KIT | KIT-Bibliothek | Impressum | Datenschutz

A realizable filtered intrusive polynomial moment method

Alldredge, Graham; Frank, Martin ORCID iD icon; Kusch, Jonas; McClarren, Ryan

Abstract:

Intrusive uncertainty quantification methods for hyperbolic problems exhibit spurious oscillations at shocks, which leads to a significant reduction of the overall approximation quality. Furthermore, a challenging task is to preserve hyperbolicity of the gPC moment system. An intrusive method which guarantees hyperbolicity is the intrusive polynomial moment (IPM) method, which performs the gPC expansion on the entropy variables. The method, while still being subject to oscillations, requires solving a convex optimization problem in every spatial cell and every time step.

The aim of this work is to mitigate oscillations in the IPM solution by applying filters. Filters reduce oscillations by damping high order gPC coefficients. Naive filtering, however, may lead to unrealizable moments, which means that the IPM optimization problem does not have a solution and the method breaks down. In this paper, we propose and analyze two separate strategies to guarantee the existence of a solution to the IPM problem. First, we propose a filter which maintains realizability by being constructed from an underlying Fokker-Planck equation. Second, we regularize the IPM optimization problem to be able to cope with non-realizable gPC coefficients. ... mehr


Volltext §
DOI: 10.5445/IR/1000132806
Veröffentlicht am 18.05.2021
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 05.2021
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000132806
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 25 S.
Serie CRC 1173 Preprint ; 2021/23
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Externe Relationen Siehe auch
Schlagwörter uncertainty quantification, conservation laws, hyperbolic, intrusive, entropy, filtering, realizability
Nachgewiesen in arXiv
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page