KIT | KIT-Bibliothek | Impressum | Datenschutz

Solar Pumping of Fiber Lasers with Solid-State Luminescent Concentrators: Design Optimization by Ray Tracing

Dottermusch, Stephan 1; Masuda, Taizo; Endo, Masamori; Richards, Bryce S. ORCID iD icon 1; Howard, Ian A. 1
1 Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)

Solar-pumped lasers (SPLs) typically couple sunlight into the laser cavity using focusing optics and solar tracking. Luminescent solar concentrators (LSC) are an alternative, fully planar, scalable pump source that can concentrate diffuse light. For liquid LSC-based SPLs, reflective cavities have been used to trap light and pump a Nd$^{3+}$-doped silica fiber. Here, three solid-state LSC-based SPL designs, in addition to the reflective cavity making use of total internal reflection, are analyzed by ray-tracing simulations. Results are compared to a liquid LSC reference, also used for validating simulations. Substituting the liquid-state LSC for a solid-state LSC (with the fiber placed inside) allows a 7-fold enhancement of the gain coefficient, corresponding to a 30-fold enhancement of the laser output power. An additional 4-fold increase of the output power is possible with a fiber of kilometers length. These results show a roadmap for realizing SPLs with output powers on the order of 2.8 W m$^{-2}$ under terrestrial sunlight, while keeping an identical reflective cavity used for the liquid LSC design. In addition, room-temperature operation should be possible with certain solid LSC designs, and the necessity for a reflective cavity comprised of costly dielectric mirrors may be relieved.

Verlagsausgabe §
DOI: 10.5445/IR/1000133212
Veröffentlicht am 22.05.2021
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mikrostrukturtechnik (IMT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2021
Sprache Englisch
Identifikator ISSN: 2195-1071
KITopen-ID: 1000133212
HGF-Programm 38.01.05 (POF IV, LK 01) Simulations, Theory, Optics and Analytics (STOA)
Erschienen in Advanced Optical Materials
Verlag John Wiley and Sons
Band 9
Heft 12
Seiten Art.-Nr.: 2100479
Nachgewiesen in Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page