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Abstract For Read-Write Linked Data, an environ-

ment of reasoning and RESTful interaction, we inves-

tigate the use of the Guard-Stage-Milestone approach

for specifying and executing user agents. We present an

ontology to specify user agents. Moreover, we give op-

erational semantics to the ontology in a rule language

that allows for executing user agents on Read-Write

Linked Data. We evaluate our approach formally and

regarding performance. Our work shows that despite

different assumptions of this environment in contrast to

the traditional environment of workflow management

systems, the Guard-Stage-Milestone approach can be

transferred and successfully applied on the web of Read-

Write Linked Data.

1 Introduction

The environment of the web is finally at a stage where

hypermedia agents could be applied (Ciortea, Mayer,

Gandon, et al. 2019): We see that dynamic, open, and

long-lived systems are commonplace on the web form-

ing a highly distributed system. For examples, microser-

vices (Newman 2015) build on the web architecture and

provide fine-grained read-write access to business func-

tions. Moreover, Internet of Things devices are increas-

ingly equipped with web interfaces, see e. g. the W3C’s

Web of Things effort1. Furthermore, users’ awareness

for privacy issues leads to the decentralisation of social
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1 https://www.w3.org/2016/07/wot-ig-charter.html

networks from monolithic silos to community- or user-

hosted systems like SoLiD2, which builds on the web ar-

chitecture. The web architecture offers REST (Fielding

2000), or its implementation HTTP3, as a uniform way

for system interaction, and RDF4 as uniform way for

knowledge representation, where we can employ seman-

tic reasoning to integrate data. To facilitate software

agents in this environment called Read-Write Linked

Data (Berners-Lee 2009), we need to embrace the web

architecture and find a suitable way to specify behaviour.

As according to REST, the exchange of state informa-

tion is in the focus on the web, we want to investigate

a data-driven approach for specifying behaviour. More-

over, data-driven approaches to workflow modelling can

be both intuitive and actionable, and hence are suited

to a wide range of audiences with different experience

with information technologies (Hull, Damaggio, De Masel-

lis, et al. 2011). Hence, we want to tackle the research

question of how to specify and execute agent behaviour

in the environment of Read-Write Linked Data in a

data-driven fashion?

Echoing the said application areas for web technolo-

gies, we envision our approach to be useful to define

software agents that orchestrate services in microser-

vice deployments, act as assistance systems in Internet

of Things or Cyber-Physical Systems deployments, or

manage the lifecycle of personal data. Deployments in

which REST, semantic technologies, and some notion of

behaviour (e. g. flow-driven workflows) play a role can

be found in various industries, for academic descrip-

tions see e. g. (Brauns et al. 2016) – automotive, (Käfer

et al. 2016) – aviation, (Ciortea, Mayer, and Micha-

helles 2018) – manufacturing, and (Korkan et al. 2018)

2 https://solid.mit.edu/
3 http://tools.ietf.org/rfc/rfc7230.txt
4 http://www.w3.org/TR/rdf11-concepts/

https://www.w3.org/2016/07/wot-ig-charter.html
https://solid.mit.edu/
http://tools.ietf.org/rfc/rfc7230.txt
http://www.w3.org/TR/rdf11-concepts/
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– Internet of Things. Having been involved in the devel-

opment of some of these deployments, we see the need

for an approach to specify behaviour that embraces the

data-driven nature of the environment.

As the environment determines why different work-

flow approaches are used in different circumstances (Elm-

roth et al. 2010), we need to look at the particularities

of Read-Write Linked Data, whose basic assumptions

are fundamentally different from traditional environ-

ments where workflow technologies are applied, e. g. da-

tabases:

The absence of events in HTTP Of the many HTTP

methods, there is no method to subscribe to events.

Hence, for our Read-Write-Linked-Data native ap-

proach, we rely on state data and resort to polling

to get informed about changes in the environment.

Reasoning and querying under the OWA While in

databases, typically the closed-world assumption is

made, i. e. we conclude from the absence of infor-

mation that it is false, reasoning in ontology lan-

guages for RDF is typically based on the open-world

assumption (OWA). Hence, we have to explicitly

model all options.

Mitigation strategies would introduce complexity or re-

strict the generality of our approach: The absence

of events could, e. g., be addressed by (1) generat-

ing events from differences between state snapshots and

to process these events, which would add unnecessary

complexity if we can do without; (2) assuming server

implementations that implement change events using

the WebSocket protocol, which would restrict the gen-

erality of our approach and, for uniform processing,

would require clear message semantics, which, in con-

trast to HTTP, event-based systems do not have (Field-

ing 2000)5. The open-world assumption could, e. g.,

be addressed by introducing assumptions such as negation-

as-failure once a certain completeness class (Harth and

Speiser 2012) has been reached, which also would add

complexity.

In contrast to previous work by Pautasso, who pre-

sented an approach to retrofit REST into the BPEL

approach to workflow modelling in (Pautasso 2009),

our approach rather retrofits a workflow modelling ap-

proach into REST, here GSM. In previous work, we

defined ASM4LD, a model of computation for the envi-

ronment of Read-Write Linked Data (Käfer and Harth

2018a), which allows for rule-based specification of agent

behaviour. Based on this model of computation, we pro-

vided an approach to specify flow-driven workflows (Käfer

5 Note that a client’s (polling, state-based) application logic
can, without changes, benefit from HTTP/2 server push
(events): such specific events have been standardised to al-
low a server to update a client’s cached state representations.

and Harth 2018b). In contrast, we present a data-driven

approach in this paper. The Guard-Stage-Milestone (GSM)

approach, which serves as basis for our work, has first

been presented in (Hull, Damaggio, De Masellis, et al.

2011). While GSM builds on events sent to a database,

which holds the information model consisting in sta-

tus and data attributes, in our approach, distributed

components with web interfaces that supply state in-

formation hold the information model.

In (Jochum et al. 2019), we described a previous

version of this paper, which we presented at the 3rd In-

ternational Workshop in Artificial Intelligence for Busi-

ness Process Management (AI4BPM) at the 17th In-

ternational Conference on Business Process Manage-

ment (BPM). In this paper, we extended aforemen-

tioned work by providing a description on how we pro-

cess queries with a theoretical insight into the required

rule language, an extended formal evaluation from which

we derive modelling requirements, a performance eval-

uation, updates to the operational semantics, and an

extended discussion of related work.

Our approach consists in two main parts:

GSM Ontology We present an ontology to specify

GSM workflows and instances in the ontology lan-

guage RDFS. Using this ontology, we can specify,

reason over, and query workflow models and in-

stances at run-time.

Operational Semantics We present ASM4LD rules

to execute workflow instances specified using our

GSM ontology. To this end, we build on a Linked

Data Platform container6, i. e. a writable RESTful

RDF data store, to store the status attributes, i. e.

workflow instances in our ontology.

The paper is structured as follows: In Section 2, we

survey related work. Next, in Section 3, we give basic

definitions on which we build our approach with the

help of examples. In Section 4, we present our main

contributions: the ontology and the operational seman-

tics, together with the modelling requirements. Then,

in Section 5, we present how we process queries on the

information model using rules. Next, we evaluate our

approach in Section 6 regarding correctness and perfor-

mance. Last, in Section 7, we conclude.

2 Related Work

As we work in the intersection of data-driven workflow

management, knowledge representation using semantic

technologies, and systems built using the web, we sur-

vey related work in those fields and intersections.

6 http://www.w3.org/TR/ldp/

http://www.w3.org/TR/ldp/


Data-Driven Workflows for Agents on Read-Write Linked Data 3

2.1 Data in Workflow Management

Execution of workflows is typically driven by either flow

or data. Flow-driven approaches include the popular

BPMN language7. If we want to make use of data dur-

ing workflow execution, we can either extend a flow-

driven approach to make it data-aware, or we use an

approach where data is a first-class citizen. In this pa-

per, we want to investigate an entirely data-driven ap-

proach, but we give a brief overview on works in the

former category first.

Semantics for the flow aspects in flow-based ap-

proaches are typically given using Petri nets (Petri 1962)

in an event-driven fashion. For instance, (Dijkman et

al. 2008) provide such semantics for BPMN. Thus, ap-

proaches that make flow-based approaches more data-

aware on a formal level are often based on Petri nets:

Such approaches include (Polyvyanyy et al. 2019) and

(Montali and Rivkin 2017). They take an extension of

Petri nets for the dynamic part of the system, and a

formal view on data bases for the data aspect. The

gap between flow-based approaches and data-based ap-

proaches becomes obvious in (Popova and Dumas 2012),

which presents an approach for deriving GSM models

from Petri nets. In the conversion, not all conditions

in the GSM model can be filled automatically: Those

sentries that build on data require additional sources

for input, e. g. a human expert. We see that here, the

data aspects need to be added to the model when talk-

ing about a flow-driven model from a data-centric per-

spective, which provides additional motivation for us to

investigate entirely data-driven approaches.

Semantics for data-driven workflow languages are

often specified using Event-Condition-Action (ECA) rules
to be executed on databases, e. g. see GSM (Hull, Dam-

aggio, De Masellis, et al. 2011) for an artifact-centric

approach, and (Casati et al. 1996) for a flow-centric ap-

proach. Another data-centric approach is RESEDA (Seco

et al. 2018), whose semantics have been given using the

event-driven reactive paradigm. Our approach is built

for the environment of REST, where there are no events

that could inform the enactment of the workflow in-

stance. However, we make use of the GSM workflow lan-

guage and transfer it to the environment of Read-Write

Linked Data by specifying semantics in Condition-Action

rules.

Other approaches assume processes to be given as

Condition-Action rules, noting that workflow languages

can be layered on top, i. e. the following three approaches

do not talk about the semantics of such languages. For

instance, the Daphne approach (Calvanese et al. 2019)

provides actions as abstraction on a SQL query or an

7 http://www.omg.org/spec/BPMN/

external service call, both of which change the contents

of a relational data base. With its roots in the formal in-

vestigations of data-centric dynamic systems (Bagheri

Hariri, Calvanese, De Giacomo, et al. 2013), Daphne

is closely related to (Bagheri Hariri, Calvanese, Mon-

tali, et al. 2013), where a similar approach is inves-

tigated that works on a Description Logic knowledge

base instead of a data base, and also provides actions

as abstractions for changes. In contrast, the knowledge

base in our approach is the web of Read-Write Linked

Data, i. e. our approach is built for a distributed hy-

permedia setting, where REST calls are the means to

enact change. In terms of expressivity, we use an on-

tology language that is not based on description logics

but rather on RDFS, which is typically less expressive

than members of the Description Logic family of lan-

guages (Hogan 2014). However, the transition systems

in those condition-action rule based approaches can be

related to ASM4LD (Käfer and Harth 2018a), the Ab-

stract State Machine (Gurevich 1995) based model of

computation we build our work on.

2.2 Workflows and Web Services

Workflows applied to the web have been investigated

under the headline Web Services, which produced a

set of WS-* standards, most prominently SOAP8 and

WSDL9, which allow for composition of services, i. e.

arbitrary functions called via HTTP as transport pro-

tocol, using the flow-based BPEL10 workflow language.

Semantic descriptions, e. g. in OWL-S (D. L. Martin

et al. 2004) and WSMO (Haller et al. 2005) of those

functions should allow for automated composition. In

contrast, REST (Fielding 2000) constrains this set of

arbitrary functions and emphasises the processing of

state information instead of return values of function

calls (Pautasso, Zimmermann, and Leymann 2008; zur

Muehlen et al. 2005). Thus, extensions for BPEL have

been proposed to include RESTful services (Pautasso

2009; Pautasso and Wilde 2011). We built our approach

with the same aim in mind, i. e. to make use of REST-

ful services in processes. However, as in REST, a web

is built around resources and data about their state,

we want to use a data-centric approach and exploit the

semantics of the constrained set of REST operations.

8 http://www.w3.org/TR/soap12-part1/
9 http://www.w3.org/TR/wsdl/

10 http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.

0-OS.html

http://www.omg.org/spec/BPMN/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/wsdl/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
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2.3 Ontologies for Processes on the Web

Ontologies for processes have been proposed in numer-

ous occasions. For instance, OWL-S (D. Martin et al.

2004) contains a process language, scientific workflows

are often described using an ontology (Gil et al. 2007;

Turi et al. 2007), and publicly funded research projects

including Super11 and Adaptive Services Grid12 defined

process ontologies. In contrast to our approach, those

approaches have been built for flow-based processes,

the function-call style web service interaction, cannot

describe process instances, and do not come with oper-

ational semantics.

In previous work, we developed the WiLD ontology

to describe flow-based workflow models and instances

together with operational semantics in to specify and

execute workflows on Read-Write Linked Data (Käfer

and Harth 2018b). In contrast, in this paper, we inves-

tigate data-centric behavior descriptions.

2.4 Information and Processes in Information Systems

In the broader scope of object-aware business process

systems, (Künzle et al. 2011) have developed 20 require-

ments around data, activities, processes, user integra-

tion and monitoring. Based on these requirements, they

evaluate imperative, declarative, and data-driven ap-

proaches to workflow management. As we work with

Read-Write Linked Data, our approach can contribute

to filling the gaps left by other approaches: to fulfil

requirement R1 (data integration) and R2 (access to

data). As our approach is based on GSM, we of course

inherit their requirement fulfilment in other areas in-
cluding R10 (object behaviour), R13 (flexible proccess

execution), R14 (re-execution of activities) and R15

(explicit user decisions).

3 Preliminaries

In this section, we introduce the technologies on which

we build our approach.

3.1 Uniform Resource Identifier (URI)

On the web, we identify things (called resources on the

web) using URIs13. URIs are character strings consist-

ing in a scheme, and a scheme-specific part, separated

11 http://ip-super.org/ is defunct, but the content is avail-
able at http://projects.kmi.open.ac.uk/super/
12 http://www.asg-platform.org/ is defunct, the page is
available in the Web Archive.
13 http://tools.ietf.org/rfc/rfc3986.txt

by the colon character. In this paper, we only consider

the schemes of HTTP. For instance, consider the fol-

lowing URI that identifies the relation to assign a thing

to a class:

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

In this URI, the URI scheme is “http”, which refers to

the HTTP protocol, which we discuss in the next sec-

tion. Note that we use the term URIs when we actually

mean their internationalised form, IRIs14. We do so,

as the former is the more popular term and the former

RFC provides more information about the meaning and

the composition of URIs/IRIs than the RFC about the

latter.

3.2 The Hypertext Transfer Protocol (HTTP)

HTTP3 is a stateless application-level protocol, where

clients and servers exchange request/response message

pairs about resources that are identified using URIs on

the server. Requests are typed, and the type (i. e. the

HTTP method) determines the semantics of both the

request and the optional message body. We make ex-

tensive use of the GET request to request a represen-

tation of a resource, the PUT request to overwrite the

representation of a resource, and the POST request to

append to an existing collection resource. Notably, the

constrained set of HTTP methods does not include a

way to subscribe to events. Therefore, polling, i. e. the

repeated retrieval of state information, is the way to get

informed about changes to resource state.

3.3 The Resource Description Framework (RDF)

RDF4 is a graph-based data model for representing and

exchanging data based on logical knowledge represen-

tation. In RDF, we represent data as triples that follow

the form:

(subject , predicate, object)

Such a triple defines a relation of type predicate between

graph nodes subject and object. Multiple triples form an

RDF graph and the triples can be regarded as defining

the edges that connect the vertices of the graph. Things

in RDF are identified globally using URIs, or document-

locally using so-called blank nodes. Literals can be used

to express values. RDF can be serialised in different

formats. Those include Turtle15, which is probably the

14 http://tools.ietf.org/rfc/rfc3987.txt
15 http://www.w3.org/TR/turtle/

http://ip-super.org/
http://projects.kmi.open.ac.uk/super/
http://www.asg-platform.org/
http://tools.ietf.org/rfc/rfc3986.txt
http://tools.ietf.org/rfc/rfc3987.txt
http://www.w3.org/TR/turtle/
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easiest for humans to read, RDF/XML16, which has

been one of the first formats specified and works well

in XML-based environments, and JSON-LD17, which

works well in JSON-based environments. In this paper,

we use the following notation for RDF: As triples en-

code binary predicates, we write

rdf:type(:active, :State)

to mean the following triple in Turtle notation:

:active rdf:type :State .

Here, :active is the subject, rdf:type is the pred-

icate, and :State is the object. Triples are asserted

conjunctively. Note the use of URI abbreviations us-

ing the CURIE syntax18, where a colon separates the

abbreviating and possibly empty prefix from the local

name, here rdf is short for http://www.w3.org/1999/

02/22-rdf-syntax-ns#19. For the special case of class

assignments, we use unary predicates. That is, in our

notation, above triple becomes:

:State(:active)

For boolean constants, we use typewriter font, e. g. true.

3.4 The SPARQL Protocol and Query Language

SPARQL20 is a protocol and a query language for RDF.

SPARQL queries can have different forms, most promi-

nently SELECT queries. We use ASK queries in this paper.

The basic construct is a SPARQL query is a so-called

graph pattern, where variables are allowed in all posi-

tions of a triple. For instance, a query to select all states

could look as follows (assuming appropriate prefix def-

initions):

SELECT ?s WHERE { ?s rdf:type :State . }

The ASK query

ASK WHERE { ?s rdf:type :State . }

returns true if the SELECT query above has a non-

empty result.

16 http://www.w3.org/TR/rdf-syntax-grammar/
17 http://www.w3.org/TR/json-ld/
18 http://www.w3.org/TR/curie/
19 The example also uses the empty prefix, which shall de-
note http://purl.org/gsm/vocab# in this paper. We refer to
http://prefix.cc/ for other abbreviations.
20 http://www.w3.org/TR/sparql11-query/

3.5 Ontologies, Reasoning, and Rules

Besides encoding knowledge in a graph, RDF is the

basis for a set of Knowledge Representation technolo-

gies including the languages RDFS21 and OWL22 to

express ontologies. By and large, RDFS is less expres-

sive than most members of the OWL family, which

comes with computational benefits (Hogan 2014). For

instance, RDFS entailment can be implemented using

monotonous deduction rules. A rule language in the

context of RDF is Notation323. For example if we know

that:

:active a :NonFailureState .

:NonFailureState rdfs:subClassOf :State .

or in the notation of our paper:

:NonFailureState(:active)

∧rdfs:subClassOf (:NonFailureState, :State)

the rule (with terms without colons being variables)

rdfs:subClassOf (x, y) ∧ x(z)→ y(z)

allows us to entail the triple from the RDF example.

We call the part before the arrow antecedent or body

and the part after the arrow consequent or head.

In this paper, we additionally use a special kind of

rules: request rules, where the consequent is an HTTP

request to be executed. For instance:

:hasState(s, :active)→ PUT(s, :hasState(s, :done))

would mean that a PUT request should be sent to all s

that have the state :active with the payload that this s

shall have the state :done.

3.6 Abstract State Machines for Linked Data

(ASM4LD)

ASM4LD is an Abstract State Machine based opera-

tional semantics given to Notation3 (Käfer and Harth

2018a). In ASM4LD, we can encode two types of rules:

Derivation rules (to derive new knowledge) and request

rules (which cause HTTP requests). Moreover, ASM4LD

supports RDF assertions. In (Käfer and Harth 2018a),

we derived the operational semantics based on the se-

mantics of HTTP requests, first-order logic, and Ab-

stact State Machines. The operational semantics can

be summarized in four steps to be executed in a loop,

thus implementing polling:

21 http://www.w3.org/TR/rdf-schema/
22 http://www.w3.org/TR/owl2-overview/
23 http://www.w3.org/TeamSubmission/n3/

http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/json-ld/
http://www.w3.org/TR/curie/
http://purl.org/gsm/vocab#
http://prefix.cc/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TeamSubmission/n3/
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1. Initially, set the working memory to be empty.

2. Add the assertions to the working memory.

3. Until no further data can be retrieved from URIs

and no further data can be deducted, evaluate on

the working memory:

(a) Request rules from which HTTP-GET requests

follow. For the rules whose condition holds, make

the HTTP requests add the data from the re-

sponses to the working memory.

(b) Derivation rules. Add the thus derived data to

the working memory.

This way, we (a) obtain and (b) reason on data

about the world state.

4. Evaluate all other request rules on the working mem-

ory, i. e. those rules from which PUT / POST /

DELETE requests follow. Make the corresponding

HTTP requests.

This way, we enact changes on the world’s state.

In this paper, we use ASM4LD as formal basis to give

operational semantics to our Guard-Stage-Milestone on-

tology.

3.7 The Guard-Stage-Milestone Approach

The Guard-Stage-Milestone approach is an artifact-cen-

tric workflow meta-model, presented in (Hull, Damag-

gio, De Masellis, et al. 2011). The key modelling ele-

ments for Guard-Stage-Milestone workflows are the fol-

lowing: The Information Model contains all relevant

information for a workflow instance: data attributes main-

tain information about the system controlled by the

workflow instance, and status attributes maintain con-

trol information such as how far the execution has al-

ready progressed. Stages can contain a task (i. e. the

actual activity, an unit of work to be done by a hu-

man or machine) and may be nested. Guards control

whether a stage gets activated, i. e. the activity may

execute. The conditions of a guard are given as sen-

tries. Sentries are boolean expressions in a condition

language. They come in the form Event-Condition (on

<event> if <condition>). Here, events may be incom-

ing from the system, or be changes to status attributes.

Milestones are objectives that can be achieved during

execution, and are represented using boolean values.

Milestones have achieving and invalidating sentries as-

sociated: if an achieving sentry is evaluated to true, the

milestone is set to achieved. An invalidating sentry can

set a milestone back to unachieved.

An example can be found in Figure 1. The example

is set in an Internet of Things scenario and shows two

stages “Start Fire Alarm” and “Close doors”, whose ac-

tivation is controlled using guards. Those stages have

Start fire alarm
Close doors

g1 m1 g2
m2a

m2b

Fig. 1 A small example of two stages with associated guards
and milestones.

milestones associated that can be validated and invali-

dated. The informal definition of those guards and mile-

stones can be found in Figure 2.

To specify the operational semantics, (Hull, Damag-

gio, De Masellis, et al. 2011) provides a set of six PAC

rules. PAC rules are a variation of Event-Condition-

Action rules and are described by a prerequisite, an-

tecedent, and consequent, respectively. Both prerequi-

site and antecedent range over the entire information

model, and the consequent is an update to the status

attributes. The rules can be subdivided into two cat-

egories: explicit rules, which accomplish the actual

progress in a workflow instance, and invariant pre-

serving rules, which perform “housekeeping” by, e. g.,

deactivating child stages if the parent has been deacti-

vated. The operational semantics of GSM are defined

in an event-triggered fashion. There are three types

of Events: Outgoing Events for Task Invocation, sent

from stages, Incoming Events sent from the environ-

ment, e. g. one-way messages and task terminations,

and Status changes who fire when a milestone or stage

changes its state. If an event triggers the execution, all

that follows from the rules gets incorporated into the

information model. This full incorporation is called a

Business Step (B-Step).

We illustrate the operational semantics using an ex-

ample. It demonstrates a workflow of a fire alarm pro-

cess in a public building. Figure 2 shows how the work-

flow execution proceeds triggered by changes in the in-

formation model. Every line represents a B-Step.

Line 2 Once smoke has been detected, the sentry of g1

becomes true, which leads to g1 being active and

thus the execution of the left stage.

Line 3 Guard g1 is still active. As the fire alarm has

been started, the achieving sentry of milestone m1

is true and thus the milestone is set to achieved. In

consequence, guard g2 becomes active, which trig-

gers the execution of the right stage.

Line 4 As the invalidating sentry of m1 becomes true,

i. e. the firealarm stops when all doors are closed,

the dependent guard g2 becomes inactive as well.

This does not affect the state of milestone m2b.

Line 5 After m1 has been invalidated, the smoke can-

not further circulate through open doors.

Line 6 At some point after all doors had already been

closed, somebody re-opens a door. This triggers the
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Start fire alarm
Close doors

g1 m1 g2
m2a

m2b
g1:     Smoke detected 
          & Doors open
m1:    Alarm is on
!m1:   Door status: Closed

g2:     Alarm is on (m1)
          & Doors open
m2a:  Doors Ould not be closed
m2b:  Doors were closed
!m2b: Door status: open

Start fire alarm
Close doors

g1 m1 g2
m2a

m2b

Start fire alarm
Close doors 

g1 m1 g2
m2a

m2b

Start fire alarm
Close doors

g1 m1 g2
m2a

m2b

Start fire alarm
Close doors

g1 m1 g2
m2a

m2b

Start fire alarm
Close doors

g1 m1 g2
m2a

m2b

Door status: Open
Smoke : False

Door status: Closed
Smoke : True

Door status: Open
Smoke : True

Door status: Open
Smoke : True

Door status: Closed
Smoke : True

Door status: Open
Smoke : True

:  Environment Variables

: Active Stage

: Active Guard

: Active Milestone

:  Invalidated Milestone

Fig. 2 Example of a workflow execution. Time progresses
from top to bottom.

invalidation of the corresponding milestone m2b (all

doors are closed). As a consequence, the left stage

is re-triggered.

We see that changes in the information model trigger

in more changes in the information model.

4 Proposed Approach

To transfer the GSM approach to the environment of

Read-Write Linked Data, we need to transfer both the

modelling and the operational semantics to this envi-

ronment. Our approach consists therefore in an ontol-

ogy to model GSM workflows and instances (the lat-

ter corresponding to the status attributes), and in op-

erational semantics in rules with ASM4LD semantics,

which interpret those workflows and instances. The rules

can be directly deployed on a corresponding interpreter.

To put our approach into practice, a workflow model

has to be modelled using our ontology and to be made

available as Linked Data. A workflow instance has to

be defined using our ontology, with a link to a work-

flow model, and deployed as Read-Write Linked Data

in a Linked Data Platform Container. Then, an inter-

preter –with the operational semantics rules deployed–

has to be pointed to the workflow instance and can ex-

ecute the instance according to the model. Necessary

instances for the elements within the workflow model

are created, also as Linked Data in the said container,

by the interpreter using specialised set-up rules. The in-

terpreter then changes the state of the instances accord-

ing to the GSM lifecycle. As the rule language supports

both, derivation rules and request rules, we can deploy

derivation rules to implement the reasoning that is nec-

essary to fulfil the semantics of ontology languages (e. g.

RDFS) next to the rules required for the operational

semantics. Thus, we can execute the workflow and per-

form semantic data integration at the same time.

We first present the ontology (Section 4.1) and then

the operational semantics (Section 4.2). For the pre-

sentation of the operational semantics, we use the rule

syntax described in Section 3. Last (Section 4.3), we

present modelling requirements that need to be fulfilled

for a correct workflow execution.

4.1 Ontology for Modelling Entities

We built an ontology24 to describe the core modelling

primitives from (Hull, Damaggio, De Masellis, et al.

2011). We depict the ontology in Figure 3. We stay as

closely as possible to their definitions and divert only

if demanded by the environment of Read-Write Linked

Data: Tasks are HTTP requests as atomic activities.

Sentries contain a SPARQL ASK query in SPIN nota-

tion25. Correspondingly, we use SPARQL’s true boolean

query result (we cannot use false, see Section 1) with

sentries and guards. We introduce the class State of

all states to e. g. model the states of a stage: active and

inactive.

In our approach, the information model is not con-

tained in a database, but is spread over Read-Write

Linked Data resources. Hence, we do not maintain the

data attributes ourselves: We do not store information

about the system we control, but instead, we retrieve

the system state live in RDF over HTTP from the

system itself. However, we do maintain the status at-

tributes, for uniform access in RDF over HTTP. Thus,

from now on we call all information regarding the state

of the workflow status information. All other informa-

tion about the system under control, and other rele-

vant information from the environment, e. g. external

services, we call environment information.

4.2 Operational Semantics

The following operational semantics are based on the

PAC-rule-based semantics from (Damaggio et al. 2013).

We distinguish between setup and flow conserving (FC)

rules. Our rules can be found online26 in N3 notation.

For the sake of the example, we assume all status in-

formation to reside in a fictitious collection resource

at http://ldpc.example/. To improve legibility, we

sometimes use “· · · ” to denote when the values of other

predicates stay the same.

24 http://purl.org/gsm/vocab
25 http://spinrdf.org/
26 http://purl.org/gsm/semantics

http://purl.org/gsm/vocab
http://spinrdf.org/
http://purl.org/gsm/semantics


8 Käfer, Jochum, Aßfalg, Nürnberg

:Task

 

http:Request

 

:hasHttpRequest

:Stage

 

:hasTask

:Milestone

 

:hasMilestone

:Guard

 

:hasGuard

sp:Ask

 

:has(In)ValidatingSentry:hasCondition

:Result

 

:hasArtifactInstanceRelativeResult

ArtifactInstance

 

StageInstance

 

MilestoneInstance

 

:instanceOf

:inArtifactInstance

xsd:boolean

:isAchieved

:instanceOf

:inArtifactInstance

<<enumeration>>
:State

:uninitialised
:active

:inactive

:hasState

:hasArtifactInstance

xsd:boolean

sparql-result:boolean

Sentry

Fig. 3 Our ontology as UML class diagram with the following correspondance to RDF Schema: UML class depicts RDFS class;
UML associations depict domain and range of RDF properties. UML inheritance depicts RDFS subclass. The core classes to
describe models are depicted in bold, the core classes during execution are depicted dashed.

Instance Set-up Rules

The basic condition for all setup rules is:

CS := :StageInstance(i) ∧ :isInstanceOf (i, s)

∧:hasState(i, :uninitialized)

Workflow The setup can be requested by publishing

an uninitialized instance:

CS −→ PUT(i, :ArtifactInstance(i)

∧ . . .
∧:hasState(i, :uninitialized))

Stage Then, resources are created for all the model’s

sub-stages, linked to their counterpart in the model,

and with state inactive.

CS ∧ :hasDescendantStage(s, schild)

−→ POST(http://ldpc.example/,

:isInstanceOf (new, schild) ∧ :inArtifactInstance(new, i)

∧:hasState(new, :inactive))

Milestone Also, resources are created for all the model’s

milestones, linked to their counterpart in the model,

and with state unachieved.

CS ∧ :hasDescendantStage(s, schild)

∧:hasMilestone(schild,m)

−→ POST(http://ldpc.example/,

:isInstanceOf (new,m) ∧ :inArtifactInstance(new, i)

∧:isAchieved(new, false))
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Flow-conserving Rules

All FCRs share the following conditions, which we ab-

breviate with FC:

FC := :ArtifactInstance(SI) ∧ :Stage(sM )

∧:StageInstance(sI) ∧ :isInstanceOf (sI , sM )

∧:inArtifactInstance(sI , SI)

∧:hasState(SI , :active)

For better readability when writing about sentries, we

define the term :hasBooleanResult as abbreviation:

:hasBooleanResult(c, true)

:= :hasInstanceRelativeResult(c, r)

∧:hasArtifactInstance(c, SI)

∧sparql-results:boolean(r, true)

FCR-1 For inactive stages, we check the guards. If a

guard holds, the state of the stage is set to active and

the task of the stage is executed.

FC ∧ :hasGuard(sM , g) ∧ :hasHttpRequest(sM , req)

∧:allAncestorsActive(sI , true)

∧:hasState(sI , :inactive) ∧ :hasCondition(g, c)

∧:hasBooleanResult(c, true)

−→ PUT(sI , . . . :hasState(sI , :active))

−→ req(·, ·)

FCR-2 If an active stage’s validating sentry holds, set

the stage and its children to inactive, and the stage’s

milestone to achieved.

FC ∧ :hasState(sI , active) ∧ :hasMilestone(sM ,mM )

∧:hasValidatingSentry(mM , ca) ∧ :isInstanceOf (mI ,mM )

∧:hasBooleanResult(c, true)

∧:hasDescendantStage(sM , dM ) ∧ :isInstanceOf (dI , dM )

−→ PUT(mI , . . . :isAchieved(mI , true))

−→ PUT(sI , . . . :hasState(sI , :inactive))

−→ PUT(dI , . . . :hasState(dI , :inactive))

FCR-3 When an achieved milestone’s invalidating sen-

try of a completed stage becomes true, the milestone is

set to unachieved.

FC ∧ :hasMilestone(sM ,mM ) ∧ :isInstanceOf (mI ,mM )

∧:isAchieved(mI , true) ∧ :hasInvalidatingSentry(mM , c)

∧:hasBooleanResult(c, true)

−→ PUT(mI , . . . :isAchieved(mI , false))

FCR-4 Upon activation of a stage, set all of the stage’s

and its descendant stages’ milestones to unachieved.

FC ∧ :hasGuard(sM , g) ∧ :allAncestorsActive(sI , true)

∧:hasState(sI , :inactive)

∧:hasCondition(g, c) ∧ :hasBooleanResult(c, true)

∧:hasMilestone(sM ,mM ) ∧ :isInstanceOf (mI ,mM )

∧:isAchieved(mI , true) ∧ :hasDescendantStage(sM , dM )

:hasMilestone(dM ,mM
d ) ∧ :isInstanceOf (mI

d,m
M
d )

−→ PUT(mI , . . . :isAchieved(mI , false))

−→ PUT(mI
d, . . . :isAchieved(mI

d, false))

4.3 Requirements to Workflow Modelling

We now add two conditions a workflow needs to fulfil.

The disjointness conditions specify sets of sentries that

need to be disjoint. If the workflow modeller violates

one of them, a correct workflow execution cannot be

guaranteed. In the following, “¬” denotes the logical

negation. The reader can find the rationale behind those

requirements in Section 6.2.1.5, where we evaluate our

approach regarding correctness.

4.3.1 Disjointness of Achieving and Invalidating

Sentry

For each milestone the invalidating and achieving sentry

must be disjoint. More formally:

FC ∧ :hasMilestone(sM ,mM )

∧:hasInvalidatingSentry(mM , cI)

∧:hasAchievingSentry(mM , cA)

the workflow modeller must ensure that ¬(cA ∧ cI) al-

ways holds.
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4.3.2 Disjointness of Guards and Milestones

For each milestone, the guard of a stage and must be

disjoint with the achieving sentries of all milestones of

its parent stages. More formally:

FC ∧ :hasDescendantStage(sM , dM )

∧:hasMilestone(dM ,mM
d )

∧:hasAchievingSentry(mM
d , cA)

∧:hasGuard(sM , g)

∧:hasCondition(g, cg)

the workflow modeller must ensure that ¬(cA ∧ cg) al-

ways holds.

5 Rule-based Querying of Data and Status

Attributes

In our approach, we use SPARQL ASK queries for sen-

tries. As the rule language we employ does not have

special features to incorporate query results into con-

ditions, we have to use the rule language to do query

processing. We build on the SPIN27 notation to describe

SPARQL queries in RDF.

For queries on the data attributes, SPARQL fea-

tures are sufficient. Consider the following query that

could, e. g. be a part of the sentry of g1 in Figure 1:

PREFIX smarthome: <http://iot.example/vocab#> .

ASK

WHERE {

<http://iot-house.example/front#door>

a smarthome:Door ;

smarthome:isOpen true .

}

If we identify the query using q, we can write (imagine

bxy as blank nodes):

sp:Ask(q) ∧ sp:where(q, bl1) ∧ rdf:first(bl1, bt1)

∧sp:subject(bt1, http:// iot-house.example/ front#door)

∧sp:predicate(bt1, rdf:type)

∧sp:object(bt1, smarthome:Door)

∧rdf:rest(bl1, bl2) ∧ rdf:first(bl2, bt2)

∧sp:subject(bt2, http:// iot-house.example/ front#door)

∧sp:predicate(bt3, smarthome:isOpen)

∧sp:object(bt3, true)

∧rdf:rest(bl2, rdf:nil)

27 http://spinrdf.org/

SPIN makes use of reification, similar to RDF reifica-

tion28, but with own RDF terms, to describe the triple

patterns in the query. Using rules of the following form

(with tp,s,p,o being variables), we can annotate the

triple patterns using deductions that hold if a triple

pattern is fulfilled:

sp:subject(tp, s) ∧ sp:predicate(tp, p) ∧ sp:object(tp, o)

∧p(s, o)→ sparql-results:boolean(tp, true)

Using further deductions, we can check whether all triple

patterns in a query in SPIN notation are fulfilled, and

eventually yield triples that serve in the conditions of

the operational semantics, e. g. see the rule FCR-2 in

Section 4.2.

For queries on the status attributes, this technique

to annotate existing resources of triple patterns is not

sufficient: when giving queries to be evaluated on the

status attributes, we need a notion of the current arti-

fact instance, and thus we need new resources (and new

terms in the vocabulary) using which we can annotate

the triple patterns with the artifact instances in which

they hold. For example, a guard g that requires a mile-

stone m1 to be achieved should, first, only look in the

same artifact instance to check whether m1 has been

achieved, and should second, be defined at workflow de-

sign time, when the exact URI of the milestone instance

for m1 is not known yet. For the new resources, we need

to extend the expressivity of the rule language: For the

considerations so far, a rule language without existen-

tials in the head was sufficient. As we need to create

new resources in the deductions to annotate triple pat-

terns relative to artifact instances, we need existentials

in the head.

To annotate sentries relative to artifact instances,

we thus deduce blank nodes for each sentry in each

active artifact instance (bn as blank node):

:ArtifactInstance(a) ∧ :hasState(a, :active)

∧:inArtifactInstance(si, a) ∧ :isInstanceOf (si, sm)

∧:hasGuard(sm, g) ∧ :hasCondition(g, s)

→ :hasArtifactInstanceRelativeResult(s, bn)

∧:hasArtifactInstance(bn, a)

Now, we can follow the same pattern when annotating

triple patterns.

Last, we need a way to relate the SPARQL ASK

query to the artifact instance. To this end, we intro-

duce special triple patterns to be used in SPARQL ASK

28 https://www.w3.org/TR/rdf11-mt/#reification

http://spinrdf.org/
https://www.w3.org/TR/rdf11-mt/#reification
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queries in SPIN notation. Those triple patterns have the

form:

:inArtifactInstance(bt1, :thisArtifactInstance)

∧:hasAchievedMilestone(bt1,m1)

Where bt1 is a triple pattern, similar as in the presented

SPARQL query in SPIN notation, m1 is the URI of the

milestone that the sentry is supposed to consider, and

:thisArtifactInstance is a magic term that represents

the current artifact instance.

6 Evaluation

In this section, we evaluate our approach. We show the

correctness of our approach using theoretical consider-

ations and proofs in 6.2 after introducing some nota-

tion 6.1. Then, we briefly report on the applicability of

our approach in Section 6.3. Last, we provide a perfor-

mance evaluation in Section 6.4.

6.1 Notation

To improve readability, we introduce a new notation

and simplify the concept of models and its instances.

In the previous chapter, we made a difference between

stage instances (sI) and stage models (sM ). The FCRs

however only consider one stage instance of one stage

model, hence we can simplify the notation by conflat-

ing the two. Therefore, in the new notation, we choose

definitions that heavily build on the instances only. We

also compact the notation by defining sets that contain

all resources that fulfil certain conditions from the rules

in Section 4. Table 1 contains the relevant defintions of

sets and functions we use in the following.

On top of the sets and function that describe one

instant in time, we also need to define the progression of

time. To describe the progressing execution of a work-

flow, we look at it as a series of snapshots of the work-

flow. A snapshot contains the assignments of all status

information variables of a workflow. The sequential of

snapshots then describes the stepwise execution. To link

a snapshot to its successor, we define a state transition

function. The set of all possible snapshots is Σ, the

state transition function is

f : Σ → Σ

Given a snapshot σ ∈ Σ, f(σ) determines the subse-

quent state of the workflow, derived by applying the

proposed rules. We abbreviate f(σ) with σ′. σ(x) de-

notes the value of status information variables (i. e. for

a milestone or stage) x in snapshot σ. Correspondingly,

φσ determines the results of a sentry in snapshot σ.

We now apply this notation to the FCRs. Table 2

lists the FCRs using the new notation. Next, we shortly

provide a recap of the intuition behind each rule:

FCR-1 activates stages. It requires that a stage is inac-

tive, the stage’s ancestors are active, and the stage’s

guard is true.

FCR-2 sets milestones achieved and inactivates the

corresponding stages as well as its substages. It re-

quires a stage to be active and the achieving sentry

of a milestone of the stage to be true.

FCR-3 invalidates milestones. It requires a milestone

to be achieved and the milestone’s invalidating sen-

try to be true.

FCR-4 invalidates all achieved milestones when a stage

gets activated again. It requires all parent stages

to be active, the stage itself to be inactive and the

guard of the stage to be true.

We also reformulate the two disjointness conditions

using the new notation:

Disjointness of Achieving and Invalidating Sentries. A

workflow must be modelled in a way that the guard of

a child stage is never satisfied at the same time when

the stage’s milestones are satisfied.

∀s ∈ S,ms ∈Ms : ¬(φ+σ (ms) ∧ φ−σ (ms)) (1)

Disjointness of Guards and Milestones. The sentry of a

guard and the achieving milestones of its parent must

be disjoint.

∀s, sd ∈ S,ms ∈Ms, sd ∈ Ds, gsd ∈ Gsd :

¬(φσ(gsd) ∧ φ+σ (ms)
(2)

6.2 Correctness

To show the correctness of our approach, we need to

discuss two aspects in the light of the environment of

Read-Write Linked Data: First, we need to have a look

at the well-formedness criterion of (Damaggio et al.

2013) for workflows, which is a prerequisite for correct

handling of workflows by their rules. Second, we need

to investigate whether the invariants of (Damaggio et

al. 2013) hold for our approach.

We therefore present in Section 6.2.1 the rationale

behind the well-formedness criterion and show why the

well-formedness criterion is not directly applicable to

our approach. Then, we discuss the well-formedness cri-

terion’s implications and why they are valid in our ap-

proach nevertheless. Next, in Section 6.2.2, we present

and formalise the invariants for our environment and

show using mathematical induction that our FCRs do

not violate those invariants.
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Table 1 Notation used in the proofs. All definitions relate to an instance I of a model M .

Symbol Formal Definition Explanation

S {sI |FC} The set of stages

G {g|FC ∧ :hasGuard(sM , g)} The set of guards

Gs {gs ∈ G|FC ∧ :hasGuard(sM , gs) ∧ :isInstanceOf (s, sM )}, s ∈ S The guards of stage s

M {mI |FC ∧ :hasMilestone(sM ,mM ) ∧ :isInstanceOf (mI ,mM )} The set of milestones

Ms {mI ∈ M|FC ∧ :hasMilestone(sM ,mM ) ∧ :isInstanceOf (mI ,mM ) The milestones of stage s
∧:isInstanceOf (s, sM )}, s ∈ S

Ds {sd ∈ S|FC ∧ :hasDescendantStage(sM , sMd ) ∧ :isInstanceOf (sd, sMd ) The descendants of stage s
∧:isInstanceOf (s, sM )}, s ∈ S

As {sa ∈ S|FC ∧ :hasAncestorStage(sM , sMa ) ∧ :isInstanceOf (sa, sMa ) The ancestors of stage s
∧:isInstanceOf (s, sM )}, s ∈ S

Φ {c|(FC ∧ :hasGuard(sM , g) ∧ :hasCondition(g, c)) The set of sentries
∨(FC ∧ :hasMilestoneModel(sM ,mM )

∧(:hasAchievingSentry(mM , c) ∨ :hasInvalidatingSentry(mM , c)))}

φ φ : M∪G→ {true, false} The result of a guard’s (φ) or
milestone’s achieving (φ+) or
invalidating (φ−) sentry
in snapshot σ (φσ)

S {active, inactive, achieved, unachieved} The set of states

Table 2 Flow-conserving rules: conditions and actions.

Rule Condition Action

FCR-1 ∀s ∈ S, sa ∈ As, gs ∈ Gs : σ(s) = inactive ∧ σ(sa) = active ∧ φσ(gs) σ′(s) = active

FCR-2 ∀s ∈ S, sd ∈ Ds,ms ∈ Ms : σ(s) = active ∧ φ+σ (ms) σ′(ms) = achieved ∧ σ′(s) = inactive

∧σ′(sd) = inactive

FCR-3 ∀s ∈ S,ms ∈ Ms : σ(ms) = achieved ∧ φ−σ (ms) σ′(ms) = unachieved

FCR-4 ∀s ∈ S, sd ∈ Ds, sa ∈ As,ms ∈ Ms,msd ∈ Msd , gs ∈ Gs : σ′(ms) = unachieved ∧ σ′(msd) = unachieved

σ(sa) = active ∧ σ(s) = inactive ∧ φσ(gs) ∧ φ+σ (ms)

6.2.1 Well-formedness

In this section, we discuss the well-formedness crite-

rion of (Damaggio et al. 2013). The authors of said pa-

per formulated this criterion to address non-intuitive

behaviour resulting from different linearisations of the

rules to be applied on incoming events. In contrast, our

approach works without events and with parallel eval-

uation of rules. Therefore, we first explain the necessity

for the well-formedness criterion in case of event data.

Next, we show why we do not need to linearise the ap-

plication of our rules on the condition part, as we only

work with state data. However, new conflicts on the ac-

tion part can arise from our parallel processing, which

we discuss subsequently. We show that most conflicts

cannot occur due to the nature of the conditions, and

provide a rationale why the remaining conflicts are mi-

nor.

6.2.1.1 Well-formedness to Order M-Steps in B-Steps

Remember that the execution in the GSM approach as

described by (Damaggio et al. 2013) is event-triggered.

A business step (B-Step) is the full incorporation of the

implications of one event into the current state, i. e. the

variable assignment on the data and status attributes.

This incorporation includes the sequential evaluation of

all sentries. If upon an event, a sentry’s condition is met,

its value is true. Corresponding updates to the vari-

able assignment are enacted immediately. Thus, vari-

ables change over time and other sentry’s conditions

who would have held at the beginning of the incorpo-

ration, do not hold once it is this sentry’s turn. This

may lead to non-intuitive behaviour of the workflow,

which (Hull, Damaggio, Fournier, et al. 2011) address

using a well-formedness criterion.

We illustrate the non-intuitive behaviour with an

example in Figure 4. Think of two guards g1 and g2
with corresponding stages s1 and s2. Guards g1 and g2
only depend on event e. Executing s1 before s2, or vice
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s1g1 s2g2

a)

g1

e	

g2

e	

b) e		∧		σ(s2)=active e	

Fig. 4 Example for sensitivity to order of guard evaluation
in a database environment. Case a) is not sensitive, while b)
is sensitive.

versa, leads to the same result. This is not always the

case though. Now, g1 depends on event e and on s2
being active. Let event e fire. If g1 is evaluated before

g2, s1 does not become active, but s2 becomes active.

If g2 is evaluated first, both become active. Intuitively,

only s2 should become active. Without a fixed order of

execution the incorporation of e is ambiguous.

To address this ambiguity, (Hull, Damaggio, Fournier,

et al. 2011) introduce the micro step (M-Step), into

which a B-Step can be subdivided. Evaluating g1 and

g2 each are M-Steps. A B-Step then consists of multi-

ple M-steps. To handle the ordering of execution of M-

steps (Hull, Damaggio, Fournier, et al. 2011) introduce

the dependency graph. The dependency graph models

dependencies between guards and milestones. A guard

or a milestone, say g1 or m1, depends on another mile-

stone m2, if the truth of the sentry of g1 or m1 is

dependent on m2 being achieved or not. The depen-

dency graph is a directed graph with sentries as nodes

and dependencies between them as edges. The graph

induces a topological sorting for execution that elimi-

nates ambiguity and maintains an “intuitive” order of

execution. This order requires the graph to be acyclic.

Hence, (Hull, Damaggio, Fournier, et al. 2011) define

that a GSM model is well-formed iff its dependency

graph is acyclic.

6.2.1.2 Parallel Processing of State Data In our ap-

proach, we use time-triggered operational semantics.

Instead of using events, we query status of the work-

flow state and the environment periodically to deter-

mine the current state. Correspondingly, we apply up-

dates in bulk instead of updating the status information

variables as we go. Each state in the sequence is the re-

sult of the application of our entire ruleset. Above, we

define the function f to describe this state transfer.

Therefore, the B-step concept is not directly appli-

cable to our approach. A B-step includes every action

which depends on an event e. If there are no events, we

cannot associate any actions with them. Looked at from

the perspective of the event-triggered GSM semantics,

our approach rather performs M-steps periodically and

in parallel. Still, we need to discuss the ramifications of

non-intuitive behaviour and updates applied in bulk.

As an illustration, consider again the example from

Figure 4, which we treat using our notation. With the

example’s stages s1 and s2 and their guards g1 and g2,

we define:

γ ∈ {true, false} a boolean variable

γσ the value of γ in state σ

g1 = true if s2 = active and γ, else false

g2 = true if γ, else false

If we now assume γσ = true, then

φσ(g1) = false ∧ φσ(g2) = true

and

σ′(s1) = inactive ∧ σ′(s2) = active

We observe that our approach does not reproduce

the “non-intuitive” behaviour. The reason is, that each

state σ is immutable and σ′ is constructed indepen-

dently, but based on σ. Therefore there is no need to

order the execution of sentry evaluations and their cor-

responding consequences. In other words, there are no

conflicts between changing the state of a status infor-

mation or environmental variables before or after ob-

serving it. There is also no need to order the M-Steps

using a dependency graph because σ stays the same for

all g.

6.2.1.3 Write Conflicts Above, we reason why an order

for reading and changing values of status information

variables in our approach is not necessary. We provide

the immutability of states as main reason. Still, there is

a possibility that we produce ambiguous state deriva-

tions. In this section, we illustrate the issue of such

ambiguity, where and if it occurs, and its ramifications

if it does occur.

Our approach consists of multiple rules, that, de-

pending on the truth of a condition, derive new values

for a set of status information variables as action. We

do not know in which order the rules are applied. In the

previous section, we show that the order of rules is not

relevant, if one rule derives a value for a status infor-

mation variables and another rules accesses it. If now

two rules each derive a different value for the same sta-

tus information variables in the subsequent state, the

order becomes relevant. The value of this status infor-

mation variables is ambiguous. We call it a conflict in

the ambiguous variables. We identify all conflicts that

may occur and discuss each one in detail.

Recall that the function f constructs for a state σ

its subsequent state σ′ and Table 2 specifies all rules
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and their corresponding actions in f . We now list all

combination of rules that may derive ambiguous re-

sults. We skip derivations that are equal, since they

are not ambiguous. In the following, we write FCR-1

→ σ′(m) = achieved, if from FCR-1 follows that mile-

stone m is achieved in the next snapshot.

6.2.1.4 Conflicting Write by FCR-2 + FCR-3: We look

at a possible conflict in σ′ for a milestone’s state, σ′(ms),

with FCR-2 → σ′(ms) = achieved and FCR-3 →
σ′(ms) = unachieved. This requires that the conditions

of both rules hold:

∀s ∈ S,ms ∈Ms : σ(s) = active ∧ φ+σ (ms)

∧σ(ms) = achieved ∧ φ−σ (ms)

Besides the fact that an overlapping validating and in-

validating sentry is semantically questionable, all logi-

cal operators are conjunctions. Therefore all operands

must hold individually and all their combination. This

requires:

∀s ∈ S,ms ∈Ms : φ+σ (ms) ∧ φ−σ (ms)

Under the disjointness condition of achieving and in-

validating sentries (equation 4.3.1), this is impossible.

=⇒ There is no σ that leads to a conflict of FCR-2

and FCR-3 in ms.

6.2.1.5 Conflicting Write by FCR-1 + FCR-2 FCR-1

and FCR-2 induce two possible conflicts in σ′: The ac-

tivation of a stage by FCR-1 → σ′(s) = active can

conflict with both consequences of FCR-2 → σ′(s) =

inactive ∧ σ′(sd) = inactive.

We discuss the first part of the conflict: FCR-1 →
σ′(s) = active and FCR-2 → σ′(s) = inactive∧σ′(sd) =

inactive. By combining the conditions of both rules, we

get:

∀s ∈ S, sa ∈ As, gs ∈ Gs,ms ∈Ms : σ(s) = inactive

∧σ(sa) = active ∧ φσ(gs) ∧ σ(s) = active ∧ φ+σ (ms)

Again, all operators are conjunctions and thus all

combinations of operands must be satisfied. The fol-

lowing combination contains a contradiction:

∀s ∈ S : σ(s) = inactive ∧ σ(s) = active

=⇒ There is no σ that leads to a conflict of FCR-1

and FCR-2 in s

Next, we consider the second part of the conflict of

FCR-1 and FCR-2 : The case of the descendant stage

sd, to which FCR-2 intends to write. We thus assume

that FCR-1 applies to stage sd. We start with FCR-1

→ σ′(sd) = active and FCR-2 → σ′(s) = inactive ∧

σ′(sd) = inactive and construct the conjunction. By

combining the conditions of FCR-1 and FCR-2, we get:

∀s ∈ S, sd ∈ Ds, sda ∈ Asd , gsd ∈ Gsd ,ms ∈Ms :

σ(sd) = inactive ∧ σ(sda) = active

∧φσ(gsd) ∧ σ(s) = active ∧ φ+σ (ms)

Note that Asd is the set of all ancestors of sd, and

therefore Asd ⊃ As holds. The contradiction we observe

when applying FCR-1 to the first part of the conse-

quent of FCR-2 does not occur anymore. Given this, we

cannot assure that there are no write conflicts just by

contradiction of conditions. Instead, we have to avoid

this conflict when modelling the workflow. The disjoint-

ness condition of guards and milestones (equation 2)

prescribes that a guard and its parent’s milestones have

disjoint sentries. That is, φ+σ (ms) and φσ(gsd) cannot

be true the same time. Hence, the equation above is

never satisfied if we impose the disjointness condition.

=⇒ There is no σ that leads to a conflict of FCR-1

and FCR-2 in sd
We remark that the effects of the described ambigu-

ity may be considered minor. The consequence of the

ambiguity is, that a child stage sd is either triggered

once again or not. To put it in context, the stage sd is

supposed to be deactivated because its parent is deacti-

vated. The consequence is, that sd may perform its task

and it does not abort. After finishing, its state changes

to inactive and its milestone is set to achieved. As soon

as the parent stage becomes active again, the milestone

ins set back to unachieved. Of course, this requires the

task of sd to finish. Other assumptions would require

the ability to abort tasks, which is beyond the scope of

this work. For the sake of completeness we provide the

disjointness condition as a modelling constraint.

6.2.1.6 Confliciting Write by FCR-2 + FCR-4: Lastly,

we discuss a possible conflict in FCR-2 and FCR-4.

There is a conflict in the state of the milestone by

FCR-2 → σ′(ms) = achieved and FCR-4 → σ′(ms) =

unachieved∧σ′(msd) = unachieved Again, we combine

the conditions:

∀s ∈ S, sa ∈ As, sd ∈ Ds,ms ∈Ms, gs ∈ Gs :

σ(s) = active ∧ φ+σ (ms) ∧ σ(sa) = active

∧σ(s) = inactive ∧ φσ(gs) ∧ φ+σ (ms)

Since σ(s) = active contradicts to σ(s) = inactive, this

conflict cannot occur for the same stage s.

=⇒ There is no σ that leads to a conflict of FCR-2

and FCR-4 in s
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As in the previous rule combination with FCR-2,

we also examine the case where FCR-2 applies to the

descendant stage sd. Then:

∀s ∈ S, sd ∈ Ds, sa ∈ As,ms ∈Ms,msd ∈Msd ,

gs ∈ Gs :

σ(sd) = active ∧ φ+σ (msd) ∧ σ(sa) = active

∧σ(s) = inactive ∧ φσ(gs) ∧ φ+σ (ms)

Now we observe that σ(s) = inactive and σ(sd) =

active do not contradict. So, if a stage s is inactive,

its descendants sd need to be active. We did discuss a

situation where this may happen in the previous para-

graph when we considered the combination FCR-1 +

FCR-2, but under the disjointness condition this in-

consistency is eliminated. Hence, we can conclude that

given a workflow that aligns with the disjointness con-

dition, no conflicts occur.

=⇒ There is no σ that leads to a conflict of FCR-2

and FCR-4 in s and/or sd

As result, we know that, under the disjointness con-

dition, for each state σ, σ′ is unambiguously deter-

mined. Formally, we can say:

σ =⇒ σ′

In addition to that, we even can conclude that if any

rule derives a new value for a status information vari-

ables, there exists no other rule that derives a different

value, even if we do not know the order of the rule

execution. This implies that if there is any status in-

formation variables σ(x) = y, and any individual FCR

r deriving a value σr(x)′ = y′, then σ′(x) = y′ (where

σr(x) = y is the value y of x if only r is applied). Thus,

we can write:

σ(x) = y ∧ σr(x) = y′ =⇒ σ′(x) = y′ (3)

6.2.2 GSM Invariants

The invariants GSM-1 and GSM-2 define combinations

of status attributes that are inconsistent. If one of the

invariant is violated, the workflow state is inconsistent.

GSM-1 “If a stage S owns a milestone m, then it can-

not happen that both S is active and m has status

true. In particular, if S becomes active then m must

change status to false, and if m changes status to

true then S must become inactive.” (Damaggio et

al. 2013)

∀s ∈ S,m ∈Ms :

σ(s) = active =⇒ σ(m) 6= achieved

∧σ(m) = achieved =⇒ σ(s) 6= active

GSM-2 “If stage S becomes inactive, the executions of

all substages of S also become inactive.” (Damaggio

et al. 2013)

∀s ∈ S, sd ∈ Ds : σ(s) = inactive =⇒ σ(sd) = inactive

Additionally we define a function c : Σ → {true, false},
that determines whether both GSM invariants hold on

a snapshot σ.

None of these invariants are allowed to be violated

at any time. As the first step of our proof, we show that

all possible states induced by the FCRs do not violate

the GSM invariants using mathematical induction.

Theorem: GSM-1 and GSM-2 are not violated through-

out the workflow execution.

Proof: We apply the set of FCRs to the information

model. One snapshot σ contains all data concerning the

workflow’s state, as well as environment values at the

beginning of each iteration. The state of the workflow

and the environment values correspond to status and

data attributes, respectively. σ0 represents our initial

workflow state after the initialization. We now proof

the theorem using mathematical induction.

Base case: σ0 : No stage is activated yet =⇒ c(σ0) =

true. X

Step case: σ → σ′ : In order to get into an inconsistent

state one of the invariants must be violated. We distin-

guish two cases – a violation of GSM-1 and a violation

of GSM-2 :

GSM-1 To infer the consistency of σ′ we assume the

contrary. We assume a set of rules that derive at

least one triple so that c(σ′) = false. To achieve

that given c(σ) = true, there must be a milestone

m and a stage s which either satisfy (C1) or (C2):

(C1) : σ(m) = unachieved ∧ σ′(m) = achieved

∧σ′(s) = active

(C2) : σ(s) = inactive ∧ σ′(s) = active

∧σ′(m) = achieved

In words, case (C1) describes the case where a mile-

stone becomes achieved and its stage stays active.

Case (C2) corresponds to the case, where a stage be-

comes active although one of its milestones is still

achieved.

Case (1): We assume that condition (C1) holds. Since

only FCR-2 leads to the achievement of a milestone,

we know that σ(m) = unachieved and σ′(m) =

achieved is true, if and only if the condition of FCR-

2 is satisfied. Hence, we conclude that the action of

FCR-2 holds as well. From equation 3 we know that

σ′(m) = unachieved. This is a contradiction to our

condition (C1).  
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Case (2): We assume condition (C2) holds. Because (C2)

requires a stage becoming active in σ′, we conclude

that the condition FCR-1 must be satisfied. Con-

sidering equation 3, we know that

σ(s) = inactive ∧ σ(sa) = active ∧ φσ(gs)

∧σ′(ms) = active

If we consider the assumption that there exists a

milestone ms ∈ Ms and σ′(ms) = achieved, ei-

ther the milestone must have been already achieved

in σ or it became achieved in σ′. FCR-1 and and

FCR-4 share the almost same condition. The differ-

ence is, that FCR-4 sets all corresponding achieved

milestones to unachieved. Hence, in the first case,

if σ(ms) = achieved , FCR-4 implies σ′(ms) =un-

achieved. By equation 3, we know that σ′(ms) =un-

achieved. This contradicts assumption (C2). In the

latter case, FCR-2 must hold, since it is the only

rule that implies an achieved milestone. FCR-2 also

implies σ′(s) = inactive though, which also contra-

dicts our assumption.  
GSM-2 Similar to GSM-1, we show the contrary by as-

suming there are rules that derive at least one triple

in such a way, that c(σ′) = false. This requires

∃s ∈ S, sd ∈ Ds :

σ(s) = inactive ∧ σ′(sd) = active

Because FCR-1 requires all ancestors to be active, a

violation of this condition is only possible if a par-

ent stage is set to inactive while its parent stays

active. Only FCR-2 leads to a stage being set to

inactive. While it implies σ(s) = inactive, it also

implies σ(sd) = inactive for all sd ∈ Ds. Again, by
equation 3, we know that σ(sd) = inactive holds for

all sd ∈ Ds.  

As result we conclude that, under the disjointness

conditions, f does not imply a transition from a state σ

with c(σ) = true to a state σ′ with c(σ) = false. =⇒
Step case X
By the principle of mathematical induction we have

shown that the invariants GSM-1 and GSM-2 are not

violated. ut

6.3 Applicability

In Section 1, we described different scenarios and de-

ployments from automotive, avionics, manufacturing,

and Internet of Things, where our approach could be

applied. To publicly showcase the approach presented

in this paper, we build an small conference demonstra-

tor (Aßfalg et al. 2019) based on Internet of Things

devices with Read-Write Linked Data interfaces. The

implementation this demonstrator can be found on-

line29. For the status attributes and rule interpreter, the

demonstrator uses LDBBC30 as Linked Data Platform

Container implementation, and Linked Data-Fu31 (Stadtmüller

et al. 2013) as N3 rule interpreter with ASM4LD (Käfer

and Harth 2018a) operational semantics.

6.4 Performance

Our approach takes the GSM approach and brings it to

Read-Write Linked Data. Therefore, we contrast our

approach with the converse, namely to bring Read-

Write Linked Data to GSM. We compare: our opera-

tional semantics deployed on Linked Data-Fu and sta-

tus attributes maintained in LDBBC, with the CMMN

implementation in Camunda32, a commercial process

and case management suite (CMMN33, the Case Man-

agement Model and Notation, is a standard that is

closely related to GSM (Damaggio et al. 2013)).

Both engines therefore need to make HTTP requests

to sources that provide RDF and reason over the data

using RDF using rules that implement the RDFS se-

mantics given to the engines for data integration.

With Camunda of course not built for that work-

load, we now describe our assumptions and implemen-

tation: For data processing, Camunda has SPIN34, a

library to extend the process languages they support

with data processing of XML35 and JSON in a script-

ing fashion, such that we can use a classless, declarative

approach to define the processing steps, in line with the

declarative input of rules to Linked Data-Fu. We chose

the tree-based XML as data format, as one can serialise

RDF graphs in XML trees using the RDF/XML16 seri-

alisation format, and the querying support of the XML

stack is better supported in the extensions of Camunda.

We then specified the processing steps as BPMN36 pro-

cess, which we plugged into our CMMN diagram as

process task. Our BPMN process mimics Linked Data-

Fu’s operational semantics (cf. Section 3.6) by paral-

lel downloading RDF/XML, and subsequent37 parallel

29 http://github.com/nico1509/data-driven-workflows
30 http://github.com/kaefer3000/ldbbc
31 http://linked-data-fu.github.io/
32 https://camunda.com/
33 https://www.omg.org/spec/CMMN/1.1/
34 https://github.com/camunda/camunda-spin, not to be con-
fused with the SPIN notation for SPARQL queries, also used
by our approach.
35 http://www.w3.org/TR/xml/
36 https://www.omg.org/spec/BPMN/2.0/About-BPMN/
37 For simplicitly’s sake, we left out writing and link follow-
ing, and provided the URIs to be read from upfront.

http://github.com/nico1509/data-driven-workflows
http://github.com/kaefer3000/ldbbc
http://linked-data-fu.github.io/
https://camunda.com/
https://www.omg.org/spec/CMMN/1.1/
https://github.com/camunda/camunda-spin
http://www.w3.org/TR/xml/
https://www.omg.org/spec/BPMN/2.0/About-BPMN/
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rule evaluation of the RDFS semantics. As the process-

ing of arbitrary RDF/XML using the XML querying

stack is a research endeavour of its own, where one

reason is that different XML trees can represent the

same RDF graph (Bischof et al. 2012), we assume a de-

terministic mapping from triples to XML trees, where

each triple gets a dedicated rdf:Description node,

as employed by many popular RDF/XML serialisers38.

Furthermore, we assume ground triples without literals

and lists, as blank nodes, datatypes and lists would re-

quire specialised treatment in RDFS and RDF/XML.

Then, we can give the rules to implement RDFS us-

ing BPMN Script Tasks implemented declaratively in

XQuery 3.139. Those parallel tasks with rules are placed

in a loop that runs until no further deductions are de-

rived (and thus, the fixpoint is calculated).

For our tests, we crafted a workflow, which we de-

signed to include different constellations of stages, guards,

and milestones. Specifically, the workflow includes nested

stages and milestones whose sentries check whether other

milestones have been reached. The workflow contains

8 stages, starts with two sequentially arranged stages,

and leads into a combination of stages with 2 as the

maximum level of nesting. Thereby occur some interest-

ing situations like parallel execution of s2 and s4 where

s4 is nested in another stage s3. For a deterministic eval-

uation, the sentries are designed to be always fulfilled,

but their queries need to be evaluated. We designed the

data part of the sentries to check for data that needs to

be derived using reasoning. In case of Linked Data-Fu,

those are SPARQL ASK queries in SPIN notation, in

case of Camunda, those are XPath 1.040 queries within

an EL41 expression. We did not include invalidating

sentries for the milestones in order not to have to build
the equivalence of dynamic data attributes, which could

also reduce the determinism and the repeatability of the

evaluation. Although there is no specific story to that

workflow you can think of it as a simplification of the

Order-to-Design workflow example from (Damaggio et

al. 2013). The workflow model in both implementations,

the BPMN for Linked Data processing, and the data to

be retrieved can be found online42.

We ran our experiments on a MacBook Pro with an

Intel Core i5-5257U processor with 2.7 GHz, 4 threads,

and 8 GB RAM running OpenJDK 1.8.0 131 on Mac

OSX Version 10.14.6 and allow for a warm-up time

of 10s. We repeated our experiments 5 times. For our

38 Including librdf http://librdf.org/, and OWLAPI if not
in pretty printing mode https://github.com/owlcs/owlapi
39 http://www.w3.org/TR/xquery-31/
40 http://www.w3.org/TR/1999/REC-xpath-19991116/
41 https://jcp.org/en/jsr/detail?id=341
42 http://people.aifb.kit.edu/co1683/2019/gsm/jods/

set-up, we used Linked Data-Fu 0.9.13pr1 and LDBBC

0.0.5. For the Camunda set-up, we used Camunda 7.14

Community Edition, where we needed to remove the

limit of 4000 characters in certain columns of the database

Camunda runs on.

We show our results in Figure 6. We see that the

declarative Read-Write Linked Data processing approach

in Linked Data-Fu outperforms the approach with a

declarative implementation of data retrieval and rea-

soning from within the Camunda process engine. On

top, the Linked Data-Fu approach retrieves and rea-

sons with every execution cycle such that the queries

run on fresh data, where the Camunda-based approach

only retrieves and reasons in 3 of the stages. This lim-

itation of our implementation is due to difficulties we

faced when connecting the retrieval and reasoning part

to the CMMN workflow lifecycle. Therefore, our results

for Camunda only serve as a lower bound. On the other

hand, we see for Linked Data-Fu that the handling of

workflow instances in data structures and code not op-

timised for that purpose puts considerable load on the

system: Already between 1 and 9 instances, the runtime

doubled.

7 Conclusion and Discussion

We presented an approach to specify and execute agent

specifications in the form of data-centric workflows in

Read-Write Linked Data, i. e. an environment of se-

mantic knowledge representation and reasoning. To this

end, our approach consists of an ontology, and opera-

tional semantics. We gave the operational semantics in

a rule language for Read-Write Linked Data, derived re-

quirements for modelling and discussed the rule expres-

sivity required for querying data and status attributes.

We showed the correctness of our rules for the oper-

ational semantics and provided a performance evalua-

tion.

While we envision our approach to be particularly

useful in small-scale scenarios where agents interact with

a handful of resources with only few workflow instances,

we evaluated our approach against a workflow engine,

which is built for scenarios with many instances. In

the evaluation, our general-purpose Read-Write Linked

Data processor made to maintain workflow instance

state outperformed a workflow engine made to perform

Read-Write Linked Data processing with data retrieval

and reasoning. This is despite the overhead people often

fear when considering polling-based approaches. Viewed

from a broader perspective, we remark that in essence,

our agent behaviour specification encodes the behaviour

part missing in the integration standards from the web

http://librdf.org/
https://github.com/owlcs/owlapi
http://www.w3.org/TR/xquery-31/
http://www.w3.org/TR/1999/REC-xpath-19991116/
https://jcp.org/en/jsr/detail?id=341
http://people.aifb.kit.edu/co1683/2019/gsm/jods/
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Fig. 5 The workflow we use in our evaluation.
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Fig. 6 Results from 5 runs of our evaluation: Time in ms
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workflows in parallel.

architecture such as HTTP for interaction and sym-

bolic reasoning in RDFS for data integration. If we take

BPM solutions as way of doing integration in practice

by specifying the behaviour that orchestrates system

components, our evaluation agrees with (Pautasso and

Zimmermann 2018) that there is still a way to go until

the integration capabilities of the web architecture can

be fully exploited in practice.
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