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Abstract

Supersingular Isogeny Diffie-Hellman (SIDH) is a key exchange scheme that is believed to
be quantum-resistant. It is based on the difficulty of finding a certain isogeny between given
elliptic curves. Over the last nine years, optimizations have been proposed that significantly
increased the performance of its implementations. Today, SIDH is a promising candidate in
the US National Institute for Standards and Technology’s (NIST’s) post-quantum cryptography
standardization process.

This work is a self-contained introduction to the active research on SIDH from a high-level,
algorithmic lens. After an introduction to elliptic curves and SIDH itself, we describe the
mathematical and algorithmic building blocks of the fastest known implementations.

Regarding elliptic curves, we describe which algorithms, data structures and trade-offs regard-
ing elliptic curve arithmetic and isogeny computations exist and quantify their runtime cost in
field operations. These findings are then tailored to the situation of SIDH. As a result, we give
efficient algorithms for the performance-critical parts of the protocol.
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Notation

Algebra and algebraic geometry

� The ring of natural numbers excluding zero
� The ring of integers
� The field of real numbers
� The field of complex numbers
�q The field with q ∈ � elements, if existent
K K being a field, the algebraic closure of K
K[X1, . . . ,Xn] The polynomial ring in X1, . . . ,Xn

K(X1, . . . ,Xn) The fraction field of K[X1, . . . ,Xn]

⟨P1, . . . , Pk ⟩ P1, . . . , Pk being elements of a group, the subgroup they generate
G[n] The n-torsion subgroup of an abelian group G
[n] The multiplication-by-n map in an abelian group
C/K A curve C defined over the field K
E(L) E/K being an elliptic curve and K ⊆ L ⊆ K , the subgroup of

L-rational points

Supersingular Isogeny Diffie-Hellman protocol

For the exact way the parameters have to be chosen and which conditions they must fulfill,
see Chapter 2.

General conventions

The fact that SIDH is symmetric with regard to the parties Alice and Bob is reflected in the
notation as follows.
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·A Variables essentially relevant to Alice
·B Variables essentially relevant to Bob
X Either A or B, representing a party of the protocol
Y Either A or B, representing the party which is complementary to X

Public parameters

ℓX , eX A small prime and a positive integer yielding a prime power ℓX eX

nX Shorthand for ℓX eX

p A prime satisfying p = nAnB f ± 1 for some f ∈ � coprime to nAnB
E0 The base curve, a supersingular elliptic curve defined over �p2
PX ,QX Basis points of E0[nX ], the torsion subgroup used for X ’s secret key.

Protocol

(aX ,bX ) Secret of X : an element of order nX of �/nX� × �/nX�
RX The kernel point [aX ]PX + [bX ]QX

NX The subgroup of E0 generated by RX
φX ,EX The separable isogeny E0 → EX with kernel NX and its codomain EX

P ′X ,Q
′
X The basis points φY (PX ),φY (QX ) of EY [nX ]

R′X The kernel point φY (RX )
ψX ,EXY The separable isogeny EY → EXY with kernel

〈
R′X

〉
and its codomain EXY
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Preface

The world has never been more connected than now. People communicate with others of their
kind, digital, over long distances, every day. The ubiquity of communication, often sensible,
has led to a quick spread of cryptography into our everyday lives, even if many people rely on
it without even noticing.

Cryptography has become one of the pillars of how we all exchange messages. These days,
however, when the availability of highly scalable quantum computers seems to be only a
matter of years, most of modern asymmetric cryptography has become vulnerable. Already
today, in the absence of competitive quantum computers, it is vulerable, because the gist of
cryptography is the promise that no one in the near future will be able to break it with a
reasonable probability.

At the same time, as far as we can tell today, asymmetric cryptography is not lost. The US
National Institute of Standards and Technology (NIST) has initiated a post-quantum cryptogra-
phy standardization process and 17 candidates have been submitted to the second round of
that process.

One of the submissions is Supersingular Isogeny Key Encapsulation (SIKE), at whose heart lies
a key exchange protocol called Supersingular Isogeny Diffie-Hellman (SIDH). Its comparatively
short key sizes make it helpful in certain situations. As a protocol, it is relatively slow, but the
performance has been improved significantly in the last few years.

We start with the introduction of elliptic curves and relevant algebro-geometric concepts in
their environment. Next, we briefly introduce SIDH and its underlying security assumptions. In
the following chapters, we discuss algorithms that helped to obtain efficient implementations
on three levels: fields, elliptic curves and the high-level protocol.

This work is hoped to be a useful introduction to the algorithmic optimizations behind modern
SIDH implementations. It is supposed to enable the reader to understand, on a high level, how
the optimizations work. Especially out of scope are low-level implementation and cryptanalysis
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issues, except when they are relevant for the algorithm design.

While the thesis is intended to be self-contained, the reader is assumed to be comfortable with
basic abstract algebra and to have an understanding of basic cryptographic concepts such as
the concept of asymmetric cryptography.
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1 Elliptic curves

This chapter is about the mathematical preliminaries, namely the study of elliptic curves. Most
stated facts have been taken from Silverman’s book [Sil09].

1.1 The affine and projective plane

Let K be a field and denote its algebraic closure by K for the rest of the section.

We begin with some algebraic geometry: the definition of affine and projective spaces and
their points.

1.1.1 The affine plane

Definition 1.1 (Affine plane) Let K be a field. The affine plane 1 over K is the set of 2-tuples

�
2(K) B {P = (x1,x2) : x1,x2 ∈ K} .

Its elements are called (K-rational) points. ⋄

The affine plane �2(K) is really just the set K2, but it is equipped with a certain topology in
algebraic geometry. The topology is not relevant for our purposes, though.

1.1.2 The projective plane

Consider the equivalence equation on K3 \ {(0, 0, 0)} given by

(x1,x2,x3) ∼ (λx1, λx2, λx3)

1 The affine plane over K is the affine 2-space over K , according to the definition of Silverman [Sil09, Section I.1].
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for all λ ∈ K \ {0}. It identifies all points which are on the same line through the origin. The
equivalence class of (x1,x2,x3) is denoted by [x1 : x2 : x3].

Definition 1.2 (Projective plane) Let K be a field. The projective plane 2 over K is the set

�
2(K) B

{
[x1 : x2 : x3] : (x1,x2,x3) ∈ K3 \ {(0, 0, 0)}

}
.

Its elements are called (K-rational) points. ⋄

The affine plane �2(K) is considered a subset of the projective plane �2(K) by virtue of the
inclusion sending (x1,x2) to [x1 : x2 : 1]. The remaining points are of the form [x1 : x2 : 0] and
are called points at infinity.

1.2 Algebraic curves

Let f ∈ K[X ,Y ] be a polynomial. It can be evaluated at a point (x ,y) ∈ �2(K) in the obvious
way. We are interested in the affine solutions P ∈ �2(K) of

f (P) = 0.

The following definition is used to handle this geometric object.

Definition 1.3 (Affine algebraic curve) LetK be a field andK its algebraic closure. An affine
algebraic curve3 C defined over K is the zero set of an irreducible polynomial f ∈ K[X ,Y ] in
�2(K). We write

C/K : f (x ,y) = 0.

If L is a subfield of K , the set of L-rational points is denoted by C(L). ⋄

Example 1.4 Let f B Y 2 − X ∈ �[X ,Y ]. It defines (over �) an affine algebraic curve

Ca/� : y2 = x .

2 The projective plane over K is the projective 2-space over K , according to the definition of [Sil09, Section I.2].
3 Silverman [Sil09, Section II.1] only defines projective algebraic curves. They are projective varieties of

dimension one. Silverman’s definition is equivalent to the one given below. The notion of an affine algebraic
curve is obtained by removing the points at infinity.
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Indeed, the fundamental theorem on homomorphisms implies that

�[X ,Y ]/(Y 2 − X ) � �[Y ].

Because �[Y ] is an integral domain, Y 2 − X is a nonzero prime element in �[X ,Y ]. Because
�[X ,Y ] is an integral domain, in which every nonzero prime element is irreducible, we conclude
that Y 2 − X is irreducible.

There are �-rational points on C such as (1, 1), but even though C is defined over �, the point
(2,
√
2) lies on C and is not �-rational. ⋄

It is relevant for the later study of elliptic curves to view algebraic curves as subsets of the
projective plane. It seems plausible to define them again as zero sets of polynomials. However,
since homogeneous coordinates are not unique, “zero sets” on the projective plane are not
well-defined for all polynomials. For example, XYZ − 1 is zero at (1, 1, 1) but not at (2, 2, 2),
although both represent the same projective point [1 : 1 : 1].

There are, however, polynomials with a well-defined zero set.

Definition 1.5 (Homogeneous polynomial) Let K be a field and K its algebraic closure. A
polynomial f ∈ K[X ,Y ,Z ] is homogeneous4 of degree d if for all λ ∈ K and x ,y, z ∈ K ,

f (λx , λy, λz) = λd f (x ,y, z). ⋄

Now we can define projective algebraic curves.

Definition 1.6 (Projective algebraic curve) Let K be a field and K its algebraic closure. A
projective algebraic curve5 C defined over K is the zero set of a homogeneous irreducible
polynomial f ∈ K[X ,Y ,Z ] in �2(K). We write

C/K : f (x ,y, z) = 0. ⋄

Indeed, if λ , 0, the left and right hand side of the equation in Definition 1.5 are both zero or
none of them is zero. Furthermore, setting z = 1 (thus, removing points at infinity), an affine

4 This is a special case of Silverman [Sil09, Chapter I.2].
5 This definition is equivalent to the one given by Silverman [Sil09, Section II.1] in the case of the projective

plane. Note that the dimension of a projective variety (I.2) equals the dimension of the underlying affine
curve as an affine variety (I.1), which in turn is one if and only if it can be defined by a single irreducible
polynomial.
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algebraic curve remains.

Conversely, an affine algebraic curve gives rise to a projective one by homogenization of the
polynomial f ∈ K[X ,Y ]. Homogenization is the operation of multiplying all monomial
summands of f with powers of Z until they all have the same degree. For example, the
homogenization of XY + 2X + 3 is XY + 2XZ + 3Z 2.

Example 1.7 The affine algebraic curve from Example 1.4

Ca/� : y2 = x

gives rise to the projective algebraic curve

Cp/� : y2 = xz.

We know that Y 2 − X is irreducible and it follows that Y 2 − XZ is: Assume for contradiction
that f B Y 2 − XZ = д · h for two non-units д,h ∈ �[X ,Y ,Z ] of degree 1. Both factors are
homogeneous because f is. Consider the dehomogenization map

H−1 : �[X ,Y ,Z ] → �[X ,Y ], X 7→ X , Y 7→ Y , Z 7→ 1.

Applying H−1, we obtain a factorization of the irreducible polynomial

Y 2 − X = H−1(f ) = H−1(д) · H−1(h).

Irreducibility of the left hand side implies that, without loss of generality, H−1(д) = 1. Because
д is homogeneous and has degree 1, it follows that д = Z . However, д = Z does not divide
f = Y 2 − XZ . This is a contradiction, so Y 2 − XZ must be irreducible. ⋄

When talking about a curve, a projective algebraic curve is meant. For the sake of simplicity,
projective algebraic curves are also sometimes specified by the corresponding affine equation.

1.3 Morphisms

Definition 1.8 (Rational map on the projective plane) Let K ⊆ L ⊆ K a tower of fields.
If fx , fy and fz are same-degree homogeneous polynomials from L[X ,Y ,Z ], denote by φ =[
fx : fy : fz

]
the partial function from �2(K) to �2(K) defined as follows.
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The functionφ is regular at a point P = [x : y : z] ∈ �2(K) if and only if there is a λ ∈ K(X ,Y ,Z )
such that дx = λfx , дy = λfy and дz = λfz are same-degree homogeneous polynomials
and φ(P) B

[
дx (x ,y, z) : дy (x ,y, z) : дz (x ,y, z)

]
is specified by well-formed homogeneous

coordinates. The points of definition of φ are its regular points.

We call
[
fx : fy : fz

]
a rational map on �2(K) that is defined over L. ⋄

Definition 1.9 (Rational map of curves) Let K be a field andC1 andC2 curves defined over
K . A rational map defined over L from C1 to C2 is a partial function from C1 to C2 that is the
restriction

[
fx : fy : fz

]
|C1 of a rational map defined over L on �2(K) with at least one regular

point in C1. A morphism from C1 to C2 is a rational function from C1 to C2 that is regular
everywhere.

A rational map is considered to be defined over K if L is not given explicitly. ⋄

1.4 Elliptic curves

In the rest of the thesis we are only interested in elliptic curves over a field with characteristic
p = 0 or p > 3. Such fields will be called admissible. The zero-characteristic case is only
relevant for examples and visualizations.

1.4.1 Definition

Definition 1.10 (Elliptic curve) Let K be an admissible field. An elliptic curve 6 E defined
over K is a curve parameterized by a degree-three polynomial f ∈ K[X ] with three distinct
roots in K with equation

E/K : y2 = f (x). ⋄

Example 1.11 The elliptic curve E/�: y2 = x3 − x + 1 is depicted in Fig. 1.1.

An elliptic curve has exactly one point at infinity, which is denoted by O ∈ C .

Elliptic curves are said to be isomorphic if there is an isomorphism defined over K , i. e. a
morphism with an inverse morphism, between them. Elliptic curves that are isomorphic

6 This is a special case of the definition given by Silverman [Sil09, Section III.3]. The requirement that f has
three distinct roots is equivalent to the requirement that E is smooth. Indeed, the singular points (x ,y) of E
are exactly those with f (x) = f ′(x) = 0, hence, with x being a zero of f of multiplicity two or higher.
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1
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Figure 1.1: The elliptic curve E/�: y2 = x3 − x + 1

are said to belong to the same isomorphism class. There is a quantity that characterizes
isomorphism classes: According to Silverman [Sil09, Proposition III.1.4b], elliptic curves are
isomorphic if and only if they have the same j-invariant.

Definition 1.12 (j-invariant) Let K be an admissible field and E the elliptic curve

E/K : y2 = c
(
x3 + a2x

2 + a4x + a6
)
.

The j-invariant 7of E is

j(E) B 16
(
−4a34 − 27a26 + 18a2a4a6 − 4a32a6 + a22a24

)
. ⋄

1.4.2 Group structure

What makes elliptic curves interesting for cryptography is that they admit a group structure
with neutral element O. The group operation, as derived by Silverman [Sil09, Algorithm III.2.3],
is deeply connected to the algebraic structure of the curve.

7 Compare to the definition of the j-invariant by Silverman [Sil09, Section III.1]. The formula is obtained after
the linear coordinate change ỹ =

√
c
−1
y to get rid of the c .
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Theorem 1.13 (Group law) Let E be an elliptic curve given by

E : y2 = c
(
x3 + a2x

2 + a4x + a6
)
,

and suppose that P1 = (x1,y1) and P2 = (x2,y2) are points on E. Then:

(a) O is the neutral element of E.

(b) The inverse of P1 is −P1 = (x1,−y1). In particular, if x1 = x2 and y1 = −y2, then
P1 + P2 = O.

(c) To obtain an explicit formula for the sum P +Q if P1 is not inverse to P2, we distinguish
two cases.

(i) If P = Q , the tangent at P is L : y = λx + ν with

λ = c
3x21 + 2a2x1 + a4

2y1
, ν = c

−x31 + a4x1 + 2a6
2y1

.

(ii) If P , ±Q , the secant at P is L : y = λx + ν with

λ =
y2 − y1
x2 − x1

, ν =
y1x2 − y2x1
x2 − x1

.

In both cases, P + Q = (x3,y3) is the inverse of the third intersection (counted with
multiplicities) of L and E and given by

x3 =
(
c−1λ2 − a2

)
− x1 − x2, y3 = − (λx3 + ν ) .

These formulas make (E,+) an abelian group. ⋄

Proof Silverman [Sil09, Algorithm II.2.3] gives the proof for the case c = 1. Because isomor-
phisms of elliptic curves preserving O preserve the group law, the general case is recovered
using the coordinate transformation ỹ =

√
c
−1
y and the group law on the curve

Ẽ : ỹ2 = x3 + a2x
2 + a4x + a6. ■

The geometric interpretation of the group law is shown in Fig. 1.2.

Remark 1.14 The theorem above implies that if K ⊆ L ⊆ K is a tower of fields and E is an
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(b) Construction of P +Q

Figure 1.2: The group law on the curve C/�: y2 = x3 − x + 1 has a geometric interpretation.
All points of intersection of a straight line with C always sum up to O. Note that
points of intersection are counted with multiplicities.
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elliptic curve defined over K , the set of L-rational points E(L) is a subgroup of E. ⋄

1.4.3 Special curves

This section presents special types of curves that are of particular interest for applied cryptog-
raphy.

Short Weierstraß curves

Definition 1.15 (Short Weierstraß curve) A short Weierstraß curve 8 defined over an admis-
sible field K is an elliptic curveWa,b that is given by the equation

Wa,b : y2 = x3 + ax + b . (1.1)

For the sake of the right-hand side having distict roots, a and b must satisfy 4a3 + 27b2 , 0.⋄

Fig. 1.1 is an example of a short Weierstraß curve.

Montgomery curves

Montgomery curves are special elliptic curves that have been introduced by Montgomery
[Mon87] in 1987.

Definition 1.16 (Montgomery curve) A Montgomery curve defined over an admissible field
K , with parameters A and B from K , is an elliptic curve EA,B that is given by the equation

MA,B : By2 = x3 +Ax2 + x . (1.2)

The parameters are required satisfy B(A − 2)2 , 0. ⋄

Twisted Edwards curves

Twisted Edwards curves have been introduced by Bernstein et al. [Ber+08] in 2008. They are
not elliptic.

8 Compare to Silverman [Sil09, Remark III.1.3].
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Definition 1.17 (Twisted Edwards curve) A twisted Edwards curve defined over a admissible
field K with parameters a and d from K is a curve Ea,d given by the equation

Ea,d : ax2 + y2 = 1 + dx2y2.

The parameters must fulfil ad (a − d) , 0. ⋄

Relations between short Weierstraß, twisted Edwards and Montgomery curves

Every elliptic curve defined over K is isomorphic over K to a short Weierstraß curve defined
over K . While twisted Edwards curves are not elliptic, they are close to an elliptic curve.
Consider a twisted Edwards curve Ea,d . Then with

A B 2 (a + d) (a − d) , B B 4/(a − d) ,

MA,B is a Montgomery curve. Bernstein et al. [Ber+08] found two surjective rational maps

Φ : MA,B → Ea,d , [u : v : w] 7→ [u (u +w) : v (u −w) : v (u +w)]

and
Ψ : Ea,d → MA,B , [x : y : z] 7→ [x (z + y) : z (z + y) : x (z − y)]

that are inverses as far as they are defined. Such a pair of mutually inverse surjective rational
maps is called a birational equivalence of curves. In fact, Φ is even a morphism.9 The only
points of nonregularity ofΨ are the points at infinity [1 : 0 : 0] and [0 : 1 : 0] so thatΨ is an
injective map from the affine twisted Edwards curve into the projective Montgomery curve.
Its image misses out not more than four points of order 2 and 4 ofMA,B .

1.4.4 Isogenies

Under which circumstances is a morphism of elliptic curves φ : E1 → E2 a group homo-
morphism? A necessary condition is that φ preserves the point at infinity because it is the
neutral element. This condition turns out to be sufficient (for a proof refer to Silverman [Sil09,
Theorem III.4.8]) and it motivates the following definition.

9 The reason whyΦ is a morphism is thatMA,B is an elliptic curve and as such smooth.
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Definition 1.18 (Isogeny) Let K be an admissible field and E1 and E2 elliptic curves over K .
An isogeny 10 from E1 to E2 is a morphism

φ : E1 → E2 satisfying φ(O) = O. ⋄

Nonzero isogenies are always surjective (Silverman [Sil09, Section III.4]). Their kernels are
always finite (Silverman [Sil09, Corollary III.4.9]).

1.4.5 Isogenies over positive characteristic

Remark and definition 1.19 (Frobenius map) Let K be an admissible field of character-
istic p > 3 and E/K : y2 = c

(
x3 + a2x

2 + a4x + a6
)
an elliptic curve. Then E(p)/K : y2 =

cp
(
x3 + a

p
2x

2 + a
p
4x + a

p
6

)
is also an elliptic curve and the Frobenius 11 map

τ : E → E(p), [x : y : z] 7→
[
xp : yp : zp

]
is an isogeny. ⋄

The Frobenius map τ is a group isomorphism, so for every isogeny φ with kernel N , we obtain
more isogenies with the same kernel, namely τ e ◦ φ. Isogenies that cannot be obtained by
composing τ with another isogeny are called separable. This is a characterization proven by
Silverman [Sil09, Corollary II.2.12].

Given a finite subgroup N of an elliptic curve E, there is at least one separable isogeny E → E1

with kernel N , and if there is another one E → E2, then there must be an isomorphism E1 � E2

that makes the following diagram commute (Silverman [Sil09, Corollary III.4.12]).

E

E1

E2

φ1

φ2

�

The codomain (E1 or E2 above) is often denoted by E/N . The notation is motivated by the
fact that the codomain is isomorphic to the quotient group E/N by virtue of the fundamental
theorem on group homomorphisms.

10 Compare to Silverman [Sil09, Section III.4].
11 Compare to Silverman [Sil09, Exapmle III.4.6].
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A separable isogeny is said to have degree k ∈ � if the order of its kernel is k .

We also need the following result.

Theorem 1.20 (Order of isogenous curves) Let E1,E2 be elliptic curves defined over �p2 , a
field over characteristic p > 3. If there is an isogeny E1 → E2 defined over �p2 , then E1 and E2
have the same number of �p2-rational points. ⋄

Proof The theorem is due to Tate [Tat66, Theorem 1]. ■

1.4.6 Vélu’s formulas

Let K be a finite field and E an elliptic curve over K of the form

E : y2 = c
(
x3 + a2x

2 + a4x + a6
)
,

for example, a short Weierstraß or Montgomery curve, and G a finite subgroup. The separable
isogeny φ : E → E ′ with kernel G is given explicitly by Vélu’s [Vél71] formulas.12 For points
P ∈ E outside G, the image is given by

x(φ(P)) = x(P) +
∑

Q ∈G\{O}

(x(P +Q) − x(Q))

and
y(φ(P)) = y(P) +

∑
Q ∈G\{O}

(y(P +Q) − y(Q)) .

The image curve E ′ is

E ′ : y2 = c
(
x3 + a2x

2 + a′4x + a
′
6
)

for some a′4 and a′6 in K .

In particular, the coefficient a2 is preserved. So if E is a short Weierstraß curve, then E ′ is also
a short Weierstraß curve. However, E ′ need not be a Montgomery curve even if E is.

1.4.7 Torsion subgroups and supersingularity

Our interest in finite subgroups will lead us to the study of torsion points and torsion groups.

12 Vélu only proved the case c = 1 but the general case easily follows from pre- and postcomposing linear
transformations that scale the y-coordinate.
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Definition 1.21 (Torsion point, torsion group) Let E be an elliptic curve. A torsion point
on E is a point P on E of finite order. More specifically, P is anm-torsion point if [m]P = O.

Them-torsion group of E, denoted by E[m], is the subgroup of E that consists of allm-torsion
points. ⋄

Remark 1.22 Them-torsion subgroup is the kernel of the multiplication-by-m isogeny [m].⋄

Let K be a field of prime characteristic p > 3 and E an elliptic curve over K . Silverman [Sil09,
Theorem V.3.1] gives a description of E’s torsion subgroups (up to isomorphism).

Ifm ∈ � is not divisible by p,
E[m] �

�

m�
×
�

m�
. (1.3)

However, there are two possibilities for powers of p. One of the following equations holds:

E[pe ] � 0, for all e ∈ �, (1.4)

or
E[pe ] �

�

pe�
, for all e ∈ �. (1.5)

Although we do not need this fact, the structure of a torsion subgroup that does not match
any of the above cases can be obtained using the fundamental theorem of finitely generated
abelian groups.

Definition 1.23 (Ordinary and supersingular) Those elliptic curves that satisfy Eq. (1.5)
are called ordinary. If they satisfy (1.4) instead, they are called supersingular. ⋄

Supersingular curves are fundamental for the cryptography in the following chapters. They
are always isomorphic to an elliptic curve defined over �p2 (Silverman [Sil09, p. V.3.1]).

1.4.8 Special supersingular curves

The following result is important for the efficient representation of torsion points on the elliptic
curves that are relevant to SIDH.

Theorem 1.24 (Torsion points are �p2-rational) Let p be a prime p > 3, E a supersingular
elliptic curve and

��E(�p2)�� = (p ± 1)2. Then
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E[p ± 1] = E(�p2). ⋄

Proof Let k B p ± 1 and t B p2 + 1 −
��E(�p2)�� = ∓2p. Then t2 = 4p2.

We already know from Remark 1.14 that E(�p2) is a subgroup of E. According to Schoof [Sch87,
Lemma 4.8], we obtain

E(�p2) �
�

k�
×
�

k�
. (1.6)

This implies that E(�p2) is a subset of E[k]. On the other hand, Eqs. (1.3) and (1.6) imply that
both groups have exactly k2 elements. It follows that they are equal. ■
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2 Supersingular isogeny cryptography

The prospect of large quantum computers in the near future motivated cryptographers to
develop cryptographic primitives that are conjectured not to be efficiently breakable, even
with quantum computers.

2.1 Supersingular Isogeny Diffie-Hellman

Supersingular Isogeny Diffie-Hellman (SIDH) key exchange can be considered as a modification
of the well-known Diffie-Hellman key exchange. In the same way as the latter gives rise to
ElGamal public-key encryption, SIDH can be used to construct a public-key encryption scheme
whose security can be reduced to a well-defined, though less well-understood, mathematical
hardness assumption analogous to the Decisional Diffie Hellman (DDH) and Computational
Diffie Hellman (CDH) problems.

2.1.1 History of isogeny-based cryptography

Probably the first application of elliptic curves and their group structure in the context of
public-key cryptography was their use in classical schemes such as El-Gamal or Diffie-Hellman.
Their use was motivated by the observation that the discrete logarithm problem was hard to
solve in some ordinary elliptic curves using a classical computing model. The same problem,
however, is easy to solve in a quantum computing model.

A cryptographic scheme proposed by Couveignes [Cou06] and independently rediscovered by
Rostovtsev and Stolbunov [RS06] seemed to depend on a harder problem: simply said, finding
an isogeny between two given ordinary elliptic curves. But Childs, Jao, and Soukharev [CJS10]
showed that the scheme of Couveignes, that relied fundamentally on the commutativity of the
group action of the ideal class group of the endomorphism ring on the curve, turned out to be
vulnerable to a subexponential quantum attack using a quantum algorithm for the so-called
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abelian hidden shift problem.

It is not the case that this attack forbids the use of the Couveignes-Rostovtsev-Stolbunov
scheme in practice; as Castryck et al. [Cas+18] have pointed out, RSA is still considered secure
notwithstanding the fact that there is a subexponential attack on the factorization problem,
and the more recent Commutative Supersingular Isogeny Diffie-Hellman (CSIDH) scheme of
Castryck et al. [Cas+18], that was designed for a better performance instead of mitigating the
hidden shift attack, still relies on a commutative group action.

Another branch of research was opened up earlier by Feo, Jao, and Plût [FJP11] when they
proposed SIDH, that is fundamentally different from the Couveignes-Rostovtsev-Stolbunov
scheme and uses supersingular elliptic curves to avoid the commutativity of the ideal class
group. This is the protocol that this thesis is concerned with.

2.1.2 SIDH protocol

Feo, Jao, and Plût [FJP11] proposed SIDH in 2011. Assume Alice and Bob want to exchange a
key using SIDH. They proceed as follows(see Fig. 2.1):

Alice
Secret: aA, bA

Bob
Secret: aB , bB

E0 E0

EA

EA

EB

EB

EAB

j(EAB)

EBA

j(EBA)

φA

ker =
NA

EA,φA(PB),φA(QB)

EB ,φB(PA),φB(QA)

φB
ker = NB

ψAker = φB (NA )

ψB

ker =
φA(

NB)

Figure 2.1: Visualization of an SIDH key exchange between Alice and Bob

1. Alice and Bob publicly agree on parameters: small distinct primes ℓA, ℓB , powers nA =
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ℓA
eA and nB = ℓB

eB , a prime p = nAnB f ± 1 where f is coprime to ℓA and ℓB , a
supersingular curve E0 over �p2 of cardinality (ℓAeAℓBeB f )2 and bases (PA,QA), (PB ,QB)

of the free�/nA�- or�/nB�-modules E0[nA] and E0[nB]. The parameters should satisfy
nA ≈ nB .

2. Using the base of E0[nA], Alice chooses two random secret integer coefficients aA,bA at
random such that RA = [aA]PA + [bA]QA has order nA and computes a separable isogeny
defined over �p2 , namely φA : E0 → EA, with kernel NA = ⟨RA⟩. Then she sends EA and
P ′B = φA(PB), Q

′
B = φA(QB) to Bob. Bob proceeds analogously.

3. Having received EB , P ′A and Q ′A, Alice computes R′A = φB(RA) using the received data
and her secret aA,bA. Then she computes a separable isogeny defined over �p2 , namely
ψA : EB → EAB . The j-invariant of EAB is the shared secret. Bob proceeds analogously
and finally computes EBA and its j-invariant.

Indeed, EBA and EAB are isomorphic since both are the codomains of a separable isogeny with
kernel ⟨NA,NB⟩, so that Alice and Bob compute the same shared secret.

Remark 2.1 By construction and Theorem 1.20, all curves in the isogeny class of E0 have order
|E0 | and fulfil the requirements of Theorem 1.24. Thus, all points that occur in the protocol are
�p2-rational and can be easily represented as tuples of �p2-valued coordinates. ⋄

2.1.3 Semantical security of SIDH and the derived public-key cryptosystem

The central security assumption regarding SIDH are the Supersingular Computational Diffie-
Hellman (SSCDH) and the Supersingular DecisionDiffie-Hellman (SSDDH) problem, introduced
by Feo, Jao, and Plût [FJP11]. Before stating them, it is customary to start with a definition.

Definition 2.2 Let X ∈ {A,B}. Denote by KX the distribution of (aX ,bX ), both chosen at
random from �/ℓX eX� such that at least one is coprime to ℓX . Furthermore, denote by
ιX (aX ,bX ) a separable isogeny whose kernel is ⟨[aX ]PX + [bX ]QX ⟩, and by jAB(aA,bA,aB ,bB)

the j-invariant of
E0/⟨[aA]PA + [bA]QA, [aB]PB + [bB]PB⟩ . ⋄

Problem 2.3 (Supersingular Computational Diffie-Hellman (SSCDH)) For any choice
of X = A,B, let (aX ,bX ) ← KX , and φX ← (ιX (aX ,bX ) : E0 → EX ).

Given the curves EA,EB and the points φA(PB), φA(QB), φB(PA) and φB(PB), compute the
j-invariant jAB(aA,bB ,aB ,bB). ⋄
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Problem 2.4 (Supersingular Decision Diffie-Hellman (SSDDH)) For any i = 1, 2 and for
X = A,B, let

(
aX ,i ,bX ,i

)
← KX , and let φX ←

(
ιX (aX ,1,bX ,1) : E0 → EX

)
.

Also let jAB B jAB(aA,i ,bA,i ,aB,i ,bB,i ), where i = 1, 2 is chosen at random.

Now, given (EA,EB ,φA(PB),φA(QB),φB(PA),φB(QA), jAB), decide whether i = 1 or i = 2. ⋄

According to Feo, Jao, and Plût [FJP11], SIDH fulfils semantical security properties provided
that SSDDH is hard. For example, the SIDH key-exchange protocol itself is session-key secure
in the authenticated-links adversarial model of Canetti and Krawczyk [CK01]. The derived
public-key encryption protocol, that uses a hash function familyH , is IND-CPA secure ifH is
entropy smoothing. (For a definition of entropy smoothing, one may resort to Shoup [Sho04]).

Jao et al. [Jao+20] proved in the updated specification for their submission that an IND-CCA-
secure public-key encryption protocol, SIKE, can be obtained by applying a post-quantum vari-
ant of the Fujisaki-Okamoto transformation from Hofheinz, Hövelmanns, and Kiltz [HHK17].
Here, the underlying security assumption is the weaker SSCDH hardness assumption.

No subexponential attack against the original protocol by Feo, Jao, and Plût [FJP11] is known.

2.2 Practical security

Public parameters Table 2.1 shows the primes p for four realistic public parameter sets that
are believed to provide a certain security strength. These primes are the ones that are most
likely to be used in practice because they have been submitted to the NIST standardization
process by Jao et al. [Jao+20].

Side-channel security It is important to remember that even if SIDH turns out to be
theoretically secure, implementations of the protocol might leak information through side
channels. For example, if the execution time of a protocol step is a function of some secret value,
an attacker might be able to gain information about the secret by analyzing response times
during the protocol. Even if there are several other side channels (e. g., power consumption),
time is the only one considered in this thesis. In the following chapters, algorithms with
inherent time-based side-channel vulnerabilities are avoided, notwithstanding the fact that
there are subtleties in the concrete implementation that are out of scope, for example, caching
and the translation to assembler code.
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Name bit length of p p exp. classical sec. exp. quantum sec.
SIKEp434 434 2216 · 3137 − 1 108 bits 72 bits
SIKEp503 503 2250 · 3159 − 1 125 bits 83 bits
SIKEp610 610 2305 · 3192 − 1 152 bits 101 bits
SIKEp751 751 2372 · 3239 − 1 186 bits 124 bits

Table 2.1: Choices for the prime p in NIST-submitted parameter sets given by Jao et al. [Jao+20].
The expected bits of classical and quantum security have been obtained following
the approach of Costello, Longa, and Naehrig [CLN16, Section 4]: Classical security
is assumed to be half the size of the shortest secret (here, eA/2) and quantum security
is a third of the shortest secret (here, eA/3).

2.3 Overview over involved algorithms and optimizations

In the rest of the thesis, we discuss at a high level how it is possible to obtain a fast implemen-
tation of the SIDH protocol. Such an implementation breaks down into smaller problems for
which we give optimized algorithms in the following chapters.

Fig. 2.2 is an overview over the involved problems (in boxes) and interface design choices
(question marks) that influence the applicable problem-solving techniques (exclamation marks).

High-level perspective Achieving a fast implementation of the SIDH protocol is the focus
of Chapter 4. The exchange of public data divides the protocol into two phases. In both phases,
each party essentially computes an isogeny with kernel ⟨[aX ]P + [bX ]Q⟩, given points P ,Q on
an elliptic curve and the secret aX ,bX .

The computation of this isogeny is done in two steps, the first being the computation of the
kernel point [aX ]P + [bX ]Q (see Section 4.3) and the second being the computation of the
isogeny using the kernel point (see Section 4.4).

Besides the isogeny computation, some minor tasks are necessary, for example the secret
key generation at the beginning of phase 1 and the computation of a j-invariant at the end of
phase 2. Their efficient realization is not the focus of the thesis as their performance impact is
small.

The algorithms for these high-level problems depend on elementary arithmetic in and between
elliptic curves. The available arithmetic operations determine which algorithms are possible
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Figure 2.2: Overview of the discussed tasks, choices and optimization techniques involved in
the computation of j(EBA). Phase 1 happens on Alice’s side and phase 2 on Bob’s
side. The computation of j(EAB) is completely analogous.
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to implement and the performance of the operations determines the metrics by which we
compare the performance of the algorithms. A large imact has the decision to operate on the
so-called Kummer line because it restricts the allowed point additions (see Section 3.2.4).

Curve-level perspective The toolbox of elementary curve arithmetic is the focus of Sec-
tion 3.2. It encompasses the group operations on points, namely negation, doubling and
addition, that are addressed in Section 3.2.3, as well as the computation of an isogeny from
a small, fixed-size kernel using specialized versions Vélu’s formulas which are the topic of
Section 3.2.5.

The performance of these operations heavily depends on the representation of the involved
curves, points and isogenies, as discussed in Section 3.2.2. A considerable performance boost is
obtained from forgetting the signs of the involved points and working on a so-called Kummer
line instead of an elliptic curve, as explained in Section 3.2.4.

The supersingular elliptic curves of interest are always defined over the field�p2 (see Remark 2.1)
and the mentioned operations rely on arithmetic in �p2 .

Field-level perspective The field operations of interest are addition, subtraction, multiplica-
tion and inversion (division is a combination of multiplication and inversion) in�p2 . Algorithms
on the field level are not the focus of the thesis but are briefly addressed in Section 3.1.
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3 Efficient field and curve arithmetic

3.1 Field arithmetic

3.1.1 Overview of components

Field arithmetic includes the basic arithmetic operations, namely addition, subtraction, mul-
tiplication and inversion, in the fields �p and �p2 . It is sometimes helpful to have an extra
operation for the multiplication of an element by itself, namely the squaring operation, to
allow more performance optimizations.

Algorithms that use field arithmetic can be analyzed using their field operation count (the
field being �p2 if not stated otherwise). The operation count summarizes how many of which
operations are needed to execute the algorithm. One addition or subtraction is denoted by a, a
squaring by S, a multiplication by M and an inversion by I. For example, an algorithm with an
operation count of 3M+ 4S+ 2a requires the execution of three multiplications, four squarings
and two additions.

3.1.2 Implementation techniques

Wefirst look at modular arithmetic in�p and then build on our results to address extension-field
arithmetic in �p2 .

Modular arithmetic Elements of �p � �/p� can be represented as integers 0, 1, 2, . . .p − 1
that represent their congruence class modulo p. To evaluate a modular addition, subtraction or
multiplication, the operation is performed in �. The result of the integer operation is then
reduced, i. e. the representant of its congruence class in 0, 1, 2, . . .p − 1 is computed.

Depending on logp, various techniques for integer arithmetic and reduction can be used.
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Among others, these are the multiplication of Karatsuba and Ofman [KO62] and Barrett
[Bar86] or Montgomery [Mon85] reduction. The general techniques are sometimes tweaked
for the exact parameters used, as Bernstein [Ber06b] has done for classical elliptic curve
cryptography.

Modular inversion is usually implemented using the Extended Euclidean Algorithm (EEA) and
variants or Fermat’s Little Theorem (FLT). While EEA is considered to be theoretically faster,
it is harder to implement than the FLT inversion algorithm that simply computes a−1 = ap−2

using a square-and-multiply approach. Furthermore, Azarderakhsh et al. [Aza+19] suggest that
FLT is quite competitive in real-world scenarios, at least if it is compared with constant-time
implementations.

Extension-field arithmetic Elements of �p2 � �p [X ]/(X 2−d) for some non-squared ∈ �p
can be represented as a + bX , where a,b are elements of �p . All arithmetic operations are
computed using base-field arithmetic operations in a manner analogous to complex number
arithmetic. For example, if p ≡ 3 (mod 4), we can choose d = −1 and get

(a + bX ) (c + eX ) = (ac − be) + (ae + bc)X = (p − bc + ae) + (bc + ae)X ,

where p = (a + b) (c − e), and

(a + bX )−1 =
a − bX

(a + bX ) (a − bX )
=

a − bX

a2 + b2
.

Squarings can be computed faster using the binomial formulas

(a + bX )2 = a2 − b2 + 2abX = (a + b) (a − b) + 2abX .

3.1.3 Performance characteristics

Asymptotically as well as practically, the cost of additions and subtractions is almost negligible
compared to squarings and multiplications, which in turn are faster than inversions and
divisions. Squarings in �p2 are faster than multiplications in �p2 .

For example, Feo, Jao, and Plût [FJP11] found that in their implementation, the performance of
operations in�p2 was determined roughly by I = 10M and S = 0.8M. Note that their EEA-based
inversion algorithm is not constant-time. However, Azarderakhsh et al. [Aza+19] explain how it
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could be made side-channel secure using randomization. Costello, Longa, and Naehrig [CLN16]
have used FLT because it is easier to implement and inversions were considered a negligible
part of their implementation.

3.2 Curve arithmetic

3.2.1 Overview of components

Curve arithmetic encompasses elementary operations regarding elliptic curves, or more pre-
cisely,

• the evaluation of −P , P +Q and [2]P for distinct points P ,Q on an elliptic curve, and

• the computation of a separable small-degree isogeny whose kernel is generated by a
given kernel point.

3.2.2 Representations of points and curves

It is well known that efficiency is not only about algorithms; it is also about data structures.
Most people know that this is true for lists: Using an array makes random access to its elements
easy, but if you want to insert elements between others you are better off with a linked list.
The same is true for matrices: If you want to compute the power of a matrix, you wish the
matrix to be in Jordan normal form.

Curve representations Algebraic curves are similar. They can be represented and stored
in different ways, in the sense that they are isomorphic or at least birationally equivalent to a
variety of interesting curves, which are called models. Most models are relatively unhandy:
They have lots of parameters and the group operations are relatively expensive. More efficient
operations are available on special curves such as short Weierstraß, twisted Edwards or
Montgomery curves. As with other data structures, all representations have advantages and
disadvantages.

All elliptic curves defined over �p2 are isomorphic over �p2 to a short Weierstraß curve, and
Feo, Jao, and Plût [FJP11, Section 4.3] showed that in the situation of SIDH, all occurring curves
can be represented by a Montgomery curve and twisted Edwards curve.
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Fixing a curve model, there is still some leeway in how to represent its parameters. Is, for
example, the curveWa,b represented by affine parameters (a,b) or by homogeneous parameters
[A : B : C] such that a = A/C and b = B/C? The computation of curve parameters, for example
of the image curve of some isogeny, might require costly inversions if the resulting curve
parameters must be affine.

Point representations Points on a given elliptic curve can also be represented either in
affine or homogeneous coordinates, with similar tradeoffs. Bernstein and Lange [BL07] list
even more representations in their Explicit Formulas Database.

Kummer line It turns out that not all information that describes a point and a curve is
necessary in the SIDH protocol. Omitting this information helps achieving faster algorithms.

3.2.3 Optimized point operations

This section is a discussion of algorithms for point operations on elliptic curves and their
performance. The operations of interest are inversions, additions and doublings. Addition in
this context referst to the computation of P +Q for two distinct points on an elliptic curve E,
whereas doubling refers to the computation of [2]P = P + P for a single point P on E. This
distinction is necessary because of the different formulas the group law provides for the two
special cases of addition. Depending on the curve model, there are sometimes additional
restrictions regarding the situations in which an algorithm is applicable.

Because all implementations depend on the chosen curve model as well as the representation
of the curve and its points, we restrict our attention to short Weierstraß, twisted Edwards and
Montgomery curves. We assume in all algorithms that the curve parameters are affine, while
points are given by homogeneous coordinates.

While point negations are trivial to compute in all models, fast addition and doubling operations
are nontrivial. In this section, the point doubling algorithm on short Weierstraß curves is
derived explicitly to demonstrate some of the tricks involved in the derivation of the algorithms.
The remaining doubling and addition formulas found in the literature are presented without
derivation.
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Short Weierstraß curves

Consider the short Weierstraß curve

E : y2 = x3 + ax + b .

Doubling algorithm Let P1 = (x1,y1) = [X1 : Y1 : Z1] ∈ E s. t. [2]P , O. We are interested
in an explicit formula for [2]P1 = (x+,y+) = [X+ : Y+ : Z+] and derive it from the doubling law
given in Theorem 1.13.

Specializing the doubling law given in Theorem 1.13 to the case of the short Weierstraß curve
E and bringing the formulas on the common denominator (2y)3 yields

x = λ2 − 2x =
(3x21 + a

2y1

)2
− 2x1 =

(2y1)
( (
3x21 + a

)2
− 2x1 (2y1)2

)
(2y1)3

(3.1)

y = −λx − ν =
−
(
3x21 + a

)3
+ 2x (2y1)2

(
3x21 + a

)
− (2y1)2

(
−x31 + ax1 + b

)
(2y1)3

(3.2)

Homogenization leads to

X+ =

(
2Y1Z1

) ((
3X 2

1 + aZ
2
1

)2
−

(
2Y1Z1

)
4X1Y1

)
(3.3)

Y+ = −
(
3X 2

1 + aZ
2
1

)3
+

(
2Y1Z1

)
4X1Y1

(
3X 2

1 + aZ
2
1

)
+

(
2Y1Z1

)
2Y1

(
X 3
1 − aX1Z

2
1 + bZ

3
1. . . . . . . . . . . . . . . . . . . .

)
(3.4)

Z+ =

(
2Y1Z1

)3
. (3.5)

A straightforward evaluation of these formulas without any reuse of intermediate values
requires 23M + 12S + 24a.

The terms S B 2Y1Z1 andW B 3X 2
1 + aZ

2
1 occur so often that we introduce shortcuts for them.

After noticing that

X 3
1 − aX1Z

2
1 + bZ

3
1. . . . . . . . . . . . . . . . . . . . =

(
3X 3

1 + aX1Z
2
1
)
− 2

(
X 3
1 + aX1Z

2
1 + bZ

3
1
)
= X1W − 2Y 2Z = X1W − Y1S,
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the formulas simplify to

X+ = S
(
W 2 − 4X1Y1S

)
, (3.6)

Y+ =W
(
6X1Y1S −W

2) − 2 (Y1S)2 , (3.7)

Z+ = S3. (3.8)

Eqs. (3.6) to (3.8) allow us to compute S andW once and reuse them instead of recalculating.
Computing S (1M+1a),W (1M+2S+3a),X+ (3M+1S+3a), Y+ (4M+2S+6a), and Z+ (1M+1S)
in this order requires only 10M + 6S + 14a.

Sharing even more intermediate results, Bernstein and Lange [BL07, Formula dbl-2007-bl]
found that computingX 2

1 ,Z
2
1 (2S),W (1M+3a), S (1M+1a), R B Y1S,R

2 (1M+1S), B B 2X1Y1S

(1S + 3a), H BW 2 − 2B (1S + 2a), and finally X+ = HS (1M), Y+ =W (B − H ) − 2R2 (1M + 3a),
and Z+ = S3 (1M + 1S) in this order requires in total only 6M + 6S + 12a. This algorithm is
shown in Algorithm 3.1.

Algorithm 3.1 A point doubling algorithm using 6M + 6S + 12a on short Weierstraß curves
Input: A point P = [X1 : Y1 : Z1] on a short Weierstraß curveWa,b
Precondition: [2]P is affine
Output: [2]P = [X+ : Y+ : Z+]

1: Xs ← X 2
1

2: Zs ← Z 2
1

3: W ← 3Xs + aZs
4: S ← 2Y1Z1
5: Ss ← S2

6: St ← SSs
7: R ← Y1S
8: Rs ← R2

9: B ← (X1 + R)
2 − Xs − Rs

10: H ←W 2 − 2B

11: X+ ← HS
12: Y+ ←W (B − H ) − 2Rs
13: Z+ ← St

Addition algorithm According to the Explicit Formulas Database of Bernstein and Lange
[BL07, add-1998-cmo-2], one of the fastest algorithms for point addition on short Weierstraß
curves was found by Cohen, Miyaji, and Ono [CMO98, p. 3]. This algorithm has an operation
count of 12M + 2S + 7a and is presented in Algorithm 3.2.

Montgomery curves

Now consider a Montgomery curveMA,B .
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Algorithm 3.2 A point addition algorithm using 12M + 2S + 7a on short Weierstraß curves
Input: Points Pi = [Xi : Yi : Zi ] (i = 1, 2) onWa,b
Precondition: P1 and P2 are affine, P1 , ±P2
Output: P1 + P2 = [X+ : Y+ : Z+]

1: A← X1Z2
2: B ← Y1Z2
3: C ← Z1Z2
4: U ← Y2Z1 − B
5: Us ← U 2

6: V ← X2Z1 −A
7: Vs ← V 2

8: Vt ← VV 2

9: R ← VsA
10: D ← UsC −Vt − 2R

11: X+ ← VD
12: Y+ ← U (R − D) −VtB
13: Z+ ← VtC

Doubling algorithm The homogenized doubling law for MA,B tells us that if the point
P = [X1 : Y1 : Z1] is not of order 1 or 2, then [2]P = [X+ : Y+ : Z+] is given by

X+ = B

(
2BY1Z1

) (
3X 2

1 + 2AX1Z1 + Z
2
1

)2
− 2BY1

(
2BY1Z1

)2
(AZ1 + 2X1)

Y+ = −
(
3X 2

1 + 2AX1Z1 + Z
2
1

) (
B
(
3X 2

1 + 2AX1Z1 + Z
2
1

)2
− 2BY1

(
2BY1Z1

)
(AZ1 + 2X1)

)
−
(
−X 3

1 + X1Z
2
1
) (

2BY1Z1

)2
Z+ =

(
2BY1Z1

)3
.

Setting, among others, S B 2BY1Z1 andU B 3X 2
1 + 2AX1Z1 +Z

2
1 , we obtain Algorithm 3.3 and

an operation count of 13M + 4S + 10a.

Algorithm 3.3 A point doubling algorithm on Montgomery curves using 13M + 4S + 10a
Input: A point P = [X1 : Y1 : Z1] (i = 1, 2) onMA,B
Precondition: [2]P is affine
Output: [2]P = [X1 : Y1 : Z1]

1: Xs ← X 2
1

2: Zs ← Z 2
1

3: S ← 2BY1Z1
4: Ss ← S2

5: T ← AZ1 + 2X1
6: U ← 3Xs + 2AX1Z1 + Zs
7: V ← B

(
U 2 − 2Y1ST

)
8: W ← X1 (Xs − Zs )

9: X+ ← SV
10: Y+ ←WSs −UV
11: Z+ ← SSs
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Addition algorithm If P1 = [X1 : Y1 : Z1] and P2 = [X2 : Y2 : Z2] such that P1 , ±P2, their
sum P1 + P2 = [X+ : Y+ : Z+] is given by

X+ = (X2Z1 − X1Z2)
(
B (Y2Z1 − Y1Z2)

2 − (AZ1Z2 + X1Z2 + X2Z1) (X2Z1 − X1Z2)
2)

Y+ = (Y1Z2 − Y2Z1)
(
B (Y2Z1 − Y1Z2)

2 − (AZ1Z2 + X1Z2 + X2Z1) (X2Z1 − X1Z2)
2)

− (Y1X2 − Y2X1) (X2Z1 − X1Z2)
2

Z+ = (X2Z1 − X1Z2)
3

This leads to an algorithm using 14M + 2S + 7a, as shown in Algorithm 3.4.

Algorithm 3.4 A point addition algorithm on Montgomery curves using 14M + 2S + 7a
Input: Points Pi = [Xi : Yi : Zi ] (i = 1, 2) onMA,B
Precondition: P1 and P2 are affine, P1 , ±P2
Output: P1 + P2 = [X+ : Y+ : Z+]

1: X ′1 ← X1Z2
2: X ′2 ← X2Z1
3: D ← X ′2 − X

′
1

4: Ds ← D2

5: E ← Y1Z2 − Y2Z1
6: U ← AZ1Z2 + X

′
1 + X

′
2

7: V ← BE2 −UDs
8: W ← Y1X2 − Y2X1

9: X+ ← VD
10: Y+ ← EV −WDs
11: Z+ ← DDs

Twisted Edwards curves

Let P1 = (x1,y1) , P2 = (x2,y2) be affine points on a twisted Edwards curve Ea,d . Whenever the
denominators are nonzero, according to Bernstein et al. [Ber+08], the sum of these points is
given by

P1 + P2 =

(
x1y2 + y1x2
1 + dx1x2y1y2

,
y1y2 − ax1x2
1 − dx1x2y1y2

)
. (3.9)

This holds even when P1 = P2. However, the restriction that the denominators must be nonzero
limits the use of the following algorithms. If d is not a square, it is always satisfied; otherwise,
its satisfaction is hard to predict.

Doubling algorithm In the same paper where they introduced twisted Edwards curves,
Bernstein et al. [Ber+08, Section 6] gave a doubling algorithm that is still state of the art,
according to Bernstein and Lange [BL07, dbl-2008-bbjlp]; see Algorithm 3.5. However, there
are in general major restrictions to when the algorithm is correct.
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Algorithm 3.5 A point doubling algorithm on twisted Edwards curves using 4M + 4S + 7a
Input: A point P = [X1 : Y1 : Z1] on Ea,d
Precondition: Z 4

1 , ±dX
2
1X

2
2 , Z1 , 0

Output: [2]P

1: B ← (X1 + Y1)
2

2: C ← X 2
1

3: D ← Y 2
1

4: E ← aC

5: F ← E + D
6: H ← Z 2

1
7: J ← F − 2H
8: X+ ← (B −C − D) J

9: Y+ ← F (E − D)
10: Z+ ← F J

Addition algorithm Bernstein et al. [Ber+08, Section 6] also gave an addition algorithm
that is still state of the art according to Bernstein and Lange [BL07, add-2008-bbjlp]; see
Algorithm 3.6. Again, the algorithm does not work on all points.

Algorithm 3.6 A point addition algorithm on twisted Edwards curves using 12M + 1S + 7
Input: Points Pi = [Xi : Yi : Zi ] (i = 1, 2) on Ea,d
Precondition: Z 2

1Z
2
2 , ±dX1X2Y1Y2; Z1,Z2 , 0

Output: P1 + P2

1: A← Z1Z2
2: B ← A2

3: C ← X1X2
4: D ← Y1Y2

5: E ← dCD
6: F ← B − E
7: G ← B + E
8: H ← (X1 + Y2) (X2 + Y2)

9: X+ ← AF (H −C − D)
10: Y+ ← AG (D − aC)
11: Z+ ← FG

3.2.4 The Kummer line

On each of the three special curves discussed, there is an affine coordinate that contains
information about the sign of a point P (“Is it P or −P?”) but nothing more. This is the y-
coordinate on shortWeierstraß andMontgomery curves (see Theorem 1.13) and thex-coordinate
on twisted Edwards curves (according to Bernstein et al. [Ber+08]).

Montgomery [Mon87] was the first to observe that omitting one coordinate in a computation
has various advantages. First of all, it is not necessary to compute and store the coordinate,
opening the possibility for faster and more space-efficient algorithms. Furthermore, in the
case of Montgomery curves, not all curve parameters are relevant for point operations on the
x-coordinate only, and this leads to a more compact curve representation.

The problem is, of course, whether it is possible to perform computations with constrained
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knowledge about the involved points.

Formalization The idea of forgetting the sign of the points of an elliptic curve E corresponds
to the notion of a (topological or set-theoretical) quotient. The resulting space of points, called
the Kummer line of E by Feo, Jao, and Plût [FJP11], consists of equivalence classes {P ,−P}:
A point P is considered equivalent only to P and −P . On short Weierstraß and Montgomery
curves, the equivalence classes are classes of points with equal x-coordinate. On twisted
Edwards curves, they are classes of points with equal y-coordinate.

Pseudo-operations Some point operations on an elliptic curve E induce well-defined oper-
ations on the corresponding Kummer line. This is certainly true for the doubling operation
because the equivalence class of the result does not depend on the sign of the input point
P ∈ E, as the following calculation shows.

[2]P ∼ −[2]P = [2](−P).

On short Weierstraß and Montgomery curves, this means that x([2]P) is uniquely determined
by x(P), while the same is true on twisted Edwards curves for they- instead of the x-coordinate.

So there is an induced doubling operation on the Kummer line of E. This operation is called
the pseudo-doubling operation.

Unfortunately, there is no induced point addition operation on the Kummer line of E. The
reason is that the equivalence class of P + Q might not be the same as that of P − Q . On
Montgomery curves, for example, x(P +Q) is not uniquely determined by x(P) and x(Q).

It is, however, possible to recover the eqivalence class of P +Q from the equivalence classes of
P , Q and P −Q . So we can define a differential addition or pseudo-addition operation on the
Kummer line that takes P , Q and P −Q and outputs P +Q .

Computations on the Kummer line

Short Weierstraß curves According to the Explicit Formulas Database of Bernstein and
Lange [BL07, dbl-2002-bj-3, dadd-2002-it-3], the state-of-the art algorithms are (after applying
standard optimizations) the pseudo-doubling algorithm of Brier and Joye [BJ02, Formula (10)]
as shown in Algorithm 3.7 and the pseudo-addition algorithm of Izu and Takagi [IT02, Formula
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1] as shown in Algorithm 3.8.

Algorithm 3.7 A pseudo-doubling algorithm on short Weierstraß curves using 5M + 5S + 10a
Input: A point P = [X1 : _ : Z1] onWa,b
Precondition: [2]P is affine
Output: [2]P = [X+ : _ : Z+]

1: Xs ← X 2
1

2: Zs ← Z 2
1

3: A← 2
(
(X1 + Z1)

2 − Xs − Zs
)

4: U ← aZs

5: Bd ← 2b
6: X+ ← (Xs −U )

2 − BdAZs
7: Z+ ← A (Xs +U ) + 2BdZ 2

s

Algorithm 3.8 A pseudo-addition algorithm on short Weierstraß curves using 9M + 2S + 6a
Input: Points Pi = [Xi : _ : Zi ] (i = 1, 2, 3) onWa,b
Precondition: P1 and P2 are affine, P1 , ±P2, P3 = P1 − P2, X3 , 0
Output: P1 + P2 = [X+ : _ : Z+]

1: T2 ← Z1Z2
2: T3 ← X1Z2
3: T4 ← Z1X2

4: T6 ← X1X2 − aT2
5: T11 ← 4bT2 (T3 +T4)
6: X+ ← Z3

(
T 2
6 −T11

) 7: Z+ ← X3 (T3 −T4)
2

Montgomery curves According to Bernstein and Lange [BL07, dbl-1987-m-3, dadd-1987-
m-3], the pseudo-operations given by Montgomery [Mon87] are still state-of-the-art. See
Algorithm 3.9 and Algorithm 3.10. Bernstein [Ber06a] proved that the given pseudo-addition
algorithm even works if one or two of the summands have order two, while Montgomery had
explicitly excluded this case.

Algorithm 3.9 A pseudo-doubling algorithm on Montgomery curves using 3M + 2S + 9a
Input: A point P = [X1 : _ : Z1] onMA,B
Precondition: [2]P is affine
Output: [2]P = [X+ : _ : Z+]

1: A2 ← A + 2
2: U ← X1 + Z1
3: Us ← U 2

4: V ← X1 − Z1
5: Vs ← V 2

6: W ← Us −Vs

7: X+ ← 4UsVs
8: Z+ ←W (4Vs +A2W )

Twisted Edwards curves Castryck, Galbraith, and Farashahi [CGF08] have found a pseudo-
doubling algorithm on generalized Edwards curves, i. e., twisted Edwards curves Ea,d with
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Algorithm 3.10 A pseudo-addition algorithm on Montgomery curves using 4M + 2S + 6a
Input: Points Pi = [Xi : _ : Zi ] , O onMA,B
Precondition: P1 and P2 are affine, P1 , ±P2, P3 = P1 − P2, [2]P3 is affine
Output: P1 + P2 = [X+ : _Z+]

1: R ← X2 + Z2
2: S ← X2 − Z2
3: T ← X3 + Z3

4: U ← X3 − Z3
5: V ← RU
6: W ← ST

7: X+ ← Z1 (V +W )
2

8: Z+ ← X1 (V −W )
2

a = 1. An algorithm for twisted Edwards curves that was derived analogously is shown in
Algorithm 3.11. The value a−1d must be precomputed in order to achieve a few multiplications
per point operation as possible. Otherwise, more multiplications are needed.

Algorithm 3.11 A pseudo-doubling algorithm on twisted Edwards curves using 2M + 5S + 6a
if a−1d is precomputed

Input: A point P = [_ : Y1 : Z1] on Ea,d
Precondition: Z 4

1 + a
−1dY 4

1 , 2a−1dY 2
1Z

2
1 , Z1 , 0

Output: [2]P = [_ : Y+ : Z+]

1: Ys ← Y 2
1

2: Zs ← Z 2
1

3: Yq ← Y 4

4: Zq ← Z 4

5: S ← (Ys + Zs )
2 − Yq − Zq

6: T ← Zq + a
−1dYq

7: Y+ ← S −T
8: Z+ ← T − a−1dS

A pseudo-addition algorithm on Edwards curves was proposed by Justus and Loebenberger
[JL09]. Although the inventors only claimed that their formula works for nonsquare d , this
requirement only serves to tame the nasty requirement that the denominators in the addition
law Eq. (3.9) must be nonzero. If used carefully, it can be also applied if d is a square. An
analogous algorithm that makes use of the precomputed constant a−1d for twisted Edwards
curves is shown in Algorithm 3.12.

Remark 3.1 It is helpful to observe that the pseudo-operations on a twisted Edwards curve
Ea,d only depend on a−1d . Indeed, scaling a and d by the same factor e2, the x-coordinate of a
point is scaled by 1/e if the y-coordinate is fixed. Note that this is analogous to the situation
on a Montgomery curveMA,B , whose parameter B does not influence the group law. ⋄
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Algorithm 3.12 A pseudo-addition algorithm on twisted Edwards curves using 7M + 4S + 7a
if a−1d is precomputed

Input: Points Pi = [_ : Yi : Zi ] (i = 1, 2) on Ea,d
Precondition: P1 − P2 = P3; Z1,Z2,Z3 , 0; X3 , 0
Precondition: Z 2

1Z
2
2
(
aZ 2

1 − dY
2
1
) (
aZ 2

2 − dY
2
2
)
, dY 2

1Y
2
2
(
Z 2
1 − Y

2
1
) (
Z 2
2 − Y

2
2
)

Output: P1 + P2 = [_ : Y+ : Z+]

1: Y1,s ← Y 2
1

2: Z1,s ← Z 2
1

3: Y2,s ← Y 2
2

4: Z2,s ← Z 2
2

5: U ← Y2,s − Z2,s
6: V ← Z2,s − a

−1dY2,s

7: W ←
(
Y1,s + Z1,s

)
(U +V )

8: S ← Y1,sU
9: T ← Z1,sV
10: Y+ ← Z3 (W − S −T )
11: Z+ ← Y3

(
a−1dS +T

)

Curve operation �p2 operation count

Short Weierstraß Twisted Edwards Montgomery

Addition 12M + 2S + 7a 12M + 1S + 7a 14M + 2S + 7a∗
Doubling 6M + 6S + 12a 4M + 4S + 7a 13M + 4S + 10a∗
Pseudo-addition 9M + 2S + 6a 7M + 4S + 7a 4M + 2S + 6a
Pseudo-doubling 5M + 5S + 10a 2M + 5S + 6a 3M + 2S + 9a

Figure 3.1: Operation counts (see Section 3.1.1) required by the presented point operation
algorithms on different curves. Entries annotated with ∗ are the result of an ad-hoc
derivation and might leave room for optimizations.

Summary

Fig. 3.1 summarizes the operation counts for point operations on different curves. Care has to
be taken for the individual restrictions the presented algorithms impose on the input points
and on precomputations.

After all, twisted Edwards curves excel when additions and doublings are used, while Mont-
gomery curves provide the fastest pseudo-operations. Operations on the Kummer line are
considerably faster than operations on the elliptic curve itself, regardless of the curve model.

All presented algorithms need a constant number of multiplications, squarings, additions and
subtractions, a fact that helps protecting against side-channel attacks because it makes it easier
to come up with a constant-time implementation.
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However, the requirements of operations on twisted Edwards curves are so chaotic that it is
sometimes necessary to switch to a corresponding Montgomery curve. The unpredictability of
the switch makes twisted Edwards curves less suited for constant-time implementations.

3.2.5 Optimized small-degree isogeny computation on Montgomery curves

Motivation We show in Section 4.4.2 that every separable isogeny with a cyclic kernel of
order ℓe , where ℓ and e are natural numbers, is a composition of cyclic isogenies of degree ℓ.
For example, if ℓA = 2 and ℓB = 3, every cyclic separable isogeny of degree ℓAeA (respectively,
ℓB

eB ) is composed of cyclic separable isogenies of degree 2 (respectively, 3). If eA is even, we
can alternatively rely on 4-isogenies instead of 2-isogenies.

This section is about the computation of small-degree isogenies. If eA is even, and this is the
case for all NIST-submitted parameter sets (see Table 2.1), the implementation of Costello,
Longa, and Naehrig [CLN16] and the NIST submission rely on 3- and 4-isogenies.

Assumptions We focus on the computation of cyclic 3- and 4-isogenies. Being the most
frequent choice in the context of SIDH, we only address the case of Montgomery curves
and work on their Kummer line. The curve parameters are represented by homogeneous
coordinates and we write M[A:B:C] for the Montgomery curve with first parameter A/C and
second parameter B/C .

If we would use an affine representation of the parameters, our algorithms would need to
compute field inversions, which are expensive. Note that our choice of homogeneous param-
eters is incompatible with the choice of affine parameters in the previous section when we
gave algorithms for point operations. For a real implementation, the addition and doubling
algorithms need to be adopted to homogeneous parameter representations.

Goal Given a point Q of order 3 or 4 on a Montgomery curve E = M[A:B:C] over �p2 , the
goal is to find a separable isogeny φ : E → E ′ = M[A′:B′:C ′] with kernel ⟨Q⟩. More precisely, we
want to compute the parameters of the image curve and evaluate φ at a point P of E.

Kummer line considerations Because φ is a group homomorphism, the x-coordinate of
φ(P) is determined by the x-coordinate of P . Furthermore, the isogeny φ itself is determined



3.2 Curve arithmetic 39

by the x-coordinate of its kernel point Q . Hence, our algorithms can ignore the y-coordinate
and work with x-only coordinates.

The curve parameter B of Montgomery curvesM[A:B:C] is also irrelevant, as it only affects the
scaling of the y-coordinate of the involved points. Because vertical scaling is an isomorphism,
the j-invariant of the curves is also independent from B. These omissions lead to faster
algorithms.

Isogenies of degree 3 on Kummer lines

LetM[A:_:C] be a Montgomery curve and Q = [X3 : _ : Z3] a point of order 3. Feo, Jao, and Plût
[FJP11] derived affine formulas for the separable isogeny with kernel point Q . Later, Costello,
Longa, and Naehrig [CLN16] gave projective formulas. The image curveM[A′:_:C ′] is determined
by

[A′ : _ : C ′] =
[
Z 4
3 + 18X 2

3Z
2
3 − 27X 4

3 : _ : 4X3Z
3
3
]
,

and for P = [X : _ : Z ] ∈ M[A:_:C],

φ(P) =
[
X (X3X − Z3Z )

2 : _ : Z (Z3X − X3Z )
2] .

Costello and Hisil [CH17] observed that

A′ − 2C ′ = Z 4
3 − 8X3Z

3
3 + 18X 2

3Z
2
3 − 27X 4

3 = (X3 + Z3) (Z3 − 3X3)
3 ,

an observation that leads to algorithm Algorithm 3.13 for the computation of the image curve
parameters. The variableV1 first gets the value − (A′ − 2C ′). ConsideringV1 andV2 as functions
of X3 and Z3, V2(X3,Z3) equals V1(X3,−Z3). Then the algorithm takes advantage of the fact
that the even part of V1 is 1

2 (V1 +V2) = −A
′ and that the odd part is 1

2 (V1 −V2) = 2C ′.

Algorithm 3.14 for the evaluation of a 3-isogeny can be understood from a similar perspective.
The variable T1 gets

(X + Z ) (X3 − Z3) = X3X − Z3Z + X3Z − Z3X ,

and T2 is obtained from T1 by negating (Z ,Z3).
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Algorithm 3.13 A 3-isogeny image curve algorithm on Kummer lines using 2M + 3S + 14a
Input: A point Q = [X3 : _ : Z3] onM[A:_:C] of degree 3
Output: The image curveM[A′:_:C ′] of the isogeny with kernel ⟨Q⟩

1: C1 ← X3 − Z3
2: C2 ← X3 + Z3
3: R1 ← C2

1
4: R2 ← C2

2
5: S ← (C1 +C2)

2

6: T1 ← S − R2
7: T2 ← S − R1
8: U1 ← 2 (R1 +T1) + R2
9: U2 ← 2 (R2 +T2) + R1
10: V1 ← U1T2

11: V2 ← U2T1
12: A′← V1 +V2
13: C ′← 2 (V2 −V1)

Algorithm 3.14 A 3-isogeny evaluation algorithm on Kummer lines using 4M + 2S + 4a
Input: Points P = [X : _ : Z ] ,Q = [X3 : _ : Z3] onM[A:_:C], Q of degree 3
Input: C1 = X3 − Z3,C2 = X3 + Z3
Output: The image [X ′ : _ : Z ′] of P under the isogeny with kernel ⟨Q⟩

1: T1 ← (X + Z )C1
2: T2 ← (X − Z )C2

3: X ′← X (T1 +T2)
2

4: Z ′← Z (T1 −T2)
2

Isogenies of degree 4 on Kummer lines

Finding 4-isogenies is complicated because we must distinguish two cases. Feo, Jao, and Plût
[FJP11, Equations (19)-(21)] gave explicit formulas for the computation of 4-isogenies in the
special case that the kernel point Q fulfils xQ = 1. It is trivial to construct an analogous
4-isogeny when xQ = −1. Together, these formulas cover the case that [2]Q = (0, 0).

Feo, Jao, and Plût [FJP11, Equation (15)] also gave an isomorphism of Montgomery curves that
maps a pointQ of order 4 to a point with x-coordinate 1 in order to apply their 4-isogeny when
the kernel point does not lie above (0, 0).

From these building blocks, Costello, Longa, and Naehrig [CLN16] derived simple formulas for
4-isogenies, one assuming that xQ is 1 (the modifications for xQ = −1 are obvious) and one
assuming that xQ is neither 1 nor −1.

Isogenies with kernel points above (0, 0) Let E = M[A:_:C] be a Montgomery curve over
�p2 and Q = (±1, . . .) ∈ E a point above (0, 0). Then the separable isogeny φ : E → E ′ with
kernel ⟨Q⟩ has the image curve E ′ = M[A′:_:C ′], where

[A′ : C ′] = [2 (±A + 6C) : ±A − 2C] ,
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and it can be evaluated at P = [X : _ : Z ] ∈ E \ {O} using the formula

φ(P) =
[
± (±X + Z )2

(
AXZ +CX 2 +CZ 2) : _ : (2C ∓A)XZ (±X − Z )2

]
.

The corresponding algorithms for the image curve and the evaluation are shown in Algo-
rithm 3.15 and Algorithm 3.16.

Algorithm 3.15 A 4-isogeny image curve algorithm, first case, using 6a
Input: A point P = (±1, . . .) onM[A:_:C]
Output: The image curveM[A′:_:C ′] of the isogeny with kernel ⟨Q⟩

1: A← ±A
2: Cd ← 2C

3: A′← 2 (A + 3Cd )

4: C ′← A −Cd

Algorithm 3.16 A 4-isogeny evaluation algorithm, first case, using 5M + 2S + 7a
Input: Points P = [X : _ : Z ] ,Q = (±1, . . .) onM[A:_:C]
Output: The image [X ′ : _ : Z ′] of P under the isogeny with kernel ⟨Q⟩

1: A← ±A
2: X ← ±X
3: Cd ← 2C

4: R1 ← (X − Z )
2

5: R2 ← (X + Z )
2

6: S ← R2 − R1

7: T ← R2 + R1
8: X ′← R2 (AS +CdT )
9: Z ′← (Cd −A) SR1

Isogenies with kernel points not above (0, 0) Let E,A and C be as above but now let
Q = [X4 : _ : Z4] be a point on E with [2]Q , (0, 0). Then the separable isogeny φ : E → E ′

with kernel ⟨Q⟩ has the image curve E ′ = M[A′:_:C ′], where

[A′ : C ′] =
[
2
(
2X 4

4 − Z
4
4
)
: Z 4

4
]
,

and it can be evaluated at P = [X : _ : Z ] ∈ E \ {O} using the formula

φ(P) = [X
(
2XQZQZ − X

(
X 2
Q + Z

2
Q

)) (
XQX − ZQZ

)2 : _ :

Z
(
2XQZQX − Z

(
X 2
Q + Z

2
Q

)) (
ZQX − XQZ

)2
].

The algorithms given by Costello, Longa, and Naehrig [CLN16] are suboptimal. The idea for
the state-of-the-art algorithms for 4-isogenies, as it is part of the NIST-submitted optimized
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implementation, is due to Costello and Hisil [CH17], although there appears to be a mistake
in their algorithm such that it does not match the claimed operation count. Curve parameter
computation is done in Algorithm 3.17, while isogeny evaluation is presented in Algorithm 3.18.

While the algorithm of Costello and Hisil [CH17] computes [A + 2 : 4C] instead of [A : C]
for performance reasons, the performance gain from that optimization is restricted to a few
additions andwe ignore this optimization for the sake of simplicity. Algorithm 3.17 precomputes
three values C1,C2,C3 that are reused in Algorithm 3.18.

Algorithm 3.17 A 4-isogeny image curve algorithm, second case, using 4S + 7a
Input: A point Q = [X : _ : Z ] onM[A:_:C]
Precondition: Q has degree 4, [2]Q , (0, 0)
Output: The image curveM[A′:_:C ′] of the isogeny with kernel ⟨Q⟩
Output: C1 = 4Z 2,C2 = X − Z ,C3 = X + Z

1: Zs ← Z 2

2: C1 ← 4Zs
3: C2 ← X − Z
4: C3 ← X + Z

5: C ′← Z 2
s

6: A′← 2
(
2X 4 −C ′

)
Algorithm 3.18 A 4-isogeny evaluation algorithm, second case, using 6M + 2S + 6a

Input: Points P = [XP : _ : ZP ] ,Q =
[
XQ : _ : ZQ

]
onM[A:_:C]

Input: C1 = 4Z 2
Q ,C2 = XQ − ZQ ,C3 = XQ + ZQ

Precondition: Q has degree 4, [2]Q , (0, 0)
Output: The image [X ′ : _ : Z ′] of P under the isogeny with kernel ⟨Q⟩

1: D2 ← X − Z
2: D3 ← X + Z
3: R ← C2D3

4: S ← C3D2
5: T ← C1D2D3
6: U ← (R + S)2

7: V ← (R − S)2

8: X ′← (U +T )U
9: Z ′← (V −T )V

Conclusion

The previous section showed that the performance of 3- and 4-isogeny computations on
Montgomery Kummer lines is comparable to the performance of pseudo-operations. The
presented algorithms require a constant �p2 operation count which makes them suitable for
constant-time implementations of SIDH. The resulting operation counts are summarized in
Table 3.1.

However, 4-isogenies are troubling. Depending on whether their kernel point Q lies above
(0, 0), different algorithms need to be used. This situation seems to lead to needlessly complex
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Operation 3-isogenies 4-isogenies, (0, 0) 7→ O 4-isogenies, otherwise
image curve 2M + 3S + 14a 0M + 0S + 6a 0M + 4S + 7a
evaluation 4M + 2S + 4a 5M + 2S + 7a 6M + 2S + 6a

Table 3.1: Operation counts for 3- and 4-isogeny operations

implementations and a loss of the constant-time property if not handled wisely.
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4 Efficient algorithms for SIDH

4.1 Overview of components

secret key
aA,bA

secret key
aB ,bB

E0, PA,QA

PB ,QB

step 1

[aA]PA + [bA]QA

step 2

φA : E0 → EA, EA

φA(PB), φA(QB), EA

step 1

[aB]P
′
B + [bB]Q

′
B

step 2

ψB : EA → EBA, EBA

j(EBA)

shared secret

P ′B , Q
′
B , EA

Figure 4.1: Components of SIDH involved in the computation of j(EBA). Phase 1 happens on
Alice’s side and phase 2 on Bob’s side. The computation of j(EAB) is completely
analogous.

This section is about high-level algorithms needed for a realization of the SIDH protocol. The
protocol is symmetric: Both parties, Alice and Bob, follow the same procedure. This procedure
is divided into smaller components, as shown in Fig. 4.1.

First of all, the protocol is divided into two phases by the exchange of public keys: Alice and
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Bob compute their public key in the first phase and the shared secret in the second phase.

Although the first and second phase are not identical, both contain the computationally
expensive task of computing a separable isogeny with kernel [aX ]P + [bX ]Q , given an elliptic
curve E, numbers aX and bX and points P andQ that generate E[nX ]. This task consists of two
steps:

1. Compute R = [aX ]P + [bX ]Q .

2. Find an isogeny whose kernel is generated by R.

There is a bit more work to be done: In the first phase, the secret key has to be generated and
φ must be evaluated at two points. In the second phase, the j-invariant of the image curve, as
it is the shared secret, has to be computed. The real performance bottlenecks are, however,
steps 1 and 2.

4.2 Secret key generation

Arbitrary secret key generation It is easy to generate an arbitrary secret key. First, gen-
erate a tuple of numbers a,b from {0, . . . ,nX − 1}. Repeat this procedure until either a or b
are invertible modulo nX , i. e., not divisible by ℓX .

Restricting the key space Every secret key (a,b) contains superfluous information that has
no impact on the resulting public and shared key. The keys (a,b) and (a′,b ′) lead to the same
results whenever ⟨[a]PX + [b]QX ⟩ equals ⟨[a′]PX + [b]QX ⟩. We call the generated subgroup
the effective secret key. Because E[nX ] is isomorphic to (�/nX�)2, the two keys represent the
same effective key if a′ ≡ λa and b ′ ≡ λb for some integer λ that is invertible modulo nX .

Recall that either a or b is required to be invertible modulo nX . Assume without loss of
generality that a is invertible. Setting λ = a−1 (mod n), the key

(
1,a−1b

)
represents the same

effective secret key as (a,b).

Hence, at least half of all effective secret keys are represented by a secret key of the form (1,b)
(the remaining ones having a representative of the form (a, 1)). This is why most real SIDH
implementations, for example the one of Costello, Longa, and Naehrig [CLN16], restrict the
key space to the case (1,b) in order to simplify key generation and step 1, although it costs
about one bit of security. We assume this simplification in the following section.
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4.3 Step 1: Computation of the kernel point

4.3.1 Situation and goals

Situation In step 1 we are given generators P andQ of the n-torsion E[n] of an elliptic curve
E, where n = ℓe is a prime power. Furthermore, we are given coefficients a = 1 and b from
�/n�.

Computational goal The given inputs define a point R B [1]P + [b]Q . The goal is to
compute R.

Security goal Classical algorithms for the computational goal are not side-channel secure
because their execution time and power consumption depend on the secret numbers a and
b, as we observe below. The goal is to find algorithms that are not vulnerable through these
side-channels. This leads to a trade-off between efficiency and security.

Outline We approach the problem of computing P + [b]Q in two subsections. The first
subsection is about classical scalar multiplication algorithms that work in any abelian group.
Those form the foundation of the more sophisticated algorithms over Montgomery curves that
are presented in the second subsection. They are less vulnerable to side-channel attacks and
more efficient than the classical ones, as we will see.

4.3.2 Double and add

Suppose we need to compute P + [13]Q . We could simply start from P and addQ thirteen times.
But that strategy does not scale up in a reasonably efficient way if we are in the setting of, for
example, SIKEp434 where we might need to compute P + [2200]Q . The scalar multiplication is
a performance bottleneck.

As Knuth [Knu81] has documented, much thought has been dedicated to the problem of scalar
multiplication in such additive groups (or originally, exponentiation in multiplicative groups).
We follow Knuth in stating algorithms that are thousands of years old and take a look at their
computational hardness depending on the scalar factor.



48 4 Efficient algorithms for SIDH

The classical algorithms of interest are known as binary methods. Their name suggests that
they consume the binary representation of the scalar coefficient b bit by bit, finally returning
[b]Q . A left-to-right binary method first consumes the highest bit down to the lowest one.
Consuming increasingly more bits, the algorithm computes [b ′]Q for increasingly large prefixes
of b; a right-to-left binary method starts with the lowest bit, working with suffixes instead of
prefixes. Note that there is more than a single algorithm qualifying as a binary method.

Remark 4.1 The terminology of “left” and “right” can be confusing. When we look at the
binary representation of n ∈ �0, it is usually written with the most significant bit on the
left, 1101 representing 13. However, following the conventions for polynomial coefficients,
the digits are usually indexed according to their significance. From this perspective, it seems
intuitive to write 13 = 1 + 0 · 2 + 1 · 4 + 1 · 8, or more generally, n =

∑l−1
i=0 ni · 2i , so that the

least significant bit is on the left. Following Knuth [Knu81], “left-to-right” is used in the sense
of “top-down” or “significance-decreasing”, the most significant bit being considered as the
leftmost one. ⋄

Example 4.2 (A left-to-right binary method) The binary representation of 13 is 1101. The
prefixes correspond to the numbers 1, 3 = 1+2 ·1, 6 = 2 ·3, and 13 = 1+2 ·6. Clearly, [1]Q = Q .
Multiplying the equations by Q , we can compute

A← [1]Q, B ← [3]Q = Q + [2]A, C ← [6]Q = [2]B, [13]Q = Q + [2]C . ⋄

See Fig. 4.2a.

Example 4.3 (A right-to-left binary method) The suffixes of 1101 correspond to the num-
bers 1, 1 = 0 · 1 + 2, 5 = 1 + 4, and 13 = 1 + 4 + 8. Again multiplying the equations by Q , we
can compute from the left to the right

[13]Q = Q + [4]Q + [8]Q .

Note that [8]Q = [2][4]Q . See Fig. 4.2b. ⋄

A binary method that is implemented using doublings and additions in the straight-forward
way as in the examples is called a double-and-add algorithm. The left-to-right and right-to-left
variants are shown in Algorithm 4.1 and Algorithm 4.2.

Both methods require the same number of group additions and doublings: a doubling for every
digit and an addition for every digit that is one.
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Q

Q
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[3]Q
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(a) left-to-right
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P + [1]Q [2]Q

[4]Q

P + [5]Q [8]Q

P + [13]Q [16]Q
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---1

--01

-101

1101

(b) right-to-left

Figure 4.2: Visualization of the double-and-add algorithms for P + [13]Q

Algorithm 4.1 Double and add (left-to-right).
Input: An elliptic curve E; P ,Q ∈ E; n =

∑l−1
i=0 ni2i ∈ {0, . . . , 2l − 1}

Output: P + [n]Q
Notation: n[a:b] =

∑b
i=a ni2i−a

1: R ← O
2: for i from l − 1 down to 0 do
3: R ← [2]R
4: if nl = 1 then
5: R ← R +Q
6: end if ▷ R = [n[i :l−1]]Q
7: end for
8: return P + R
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Algorithm 4.2 Double and add (right-to-left)
Input: An elliptic curve E; P ,Q ∈ E; n =

∑l−1
i=0 ni2i ∈ {0, . . . , 2l − 1}

Output: P + [n]Q
Notation: n[a:b] =

∑b
i=a ni2i−a

1: R ← O
2: Qpow ← Q
3: for i from 0 to l − 1 do
4: if ni = 1 then
5: R ← R +Qpow
6: end if ▷ R = [n[0:i]]Q
7: Qpow ← [2]Qpow ▷ skip in the last step
8: end for
9: return P + R

We can compute R relatively quickly using a double-and-add algorithm. The downside is that
execution time and power consumption depend on the number and (more critically) the pattern
of 1’s in the binary representation of the secret scalar b. Thus, double-and-add algorithms are
vulnerable to side-channel attacks.

4.3.3 A constant-time algorithm: Montgomery ladders

Amore secure alternative to double-and-add is a Montgomery ladder as shown in Algorithm 4.3
because the loop body consists of an addition and a doubling, in this order, regardless of the
value of the scalar factor.

Algorithm 4.3Montgomery ladder for scalar multiplication
Input: an elliptic curve E, P ,Q ∈ E, n =

∑l−1
i=0 ni2i ∈ {0, . . . , 2l − 1}

Output: P + [n]Q
Notation: n[a:b] =

∑b
i=a ni2i−a

1: R ← O
2: R+Q ← Q
3: for i from l − 1 down to 0 do
4: if ni = 0 then
5: (R,R+Q ) ← ([2]R,R + R+Q )
6: else
7: (R,R+Q ) ← (R + R+Q , [2]R+Q )
8: end if ▷ R = [n[i :l−1]]Q
9: end for
10: return P + R
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Figure 4.3: Visualization of the three-point ladder of Faz-Hernández et al. [Faz+18] computing
P + [13]Q using differential addition

Counted in group operations, this algorithm is slower because it is less adaptive than double-
and-add. It requires an addition for every digit, not just for every digit that is one. But this
comparison assumes that the listings are implemented using ordinary group operations on
the curve instead of pseudo-operations on the Kummer line. The summands in lines 5 and 7
of Algorithm 4.3 both differ by Q , so that the Montgomery ladder can, if we ignore line 10,
leverage faster pseudo-operations. This is a performance advantage of the Montgomery ladder
compared to double-and-add.

But assuming that lines 1 to 9 are implemented on a Montgomery curve, it is not clear how to
perform the addition P + [b]Q in line 10 using pseudo-operations. A differential addition seems
impossible because P − [b]Q is unknown. The first solution to this problem — a left-to-right
three-point ladder that is slower than double-and-add — was given in 2011 by de Feo and Jao
in their introductory SIDH paper by Feo, Jao, and Plût [FJP11]. Later, Faz-Hernández et al.
[Faz+18] proposed two alternative approaches.

The first approach requires the y-coordinate of P and Q to be known. Using the formula of
Okeya and Sakurai [OS01] to reconstruct they-coordinate of the result in a Montgomery model,
y(R) can be recovered from x(R), x(R+Q ), x(Q) and y(Q) before line 10 of Algorithm 4.3. After
that, P + R can be computed using ordinary group operations. Many modern implementations,
however, do not follow this approach, so that we focus on the second approach.

The second approach is a right-to-left three-point ladder. In the i-indexed step, the algorithm
computes P + [n(i)]Q , [2i+1]Q and −P + [2i+1 − n(i)]Q for the i-length suffix n(i) of n. The
resulting algorithm roughly recovers the performance of the original Montgomery ladder in
Algorithm 4.3. See Algorithm 4.4 and Fig. 4.3.
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Algorithm 4.4 Three-point ladder of Faz-Hernández et al. [Faz+18]
Input: an elliptic curve E, P ,Q,Q − P ∈ E, n =

∑l−1
i=0 ni2i ∈ {0, . . . , 2l − 1}

Output: P + [n]Q
Notation: n[a:b] =

∑b
i=a ni2i−a

1: R1 ← P
2: R2 ← Q − P
3: S ← Q
4: for i from l − 1 down to 0 do
5: if ni = 1 then
6: R1 ← R1 + S
7: else
8: R2 ← R2 + S
9: end if
10: S ← [2]S ▷ skip in the last step
11: end for
12: return R1

4.3.4 Implementation subtleties

Ladders achieve their performance by leveraging fast pseudo-operations. It is known from
Section 3.2 that the pseudo-addition and pseudo-doubling formulas are not applicable to
every combination of points. We infer from the preconditions of Algorithms 3.9 and 3.10
that on Montgomery curves, for the given formulas to yield the mathematically correct result
it is sufficient that all input points and results of the pseudo-doubling and pseudo-addition
operations are nonzero and the difference of differentially added points is outside the 2-torsion.

Although this condition is not automatically true for the three-point ladder of Algorithm 4.4,
it is certainly true in the situation of SIDH, since P and Q form a basis of E[nX ].

4.4 Step 2: Computation of the isogeny

Feo, Jao, and Plût [FJP11] proposed the central optimizations in step 2, such as isogeny decom-
position and the precomputation of optimal strategies. We use a different notation for the sake
of consistency with the rest of the work and for mathematical clarity.



4.4 Step 2: Computation of the isogeny 53

4.4.1 Situation and goals

In step 2 we are given a point R on a supersingular elliptic curve E defined over �p2 . The point
R is the result of step 1 and its order is ℓX eX .

The goal is to obtain a representation of the separable isogeny φ : E → E ′ with kernel ⟨R⟩ and
a representation of the codomain curve E ′.

4.4.2 Decomposing isogenies

Motivation While one might be tempted to simply apply Vélu’s formulas on ⟨R⟩, this
approach has a very bad performance. The computational cost of Vélu’s formulas is linear in
the size of ⟨R⟩ and # ⟨R⟩ = ℓX eX is exponential in logp. For example, in SIKEp434, Alice is
confronted with a kernel point of order 2216.

Note, however, that R is special. The order of R is smooth, which means in this case that R is a
power of a small number ℓX that is independent of the number of bits of security. Observe that
by the fundamental theorem on group homomorphisms, if φ : E → E ′ is the separable isogeny
with kernel R and φ1 : E → E ′′ is a separable isogeny whose kernel is a subgroup of ⟨R⟩, there
is a group homomorphism φ2 : E ′′→ E ′ such that φ = φ2 ◦ φ1.

Decomposition theorem This important observation allows us to decompose the requested
isogeny into smaller ones.

Theorem 4.4 (Decomposition of smooth isogenies) Let E0 be an elliptic curve and R a
point of order ℓe > 1 on E0. Define inductively for i = 1, . . . , e ,

Ri B [ℓ]
e−i (φi−1 ◦ . . . ◦ φ1(R)),

and choose an elliptic curve Ei and a separable isogeny φi B Ei−1 → Ei such that kerφi = ⟨Ri ⟩.

Then φ B φe ◦ . . . ◦ φ1 : E0 → Ee is a separable isogeny with kerφ = ⟨R⟩ that is composed of
ℓ-degree isogenies. ⋄

Proof The composition of separable isogenies is a separable isogeny. The proof uses induction
according to e ∈ �.

Let e = 1. Then having R1 = R and φ = φ1, the claim is obvious.
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If the claim holds for e ∈ �, it also holds for e + 1. To see this, note that R′ B φ1(R) is a point
of order ℓe :

φ1([ℓ
e ]R) = φ1([ℓ

e ](R)) = 0, φ1([ℓ
e−1]R) = φ1([ℓ

e−1](R)) , 0,

as follows from the requirements to φ1. Set for i = 1, . . . , e ,

R′i B Ri+1 = [ℓ
(e+1)−(i+1)](φi ◦ . . . ◦ φ1(R)) = [ℓ

e−i ](φ ′i−1 ◦ . . . ◦ φ
′
1(R
′)), φ ′i B φi+1.

Wehave kerφ ′i = ⟨Ri ⟩ for all such i. By the induction hypothesis,φ ′ B φ ′e◦. . .◦φ
′
1 B E2 → Ee+1

is a separable isogeny with kernel ⟨R′⟩.

Now, φ = φ ′ ◦ φ1 satisfies

kerφ = ker(φ ′ ◦ φ1) = φ−11 ((φ ′)−1(O)) = φ−11 (⟨φ1(R)⟩) = ⟨R⟩ + ⟨[ℓe ]R⟩ = ⟨R⟩ .

This concludes the proof. ■

Relation to small-degree isogenies If ℓAeA is a power of 4 and ℓBeB is a power of 3,
Theorem 4.4 helps us to represent an isogeny with a cyclic kernel of order ℓAeA or ℓBeB as a
composition of cyclic 3- or 4-isogenes, so that we can apply the algorithms that have been
developed in Section 3.2.5. See Section 4.4.7 for an explanation how to tackle the caveats
regarding 4-isogenies.

Convention For reasons of simplicity, we write φ∗ instead of φ1, . . . ,φe . It should be clear
from the context which domain the isogeny is supposed to have, which determines which
isogeny is meant. For example, this notation enables us to simply write

Ri = [ℓ]
e−i ◦ φi−1∗ (R) instead of Ri = [ℓ]

e−i (φi−1 ◦ . . . ◦ φ1(R)).

4.4.3 Modeling isogeny computation strategies

SIDH never requires an explicit representation of φ. Its decomposition (φ1, . . . ,φe ) is sufficient
to evaluate φ at a point P ∈ E0. The isogeny φi can be computed from Ri using Vélu’s formulas
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or the optimized formulas from Section 3.2. Ri , in turn, is given by

Ri = [ℓ]
e−1 ◦ φi−1∗ (R).

So φ1, . . . ,φi−1 must have been computed before it is possible to compute Ri and φi using e − i
applications of [ℓ] and i − 1 applications of φ∗.

The order of these isogeny applications is irrelevant here because [ℓ] commutes with φ1, . . . ,φe .

Example 4.5 In the case e = 4, there is only one order of application that yields R1 but there
are three ways to compute

R2 = [ℓ]
2 ◦ φ1(R) = [ℓ] ◦ φ1 ◦ [ℓ](R) = φ1 ◦ [ℓ]

2(R).

Fig. 4.4 visualizes them as paths from R to R1 and R2. Note that different paths to R2 lead to four,

R

·

·

R1

(a) R1 = [ℓ]3(R)

R

·

· R2

R1

(b) R2 = φ∗ ◦ [ℓ]2(R)

R

· ·

R2

R1

·

(c) R2 = [ℓ] ◦ φ∗ ◦ [ℓ](R)

R ·

·

R2

R1

·

·

(d) R2 = [ℓ]2 ◦ φ∗(R)

Figure 4.4: Possible orders of application of [ℓ] (vertical arrows) and φ∗ (horizontal arrows) in
the case e = 4 for the computation of R1 and R2. Dotted arrows are the applications
required in order to compute φ1.

five, or six required isogeny evaluations due to different opportunities for sharing common
intermediate results. ⋄

Choosing different orders of application, that is, different paths from R to R1, . . . ,Re , this leads
to the definition of a strategy.

Definition 4.6 (Strategy) Let e ∈ �. The directed acyclic graph Ge consists of the vertices

Ve = {(i, j) ∈ �
2 | i, j ≥ 0 ∧ i + j ≤ e − 1}
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and edges

Ee = { ((i, j) , (i + 1, j)) , ((i, j) , (i, j + 1)) | source and target are vertices in Ve }.

The initial element is v0 B (0,0) and the terminal elements are v1 B (e − 1, 0),v2 B (e −
2, 1), . . . ,ve B (0, e − 1).

An e-step strategy is a subgraph σ of Ge that consists of paths from v0 to each of v1, . . . ,ve .
We write |σ | = e . Its cost is the number of edges of σ and is denoted by (σ ). The strategy σ
is called Pareto-optimal if there is no proper subgraph of σ that is also a strategy. It is called
optimal if there is no e-step strategy with a smaller cost. ⋄

The idea behind this definition is that nodes represent intermediate results in a computation of
φ1, . . . ,φe . The node (0, 0) corresponds to the point R,vi corresponds to Ri and more generally,
(i, j) corresponds to the point [ℓ]i ◦ φ j∗(R). The edges represent isogeny applications.

Example 4.7 The paths in Example 4.5 can be reinterpreted as paths from v0 to v1 and v2 in
the case e = 4. However, none of those subgraphs is a strategy because paths to v3 and v4 are
missing. ⋄

Obviously, any optimal strategy is Pareto-optimal. Pareto-optimal strategies have a useful
characterization.

Lemma 4.8 (Characterization of Pareto-optimal strategies) Let e ∈ �. Pareto-optimal
e-step strategies are characterized as the subtrees of Ge whose leaves are exactly v1, . . . ,ve .⋄

Proof Let σ be a Pareto-optimal e-step strategy. Then σ has a spanning tree σ ′. Combining
the unique paths from v0 to v1, . . . ,ve inside σ ′, we obtain a strategy σ ′′ that is a subtree of σ .
Because σ is Pareto-optimal, σ = σ ′′ is a tree whose leaves are exactly v1, . . . ,ve .

Conversely, assume that σ is a subtree ofGe whose leaves are exactly v1, . . . ,ve . Because v0 is
the only common ancestor of the leaves, v0 must be the root of σ . There is a unique path from
v0 to each leaf. Every nodew contained in σ is contained in such a path: There is a path from
the root tow and a path fromw to a leaf. So σ is an e-step strategy. Because the paths from the
root to the leaves are unique, there is no proper substrategy and σ must be Pareto-optimal. ■
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4.4.4 Computing isogenies using strategies

The following lemma formally shows that strategies can be used to compute isogenies of degree
ℓe .

Lemma 4.9 (Strategies induce isogeny computation algorithms) Any e-step strategy σ
gives rise to an algorithm that computes the decomposition of an ℓe -degree isogeny requiring
exactly (σ ) isogeny applications and e image curve parameter computations from Section 3.2.5.
The applied isogenies are [ℓ] and φ1, . . . ,φe . ⋄

Proof The algorithm proceeds in e steps, the result of the i-th step being an explicit formula
for φi .

The nodes of σ are interpreted as intermediate results, the node (i, j) corresponding to the point
[ℓ]i ◦ φ j∗(R). An edge is interpreted as an isogeny that maps its source to its target. Vertical
edges (i, j) → (i + 1, j) correspond to [ℓ], while horizontal edges (i, j) → (i, j + 1) correspond to
φ j+1. By saying that we evaluate an edge, we mean that we compute its target from its source.
This requires that the source has been computed before.

In step 1, we evaluate all vertical edges on the unique path from v0 to v1. Since v1 corresponds
to R1, we have now computed R1. The point R1 generates the kernel of φ1, and we compute
the parameters of the image curve. No we are able to evaluate φ1 on the domain curve and [ℓ]
on the image curve.

In step k ≥ 2, we assume that φ1, . . . ,φk−1 and all intermediary results corresponding to nodes
(i, j) of σ with i < k − 1 are available from earlier steps. Then we evaluate all horizontal edges
corresponding to φk−1 and then all following vertical edges in top-down order (these edges
belong to the column indexed by k −1). Since there must be a path fromv0 tovk in the strategy,
we now know Rk and can compute the image curve parameters of φk and evaluate φk when
necessary.

After the e-th step, we have evaluated every edge exactly once in a left-to-right, top-down
manner. Hence, we applied exactly (σ ) isogenies to intermediate points. Every step ended with
an image curve parameter computation, in total e times. ■
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4.4.5 Fast and simple strategies

We will analyze optimal strategies later. However, it is easier to find potentially suboptimal,
though reasonably fast, ones using a divide-and-conquer approach.

The central observation is that two strategies can be composed to a larger strategy.

Lemma 4.10 (Composition of strategies) Let σl ,σr be strategies with |σl | = el , |σr | = er .
Then they give rise to a strategy σ = σl ⊞σr with |σ | = el +er and e = (σ ) = el +er +(σl )+(σr ).⋄

Proof We define σ as the subgraph of Ge that consists of the following parts:

• the unique path from (0, 0) to (er , 0) together with a copy of σl along the graph inclusion

Gel → Ge , (i, j) 7→ (i + er , j),

• and the unique path from (0, 0) to (0, el ) together with a copy of σr along the graph
inclusion

Ger → Ge , (i, j) 7→ (i, j + el ).

There is a path from v0 to the roots of the copies of σl and σr . Furthermore, the leaves of
σl correspond to the leaves v1, . . . ,vel of σ , while the leaves of σr correspond to the leaves
vel+1, . . . ,vel+er of σ . Thus, σ is a strategy. One easily counts that the quantitative statements
are true. ■

Theorem 4.11 (Divide-and-conquer strategies) Let e ∈ �. There is a e-step strategy with
(e) ≤ 2(e log e + e) ∈ O(e log e). ⋄

Proof The strategy is constructed inductively using a divide-and-conquer technique.

By induction according to e ∈ �, define σ1 to be the unique 1-step strategy (consisting of a
vertex without edges) and for e ≥ 2, set σe B σ ⌊e/2⌋ ⊞ σl ⌈e/2⌉ .

One easily checks using induction that for all e ∈ �, we have |Se | = e and (Se ) ≤ (Se+1).

Next we show inductively that for all k ∈ �0, (S2k ) = k · 2k . Clearly, (S1) = 0. Now assume that
the claim is true for k ∈ �0. Then: (S2k+1) = 2 · 2k + 2(S2k ) = 2k+1 + 2 · k · 2k = (k + 1) · 2k+1.

Now consider arbitrary e ∈ �. Choose a k ∈ �0 such that e ≤ 2k ≤ 2e , and it follows
(Se ) ≤ (S2k ) = k · 2k ≤ log(2e) · (2e) = 2(e log e + e). ■
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4.4.6 Finding optimal strategies

Lemma 4.12 (Decomposability of optimal strategies) Let e ≥ 2. Every optimal e-step
strategy σ is composed of two smaller optimal strategies, i. e., σ = σl ⊞ σr . ⋄

Proof Imagine removing v0 from σ . Then the tree σ breaks down into two smaller trees with
roots vl B (1, 0) and vr B (0, 1). The leaves of σ that lay below vl are v1, . . . ,vel and the
leaves that lay below vr are vel+1, . . . ,vel+er , where 1 ≤ el , er < e and el + er = e .

Let bl B max{i | (i, 0) is a common ancestor of all leaves below vl }. We claim that bl = er .

The leaves below vl are v1 = (er + el − 1, 0),v2 = (er + el − 2, 1), . . . ,vel = (er , el − 1) and they
have the common ancestor (er , 0).

Thus, the left branch of σ consists of the unique path from v0 to (er , 0) and the subtree below
(er , 0). The latter is a copy of a subtree σl of Gel along the graph inclusion

Gel → Ge , (i, j) 7→ (i + er , j).

The leaves of σl in Gel are exactly v1, . . . ,vel , so σl is a Pareto-optimal el -step strategy.

Proceeding analogously for the right branch of σ , we conclude that σ = σl ⊞ σr . ■

Theorem 4.13 (Computation of optimal strategies) Optimal e-step strategies can be com-
puted in quadratic time according to e . ⋄

Proof According to Lemma 4.12, we can compose optimal strategies of smaller optimal
strategies. Feo, Jao, and Plût [FJP11, Equation (5)] give a dynamic-programming algorithm that
computes the optimal e-step strategy in timeO(n2). Refer to their paper for a proof of validity.■

4.4.7 Choosing 4-isogeny algorithms

It was noted in Section 3.2.5 that the existence of two different 4-isogeny computation algo-
rithms that are not always applicable is problematic and might lead to overly complex or even
side-channel-insecure implementations.

In practice, it is not that bad, at least with carefully chosen public parameters, as the following
result shows.
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Theorem 4.14 (Applicability of 4-isogeny algorithms) Let E be a Montgomery curve and
PA,QA ∈ E according to the SIDH protocol. Assume that ℓAeA a power of 4 and ℓBeB a power of
3 and that [2eA−1]QA = (0, 0). Then we distinguish two cases, depending on the secret (aA,bA)
of Alice.

• If (aA,bA) ≡ (0,1) (mod 2), then the decomposed isogeny can be computed by using
Algorithms 3.15 and 3.16 for the first isogeny φ1 and using Algorithms 3.17 and 3.18 for
the remaining isogenies.

• If aA ≡ 1 (mod 2), then the decomposed isogeny can be computed by using always
Algorithms 3.17 and 3.18. ⋄

Proof We are concerned with the kernel point R = [a]PA + [b]QA. It has, by the validity of
the secret key, order nA = 2eA .

If R does not lie above (0, 0) then R1 = [2eA−2]R does not either. Hence, Algorithms 3.17 and 3.18
can be applied for the first isogeny. In this case, φ1 maps (0, 0) to (0, 0).

If R had order 4, we are done. Otherwise, assume for contradiction that φ1(R) lies above (0, 0).
Then

O = [2eA−3] ◦ φ1(R) − φ1((0, 0)) = φ1([2eA−3]R − (0, 0)).

But [2eA−3]R − (0, 0) is a point of order 8, contradicting the fact that the kernel of φ1 has order
4. So φ1(R) does not lie over (0, 0) either and we see by induction that φ is found by applying
the same algorithms again and again.

If R does lie above (0, 0) then R1 also does. Hence, Algorithms 3.15 and 3.16 can be applied for
the first isogeny.

Again, if R had order 4, we are done. Otherwise, φ1(R) does not lie above (0, 0): Assume for
contradiction that it does. Observing that φ1((−1, . . .)) = (0, 0), we obtain

O = [2eA−3] ◦ φ1(R) − φ1((−1, . . .)) = φ1([2eA−3R] − (−1, . . .)).

But [2eA−3R] − (−1, . . .) is a point of order 8, contradicting the fact that the kernel of φ1 has
order 4. So R does not lie over (0, 0). As we showed in the first case, we can now repeatedly
use Algorithms 3.17 and 3.18 to obtain φ.

To conclude the proof, note if (aA,bA) ≡ (0,1) (mod 2), then [2eA−1aA]PA is zero. We obtain
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that R lies over (0, 0) because

[2eA−1]R = O + [bA] (0, 0) = (0, 0) .

If, on the other hand, aA ≡ 1 (mod 2), observe that [2eA−1]PA is a point of order two but not
in the group ⟨(0, 0)⟩, while [2eA−1]QA is. Hence,

[2eA−1]R = [2eA−1]PA + [2eA−1bA]QA

cannot be (0, 0), and R does not lie above (0, 0). ■

Hence, as Renes [Ren18] remarked, by reducing the key space by 1/3 or 2/3 and hardcoding
one of the two cases, the choice of algorithms becomes predictable. The NIST-submitted
specification guarantees that we are in the latter case, while Costello, Longa, and Naehrig
[CLN16] had previously relied on the former case.

Remark 4.15 Note that this theorem also applies in the second phase of the protocol if it
did in the first. The reason is that the isogeny φB maps (0, 0) to (0, 0) and is injective on the
2eA -torsion so that φB(QA) fulfils the requirements of the theorem if QA does. ⋄

4.5 Conclusion

We have analyzed the most performance-critical parts of the SIDH protocol. Asymptotically,
all of them have been addressed by asymptotically efficient algorithms. Although it is always
hard in a theoretical work to talk about the constant factors, these factors have been shrinked
significantly, especially because of the efficiency of curve arithmetic on the Kummer line. The
practical results of Azarderakhsh et al. [Aza+19] and Seo, Jalali, and Azarderakhsh [SJA19]
suggest that an optimized implementation of SIDH is fast enough to be used for everyday
encryption.

Another topic I find very interesting, however out of scope, is public key compression. One of
the advantages of SIDH and SIKE are their small public keys. There has been a line of work on
how to compress these keys even more without trading too much of the performance. If you
are interested in this topic, some relevant papers are those of Azarderakhsh et al. [Aza+16],
Costello et al. [Cos+17], and Naehrig and Renes [NR19].
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