Rabi fringes. (b) We verify
our results by QuTiP simulations. Most of the features in the numerical results are also identified
in the experiment. In the plot, both, measured and simulated qubit population were interpolated
numerically.

numerical QuTiP simulation, see Fig. 6.7(b). This indicates a sufficient precision
of our sample characterization, see Sec. 6.3, and emphasizes the accuracy of the
employed model Hamiltonian.

6.5 Experimental simulation of the multistate
Landau-Zener model

In this work, the Landau-Zener model is directly emulated by the hardware, thus
no complex driving schemes are needed to run the simulation. The simulation
scheme follows the simple algorithm of system state preparation, time evolution by
tuning the qubit, and finally qubit state readout. Initially, the qubit resides roughly
200 MHz below the lowest resonator at ωq = ωi. Due to the large detuning from
the transmon’s flux sweet spot, a flux bias increasing linearly with time results in
a linear increase of the qubit frequency. The final (i.e., maximum) frequency ωf
of the qubit is determined by the experimental constraints imposed by the bias
tee. The Landau-Zener velocity in Eq. 6.1 is given by v = (ωf −ωi)/trise, where
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Figure 6.8: Schematic diagram of the simulation protocol and pulse sequence. (a) Protocol of the
quantum simulation of the Landau-Zener model. Initially, the system is prepared in an arbitrary
quantum state, for example, by applying a π-pulse (orange) to the qubit or by pumping the bath
resonators. The qubit frequency (blue line) is increased linearly for a time t, before returning to
ωi, where state readout is performed. The Landau-Zener velocity v is determined by the time
trise needed to reach the maximum qubit frequency ωf. From repeated measurements for various
values of t (blue dashed line indicates t = trise), the time resolved qubit population along the
Landau-Zener transition is inferred. (b) Pulse sequence of the experiment. The z-pulse tuning the
qubit frequency (blue) is adjusted to account for the decay of the voltage across the bias tee (light
blue), see Sec. 4.5.2. After the time t, the qubit is returned to ωi, where it remains until state readout
(purple) is concluded.

trise is the time needed to tune the qubit (linearly) from ωi to ωf. We determine
the qubit population at several time points along its trajectory. For state readout
the qubit is returned to ωi, halting the time evolution. In the spirit of the sudden
approximation [Sch07], Landau-Zener-Stückelberg interference should only have a
minor impact on the results. Experimentally, the time resolution is limited to 1 ns
by the ADC generating the tuning pulse. Figure 6.8 displays a schematic diagram
of the simulation protocol and the necessary pulse sequence for emulating the
Landau-Zener model with our device.

In this work, we looked at the Landau-Zener model from different perspectives.
While we are restricted to measuring the qubit population only, we have several
options regarding the initial state preparation of the system. For example, we can
populate the qubit in the excited state and monitor its time evolution. Additionally,
owing to the dedicated drive line of the resonator ensemble, we can also pump the
resonators before the Landau-Zener transition. Furthermore, we have full control
over the Landau-Zener velocity v by altering trise.

6.5.1 Scattering an excited qubit

In the first Landau-Zener experiment presented in this chapter, we initialize the
system in the first excited state, i.e., roughly the qubit’s first excited state, by
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applying a weak π-pulse (∼ 140 ns length) to the qubit. This way, we ensure that
the time evolution is dominated by the dynamics of the Landau-Zener model,
rather than stemming from the preparation in a non-eigenstate. The experimental
results of the quantum simulation are displayed in Fig. 6.9, in conjunction with
numerical simulations of the system, in good agreement with the measurements.
Here, we convert the simulation time t to a frequency using ωq = ωi + vt. This
enables a better comparability between traces with a different rise time trise. In
order to reduce the computational complexity in the numerical simulation, we
truncate each resonator at the second Fock state (i.e., n > 1). Qualitatively and
quantitatively the results should remain unaffected, since the experiment is also
restricted to the single-photon manifold.

In the experiment, we observe coherent oscillations of the qubit’s population,
emerging after it has traversed the mode ensemble. In terms of the qubit frequency,
the periodicity of the oscillations decreases for larger trise, see Fig. 6.9(a, c). As
expected from Eq. 6.3, the oscillation frequency increases with time t. Figure 6.9(b)
comprises a quantitative comparison of quantum and numerical simulation for
different rise times. We find a good agreement after accounting for a small offset
of 5.2 ns to trise in the experiment, likely caused by a distortion of the tuning pulse
after traversing the microwave lines to the sample. Particularly for large trise, the
decay of the coherent oscillations with time t, that is, increasing qubit frequency,
becomes visible. Notably, this is not caused by the limited life-, and coherence times
of our simulation device. Rather, the qubit population becomes increasingly static,
approaching the Landau-Zener tunneling probability PLZ. The initial oscillation
amplitude also decreases towards a smaller Landau-Zener velocity, corresponding
to large trise, as the transition becomes adiabatic.

The qubit population at the final frequency ωf is displayed in Fig. 6.9(d), where we
compare it with the numerical simulation and the analytical formula for PLZ, see
Eq. 6.2. Apart from the remnants of Stückelberg oscillations in the measurement,
our data agrees well with the analytical formula. As predicted, the qubit remains
in the excited state for trise = 0 and exponentially approaches the ground state in
the adiabatic limit of trise → ∞. For short rise times in the experiment (trise, exp ≈ 5-
10 ns), we observe an overshoot of the qubit population. Here, the the finite time
response of fast flux lines, particularly the bias tee, likely results in a distortion
of the z-pulses. Additionally, constructive Landau-Zener-Stückelberg interference,
which is not accounted for by the classical simulation, could play a role.

The multistate character of the model is manifested mainly in the Landau-Zener
tunneling probability PLZ, see Eq. 6.2. Effects to the transient dynamics, are more
subtle and only play a quantitative role. In contrast to other experiments on the
Jaynes-Cummings model with a static qubit frequency, the most relevant energy and
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Figure 6.9: Quantum simulation of the transient dynamics of the Landau-Zener model. Quan-
tum (a) and numerical simulation (c) of the qubit population during the transit of the bosonic mode
ensemble, indicated by the dashed orange lines, as a function of the qubit frequency ωq(t) = ωi + vt
and rise time needed to reach the maximum qubit frequency. The initially constant qubit population
undergoes a steep drop after traversing the mode ensemble, followed by the onset of coherent
state oscillations. Their amplitude and periodicity diminish towards the final state frequency ωf.
(b) Quantitative comparison of the experiment (dots) and numerical simulation (lines) for different
rise times, indicated by blue arrows in (a, c). Within the uncertainty of the experimental data,
indicated by the shaded areas, measurement and numerical simulation are in good agreement.
Neighboring traces are shifted by 1 to improve visibility. (d) Qubit population at ωf as a function of
the rise time. While oscillations persist in measurement and simulation, the final qubit population
is well approximated by the generalized Landau-Zener formula, see Eq. 6.2.
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timescale is given by the Landau-Zener velocity v. The coupling strength g mainly
determines the amplitude of the coherent oscillations in the transient dynamics and
PLZ. Compared to v, the mode ensemble has a high density, i.e. a low frequency
spacing ∆ωr, acting more or less like a continuum or single mode. This leads to
a
√

n-scaling of the effective coupling strength in the Landau-Zener tunneling
probability, see Eq. 6.2. Qualitative features of the multistate character appear
when the frequency2 v/∆ωr approaches ∆ωr. In the current device, this cannot
be observed: The large coupling coefficients gn result in a high photon transfer
probability to the bosonic modes. Therefore, when increasing v we reach the
adiabatic limit before (qualitative) effects of the multistate system are observable.

6.5.2 Scattering on an excited bath

Additionally, our experimental setup allows for a preparation of the bosonic modes
in an excited state. Since we cannot easily prepare the resonators in a Fock state,
we admit a short drive pulse to one of the resonators, rather than the qubit. As
discussed in the previous section, the coupling strength to the qubit determines
the amplitude of the Landau-Zener tunneling. For a longer duration tp of the
initialization pulse, higher levels of the resonator are (partially) populated.3 In
the Jaynes-Cummings model, the coupling coefficient of the resonator prepared
in an n-photon Fock state |n〉 to the qubit scales with

√
n, see Sec. 3.3.1. Conse-

quently, the Landau-Zener tunneling probability increases for larger tp. This is
most evident in Fig. 6.10(a), where we monitor the qubit population for a fixed
v (trise = 50 ns) while increasing tp of a pulse applied to resonator b1. Again, we
observe coherent oscillations of the qubit population once it traverses the mode
ensemble. Initially, the oscillation amplitude becomes more prominent for larger
tp. For very long pump tones and, thereby, large coupling coefficients, the transi-
tion becomes adiabatic and the coherent oscillations are suppressed. Figure 6.10
displays the transients dynamics for an 80 ns (b) and 160 ns pump tone (c) applied
to b1 as a function of the Landau-Zener velocity, which are qualitatively similar.
Here, we refrain from a comparison with numerical simulations: The contribution
of Fock states with n > 1 exponentially increases the Hilbert space and thereby
the time of numerical calculations. The experiments indicate that the quantum
simulation remains, for a low average photon number, qualitatively unimpaired by
the population of higher levels of the bath resonators.

2 v has the unit of frequency per time, i.e., 1/s2

3 For tp � 1/Γr, the resonator is prepared in a coherent state, where α depends on the power of the
pulse.
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Figure 6.10: Transient dynamics with an excited resonator mode: pump tone sweep. (a) Transient
dynamics for trise = 50 ns depending on the duration tp of the drive applied to resonator b1. Starting
at tp = 150 ns, the pulse length is increased in increments of 100 ns. For longer tp, higher Fock states
with photon number n are populated, which have a

√
n-enhanced coupling strength to the qubit.

This results in a larger qubit population and more pronounced oscillations thereof. For very long
tp, the transition becomes adiabatic and the oscillatory behavior is suppressed. Neighboring traces
are shifted by 0.25 to improve visibility. (b,c) Transient dynamics as a function of the rise time for
tp = 80 ns (b) and tp = 160 ns (c). The bath resonators are indicated by dashed orange lines.

Figure 6.11 displays the experimental quantum (a-d) and classical QuTiP simu-
lations (e-h) of the transient time dynamics, depending on which bath mode is
excited. Here, we employed a resonator drive with a fixed tone length of tp = 80 ns.
In the QuTiP simulations, we initialize the corresponding resonator in a one-photon
Fock state and restrict all bosonic modes to two energy levels, once again, to re-
duces the computation time. In agreement with the argument above, we find good
qualitative agreement with the experiment. Similar to the results discussed in the
previous section, we observe coherent oscillations of the qubit population after
it traverses the bath. The "center of mass" with respect to trise and amplitude of
these oscillations increases with the resonator frequency. This is captured best in
the picture of multiple consecutive beamsplitters: The qubit population, depends
on the reflected amplitude Pi = exp(2πg2

i /|v|) of the first beamsplitter, i.e., the
Landau-Zener tunneling probability of the i-th resonator, where the photon is
initially injected. Obviously, a larger Pi increases the expected qubit population.
However, each consecutive beamsplitter reduces the qubit photon number, regu-
lated by the transmission amplitude 1− Pj, where Pj is the tunneling probability of
the j-th resonator. Therefore, the maximal qubit population depends on the number
of beamsplitters after the incipient photon injection and of course all tunneling
probabilities. The comparatively low transfer probability when pumping b4 is owed
to the significantly lower coupling strength to the qubit.
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6 Quantum simulation of the multistate Landau-Zener model

Figure 6.11: Transient dynamics with an excited resonator mode for different initial states. Each
row of the panel corresponds to a different initial state. Dashed orange lines indicate the frequencies
of the resonators constituting the mode ensemble. (a-d) In the experiment, the qubit starts in the
ground state and traverses the bosonic modes, one of which is pumped with an 80 ns pulse. From
(a)-(d), the resonators are excited in ascending order, starting with b1. (e-f) QuTiP simulation of the
time evolution (compare a to e, etc.). Computational time is reduced by initializing the bosonic mode
in a one-photon Fock state and by limiting the Hilbert space to two states for each resonator. The
color bar is shared between experiment and simulation. The amplitude of the emerging coherent
oscillations of the qubit population strongly depend on the initially excited resonator.

In the adiabatic limit, the Landau-Zener tunneling can be used to exchange sin-
gle photons between neighboring resonators. The diabatic limit allows for the
preparation of entangled states between the mode ensemble and qubit.

6.6 Conclusion

In this chapter, I gave a short introduction to analog quantum simulation and its
application to open quantum systems. The large Hilbert space provided by multi-
ple bosonic modes is challenging problem to simulate with classical computers.
Subsequently, I introduced one such system: the multistate Landau-Zener model.
It describes several natural phenomena, such as molecular collision and chemical
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reaction dynamics, and has recently seen a renewed interest, due to is application
in cQED and the underlying Jaynes-Cummings model.

I presented our implementation of a quantum simulator of the multistate Landau-
Zener model based on a superconducting quantum circuit. Using this device, we
studied vacuum-Rabi oscillations of the multistate system. We performed an analog
quantum simulation of the multistate Landau-Zener model, where we observed
the transient dynamics in the vicinity of the bosonic mode ensemble depending
on the system’s initial state. Our experimental quantum simulations are in good
agreement with numerical QuTiP simulations. In contrast to previous studies on
the topic, the hallmark of our experiments is the multistate character of the Landau-
Zener model and the exploration of the transient dynamics for different initial
states of the system.
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The goal of this thesis was to build an analog quantum simulator, comprising a
superconducting qubit coupled to several bosonic modes and employ it to emulate
the multistate Landau-Zener model. For this purpose, we established a scalable
and flexible fabrication platform for nanoscaled and coherent Josephson junctions
applicable to superconducting qubits.

At the beginning of this work, a subtractive junction fabrication process was de-
veloped [Ste+20]. This technology relies solely on etching the deposited metal
films in order to structure the nanoscaled electrodes of the Josephson junction,
see Fig. 7.1(a). In contrast to the common shadow evaporation techniques, the
presented method is angle-independent and thus more scalable. The key feature of
our process is the elimination of polymer resist and hard masks from the evapo-
ration chamber. As a consequence, the superconductor-insulator-superconductor
interfaces of the contacts are free of residues. This leads to a low aging of the
junctions critical current, which we confirmed experimentally by comparing the
normal state resistance of test contacts and the frequency of several qubits before
and after ∼ 6 months of aging in ambient conditions, see Fig. 7.1(b). This long-
term stability of the circuit parameters is certainly advantageous, especially for
devices with a large number of Josephson junctions. Furthermore, we fabricated
four transmon qubits using our subtractive processing platform and systematically
characterized their energy loss rates and coherence properties. Albeit, there is room
for improvement, the observed life-, and coherence times are competitive with
those of qubits fabricated from existing technologies. Particularly, the energy loss
and coherence times of our best device on average exceed 20 µs, see Fig. 7.1(c).

In conclusion, we established a scalable process for Josephson junction fabrication,
compatible with standardized nanofabrication methods, and confirmed its ability
to produce coherence qubits.

In the future, we expect that our processing platform constitutes a crucial in-
gredient for the streamlined, large-scale fabrication of superconducting quantum
circuits. The elimination of resist and angle-dependence enables the investigation
of different materials and growth modes for Josephson junctions. Furthermore,
deposition at elevated temperature and in reactive gases becomes possible. This
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Figure 7.1: Coherent superconducting qubits from a subtractive junction fabrication pro-
cess [Ste+20]. (a) SEM micrograph of a Josephson contact fabricated with the subtractive process
developed in this work. (b) The low aging of the junctions normal state resistances indicates clean
superconductor-insulator-superconductor interfaces and results in a long-term stability of the
circuit parameters. (c) Qubits fabricated from our process feature high lifetimes and good coherence
properties.

opens a broad field of material research for qubit junctions, which may further
advance the coherence properties of tomorrow’s superconducting qubits. Addition-
ally, our method is also applicable to all other areas of research where Josephson
junctions are employed.

Using our junction fabrication technology, we built an analog quantum simulator of
the multistate Landau-Zener model. This model describes the scattering processes
of several interacting quantum states. Especially, it is employed to model chemical
reaction dynamics [Nit06] and molecular collisions [Chi96]. Moreover, due to its
generality, it finds application in any system with interacting quantum states and
intersecting energy levels.

The simulation device, see Fig. 7.2(a), features a transmon qubit coupled to five
bosonic modes, four of which couple to the qubit. We observed vacuum Rabi
oscillations of the multi-mode system, which reveal the intricate dynamics of de-
and re-phasing of multiple Fock-states. Furthermore, we employed our device to
emulate the multistate Landau-Zener model. In particular, we studied the transient
dynamics of the system, when the qubit is in the vicinity of the bosonic mode
ensemble. The determining factor for the system’s time evolution is the Landau-
Zener velocity, which is equivalent to the time derivative of the qubit frequency.
Experimentally, we can control this parameter, via the external flux applied to the
qubit’s SQUID. We studied the time evolution for different initial states of the
system. Here, the circuit design enables the excited state preparation of the qubit or
the bosonic modes. We observed coherent oscillations of the qubit population as a
function of time, see Fig. 7.2(b). Both, amplitude and frequency of these oscillations
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Figure 7.2: Analog quantum simulation of the multistate Landau-Zener model. (a) Optical mi-
crograph of the simulation device. The transmon qubit is coupled capacitively to the microwave
oscillators, emulating the bosonic modes in the model. (b) Transient dynamics of the system, where
the qubit was initially prepared in the excited state. The qubit population evolution depends on the
Landau-Zener velocity, which is anti-proportional to the rise time. (c) Time evolution of the qubit,
depending on time tp of a drive tone applied to the lowest frequency bosonic mode. The behavior
transitions to an adiabatic transit without coherent oscillations for large tp.

are mainly determined by the Landau-Zener velocity. Numerical QuTiP simulations
are in good qualitative agreement with our experimental quantum simulation.

When the qubit is initially prepared in the excited state, we also found good
quantitative agreement of the quantum and classical simulation. We verified the
accuracy of our quantum simulation by comparing the experimental data with the
well-known analytical results valid in the limit of t→ ∞.

Additionally, we studied the behavior of the system depending on the average
number of photons in an initially excited bosonic mode. Here, we observed the
transition from a coherent to an adiabatic transit of the qubit-resonator avoided
crossing, see Fig. 7.2(c). We identified the

√
n-enhancement of the coupling strength

between qubit and bosonic mode as the source of this effect, where n is the number
of photons in the resonator.

In conclusion, we successfully built an analog quantum simulator of the multistate
Landau-Zener model. In contrast to previous studies on the topic, the hallmark of
our experiments is the multi-mode character, which is visible both qualitatively
and quantitatively, particularly in the exploration of the transient dynamics for
different initial states.

In upcoming experiments, our simulation device can be used to study several other
exciting aspects of the Landau-Zener model. This includes the time evolution at
elevated temperatures or for a non-linear Landau-Zener velocity. Furthermore,
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diabatic transitions can be employed to prepare entangled states between the qubit
and resonators or just among several resonators. In the adiabatic limit, multiple
transitions of the bath could be used to exchange a single photon between neigh-
boring resonators, which may be interesting in the context of quantum memories
[Nee+08; Rea+16; Kra+19].

Due to the flexibility of the simulation device, it can also be employed to emulate
the multi-mode quantum Rabi model. This becomes particularly interesting in the
ultra-strong coupling regime, which can be emulated simply by adding several
microwave drive tones to the simulation scheme [Bal+12; Bra+17; Lep+18]. Our
experimental demonstration of a densely-packed resonator ensemble paves the way
for building devices featuring dozens of oscillators forming a well-controlled mode
continuum. The resulting spin boson Hamiltonian is the go-to model when describ-
ing decoherence in quantum systems [Leg+87; SMS02] and maps onto a multitude
of fascinating problems, such as the Kondo-effect [Leg+87; Le 12; Gol+13]. Further-
more, it is hard to simulate for classical computers, especially in the ultra-strong
coupling regime [Pue+19]. Therefore, this work marks an important step towards
future experiments on more complex systems with a definitive quantum advantage
over classical devices.

94



Bibliography

[Aga84] G. S. Agarwal: Vacuum-Field Rabi Splittings in Microwave Absorption
by Rydberg Atoms in a Cavity. Physical Review Letters 53.18 (1984),
pp. 1732–1734. doi: 10.1103/PhysRevLett.53.1732 (cit. on p. 80).

[AB63] V. Ambegaokar and A. Baratoff: Tunneling Between Superconductors.
Physical Review Letters 11.2 (1963), pp. 104–104. doi: 10 . 1103 /
PhysRevLett.11.104 (cit. on p. 7).

[Aru+19] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends,
R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell, B. Burkett, Y. Chen,
Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi,
B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S.
Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann,
T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K.
Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D.
Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, J. R. McClean,
M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus,
O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov,
J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D.
Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick,
A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman,
H. Neven, and J. M. Martinis: Quantum supremacy using a programmable
superconducting processor. Nature 574.7779 (2019), pp. 505–510. doi:
10.1038/s41586-019-1666-5 (cit. on pp. 2, 13).

[Asp+05] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-Gordon: Sim-
ulated Quantum Computation of Molecular Energies. Science 309.5741
(2005), pp. 1704–1707. doi: 10.1126/science.1113479 (cit. on pp. 3,
13).

[Aum20] J. Aumentado: Superconducting Parametric Amplifiers: The State of the
Art in Josephson Parametric Amplifiers. IEEE Microwave Magazine 21.8
(2020), pp. 45–59. doi: 10.1109/MMM.2020.2993476 (cit. on p. 24).

[Bak08] V. Bakshi: EUV Lithography. Ed. by V. Bakshi. SPIE, 2008. doi: 10.
1117/3.769214 (cit. on p. 63).

95

https://doi.org/10.1103/PhysRevLett.53.1732
https://doi.org/10.1103/PhysRevLett.11.104
https://doi.org/10.1103/PhysRevLett.11.104
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1126/science.1113479
https://doi.org/10.1109/MMM.2020.2993476
https://doi.org/10.1117/3.769214
https://doi.org/10.1117/3.769214


Bibliography

[Bal+12] D. Ballester, G. Romero, J. J. García-Ripoll, F. Deppe, and E. Solano:
Quantum simulation of the ultrastrong-coupling dynamics in circuit quan-
tum electrodynamics. Physical Review X 2.2 (2012), pp. 1–6. doi: 10.
1103/PhysRevX.2.021007 (cit. on p. 94).

[Bal+19] E. Ballico, A. Bernardi, I. Carusotto, S. Mazzucchi, and V. Moretti, eds.:
Quantum Physics and Geometry. Vol. 25. Lecture Notes of the Unione
Matematica Italiana. Cham: Springer International Publishing, 2019.
doi: 10.1007/978-3-030-06122-7 (cit. on p. 20).

[BCS57] J. Bardeen, L. N. Cooper, and J. R. Schrieffer: Theory of Superconduc-
tivity. Physical Review 108.5 (1957), pp. 1175–1204. doi: 10.1103/
PhysRev.108.1175 (cit. on pp. 5, 6).

[Bar+13] R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y. Chen, Y. Yin,
B. Chiaro, J. Mutus, C. Neill, P. O’Malley, P. Roushan, J. Wenner, T. C.
White, A. N. Cleland, and J. M. Martinis: Coherent josephson qubit
suitable for scalable quantum integrated circuits. Physical Review Letters
111.8 (2013), pp. 1–5. doi: 10.1103/PhysRevLett.111.080502 (cit. on
pp. 27, 44, 55).

[Ber+17] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler,
S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, and M. D.
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Appendix

A Going into the rotating frame

Going into a a rotating frame is a useful mathematical trick to eliminate time
dependent drive fields. In some cases an additional rotating wave approximation
(RWA) can be applied, removing fast rotating terms from the Hamiltonian.

In general, for a unitary transformation we can write

|ψ′〉 = Û† |ψ〉 , (A1)

where |ψ〉 is an arbitrary quantum state and Û† is a unitary transformation, i.e.,
Û†Û = 1. Plugging |ψ′〉 into the Schrödinger equation yields

ih̄
d
dt
|ψ′〉 = ih̄

∂Û†

∂t
|ψ〉+ Û†

=Ĥ|ψ〉︷ ︸︸ ︷
ih̄

∂

∂t
|ψ〉 (A2)

Restricting ourselves to transformations of the form

Û = exp
(
−iÂt

)
, (A3)

where Â is an arbitrary but time-independent operator, Eq. (A2) simplifies to

ih̄
d
dt
|ψ′〉 = −Â

=|ψ′〉︷ ︸︸ ︷
Û† |ψ〉+Û†ĤÛ

=|ψ′〉︷ ︸︸ ︷
Û† |ψ〉, (A4)

which may be written as

ih̄
d
dt
|ψ′〉 =

Ĥ′︷ ︸︸ ︷(
Û† ĤÛ − Â

)
|ψ′〉 , (A5)

a Schrödinger equation for |ψ′〉 .
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Appendix

B Quantum harmonic oscillator

This section comprises a treatment of the quantum LC-oscillator in the basis of
charge operator n̂ and phase operator ϕ̂. The Hamiltonian reads

Ĥosci = 4ECn̂2 +
EL

2
ϕ̂2, (B6)

with EC = e2/C and EL = (Φ0/2π)2/L. Since phase and charge do not commute,
with the commutator [ϕ̂, n̂] = i, we find the creation operator

â =

(
EL

32EC

) 1
4
(

ϕ̂ + i
(

8EC

EL

) 1
2

n̂

)
. (B7)

Rewriting n̂ and ϕ̂ in terms of â† and â yields

ϕ̂ =

(
2EC

EL

) 1
4 (

â† + â
)

n̂ = i
(

EL

32EC

) 1
4 (

â† − â
) (B8)

Finally, inserting in Eq. (B6), the Hamiltonian is rewritten as

Ĥosci =
√

8ELEC

(
â† â +

1
2

)
, (B9)

where the eigenfrequency is calculated as ω = 1/
√

LC, using the definitions of EC
and EL.

C Circuit quantization

The capacitance matrix of the circuit in Fig. 4.6(b) reads

C =

(
Cq + Cc −Cc

−Cc Cr + Cc

)
, (C10)

with the coupling capacitance Cc between qubit and resonator, with a respective
capacitance of Cq and Cr to ground. The inverse of C is given by

C−1 =
1(

Cq + Cr
)

Cc + CqCr

(
Cr + Cc Cc

Cc Cq + Cc

)
. (C11)
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Circuit quantization

Inserting into Eq. (4.16) yields the effective qubit, resonator, and coupling capaci-
tances

Ceff
q = Cq + Cc −

C2
c

Cr + Cc
,

Ceff
r = Cr + Cc −

C2
c

Cq + Cc
,

Ceff
c = Cq + Cr +

CqCr

Cc
,

(C12)

and the coupled qubit-resonator Hamiltonian:

Ĥ =
q̂2

q

2Ceff
q
− EJ cos

(
2π

φ̂q

Φ0

)
+

q̂2
r

2Ceff
r

+
φ̂2

r
2L

+
q̂qq̂r

Ceff
c

. (C13)

Inserting the charge and phase operators in terms of the creation and annihilation
operators â†(â) and b̂†(b̂) of resonator and qubit, respectively, see Eq. (B8), results
in

Ĥ = Ĥtr + Ĥosci −

h̄g︷ ︸︸ ︷
1

Ceff
c

(
h̄ωr

2
Ceff

r

) 1
2
(

h̄
(
ωq − α

)
2

Ceff
q

) 1
2 (

â† − â
) (

b̂† − b̂
)

, (C14)

with the Hamilton operators of the transmon qubit, see Eq. (3.32), and harmonic
oscillator, see Eq. (B9). Here, ωr and ωq are the frequencies of resonator and qubit,
and α is the transmon’s anharmonicity. Finally, a rotating wave approximation
yields the well-known Jaynes-Cummings model, see Eq. (3.23), of a transmon
coupled to a bosonic mode. For a small α and Cc, the coupling strength g of qubit
and resonator simplifies to

g ≈ Cc

(
h̄ωr

2Cr

) 1
2
(

h̄ωq

2Cq

) 1
2

(C15)
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Appendix

D Fabrication parameters

Table 1: Resist application. The parameters include the ramp speed νr and time tr, the acceleration
a of the spin coater, the maximum rotation speed νs and time ts, as well as the bake temperature TB
and time tB.

resist a (rpm/s) νr (rpm) tr (s) νs (rpm) ts (s) TB (°C) tB (s)
S1805

(optical)
7500 500 1 6000 60 115 60

AZ5414E
(ABs)

7500 500 5 1000 60 110 50

PMMA
950K

(e-beam)
7500 300 10 1200 60 145 300

S1818
(protective

coating)
2000 − − 4500 60 80 300

Table 2: Optical resist exposure parameters. Independent of the resist, the UV light wavelength is
365 nm at a lamp power of 500 W. A filter can be used to further decrease the intensity.

resist intensity (mW/cm2) duration (s) filter
S1805

(optical)
2 10 yes

AZ5414E
(ABs)

13 5.5 no

Table 3: Electron-beam exposure parameters. The resist was applied one hour before the installa-
tion in the 50 keV JEOL JBX-5500ZD electron-beam writer.

resist base dose (µC/cm2) current (nA)
PMMA 950K 260 2
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Qubit aging

Table 4: Development parameterss.

resist developer duration (s) stopper/rinse
S1805

(optical)
AZ-developer/H2O

(3:2 ratio)
30 H2O (>60 s)

AZ5414E
(ABs)

AZ-developer/H2O
(1:1 ratio)

70 H2O (>60 s)

PMMA
950K

(e-beam)

MIBK/IPA
(1:3 ratio)

60 IPA (30 s), H2O (60 s)

Table 5: Resist removal and sample cleaning.

type strippers hotplate
ultrasonic
cleaning

rinse

pre-processing
piranha solution,

acetone
in NEP

20 min at 90 °C
in NEP,
5 min

IPA

post-processing
acetone (flush),

NEP (> 12 h)
in NEP,

> 4 h at 90 °C
− IPA

E Qubit aging

Table 6 comprises the qubit frequencies of the sample studied in Sec. 5.3, before
and after ∼ 6 months of aging in ambient conditions.

Table 6: Effects of aging on the qubit frequency. The table comprises the qubit frequency ωq, new

before and ωq, old after ∼ 6 months of aging in ambient conditions, as well as the frequency shift
∆ωq = ωq, new −ωq, old.

qubit ωq, new (GHz) ωq, old (GHz) ∆ωq (GHz)
q1 3.548 3.556 0.008
q2 3.950 3.959 0.009
q3 3.161 3.201 0.040
q4 3.324 3.345 0.021
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