KIT | KIT-Bibliothek | Impressum | Datenschutz

Post-processing numerical weather prediction ensembles for probabilistic solar irradiance forecasting

Schulz, Benedikt ORCID iD icon 1; El Ayari, Mehrez; Lerch, Sebastian ORCID iD icon 1; Baran, Sándor
1 Institut für Stochastik (STOCH), Karlsruher Institut für Technologie (KIT)

Abstract:

In order to enable the transition towards renewable energy sources, probabilistic energy forecasting is of critical importance for incorporating volatile power sources such as solar energy into the electrical grid. Solar energy forecasting methods often aim to provide probabilistic predictions of solar irradiance. In particular, many hybrid approaches combine physical information from numerical weather prediction models with statistical methods. Even though the physical models can provide useful information at intra-day and day-ahead forecast horizons, ensemble weather forecasts from multiple model runs are often not calibrated and show systematic biases. We propose a post-processing model for ensemble weather predictions of solar irradiance at temporal resolutions between 30 min and 6 h. The proposed models provide probabilistic forecasts in the form of a censored logistic probability distribution for lead times up to 5 days and are evaluated in two case studies covering distinct physical models, geographical regions, temporal resolutions, and types of solar irradiance. We find that post-processing consistently and significantly improves the forecast performance of the ensemble predictions for lead times up to at least 48 h and is well able to correct the systematic lack of calibration.


Verlagsausgabe §
DOI: 10.5445/IR/1000133182
Veröffentlicht am 27.05.2021
Originalveröffentlichung
DOI: 10.1016/j.solener.2021.03.023
Scopus
Zitationen: 34
Web of Science
Zitationen: 28
Dimensions
Zitationen: 39
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Stochastik (STOCH)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2021
Sprache Englisch
Identifikator ISSN: 0038-092X, 1471-1257
KITopen-ID: 1000133182
Erschienen in Solar Energy
Verlag Elsevier
Band 220
Seiten 1016-1031
Schlagwörter Energy forecasting; Ensemble model output statistics; Ensemble post-processing; Probabilistic forecasting; Solar energy; Solar irradiance
Nachgewiesen in Web of Science
Scopus
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page