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Abstract Determining the cause of missing values is a challenge, but an
important task in order to select correct analysis techniques for missing data. This
paper presents a new approach to identify the missing data mechanism (MDM)
by applying cluster analysis to biplots of data having missing observations.
Subset multiple correspondence analysis (sMCA) enables an isolated analysis
of a chosen subset while preserving the scaffolding of the original data set.
Multivariate categorical data sets are frequently represented in a coded dummy
matrix, referred to as an indicator matrix. Additional category levels can be
created for the indicator matrix to account for the unobserved information which
has the advantage of not forfeiting any observed information. The extended
indicator matrix easily partitions a data set into observed and unobserved subsets.
sMCA biplots are used for the visual exploration of the subsets. Configurations
of the incomplete subsets enable the recognition of non-response patterns which
could aid in the identification of a particular MDM. The missing at random
(MAR) MDM refers to missing responses that are dependent on the observed
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information and is expected to be identified by patterns and groupings occurring
in the incomplete sMCA biplot. The missing completely at random (MCAR)
MDM states that all observations have the same probability of not being captured
which could be identified by a random cloud of points in the incomplete sMCA
biplot. The partitioning around mediods (pam) clustering technique is used to
establish the number of available clusters in an incomplete sMCA biplot. A
simulation study confirmed that there is a difference in the number of sufficient
clusters that can by identified from MAR and MCAR simulated data sets. A
real data set is also explored and the MDM is identified using the results of the
simulation study as guidelines.

1 Introduction

Techniques to handle missing values have been well documented over the past
decades, identifying multiple imputation (MI) as the preferred approach to
handle missing values in a majority of applications (Rubin, 2003). MI replaces
each missing observations with multiple plausible response values, resulting in
multiple completed data sets to use for standard analysis (Rubin, 1987). Most
missing data techniques require an initial assumption to be made regarding
the cause of the missing values. Missing values are believed to occur due to a
random process referred to as the missing data mechanism (MDM) (Van Bu-
uren, 2012). Missing values commonly occur in questionnaires, typically
containing categorical variables, which could be due to the deliberate omission
of sensitive questions which in some cases are related to completed questions
in the questionnaire. This is an example of observations that are classified as
being missing at random (MAR), since the missing values are conditional on
observed responses in the data sets (García-Laencina et al., 2009; Schafer and
Olsen, 1998). The missing completely at random (MCAR) MDM refers to data
entries with the same probability to be unobserved. This implies that the cause
of missingness is independent of the observed and unobserved data (Van Bu-
uren, 2012). The MDM that will not be considered, is the missing not at random
(MNAR) MDM. In this scenario missing values are conditional on unobserved
responses, therefore, related to values that are not captured by the data.

A few general comments have to be made before stating the aim of this paper.
Let us consider a general multivariate categorical data set in which a set of
individuals (referred to as samples) are required to answer a list of categorical
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questions (referred to as variables). Measurements on a categorical variable can
only be one of a finite number of qualities like “agree”, “disagree” or “dont
know”. These finite qualities are referred to as the category levels (CLs) of a
variable. Typically, the categorical variables are represented as the columns
of a matrix having the samples as its rows. Multiple correspondence analysis
(MCA) is a multivariate categorical technique which enables the simultaneous
exploration of the associations among samples and their categorical responses,
which can be displayed in a biplot (Greenacre, 2010). Biplots consist of
coordinates for the samples, one point for each sample in the data set, and
category level points (CLPs), one for each CL per variable in the data set. Short
distances between the sample points and CLPs indicate strong associations.
Therefore, the similarities between samples and their specific responses can be
explored in a single display (Gower et al., 2011).

The input data matrix can be adapted (Section 3.1) to distinguish between
observed and missing information. The subset of missing information can be
used in subset MCA (sMCA) which allows an isolated view of associations
between the samples and missing CLPs (Greenacre and Pardo, 2006).

The aim of this paper is to determine whether the MDM can be identified as
to be of type MAR or MCAR by using techniques to cluster the missing subsets
in the sMCA biplot. It is hypothesized that if substantial clustering structures are
identified between the CLPs of the sMCA of missing responses, this could be an
indication of dependence which is caused by the MAR MDM. On the contrary,
poorly classified clusters could be an indication of independence caused by the
MCAR MDM.

2 Data

Simulated data sets are crucial for the evaluation of missing data techniques.
The simulation protocol followed in this paper is presented in Section 2.1 while
a real data set (Section 2.2) will be used to illustrate the application of the
proposed methods.
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2.1 Simulation Study

Categorical responses are simulated from a uniform distribution by dividing the
generated response values into the number of required category levels (CLs)
per variable. Consider the example in Table 1 for the allocation of CLs from
simulated uniformly distributed values that are allocated to two CLs:

Fifteen possible data combinations are simulated using different sample sizes
(100, 500, 1000, 2500 and 3000), numbers of response variables (5, 10 and
15) and randomly varying the number of CLs per variable between two and
five. A thousand simulations per combination are generated. Missing values
are inserted using the MAR and MCAR MDMs with 10 %, 30 % and 50 %
missing values.

Table 1: Allocating CLs from continuous values.

Uniform Values Categorical Responses

0.2655 A
0.3721 (0; 0.5] → A A
0.5729 (0.5; 1] → B B
0.8984 B
0.4543 A

The following conditions were used to insert the missing values with the MAR
MDM:

• If CLs 1 or 2 are recorded in variable 1, delete the corresponding samples
in variables 3 to (? − 2), where ? denotes the total number of variables.

• If the last two CLs are recorded in variable ?/2, delete the corresponding
samples in variables (?/2 + 1).

• If the “middle” CL is recorded in variable 2, delete the corresponding
samples in variables (? − 2) to ? with increments of 2.

• If the “middle” CL is recorded in variable 3, delete the corresponding
samples in variables 2 to ? with increments of 2.

• If the last CL is recorded in variable p, delete the corresponding samples
in variable 2.
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• If the same CLs are recorded for a sample in variables 1 and ?, delete the
corresponding samples in variable ?.
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Figure 1: True percentages of missing values using MAR MDM in 15000 simulated data sets.

The true percentages of missing values that were obtained over 15000 data sets
(1000 simulations for each of the 15 combinations) are shown in Figure 1. The
percentages have been ordered to ease visual inspection.

Figure 1 provides an overall trend of the true percentages that are missing in
the simulated sets. Since the percentage of missing values for a MAR MDM
will depend on whether the given conditions are satisfied in a particular data set,
the true percentage is expected to be underestimated in some of the missing data
sets. The 10 % (on average true 9.97 %) and 30 % (on average true 29.88 %)
missing values are correctly reflected in a majority of cases, as can be observed
from the purple (bottom) and grey (middle) lines of Figure 1, whereas the
conditions might not be flexible enough when the percentage of missing values
increases to 50 % (on average true 42.2 %; see the orange (top) line of Figure 1).
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Further inspection shows that in cases, where the number of variables increases,
the true percentage of missingness is less likely to be reflected. This could be
due to the additional variety of possible responses with lower frequency which
results in the conditions not being satisfied. The MCAR MDM is inserted by
drawing a random sample of the required percentage of missing values and
resulted in a true reflection of the intended missing percentage.

2.2 Real Data Set

The International Social Survey Program (ISSP 1994) is considered for the real
application. This survey investigated the family perspectives of changing gender
roles in Germany using 11 questions with three possible CLs (Agree, Neutral
and Disagree), as well as 5 demographic variables: region, gender, age, marital
status and education. The adapted survey as used by Greenacre and Pardo (2006)
is available from www.carme-n.org/?sec=data. The results presented in this
paper are based on the survey consisting of 3291 samples of which 811 samples
contain non-responses. Missing values occur in 25 % of the samples with an
overall percentage of missing values of 5 %.

3 Methodology

In this section, we describe the main elements of the methodology, namely indi-
cator matrices (Section 3.1), subset multiple correspondence analysis (sMCA;
Section 3.2), and partitioning around medoids (pam; Section 3.3).

3.1 Indicator Matrix

The data matrix of a multivariate categorical data set is commonly coded as an
indicator matrix (G) of zeros and ones. The number of columns of the indicator
matrix is dependent on the total number of observed categories (CLs). A one is
allocated to an observed CL and zeros to the unobserved CLs per variable. A
missing response will result in multiple zero elements in the indicator matrix.
Since we are interested in the visualisation of the missing subset, the indicator
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matrix must be adjusted to incorporate the unobserved CLs. There are two
approaches to this particular handling of missing values: single active and
multiple active. Single active handling creates one additional CL per variable
for the missing responses, whereas multiple active handling creates a unique
CL for each sample with a missing response for a particular variable. Consider
the following example of a single categorical variable with three possible CLs,
shown in Table 2.

Table 2: Multivariate categorical toy data set.

Variable 1

Sample 1 ?
Sample 2 3
Sample 3 1
Sample 4 ?

Single active handling of the missing responses is illustrated in GB8=6 and
multiple active handling in G<D;C (missing values displayed in bold numbers):

GB8=6 =


+1 : 1 +1 : 2 +1 : 3 +1 :?

0 0 0 1
0 0 1 0
1 0 0 0
0 0 0 1


(1)

G<D;C =


+1 : 1 +1 : 2 +1 : 3 +1 : B1? +1 : B4?

0 0 0 1 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1


(2)

The single active method assumes that all samples with missing values for a
particular variable are similar by pooling the missing responses in the same
CL. This might be a biased representation of the samples in the data set.
Multiple active handling resolves this problem, but has the disadvantage of
creating a large number of CLs with low frequency. The decision of single-
and multiple active data handling should be based upon the data and the
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specific research aim (Van de Geer, 1993). Furthermore, it is to be noted that
the extended indicator matrix does not mean that missing values are imputed but
rather they are accommodated by treating them as additional levels (categories)
of the original categorical variables.

3.2 Subset Multiple Correspondence Analysis

Multiple Correspondence Analysis (MCA) is applied by performing Correspon-
dence Analysis (CA) on the subset of missing responses from the adjusted
indicator matrix (Gℎ). The indicator matrix is transformed by the diagonal
matrices containing the row (R) and column (C) margins before applying the
singular value decomposition (SVD). After transforming G:

S = R−1/2
(=×=)G(=×ℎ)C

−1/2
(ℎ×ℎ) (3)

the SVD of S follows as

S = U(=×A )Σ(A×A )V
)
(A×ℎ) , (4)

where = is the number of samples, A the reduced dimension size and ℎ the number
of CLs in the missing subset. The singular vectors are represented in U and V
with the singular values represented in decreasing order in Σ (Greenacre, 2017;
Greenacre and Pardo, 2006).

The sMCA biplot is constructed by plotting the samples using the first two
columns of R−1/2

(=×=)U(=×2)Σ(2×2) and the CLPs using the first two columns
of C−1/2

(ℎ×ℎ)V(ℎ×2) (Gower et al., 2011). The original column and row masses
for the calculation of the distances are maintained when using a subset of
the indicator matrix. Therefore, the total variation (inertia) is partitioned into
components associated with the various subsets and no interpretable information
is lost (Greenacre and Pardo, 2006). The ca package in R can be used for
the calculations of MCA and sMCA (Nenadić and Greenacre, 2007; R Core
Team, 2018).
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3.3 Partitioning Around Medoids

The well-known partitioning around medoids (pam) method (Kaufman and
Rousseeuw, 1987) is implemented to identify distinguishable clusters between
the CLPs in the sMCA biplots of the missing subsets. A medoid is referred to
as a representative object which has the shortest average distance to the other
data points of interest. The data points closest to the medoid form a cluster. The
pam method is applied to dissimilarities (distances) and therefore does not rely
on distributional constraints, as is the case with the k-means method (Kaufman
and Rousseeuw, 1987; Struyf et al., 1997). Moreover, in minimizing a sum of
squared dissimilarities instead of a sum of squares it is a more robust method
and importantly, it allows the algebraic selection of the number of clusters. We
are interested in determining whether a sufficient clustering structure exists for
the CLPs, since this could lead to emphasizing the association between missing
responses and subsequently identifying the MDM. Since cluster analysis is
applied on the reduced dimension sMCA solution, this is regarded as a tandem
clustering approach (Mitsuhiro and Yadohisa, 2015).

In order to determine whether the number of predetermined medoids suc-
cessfully discriminates between the clusters, the average silhouette width is
evaluated. The silhouette value is obtained by first calculating the average
dissimilarity of all objects in a specific cluster, say C1, to its medoid and then
by identifying the closest neighbouring cluster, say C2, for each object in C1.
The silhouette value provides a ratio between the distance to the medoid of
the allocated cluster and the second-best option for each object (CLP in our
context). Silhouette values are calculated for all data points and then averaged
to provide a global measure of fit, referred to as the average silhouette width or
silhouette coefficient, B(8). Silhouette coefficients are between −1 and 1 with
the following interpretation (Struyf et al., 1997):

• B(8) ≈ −1, the classified CLP is closer to the second-best medoid than
the allocated medoid resulting in unsuccessful classification.

• B(8) ≈ 0, the classified CLP lies between two medoids.

• B(8) ≈ 1, the CLP is well classified.

Guidelines to decide whether a silhouette value reflects substantial clustering
structures are not available, but B(8) > 0.5 is regarded as an above average
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measure reflecting the efficient identification of clustering structures. Struyf
et al. (1997) advise that a silhouette value below 0.25 is an indication that
no notable clusters are present in a data set. Carrying forward, a B(8) ≥ 0.5
will be regarded as an indication of well separated clusters, which illustrates
dependency between missing response CLs. A B(8) < 0.5 will be indicative of
no substantial clustering structures, and, therefore, independence of missing
response CLs. The pam method is available in the cluster package (Maechler
et al., 2018) in R.

4 Simulation Results and Discussion

Only the single active handling approach to missing values is applied in the
simulation study due to the high computational power required to cluster the
missing subsets using multiple active handling. However, a comparison between
the single- and active handling approaches of two cases is illustrated in Figure 5,
which will appear later in this section. The average silhouette widths obtained
from the CLPs of the missing sMCA solutions using two and three medoids
over the fifteen simulated combinations are shown in Figures 2 and 3.

The plotting characters and colours distinguish between the number of
variables in the simulated data sets. Five groupings within each plot appear to
follow similar trends, each of these groupings consist of a particular sample
size. From left to right the sample sizes increase from 100 to 3000 (Section 2.1)
for each of the display windows. The sample size does not have an effect on
identifying clusters in the missing CLPs. The number of variables do however
impact the successful identification of clustering structures, it appears that for a
lower number of variables (? = 5), the silhouette values are dispersed for both
MAR and MCAR MDMs. As the number of variables increases (? = 10 or
? = 15) the silhouette values stabilise with a majority of values above 0.5 for
the MAR simulations and a majority below 0.5 for the MCAR simulations. A
frequency distribution of the silhouette coefficients is presented in Table 3.
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Figure 2: Average silhouette widths obtained from pam with 2 clusters over 15000 simulations.

From Table 3 it can be observed that a majority of silhouette coefficients occur
in the [0.5 ; 0.75) interval for MAR simulations, whereas a majority of silhouette
coefficients occur in a range with lower values between [0.25 ; 0.5) for the
MCAR simulations. Figure 3 shows the silhouette coefficients obtained when
specifying three medoids. First considering the MAR silhouette values, it can be
seen that a lower number of variables (? = 5) result in silhouette values below
0.5. The performance of the cluster allocations seems to stabilise across sample
sizes as the percentage of missingness increases. The MCAR simulations result
in consistent trends irrespective of sample size or percentage of missing values.
When comparing the silhouette values obtained for MCAR in Figure 2 with
those of Figure 3, it is clear that more silhouette values occur above the 0.5 line
when the number of medoids is increased. This is an indication that with an
increase in the number of clusters, MCAR resulted in more substantial clusters
than before.
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Figure 3: Average silhouette widths obtained from pam with 3 clusters over 15000 simulations.

Again, the MAR simulations result in larger proportions of higher silhouette
coefficients and resulted in even better silhouette values when approximately
42.2 % of values were missing. As observed from Tables 3 and 4, there is a
slight improvement in the proportion of silhouette values that range between
[0.5 ; 0.75) when the number of clusters is increased from two to three for
the MCAR MDM, while a decrease in the proportion of values in the range
between [0.5 ; 0.75) are observed for MAR cases. This leads to the conclusion
that a lower number of clusters resulting in higher silhouette coefficients could
be indicative of dependence with well separated clusters agreeing with the
description of MAR. Whereas a higher number of clusters with high silhouette
coefficients could be an indication of independence, since more separation and
unique groupings occur.
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Table 3: Frequency distribution of silhouette coefficients of two clusters with highest frequencies
indicated in bold.

9.97 %MAR 29.88 %MAR 42.2 %MAR

[-0.25 ; 0) 22 0.15 % 3 0.02 % 0 0 %
[0 ; 0.25) 901 6.01 % 339 2.26 % 245 1.63 %
[0.25 ; 0.50) 3383 22.55 % 1391 9.27 % 944 6.29 %

→ [0.50 ; 0.75) 9335 62.23 % 9028 60.19 % 8294 55.29 %
[0.75 ; 1.00) 1359 9.06 % 4239 28.26 % 5517 36.78 %
Total 15000 100.00 % 15000 100.00 % 15000 100.00 %

10 %MCAR 30 %MCAR 50 %MCAR

[-0.25 ; 0) 0 0 % 0 0 % 1 0.01 %
[0 ; 0.25) 1118 7.45 % 1299 8.66 % 1308 8.72 %

→ [0.25 ; 0.50) 13070 87.13 % 13022 86.81 % 13135 87.57 %
[0.50 ; 0.75) 783 5.22 % 668 4.45 % 546 3.64 %
[0.75 ; 1.00) 29 0.19 % 11 0.07 % 10 0.07 %
Total 15000 100.00 % 15000 100.00 % 15000 100.00 %

Table 4: Frequency distribution of silhouette coefficients of three clusters with highest frequencies
indicated in bold.

9.97 %MAR 29.88 %MAR 42.2 %MAR

[-0.25 ; 0) 0 0 % 0 0 % 0 0 %
[0 ; 0.25) 1867 12.45 % 1435 9.57 % 1259 8.39 %
[0.25 ; 0.50) 5333 35.55 % 3694 24.63 % 3765 25.10 %

→ [0.50 ; 0.75) 6974 46.49 % 5522 36.81 % 4163 27.75 %
→ [0.75 ; 1.00) 826 5.51 % 4349 28.99 % 55813 38.75 %

Total 15000 100.00 % 15000 100.00 % 15000 100.00 %

10 %MCAR 30 %MCAR 50 %MCAR

[-0.25 ; 0) 31 0.21 % 37 0.25 % 33 0.22 %
[0 ; 0.25) 1519 10.13 % 1791 11.94 % 1840 12.27 %

→ [0.25 ; 0.50) 10389 69.26 % 11071 73.81 % 11298 75.32 %
[0.50 ; 0.75) 3055 20.37 % 2097 13.98 % 1827 12.18 %
[0.75 ; 1.00) 6 0.04 % 4 0.03 % 1 0.01 %
Total 15000 100 % 15000 100 % 15000 100 %
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The visualisations and frequency distributions showed that there is a clear
difference between the success of identifying clusters in MAR and MCAR
MDMs. In order to distinguish between the two MDMs based on silhouette
coefficients, a cut-off value of 0.6 has been identified from the tendencies
observed in Figure 2 and 3. A majority of silhouette coefficients were observed
above 0.6 in the MAR scenarios, which could be indicative of an MAR MDM.
The percentages of occurrences above 0.6 are given in Table 5.

Table 5: Percentage of silhouette coefficients above 0.6.

Two Clusters Three Clusters

B (8) > 0.6 MAR MCAR MAR MCAR
≈ 10 % missing 49.61 % 1.52 % 35.25 % 4.06 %
≈ 30 % missing 72.43 % 1.22 % 58.82 % 2.15 %
≈ 50 % missing 76.89 % 0.81 % 62.76 % 1.44 %

The sMCA biplots of missing CLPs and samples are presented for both the
MAR MDM (Figure 4, left panel) and MCAR MDM (Figure 4, right panel) of
a selected simulation with 30 % missing values.

The CLPs are illustrated with a triangle plotting character and open circle
plotting characters illustrate the sample points. Three groupings appear between
the CLPs in the left panel of Figure 4, which resulted in an average silhouette
width (B(8)) of B(8) = 0.7132 and B(8) = 0.6594 when two clusters were
specified. Two less distinctive groupings appear in the right panel of Figure 4,
which resulted in B(8) = 0.4149 with three clusters and B(8) = 0.4599 when
specifying two clusters. Since, both silhouette widths are less than 0.5 when
attempting to cluster the biplot from the MCAR MDM, it confirms that the
clustering structure is not sufficient. The contrary is confirmed by the silhouette
widths obtained from the MAR MDM, which resulted in measures both greater
than 0.6. The visual differences are subtle and therefore a measure of fit used in
combination with the visualisation is useful to confirm the anticipated MDM.
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CLP
Sample

CLP
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Figure 4: sMCA biplots (single active) with 30 % missing values. Left panel: MAR MDM. Right
panel: MCAR MDM.

CLP
Sample

CLP
Sample

Figure 5: sMCA biplots (multiple active) with 30 % missing values. Left panel: MAR MDM. Right
panel: MCAR MDM.

The difference between the MDMs are less evident when using multiple active
handling of the missing CLs. There are however four discernible groupings in the
MAR sMCA biplot (Figure 5, left panel) with less distinctive groupings appearing
in the MCAR sMCA biplot (Figure 5, right panel). This confirms the hypothesis
that MAR CLPs result in more clustering structures than MCAR MDMs.
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Figure 6: Comparison of silhouette widths for multiple active (mA) and single active (sA) sMCA
biplots for MAR and MCAR MDMs.

It is not a fair comparison to use the same number of clusters for single active
and multiple active sMCA biplots, since there is a substantial difference between
the number of CLPs in the respective biplots. The number of clusters specified
for multiple active sMCA biplots are chosen proportionally to the number of
clusters in the single active sMCA biplots and taking the total number of CLPs
available for clustering into consideration. As shown in Figure 6 using single
active handling results in different clustering structures for MAR and MCAR
MDMs, with the MCAR MDM achieving lower silhouette widths than the MAR
MDM except when the number of clusters approaches the total number of CLPs.
Albeit, resulting in low silhouette widths as the number of clusters increase, this
is another indication of the independence of the MCAR MDM. The argument
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is that if the CLPs can be distinctively clustered in isolation from the other
CLPs, it confirms that the association is not strong. There are slight differences
between the MDMs using multiple active which do not provide conclusive
interpretations of the MDMs.

5 Real Application

There are two and three groupings identified in the left panel of Figure 7 which
resulted in B(8) = 0.7832, for two clusters, and B(8) = 0.5016, for three clusters.
The concentrated sample points show high association to a number of closely
positioned CLPs, which is in accordance with the hypothesis of a MAR MDM,
as stated earlier. The clusters specified for multiple active are again chosen
proportionally which all resulted in lower silhouette widths as the number of
clusters exceeded two groupings for single active as presented in Figure 8.

CLP
Sample

CLP
Sample

Figure 7: Real application: sMCA biplot of missing CLPs. Left panel: single active. Right panel:
multiple active.

The real application results are consistent with the findings in the simulation
study (Section 4). The decrease in the silhouette coefficient with an increase
in the number of clusters, agrees with the MAR MDM structure. Also, the
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silhouette coefficient above 0.6 confirms that the missing values might be due
to the MAR MDM.
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Figure 8: Comparison of silhouette widths for multiple- and single active sMCA biplots.

6 Concluding Remarks

It has been confirmed that there is a structural difference between the missing
CLPs of the simulated MAR and MCAR MDMs. The MAR simulations resulted
in satisfactory clusters with higher average silhouette coefficients than MCAR.
The results suggest that silhouette coefficients above 0.6 could be an indication
of an underlying MAR MDM. The effectiveness of multiple active handling
of missing values to determine the MDM has to be further investigated. The
recommendation for users is to use single active handling for sMCA biplots
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along with a clustering technique that can provide measures of fit, in order to
confirm the MDM with more certainty.
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