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ABSTRACT

Phase-field methods based on the Cahn–Hilliard (CH) equation coupled to the incompressible Navier–Stokes equation are becoming
increasingly popular for interface resolving numerical simulations of two-phase flows of immiscible fluids. One major limitation of this
approach, however, is that the volume of each phase is not inherently preserved. This is associated with the phase-discriminating order
parameter, which in the course of the simulation remains in general not within its initial physical bounds. This shortcoming relates to the
fact that the CH equation with standard Ginzburg–Landau chemical potential has no volume-preserving stationary solution for interfaces
with uniform (non-zero) curvature. In this paper, a curvature-dependent chemical potential is proposed which allows for bounded stationary
solutions of the CH equation for drops/bubbles exhibiting uniform curvature. Numerical solutions of the coupled Cahn–Hilliard
Navier–Stokes equations show that the proposed chemical potential significantly improves boundedness and phase volume conservation
over the standard one.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0048614

I. INTRODUCTION

Two-phase flow problems have attracted increasing attention due
to their wide-spread industrial and scientific applications. In most sit-
uations, the thickness of the interface between the two phases is so
small that the sharp interface model (Leal, 2010), where the fluid flow
within each phase is governed by the Navier–Stokes (NS) equations
and the two phases are connected by the boundary conditions at the
interface, can accurately capture the flow physics. However, as the
locations of the interfaces are normally not known a priori, it is a cum-
bersome task to explicitly impose the boundary conditions at the inter-
faces. Methods that use an explicit representation of the interface,
involving computational mesh motion and deformation, such as arbi-
trary Lagrangian–Eulerian (ALE) methods (Chatzidai et al., 2009) or
front-tracking methods (Tryggvason et al., 2001), can provide an

accurate representation of surface tension, but they have difficulty in
dealing with complex and evolving interface topologies (Fuster et al.,

2009). On the other hand, methods that use an implicit representation
of the interface such as marker-and-cell (MAC), volume of fluid

(VOF), and level-set can robustly and efficiently represent evolving,
topologically complex interfaces but generally suffer from an inaccu-

rate representation of surface tension (Francois et al., 2006).
An alternative approach to capture the topological evolution of

an interface is the phase-field (or diffuse interface) method. The main
idea of this approach is to implicitly describe the interface by a contin-
uous scalar field, i.e., the phase-field, varying continuously (but rap-
idly) over a thin transitional layer of well-defined finite thickness and
being mostly uniform in the bulk phases (Badalassi et al., 2003; Yue
et al., 2004). In this approach, diffusion is allowed to occur between
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the two fluid components through gradients of the chemical potential
of the system in their thin interfacial region (Sibley et al., 2013). Two
widely used phase-field models are the Allen–Cahn (AC) equation
(Allen and Cahn, 1979) and the Cahn–Hilliard (CH) equation (Cahn
and Hilliard, 1958). Both of these two models attempt to minimize the
Ginzburg–Landau (GL) free energy functional, but in two different
norms (Mirjalili et al., 2020).

The AC model is a second order partial differential equation
(PDE) which is not readily suitable for simulation of immiscible, incom-
pressible two-phase flows due to its non-conservative nature. This is
attributed to the absence of the interface deformation/curvature contri-
bution in the standard Helmholtz free energy functional (Wacławczyk,
2017). Many researchers have attempted to overcome this issue by
introducing time-dependent Lagrange multipliers (Rubinstein and
Sternberg, 1992; Yang et al., 2006; and Zhang and Tang, 2007) and
space and time dependent Lagrange multipliers (Brassel and Bretin,
2011; Jeong and Kim, 2017; Joshi and Jaiman, 2018; Kim et al., 2014;
Lee and Kim, 2020; and Zhai et al., 2015) as non-local corrections to
the original PDE. Besides, a few local modifications have been done to
the AC equation. In their study of the Saffman–Taylor instability, Folch
et al. (1999) introduced a so-called counterterm, i:e:; jjrcj (where j is
the local curvature field defined everywhere in space, which corre-
sponds to the curvature of the isocontours of the order parameter c) to
the original AC phase-field equation in order to cancel the curvature
effect at the leading order. In this manner, the typical hyperbolic tangent
profile is still obtained as the solution of the AC phase-field equation,
but it is simply advected by the interface motion [therefore the name
advected-field method (Plapp, 2012)] and not modified by curvature
effects (Biben et al., 2003). Sun and Beckermann (2007) proposed a sec-
ond order phase-field equation derived from an interface advection
equation by expressing the interface normal and curvature in terms of a
hyperbolic tangent phase-field profile across the interface. They also
considered the interface motion due to an arbitrary external velocity
field. In the absence of curvature-driven interface motion, the so-called
counterterm introduced by Folch et al. (1999) is used in the equation to
cancel out such motion. A conservative form of the formula proposed
by Sun and Beckermann (2007) was obtained by Chiu and Lin (2011).
This conservative second order phase-field equation has been widely
used in the numerical simulation of two-phase flows (Chai et al., 2018;
Geier et al., 2015; Hu et al., 2018; 2019; and Liang et al., 2018). In addi-
tion, a Lagrange multiplier combining both local and non-local effects
is rigorously investigated in Alfaro and Alifrangis (2014).

The CH model is a fourth-order PDE, which is becoming more
popular in simulating two-phase flows due to its conservative properties
and robustness (Jacqmin, 1999; Li et al., 2020; Liu et al., 2019; Ma et al.,
2020; Niu et al., 2018; and Zanella et al., 2020). As a distinct advantage,
the CH equation ensures the conservation of “total mass,” interpreted as
the volume integral of c in the computational domain. If the order
parameter is strictly bounded so that the values in the bulk of each com-
ponent are61 and if the interface of the two phases is a hyperbolic tan-
gent profile (equilibrium state), then the mass of each component is
conserved as well (Li et al., 2016). However, if the order parameter is not
bounded so that its values in the bulk regions deviate from 61 [due to
the so-called bulk diffusion resulting from adoption of a double-well
potential in CH equation (Soligo et al., 2019)], shrinkage/expansion
occurs and the volume of the phase enclosed by the interface diffuses
into the other phase to restore the equilibrium profile (Yue et al., 2007).

This way the “total mass” is still conserved, but there is a mass leakage
among the two phases that can affect the computational accuracy of the
interface position and surface tension force (Li et al., 2016).

Thus far, three main strategies have been applied to overcome
the limitations of the original CH equation concerning boundedness
and phase mass conservation: (i) using degenerate mobility instead of
non-degenerate (constant) mobility (Ceniceros and Garc�ıa-Cervera,
2013; Dai and Du, 2016; Elliott and Garcke, 1996; Liu, 2008; Kim and
Kang, 2009; Lee et al., 2016; Lee and Kim, 2016; and Shah et al., 2019),
(ii) introducing correction terms into the CH equation (Li et al., 2016),
and (iii) increasing local or global grid resolution (Ding and Yuan,
2014). Degenerate mobility function guarantees that the order param-
eter maintains within the physical bound c 2 ½�1;þ1� (Boyer, 1999;
Abels et al., 2013), though the bounded solutions are not always com-
patible with the physical features of the problem, such as the
Gibbs–Thomson effect (Dai and Du, 2016). Introducing an interfacial
correction term into the CH equation as proposed by Li et al. (2016)
can improve the accuracy of the original model. Wang et al. (2018)
presented an improved CH model with a re-initialization process for
capturing the interface more accurately. Their method was able to
reduce numerical diffusion effectively and obtain a fluid interface that
is physically close to its equilibrium state. The grid resolution methods
are able to improve the interface sharpness but they do not guarantee
the interface profile in the equilibrium state.

An important contribution to obtain solutions of the CH equa-
tion which conserve mass of each phase and are albeit physically
sound is given by the relation between density and order parameter.
As in the absence of special measures the CH equation may yield
unbounded solutions, linear relations qðcÞ might lead to nonphysical
negative densities, especially if the density ratio is large (Kim, 2012).
Bonart et al. (2019b) used a thermodynamically consistent CH model
with a nonlinear relation between density and order parameter. They
found that unlike the linear relations, the non-linear relation enforces
positive densities. However, it can lead to loss of total mass during the
simulations (Bonart et al., 2019a; 2019b).

From the above discussion, it is clear that obtaining bounded and
potentially stationary solutions of the order parameter is of utmost
importance to ensure mass conservation of the individual phases in
the CH equation. As the curvature driven motion in the presence of
curved interfaces is inherent in currently used chemical potentials, no
such stationary solutions of the CH equation are possible. Stationary
phase distributions of single drops or bubbles are only possible when
the CH equation is coupled with the incompressible NS equations,
where mass/volume conservation is ensured by the condition of a
divergence-free velocity field. In the present work, the original CH
equation is modified by introducing a curvature-dependent chemical
potential. As we shall see, the proposed chemical potential allows for a
stationary solution of the CH equation for bubbles or droplets with
uniform (non-zero) curvature. Hence, it guarantees bounded solutions
for two-phase flow problems with both planar and non-planar interfa-
ces. The effectiveness of this advected-field chemical potential is justi-
fied by applying it to several benchmark two-phase flow problems.

II. GOVERNING EQUATIONS AND NUMERICAL
METHOD

This section is devoted to the governing equations, i.e., the
Cahn–Hilliard and the Navier–Stokes equations within a diffuse
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interface modeling framework. First, a curvature-dependent chemical
potential allowing for stationary solution of the CH equation is derived
and a modified interfacial energy density for capillary interfaces is pro-
posed. This is followed by the numerical solution approach, where a
special treatment for calculation of the interface unit normal vector
needed for curvature computation is introduced.

A. Cahn–Hilliard equation with advected-field

chemical potential

1. General considerations

Consider a system of two immiscible fluids in contact with each
other. The composition order parameter c 2 ½�1;þ1� is defined as
the phase-field parameter such that in the two fluid bulks c ¼ 61, and
the fluid–fluid interface is given by c¼ 0. Denoting the fluid domain
by X, the Helmholtz free energy functional is written as

F c½ � ¼
ð

X

k
wðcÞ
e2

þ 1

2
rc½ �2

� �

dX; (1)

where wðcÞ is a double-well potential that describes the bulk coexis-
tence of the two phases and the second term ½rc�2=2 is the gradient
contribution. A simple prescription for wðcÞ is the Ginzburg–Landau
double-well potential, wðcÞ ¼ ð1� c2Þ2=4, which determines the val-
ues of the coexisting bulk phases as 61. In addition, k is the mixing
energy density and e is the capillary width of the diffuse interface.

A variational procedure (Cahn and Hilliard, 1958) leads to the
generalized chemical potential / as

/ðcÞ ¼ dF c½ �
dc

¼ @F c½ �
@c

�r � @F c½ �
@ðrcÞ

� �

¼ k
1

e2
w0ðcÞ � r2c

� �

; (2)

where w0ðcÞ ¼ dw=dc ¼ c3 � c. The CH equation is written as

@c

@t
þr � ðc uÞ ¼ � 2

qþ � q�
ðr � JÞ; (3)

where u is the divergence-free velocity field and J denotes the phase-
field diffusion flux defined as J ¼ �0:5ðqþ � q�ÞMr/ (Yue, 2020;
Zhu et al., 2019). Here, q is the density, the superscripts þ and
� denote the bulk values, and M is the mobility coefficient between
the phasesþ and�. The terms on the left-hand side of Eq. (3) express
the hydrodynamic transport of the phase-field by the flow while the
term on the right-hand side is responsible for the diffusive relaxation
of the field to its equilibrium state.

The non-negative mobility coefficient M is considered often as
either a constant or a concentration-dependent variable (Khatavkar
et al., 2007; Shah et al., 2019). Generally, it is desirable to keepM small
such that the interface position is primarily advected. At the same
time, it requires to be big enough to ensure that the interface profile is
accurately modeled and the interface thickness remains approximately
constant (Aland, 2012). Asymptotic analysis (Abels et al., 2012) and
numerical benchmarks (Aland, 2012) demonstrate that this can be
achieved by taking the scalingM � e2. For a constant mobility coeffi-
cient (M ¼ const:), Eq. (3) becomes

@c

@t
þr � ðc uÞ ¼ Mr2/: (4)

Integrating Eq. (4) over the entire computational domain X and using
the boundary conditions ðn � uÞj@X ¼ 0 and ðn � r/Þj@X ¼ 0

(where @X denotes the boundary of the computational domain and n

is the outward unit normal to @X) yield (Yue et al., 2007)

d

dt

ð

X

c dX ¼ 0; (5)

meaning that CH dynamics conserves phase volume (total mass) over
the entire domain.

In the equilibrium state without any flow (u ¼ 0), the spatial dis-
tribution of c is determined by the condition that the chemical poten-
tial / is constant, i:e:,

/ ¼ k
1

e2
w0ðcÞ � r2c

� �

¼ const: (6)

For the sake of simplicity, we take const: ¼ 0. Since k > 0, Eq. (6)
becomes

1

e2
w0ðcÞ � r2c ¼ 0: (7)

For the reason of further exploitation, we now consider the problem in
Cartesian, polar, and spherical coordinates where the order parameter
varies in the direction normal to the interface, r, only, i.e., c ¼ cðrÞ.
Equation (7) can then be written in the general form as

1

e2
w0ðcÞ
|ffl{zffl}

¼c3�c

� @2c

@r2
þ N � 1

r
|fflffl{zfflffl}

¼j

@c

@r

0

B
@

1

C
A

¼ 0: (8)

The integer N 2 f1; 2; 3g denotes the space dimensions of the prob-
lem. In addition, the term ðN � 1Þ=r ¼ j is the local curvature field
defined everywhere in space, which corresponds to the curvature of
the isocontours of the order parameter c.

2. Planar interface

For a planar interface (j¼ 0), Eq. (8) reduces to

c3 � c

e2
� @2c

@r2
¼ 0: (9)

The solution of Eq. (9) is the well-known hyperbolic tangent profile,
c ¼ tanhðr=

ffiffiffi
2

p
e


 �

Þ. The interfacial tension r for a planar interface
can be derived from the CH free energy for the interface formed
between cþ ¼ 1 and c� ¼ �1 as (Jacqmin, 1999)

r ¼ k

ð1

�1

@c

@r

� �2

dr: (10)

With the above solution of Eq. (9), the integration in Eq. (10) yields
the following relation between interfacial tension, mixing energy den-
sity coefficient, and the capillary width of the diffuse interface:

r ¼ 2
ffiffiffi
2

p
k

3 e
: (11)

3. Non-planar (curved) interfaces

It can be easily shown that for a non-planar interface (N> 1,
j 6¼ 0), the hyperbolic tangent profile is no longer the solution of Eq.
(8). To maintain the hyperbolic tangent profile for non-planar interfa-
ces, a term g serving as Lagrange multiplier needs to be added to
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Eq. (8). As shown in the Appendix, a constant Lagrange multiplier g is
unsuitable for this purpose. This has also been pointed out by
Niethammer (1995). However, adopting

g ¼ N � 1

r

@c

@r
¼ j

@c

@r
(12)

can enforce the solution in the form of hyperbolic tangent profile. As
the interface curvature depends on space (and for dynamic cases also
on time), the same holds for the Lagrange multiplier g. For an equilib-
rium hyperbolic tangent profile, it is @c=@r ¼ ð1� c2Þ=

ffiffiffi
2

p
e


 �

or
equivalently @c=@r ¼ jrcj. Therefore, in equilibrium,

g ¼ jjrcj: (13)

If c follows the hyperbolic tangent profile, g is finite in the diffuse
interface region but approaches zero far from the interface. Adding g
to the left-hand side of Eq. (8) cancels out the third term causing the
curvature-driven interface motion which hinders the establishment of
steady equilibrium states in two-phase problems with curved interfa-
ces. In this way, the Laplacian operator in chemical potential [Eq. (6)]
is effectively reduced to r2cþ jjrcj ’ @2c=@r2. This resolves the
shrinkage/expansion issue occurring in two-phase flow problems (Yue
et al., 2007) and enforces the order parameter to be bounded within
61 in the bulk fluids. While obtained from a different concept as pre-
sented above, the Lagrange multiplier g in Eq. (13) takes the same
form as the counterterm added by Folch et al. (1999) to the AC equa-
tion to cancel out the local Allen–Cahn dynamics of the interface. We,
therefore, reformulate Eq. (7) by adding g from Eq. (13) as follows:

1

e2
w0ðcÞ � r2cþ jjrcj

|fflffl{zfflffl}

g

¼ 0: (14)

For bubbles and droplets with uniform interface curvature, the
lower integration limit in Eq. (10) should be changed to the bubble/
drop center so that

r ¼ k

ð1

0

@c

@r

� �2

dr: (15)

As the solution to Eq. (14) is c ¼ tanhððr � r0Þ=
ffiffiffi
2

p
e


 �

Þ, where r0 is
the position of the interface (determined by c¼ 0, see Fig. 1), the inte-
gration of Eq. (15) gives

r ¼ 2
ffiffiffi
2

p
k

3 e
gðCnÞ; (16)

where

gðCnÞ ¼ e
2ffiffi
2

p
Cn 3þ e

1ffiffi
2

p
Cn


 �

1þ e
1ffiffi
2

p
Cn


 �3 : (17)

In Eq. (17), Cn is the Cahn number defined as Cn ¼ e=ð2 r0Þ. While
Eq. (16) differs from that obtained for the planar interface [Eq. (11)],
the difference is small provided Cn is small. In the sharp interface limit
(Cn ! 0), limCn!0 gðCnÞ ¼ 1 so that the value of the planar interface
is approached.

4. Thermodynamic consistency

Equation (14) may be interpreted as a modified chemical
potential

/m ¼ k
1

e2
w0ðcÞ þ jjrcj � r2c

� �

: (18)

The wide success of phase-field models is based on energy functionals
which ensure thermodynamic consistency, meaning that the total free
energy, cf. Equation (1), does not increase in time. However, the chem-
ical potential /m in Eq. (18) makes the CH equation to be thermody-
namically inconsistent, i:e:, no energy functional can be found to be
associated with this chemical potential. To enforce thermodynamic
consistency of the AC equation, Jamet and Misbah (2008) proposed
replacing jrcj in the counterterm jjrcj added by Folch et al. (1999)
with its equivalence at equilibrium. Following Jamet and Misbah

(2008), we set jrcj ’
ffiffiffiffiffiffiffiffiffiffiffi

2wðcÞ
p

=e in Eq. (18) to obtain a thermody-

namically consistent phase-field model. Therefore, the advected-field
chemical potential

/af ¼ k
1

e2
w0ðcÞ þ

ffiffiffiffiffiffiffiffiffiffiffi

2wðcÞ
p

e
j�r2c

� �

(19)

and the associated energy functional

FIG. 1. Schematic representation of 1D (a) and 2D (b) stagnant two-phase
problems.
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F af c½ � ¼
ð

X

k
wðcÞ
e2

�
ffiffiffiffiffiffiffiffiffiffiffi

2wðcÞ
p

e
jrcj þ 1

2
rc½ �2

� �

dX (20)

are introduced.
The advected-field chemical potential /af given by Eq. (19) is

identical as the one developed by Jamet and Misbah (2008) for the AC
equation. However, to the best of our knowledge, it has not thus far
been employed in any numerical simulation of two-phase flows and
has remained in theoretical level. Although /af can be used with both
the AC and CH phase-field based equations, in the present work, it is
used with the CH equation. Consequently, the advected-field
Cahn–Hilliard equation becomes

@c

@t
þr � ðcuÞ ¼ Mr2/af : (21)

The Cahn–Hilliard Eq. (21) in combination with the proposed chemi-
cal potential /af given by Eq. (19) constitutes a thermodynamically
consistent diffuse interface model. Interface curvature in Eq. (19) is
computed as j ¼ r � ns with nsðcÞ being the outward unit normal
vector to the interface with respect to c� phase, which is given by
ns ¼ rc=jrcj. It is important to note that Eq. (21) can be used for
both planar (j¼ 0) and non-planar (j 6¼ 0) interfaces. In fact, for
both the planar and non-planar interfaces, we always have jrcj
’

ffiffiffiffiffiffiffiffiffiffiffi

2wðcÞ
p

=e 6¼ 0 across the interface.

B. Coupling with hydrodynamic equations

To utilize the above phase-field model for computation of immis-
cible two-phase flows, the CH equation needs to be coupled with
hydrodynamic equations, i:e:, here the Navier–Stokes equation.
Eulerian methods for computation of two-phase flows can be classified
into multi-field approaches (such as the two-fluid model) and single-
field approaches where the two phases share a common velocity field
(Yeoh and Tu, 2010). As an interface-capturing method, the phase-
field model naturally belongs to the latter category (W€orner, 2012).

1. Navier–Stokes equations

In order to close the equations governing the flow of two isother-
mal, immiscible, incompressible Newtonian fluids, the Cahn–Hilliard
Eq. (21) is coupled with the Navier–Stokes equation comprising the
conservation of mass (continuity) and the conservation of momentum
(Abels et al., 2012),

r � u ¼ 0; (22)

@ðquÞ
@t

þr�ðqu�uÞ¼�rpþr�s

�M

2
ðqþ�q�Þr�ðu�r/Þþ fbþ fr: (23)

Here, u is the velocity field, t is the time, p is the pressure, and
s ¼ l½ðruÞ þ ðruÞT� is the viscous stress tensor for Newtonian flu-
ids. The third term on the right-hand side of Eq. (23) is necessary to
achieve thermodynamic consistency in the case of non-matched densi-
ties, although it vanishes in the case of matched densities (Abels et al.,
2012). In addition, q and l are the fluid density and viscosity, respec-
tively. Both depend linearly on the order parameter as

qðcÞ ¼ 1

2
qþð1þ cÞ þ q�ð1� cÞ
� 

;

lðcÞ ¼ 1

2
lþð1þ cÞ þ l�ð1� cÞ
� 

:

(24)

Furthermore, in Eq. (23), the term fr denotes the interfacial energy
(per unit volume) while fb represents volumetric body forces (e.g., due
to gravity).

2. Modified model for the interfacial energy density

In general, two different formulations for capillarity are used in
combination with phase-field methods. These are the continuous sur-
face force (CSF) model introduced by Brackbill et al. (1992) in the con-
text of sharp-interface methods, and the Korteweg stress tensor
representation inherent to diffuse interface methods (Anderson et al.,
1998; Antanovskii, 1995; and Espath et al., 2016). Based on both
approaches, quite different formulations for modeling the capillarity
have been proposed in the literature (Guo et al., 2021; Hua et al., 2014;
Kim, 2005; 2012; and Liu and Shen, 2003). Here, we follow the second
approach, where the capillarity is modeled on the basis of the
Korteweg stress tensor as (Gomez and van der Zee, 2017)

fr ¼ @F c½ �
@ðrcÞ � rc ¼ �kr � ðrc �rcÞ: (25)

The widely used standard interfacial energy density obtained
from the Korteweg stress tensor is f stdr ¼ /rc (Dinesh Kumar et al.,
2019; Zhang et al., 2016; 2019). Vasilopoulos (2020) obtained a modi-
fied version of the standard interfacial tension force to more accurately
account for interfacial tension effects. In the present work, we modi-
fied the standard interfacial energy density in a form different from
that of Vasilopoulos (2020) as follows:

fr ¼ f stdr þ dfr; (26)

where dfr ¼ f stdr � kgrc is added to the standard capillarity to com-
pensate for the deviation (if any) of the order parameter from an equi-
librium profile. It is worth noting that theoretically the proposed
Lagrange multiplier g will induce zero capillarity for any configuration
(i.e., for planar and non-planar interfaces). However, when the numer-
ical profile of the order parameter across the interface deviates from an
equilibrium profile, a small but non-negligible interfacial energy den-
sity dfr will arise (Jamet and Misbah, 2008). In the numerical simula-
tions carried out in the present work, it shall be shown that the
additional term dfr decreases the difference between the analytical
(Young-Laplace) and numerical pressure jump and thus increases
accuracy.

C. Numerical implementation

In the bulk regions far from the interface, the term jrcj appear-
ing in the denominator of the normal vector ns approaches zero and
hence some special treatment is needed in order to prevent a division
by zero in numerical simulations. There have been few solutions pro-
posed in the literature to overcome such a problem. For instance, in
the VOF method, a very small but positive value is added to the

denominator as dVOF ¼ 10�8=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PNcell

i¼1 Vi=Ncell
3

q

, where Ncell is the

number of computational cells and Vi is the volume of individual cell
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i (Vachaparambil and Einarsrud, 2019). In addition, Biben et al.
(2005) proposed replacing the term jrcj with the term

maxðjrcj; dPFÞ, where dPF ¼ 10�4= 2
ffiffiffi
2

p
e


 �

is called cutoff that is
dependent on the capillary width e.

In the present work, the following formula is used, which com-
bines both aforementioned approaches:

ns ¼
rc

jrcj þ daf
: (27)

Here, the term daf ¼ 10�4=
ffiffiffi
2

p
e


 �

not only prevents the denominator
from becoming zero, but also unlike the aforementioned two methods,
it does not lead to nonphysical spike formation in the pressure field
within the interface.

The coupled CH-NS equations are solved in a segregated manner
using the code phaseFieldFoam (PFF) developed in FOAM-extend 4.
It may be noted that an earlier version of the code PFF has been used
to study other aspects of the bubble and droplet dynamics using CH
equation with standard chemical potential (see, for example, Cai et al.,
2015; 2016; 2017; Fink et al., 2018; andW€orner et al., 2021).

III. NUMERICAL RESULTS FOR TEST CASES IN STATIC
EQUILIBRIUM

In this section, the performance of the method proposed in Sec.
II is evaluated for the test case of a circular drop (radius r0, diameter
d0 ¼ 2r0) in static equilibrium, which is a standard benchmark for
two-phase flow solvers (Francois et al., 2006; Herrmann, 2008; and
Magnini et al., 2016). Both phases are initially at rest and body forces
are neglected (fb ¼ 0). Results are presented for matched as well as
non-matched density and viscosity ratios of the phases. The test case is
discretized both in a 1D and a 2D setup, see Fig. 1. Numerical results
are characterized with respect to (i) boundedness of the order parame-
ter and phase mass conservation, (ii) parasitic currents, and (iii)
Laplace pressure jump.

For a planar interface in equilibrium, the thickness of the diffuse
interface is about 4 e. In this paper, the resolution of the uniform grid
(with mesh size h) is characterized by the number of mesh cells
Ndi ¼ 4e=h used to resolve the diffuse interface. The capillary width e

is determined indirectly by specifying a value for the Cahn number
Cn ¼ e=d0. Mobility M ¼ ve2 is determined indirectly as well by fix-
ing v.

A. One-dimensional case with matched density

and viscosity

For the 1D setup, a wedge-type computational domain is consid-
ered. The wedge has an opening angle of 5� and extends radially from
r¼ 0 to r ¼ 2r0, where r0 ¼ 0:5 mm. The lateral sides of the wedge
represent azimuthal symmetry planes, while at the outer radial bound-
ary homogeneous Neumann conditions apply. The initial distribution
of the order parameter is

c0ðrÞ ¼ tanh
r0 � r
ffiffiffi
2

p
e

� �

; (28)

where r is the direction normal to the interface [see Fig. 1(a)]. Inside
the drop, the order parameter thus takes positive values and negative
values outside. The Cahn number is Cn¼ 0.01 and the mobility pre-
factor v ¼ 1m s kg�1. The (matched) density and viscosity of the

phases are qþ ¼ q� ¼ 1 kgm�3 and lþ ¼ l� ¼ 1 Pa s. The coeffi-
cient of interfacial tension is r ¼ 1Nm�1. The wedge is discretized in
radial direction by 400 uniform mesh cells corresponding toNdi ¼ 8.

The variations of the order parameter in the direction normal to
the interface at steady state (t¼ 33ms) are depicted in Fig. 2. Results
obtained with the standard chemical potential ð/stdÞ and the proposed
chemical potential ð/af Þ are compared with the initial analytical
hyperbolic tangent profile c0. While for /std the order parameter is not
bounded, it is well bounded for /af where the profile of c at steady
state agrees well with the analytical profile c0. The relative errors in
boundedness of cþ are 0.47% and 0.000 18%, respectively. The corre-
sponding values for c� are 0.47% and 0.001%, respectively.
Furthermore, while the interface position given by c¼ 0 is shifted
inwards for /std (indicating mass loss of the drop phase), it stays
located at r0 for /af implying that the volume/mass of both phases is
well conserved in this case.

B. Two-dimensional case with matched density

and viscosity

For the 2D case, the drop with diameter d0 ¼ 2 mm is placed in
the center of a square computational domain with size 2d0 � 2d0, see
Fig. 1(b). At the borders of the computational domain, the zero-
gradient boundary condition applies for the velocity, the order param-
eter, and the chemical potential, while pressure is fixed at zero. The
origin of the Cartesian coordinate system (x, y) is located in the center
of the drop and the initial distribution of the order parameter is given
by

c0ðx; yÞ ¼ tanh
r0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

ffiffiffi
2

p
e

 !

: (29)

As before, both phases are initially at rest. The density and viscos-
ity of the phases are the same as in Sec. IIIA. For interfacial tension,

FIG. 2. Radial order parameter profiles for the 1D problem in a wedge-type geome-
try. Comparison of the computed order parameter at steady state (t¼ 33ms)
obtained by the standard and advected-field chemical potential with the analytical
hyperbolic tangent profile c0.
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two different values r ¼ 0:01 and r ¼ 0:1Nm�1 are considered, as
most fluids have interfacial tension coefficients lying in between.
Simulations are performed for a number of cases, where the Cahn
number (Cn), the mobility pre-factor (v), and the grid resolution (Ndi)
are varied.

1. Boundedness of order parameter

One of the most important features of a numerical method for
multiphase flows simulation of immiscible fluids is its success in pre-
serving the mass of the individual phases. For incompressible fluids
considered here, mass conservation is equivalent to volume conserva-
tion. As mentioned in Sec. I, the CH equation with standard chemical
potential does not generally preserve the mass of individual phases
although it conserves the total mass of the system. In order to demon-
strate that the proposed chemical potential /af conserves the mass of
the individual phases, in this section, the deviation of the order param-
eter from the bulk values61 for r ¼ 0:1Nm�1, Cn¼ 0.02, and three
different grid resolutions Ndi ¼ 4; 8; 16 is depicted in Fig. 3, where
cmin and cmax are, respectively, the minimum and maximum values of
the order parameter in the computational domain. It is observed that
for both /std and /af the boundedness for the fluid outside the droplet
(here denoted by cmin þ 1) is more appreciated than for the fluid
inside (here denoted by cmax � 1). This may be attributed to the larger
distance of the cmin’s location(s) than the cmax’s location(s) with respect
to the interface (c¼ 0). It can also be seen that for the grid resolutions
Ndi ¼ 8 and Ndi ¼ 16, the advected-field chemical potential /af

results in bounded solution (cmax ¼ 0:999 997 233 5 for Ndi ¼ 8 and
cmax ¼ 1:000 000 573 75 for Ndi ¼ 16), while /std violates the bound-
edness. In addition, although for Ndi ¼ 4 the boundedness associated
with /af has been significantly improved (cmax ¼ 1:001 312 933) with
respect to /std case, using this grid resolution in two-phase flow simu-
lations is not recommended. This figure substantiates the boundedness
feature of the proposed chemical potential. It should be noted that a
(relatively) higher violation of order parameter from its bulk values

using CH equation with standard chemical potential was reported by
Jamshidi et al. (2019), where they used periodic boundary conditions.

2. Parasitic currents

In stagnant two phase flow problems where u ¼ 0 and in the
absence of body forces, NS equation (23) reduces to rp ¼ �fr,
implying that the pressure gradient should be balanced by the interfa-
cial tension force. Theoretically, the droplet and its surrounding fluid
should remain motionless and no flow should be generated. In numer-
ical simulations of such nominally stagnant flows, however, usually so-
called parasitic currents (also known as spurious velocities) occur in
various methods for interfacial computations of two-phase flows, as
on the discrete level no equilibrium between the pressure and the cap-
illarity is obtained. Two main sources for these numerical artifacts are
as follows (Francois et al., 2006): (i) employing not compatible discre-
tization methods for pressure and capillarity terms and (ii) errors in
the estimation of the local interface curvature j. Different measures
have been proposed in the literature to reduce parasitic currents. In
the present work, the parasitic currents obtained by the standard and
by the proposed chemical potentials are compared using the same dis-
cretization for the pressure gradient and capillarity terms in the two
methods.

a. Effect of grid resolution. To study the effect of grid resolution
on parasitic currents, simulations are performed for r ¼ 0:1 and
r ¼ 0:01Nm�1, keeping the Cahn number and the mobility parame-
ter fixed (Cn¼ 0.02, v ¼ 0:1m s kg�1). For each value of r, three
different grid resolutions corresponding to Ndi ¼ 4, 8, and 16 are con-
sidered. As usual, parasitic currents are quantified by the maximum
velocity magnitude Umax within the computational domain.

Figure 4(a) shows the time histories of UmaxðtÞ obtained by both
chemical potentials for interfacial tension coefficient r ¼ 0:1Nm�1.
For each chemical potential, the parasitic currents decrease with
increasing grid resolution. In all cases, the parasitic currents initially
jump to a high value at the beginning of the simulation from where
they decrease in time. After reaching a minimum, Umax increases
again. For /af , the parasitic currents always approach a certain steady
state value U1

max. For /std, in contrast, no such steady parasitic currents
are reached as can be seen in the inset of Fig. 4(a). It is noteworthy
that to the authors’ best of knowledge no previous study has reported
steady state results for parasitic currents. In addition, for all the cases
with /af , the higher parasitic currents including Umax remain always
within the interface region. In contrast, for /std, the higher parasitic
currents are initially concentrated around the interface but from a cer-
tain time they shift to the borders of the computational domain. While
with /std smaller parasitic currents are obtained for a certain time
interval as compared to /af , this cannot outweigh the distinct advan-
tage of /af to achieve a steady state for Umax. The time histories of
UmaxðtÞ for r ¼ 0:01Nm�1 are shown in Fig. 4(b) for /af only.
Again, the parasitic currents approach certain steady state values.
According to Figs. 4(a) and 4(b), for all three grid resolutions, the
respective values of U1

max increase with increase in r.
The steady parasitic currents can be quantified by the capillary

number Capc ¼ lþU1
max=r. Figure 5 depicts this capillary number

against grid resolution (Ndi) for the two interfacial tension coefficients
considered. As simulations with /std do not converge to steady state

FIG. 3. Deviation of the order parameter from the bulk values (r ¼ 0:1 Nm�1,
Cn¼ 0.02, v ¼ 0.1 m s kg�1).
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(equilibrium) solution, only the results associated with /af are given in
Fig. 5. It can be observed that the results for both interfacial tension
coefficients overlap and that the convergence rate of the proposed
method concerning U1

max is about second order. The same conver-
gence rate concerning parasitic currents given at a certain computa-
tional time rather than the steady state was reported by Jamshidi et al.
(2019) where they employed the standard chemical potential in the
CH equation along with periodic boundary conditions. Such a trend
in convergence can also be deduced from Fig. 4(a) for /std at certain
times of the simulation.

b. Effect of mobility parameter. The effect of mobilityM ¼ ve2 on
the parasitic currents is investigated by considering three different

values of v, namely, 0.01, 0.1, and 1 m s kg�1. Increasing v increases
the mobility coefficient M and hence the contribution of diffusion
term in the CH equation. Consequently, the steady state (equilibrium)
is reached faster. This is consistent with findings of Magaletti et al.
(2013). In all cases, interface width is fixed as e ¼ 2r0Cn, where
Cn¼ 0.02 and r0 ¼ 1 mm. Grid resolution corresponds to Ndi ¼ 8.
One could have expected that an increase in diffusion in the CH equa-
tion would result in dampening of parasitic currents. However, the
opposite is true as U1

max increases with increase in v and M as shown
in Fig. 6. This finding of increasing the parasitic currents with v andM

FIG. 4. Time history of the parasitic currents associated with the stagnant 2D drop-
let for (a) r ¼ 0:1 Nm�1 and (b) r ¼ 0:01 Nm�1 (v ¼ 0:1m s kg�1, Cn¼ 0.02).

FIG. 5. Effect of mesh resolution on steady parasitic currents (v ¼ 0:1 m s kg�1,
Cn¼ 0.02).

FIG. 6. Time history of parasitic currents for different values of mobility
(r ¼ 0:1 Nm�1; Cn ¼ 0.02, Ndi ¼ 8). Values of v and M are given in units
m s kg�1 and m3 s kg�1, respectively.
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is consistent with that reported by Zu and He (2013), where they used
the phase-field based lattice Boltzmann method.

c. Effect of Cahn number. The effect of Cahn number on the para-
sitic currents is studied by performing simulations with Cn¼ 0.01,
0.02, and 0.04 keeping Ndi ¼ 8 fixed. The results are given in Fig. 7. It
can be seen that the steady parasitic currents are damped as the Cahn
number decreases from Cn¼ 0.04 to Cn¼ 0.02. This can be explained
as by definition Cn ¼ e=d0, the Cahn number is proportional to the
capillary width e. Thus, decreasing Cn while keeping d0 fixed results in
a decrease in e. For a fixed resolution of the diffuse interface
Ndi ¼ 4e=h, this would, then, result in a decrease in mesh size h. On
the other hand, although the maximum parasitic current at steady
state is about the same for Cn¼ 0.01 and Cn¼ 0.02, the case with
smaller Cahn number requires more time to reach the steady state.

Table I depicts the steady values of parasitic currents and associ-
ated maximum and minimum values of the order parameter for the
cases considered in Figs. 6 and 7. It can be seen that like the parasitic
currents, the boundedness is also improved if the Cahn number and/
or the mobility parameter v decrease.

3. Pressure jump

For analysis of the pressure jump, simulation results with fixed
values Cn¼ 0.02, Ndi ¼ 8; v ¼ 0:1m s kg�1, and r0 ¼ 1mm are uti-
lized. The relative error of the pressure jump is defined here as
Erel ¼ jDpnum � DpYLj=DpYL, where DpYL ¼ r=r0 and Dpnum are the
analytical Young–Laplace and numerical pressure jump, respectively.
The numerical pressure jump is evaluated as the difference between
the pressure at the center of the droplet and the pressure outside the
droplet far away from the interface. It is worth noting that in the simu-
lations the pressure profile initially experiences a nonphysical peak at
the interface. However, this pressure peak vanishes as the steady state
for parasitic currents is achieved. The error percentage in the pressure
jump at the instance of steady state against grid resolution is depicted
in Fig. 8. It is evident that for both values of interfacial tension coeffi-
cient (i:e:; r ¼ 0:01 and r ¼ 0:1Nm�1), the proposed chemical
potential along with the modified capillarity returns very accurate
results for pressure jump. The rate of convergence with mesh refine-
ment is about third order.

It is worth noting that the present modified interfacial energy
density formulation [Eq. (26)] results in more accurate pressure jump
between the two phases than the standard interfacial energy density
formulation f stdr when they are used in conjunction with the proposed
chemical potential. In fact, without the correction term added to the
standard interfacial energy density, the proposed chemical potential
underestimates the pressure gradient more than the standard chemical
potential. In order to demonstrate the effect of the correction term on
the pressure jump, the pressure profile associated with the stagnant
droplet with matched density and viscosity is depicted in Fig. 9, where
the interfacial tension coefficient r ¼ 0:1Nm�1 pertaining to the ana-
lytical pressure jump value 100Pa is considered. It can be seen that the
pressure jump obtained using fr is equal to 99:754Nm�2 that is more
accurate than 98:583Nm�2 obtained by f stdr .

FIG. 7. Time history of parasitic currents for different Cahn numbers
(r ¼ 0:1 Nm�1; v ¼ 0:1 m s kg�1; Ndi ¼ 8). Values of M are given in unit
m3 s kg�1.

TABLE I. Steady parasitic currents and the associated order parameter for different
values of Cn number and v (r ¼ 0:1 Nm�1; Ndi ¼ 8).

Cn v U1
max ðlms�1Þ cminð�Þ cmaxð�Þ

0.01 17.1 �1.000 000 000 0 1.000 085 471 0

0.02 0.1 17.4 �1.000 000 001 0 0.999 997 233 5

0.04 25.2 �0.999 999 809 5 0.999 908 538 6

0.01 5.3 �1.000 000 001 0 0.999 995 847 5

0.02 0.1 17.4 �1.000 000 001 0 0.999 997 233 5

1.0 26.6 �0.999 976 739 1 1.000 117 819 0 FIG. 8. Error in pressure jump vs grid resolution for the proposed chemical potential
(Cn ¼ 0.02, v ¼ 0:1m s kg�1).
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C. Two-dimensional case with water–air properties

In order to substantiate the applicability of the proposed chemical
potential in the simulation of problems with real physical properties of
the phases, in this section, a two-dimensional stagnant problem with
the same configuration as in Sec. III B is considered but now for a
water droplet in ambient air. The physical properties include density
qþ ¼ 998, q� ¼ 1:29 kgm�3, kinematic viscosity �þ ¼ 9:03� 10�7,
�� ¼ 1:48� 10�5 m2 s�1, and interfacial tension coefficient r

¼ 0:072 Nm�1. In addition, we consider Cn¼ 0.02, v ¼ 0:1m s kg�1,
and Ndi ¼ 8. The results are demonstrated in Fig. 10. It can be seen
that with the chemical potential /af the parasitic currents have reached
a steady (equilibrium) state, while for the standard chemical potential,

Umax is oscillatory. In addition, although for the standard chemical
potential /std the average value of the parasitic currents become
smaller than the proposed method from a certain time (�43 ms), they
increase again from t � 97 ms and reach a maximum of �44 mm s�1

at t � 268 ms before they decrease again (not shown). As shown in
supplementary material, for /af , the higher parasitic currents includ-
ing Umax are restricted to the interface region, while for /std they ini-
tially appear around the interface, but start to shift to the borders of
the computational domain from a certain time (here t � 92 ms).
Therefore, the comparison of the terminal parasitic currents in the two
methods is again unreasonable.

D. Two droplets of different sizes in a stagnant fluid

In this section, we consider a case with two droplets of different
sizes immersed in a stagnant fluid. The physical properties of the pri-
mary phase and the dispersed phase (droplets) as well as the boundary
conditions are considered identical to those in Sec. III B. In addition,
Cn¼ 0.02 and Ndi ¼ 8. Two droplets with initial radii of rl0 ¼ 1 and
rs0 ¼ rl0=4 ¼ 0:25 mm are placed in a 3dl0 � 2dl0 rectangular computa-
tional domain (see Fig. 11). The initial center points of the larger and
smaller droplets given in units of mm are Clð�1; 0Þ and Csð0:75; 0Þ,
respectively, and the corners of the computational domain are
Að�3;�2Þ; Bð3;�2Þ; Cð�3; 2Þ, and Dð3; 2Þ.

The results are depicted in Fig. 12 at three different times of
t¼ 0, 100, and 242ms. It can be seen that with the standard chemical
potential, the droplets shift leftward, presumably due to the parasitic
currents, and they experience a decrease in their size. The decrease in
radius dr=r0 (or area dA=A0 ¼ p½r20 � r2�=ðpr20)) of the smaller drop-
let is 4.8 (9.37)% and 8.0 (15.36)%, respectively, at times t¼ 100 and
242ms. The corresponding values for the larger droplet are 0.2
(0.399)% and 0.4 (0.798)%, respectively. Therefore, the volume/mass
of the droplets (and hence the individual phases) are not conserved. In
addition, the center of the smaller droplet shifts about 0.026 and
0.121mm leftward at times t¼ 100 and 242ms, respectively. These
values are 0.019 and 0.104mm for the larger droplet. In the proposed
method using the chemical potential /af , however, both the droplets
remain fixed without any change in their size and position (not shown
therefore). This implies that the volume/mass of the droplets (and
hence the individual phases) are conserved. This test case further

FIG. 9. Effect of capillarity formulation on the pressure jump between two phases
using present chemical potential (r ¼ 0:1 Nm�1, Cn¼ 0.02, Ndi¼ 8,
v ¼ 0:1 m s kg�1).

FIG. 10. Variations of the maximum parasitic current with time for water droplet in
air (r ¼ 0:072 Nm�1; v ¼ 0:1m s kg�1; Cn ¼ 0.02, Ndi ¼ 8). FIG. 11. Schematic representation of two droplets in a stagnant immiscible fluid.
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demonstrates that the proposed chemical potential avoids any curva-
ture driven motion even for multiple interfaces exhibiting different
values of curvature. It may be noted that the problem of two stationary
disks/droplets was also studied by Chai et al. (2018) using local and
non-local AC equations with mass conservation, where no apparent
changes in the radii of the two disks during the time evolution were
observed.

IV. DROP DEFORMATION IN CONFINED SHEAR FLOW

Thus far we evaluated the efficiency of the proposed chemical
potential through the consideration of four test cases where the bulk
velocity of the two phases is zero, i:e:; uðx; y; zÞ ¼ 0. In this section, a
test case is considered where the bulk flow is not stagnant. To this end,
the droplet deformation in a shear flow (sf) driven by two parallel
plates moving with constant speed U in opposite directions is
simulated.

The physical configuration of this problem is shown in Fig. 13.
No-slip boundary condition is applied to the plates, while periodic

boundary condition is implemented on the left and right boundaries.
Matched density and viscosity of the phases, i:e:; qþ ¼ q� ¼ 1
kgm�3 and lþ ¼ l� ¼ 1 Pa s are considered. Three cases distin-
guished by different values of capillary number Casf of 0:1; 0:3, and
0.5 are examined. In all the cases considered in this section, the
Reynolds number Resf is fixed at 0.1. Here, the capillary and Reynolds
numbers are defined as Casf ¼ lr0 _c=r and Resf ¼ qr20 _c=l, where
_c ¼ U=ð4r0Þ is the shear rate and r0 is the radius of the initial circular
droplet.

In the phase-field method, the interface should be well resolved
for interfacial effects to be computed accurately and to approach the
sharp interface limit. While the result presented in Sec. III was
obtained on uniform grids, achieving a steady state solution of the
droplet deformation in shear flow using uniform mesh needs more
computational time as compared to the case of stagnant droplet.
Furthermore, as drop deformation increases with Casf , the computa-
tional time also increases with capillary number since it takes more
time to reach the steady state. To achieve high numerical accuracy
with moderate computational cost, here local adaptive mesh refine-
ment (AMR) library (Rettenmaier et al., 2019) is used, which allows us
to provide higher mesh densities where needed, i:e:, here at the
interface.

Starting from an initial circular shape, the droplet deforms gradu-
ally until the overall shear force exerted on it is balanced by the capil-
larity and it reaches a steady state. The amount of deformation of the
drop at steady state is determined by Casf and Resf . The droplet shapes
for three different Casf numbers of 0.1, 0.3, and 0.5 and constant Resf
of 0.1 for which the steady state solutions have been reached are
depicted in Fig. 14 accompanied by the corresponding AMR. It can be
seen that with increase in Casf the droplet gets more slender while the
inclination decreases.

The numerical results for the steady drop shape and inclination
(i:e:, the angle h in Fig. 13) are compared with available theoretical
and numerical counterparts. The drop shape is quantified by the
deformation parameter

D ¼ L� B

Lþ B
; (30)

where L and B denote the dimensions of the major and minor axes of
the droplet, respectively. The time history of the deformation parame-
ter for the three different values of Casf is displayed in Fig. 15. For the
lowest capillary number, the steady drop deformation is reached after
about 2 s, whereas for the largest value of Casf up to 12 s are needed.

FIG. 12. Two stagnant droplets of different sizes simulated using /std at three dif-
ferent times. (a) The droplets shift leftward and become smaller and (b) smaller
droplet at times 0, 100, and 242 ms.

FIG. 13. Schematic of drop deformation in a shear flow.
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A theoretical solution for the (steady) deformation parameter D
in this problem is given by Cox (1969) as follows:

D ¼ 5ð16þ 19nÞ

4ð1þ nÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð20=Casf Þ2 þ ð19nÞ2
q ; (31)

where the viscosity ratio n ¼ lþ=l� with lþ and l� being the
dynamic viscosity of the droplet and surrounding fluid, respectively.
Maffettone and Minale (1998) proposed the following expression for
the orientation angle based on a simple phenomenological model:

h ¼ 1

2
arctan

40ð1þ nÞ
Casf ð3þ 2nÞð16þ 19nÞ

� �

: (32)

It has been proved that there is a good agreement between the
model proposed by Maffettone and Minale (1998) and the experimen-
tal results in unbounded flows (Vananroye et al., 2007). This model
and the model proposed by Cox (1969) are not expected to be valid in
confined flows since they are not functions of the gap distance between
the walls. The model of Shapira and Haber (1990) (SH), however,
takes into account the wall effects as

DSH ¼ DTaylor 1þ CSH
1þ 2:5n

1þ n
ðr0
H
Þ3

� �

; (33)

where H is the gap distance between the walls and CSH represents a
shape factor, which depends on the position of the droplet relative to
the walls. If the droplet is positioned exactly in the middle between the
two walls CSH ¼ 5:699 6. In Eq. (33), DTaylor represents the correlation
proposed by Taylor (1934) for the deformation parameter given by

DTaylor ¼
16þ 19n

16þ 16n
Casf : (34)

Unlike for the deformation parameter, no influence of confinement on
the inclination angle h is reported in the literature.

The results for the steady deformation parameter D and orienta-
tion angle h are depicted in Figs. 16 and 17, respectively. In addition to
analytical results, the present results are compared with numerical
results obtained by Yuan et al. (2017), where PFSF stands for phase-
field-based surface tension force and FESF stands for free energy-
based surface tension force. It can be seen that there is a good agree-
ment between the current results and the corresponding analytical and
numerical results. Table II gives the area of the droplet and the maxi-
mum and minimum values of the order parameter in the

FIG. 14. Droplet shapes at steady-state in shear flow (Resf ¼ 0:1) for different values of Casf number.

FIG. 15. Evolution of droplet deformation in shear flow (Resf ¼ 0:1) for different
values of Casf number.
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computational domain at steady state. The maximum deviation of the
droplet area at steady state from its initial area (314:984 558 5mm2) is
equal to 0.272% pertaining to the case with Casf ¼ 0:5, which is very
small. This would justify, once again, that the order parameter is well-

bounded and hence the volume/mass of the individual phases is
conserved.

V. CONCLUSIONS

Despite its vast success in simulating incompressible multi-
phase flows, the Cahn–Hilliard phase-field model still suffers from
the drawback of non-conserving the volume of individual phases.
To overcome this drawback, a curvature-dependent chemical
potential for the Cahn–Hilliard equation is proposed that allows for
stationary solutions for drops/bubbles having uniform non-zero
curvature. The proposed chemical potential along with a modified
interfacial energy density was implemented in FOAM-extend 4.0
with special treatment of the normal unit vector and applied to var-
ious static and dynamic immiscible two-phase problems. It was
found that the proposed chemical potential has significant advan-
tages as compared to standard chemical potential. Most impor-
tantly, the proposed chemical potential gives rise to bounded
solution for the order parameter and hence preserves well the vol-
ume/mass of the individual phases, while the standard chemical
potential does not. Due to improved boundedness, the proposed
method is also more compatible (stable) than the standard one
when order parameter based adaptive mesh refinement is used.

In addition, the effect of Cahn number, mobility coefficient, and
mesh resolution on the parasitic currents associated with the static
cases has been examined. The results revealed that with the proposed
chemical potential, the Cahn–Hilliard Navier–Stokes equations always
converge to steady state solutions for nominally stagnant cases, while
the steady state solution will not be reached with the standard chemi-
cal potential. The parasitic currents decrease with mesh refinement.
Smaller Cahn number leads to slower convergence but smaller para-
sitic currents. Larger mobility leads to a faster convergence at the
expense of higher parasitic currents.

In the case of two stagnant droplets immersed in a stagnant
immiscible liquid, the proposed method preserves both the volume
and position of individual droplets. However, this is not the case in the
original method. In addition, comparison of the results of the dynamic
droplet deformation in shear flow for three capillary numbers with the
available analytical and numerical data demonstrates good agreement.
The area of the droplet after deformation is well preserved confirming
again the boundedness feature of the proposed method.

Overall, the proposed method which is based on the thermody-
namically consistent advected-field chemical potential gives rise to sta-
ble, converged, and bounded solutions.

SUPPLEMENTARY MATERIAL

See the supplementary material for the contour plots of the para-
sitic currents related to Fig. 10.

FIG. 16. Deformation parameter vs Casf for droplet deformation in a shear flow
(Resf ¼ 0:1).

FIG. 17. Orientation angle vs Casf for droplet deformation in a shear flow
(Resf ¼ 0:1).

TABLE II. Area of the droplet in shear flow (Resf ¼ 0:1) at steady state and the
deviation from its initial area for different values of Casf number.

Casf Asteady (mm2) Error in area (%) cmin ð�Þ cmax ð�Þ

0.1 314.194 184 62 0.011 �1.000 73 1.001 17

0.3 313.526 003 78 0.201 �1.006 47 1.008 21

0.5 313.305 892 15 0.272 �1.009 42 1.016 50

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 053311 (2021); doi: 10.1063/5.0048614 33, 053311-13

Published under an exclusive license by AIP Publishing

https://www.scitation.org/doi/suppl/10.1063/5.0048614
https://scitation.org/journal/phf


ACKNOWLEDGMENTS

The authors acknowledge financial support from the German
Research Foundation (Deutsche Forschungsgemeinschaft, DFG)
through Project No. 237267381-TRR 150. Calculations for this
research were conducted on bwUniCluster funded by the Ministry
of Science, Research, and the Arts Baden-W€urttemberg and DFG
(“Deutsche Forschungsgemeinschaft”) within the framework
program bwHPC and on the Lichtenberg High Performance
Computer of the TU Darmstadt.

APPENDIX: ANALYTICAL AND NUMERICAL
SOLUTION OF THE STEADY CH EQUATION

In this section, analytical and numerical solutions of Eq. (8) for
an axisymmetric 2D problem (where N¼ 2 and the order parameter c
varies only in the directions normal to the interface r) are given and
discussed briefly. It shall be shown that adding g ¼ const: to Eq. (8)
gives an oscillatory solution of this equation. In the analytical solution,
following Wazwaz et al. (2013), we use the Adomian decomposition
method (ADM) (Adomian and Rach, 1983) to solve the Volterra inte-
gral form of the equation. This equation is, actually, of the form of the
well-known Lane–Emden equation of shape factor k ¼ N � 1,

c00ðrÞ þ k

r
c0ðrÞ þ f ðcÞ ¼ 0; cð0Þ ¼ a; c0ð0Þ ¼ 0; k 	 0; (A1)

where f(c) is a nonlinear term. Adding g to Eq. (8), the nonlinear
term f(c) in Eq. (A1) takes the form

f ðcÞ ¼ 1

e2
w0ðcÞ þ g: (A2)

The Volterra integral form of Eq. (A1) is written as

cðrÞ ¼ aþ
ðr

0

t ln
t

r

� �

f ðcðtÞÞ dt: (A3)

The ADM uses the following infinite decomposition series:

cðrÞ ¼
X1

n¼0

cnðrÞ (A4)

for the solution c(r) and the following infinite series of polynomials:

f ðcÞ ¼
X1

n¼0

Anðc0; c1;…; cnÞ (A5)

for the nonlinear term f(c) where the components cnðrÞ of the solu-
tion c(r) will be determined recurrently. In addition, An are the
Adomian polynomials, which are obtained in a recurrence proce-
dure as (Duan, 2011)

An ¼
Xn

i¼1

Di
nf

ðiÞðc0Þ; n 	 1; (A6)

where D1
n ¼ cn; n 	 1 and Di

n ¼ 1
n

Pn
i¼1ðjþ 1Þcjþ1D

i�1
n�1�j;

2 
 i 
 n.
Substituting Eqs. (A4) and (A5) into Eq. (A3) yields

X1

n¼0

cnðrÞ ¼ aþ L�1
X1

n¼0

Anðc0; c1;…; cnÞ
 !

; (A7)

where L�1ðgðrÞÞ ¼
Ð r

0 t ln
t
r


 �
gðtÞ dt. Therefore, we have

c0ðrÞ ¼ a;
cjþ1ðrÞ ¼ L�1ðAjÞ; j 	 0:

(A8)

The obtained series solution is as follows:

cðrÞ ¼ B0 þ
X1

n¼1

cnðrÞ ¼ B0 �
X1

n¼1

BnðrÞ
ð2nÞ2

r2n; (A9)

where B0 ¼ c0 ¼ a, B1 ¼ f ðc0Þ, B2 ¼ f 0ðc0ÞB1, B3 ¼ f 0ðc0ÞB2

þf 00ðc0Þ 1
2B

2
1


 �
, etc. It can easily be shown that the coefficients

Bn; n 	 2 have, respectively, the same form as those for An�1; n
	 2 with the only difference that ci terms in An are replaced with
the terms Bi, i.e., Bn ¼ An�1jci¼Bi

. We denote the m-term approxim-

ant of the series solution of c(r) as y12ðrÞ ¼
P12

j¼0 cjðrÞ and plot in

Fig. 18 the curve of the Pad�e approximants {½11=12� y12ðrÞ} against
�tanh½ðr � r0Þ=

ffiffiffi
2

p
e


 �

�. In this figure e ¼ 1 and g ¼ 0:000 27, for
which R0 ¼ 8:37 mm is obtained. It is worth mentioning that the
value of g depends on both R0 and e. It can be seen that using the
constant value for g, the solution of Eq. (A1) does not satisfy
the boundary condition c0ð1Þ ¼ 0 and in the meantime it becomes
oscillatory.

It should be noted that the same result has been obtained by
solving Eq. (A1) numerically using the fourth order-Runge Kutta
method.
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