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a b s t r a c t 

The paper presents novel control-oriented transport models for evaporating liquid films in the tubes of a 

falling film evaporator. In this context, our goal consists in qualitatively mapping the experimentally ob- 

served input-output behavior. Two transport models are proposed, where the difference between them is 

that one allows overtaking of liquid particles and the other does not. The transport models are equipped 

with two new models of evaporation which are different from the commonly assumed uniform evapo- 

ration. The models are initially developed from the conservation laws in the form of partial differential 

equations. Using the method of characteristics we then obtain the input-output relations for the proposed 

models in the form of time-delay equations. The time-delay representation is advantageous for simula- 

tion and for the future control design. In a simulation study, we observe the principal properties of the 

models and find that they correspond well with the experimentally observed input-output behavior. 

1. Introduction 

In numerous chemical engineering applications, such as ves- 

sels Zenger and Ylinen (1994) , reactors Levenspiel (1999) , mix- 

ers Niemi (1977) , substances in soils Misra and Mishra (1977) , 

heat exchangers Maidi et al. (2009) or falling film evaporators 

Winchester (20 0 0) , the modeling of transport processes is of basic 

interest. To describe the transport mathematically, there are two 

options: PDEs and time-delay equations. 

The PDE-based approach commonly uses fundamental bal- 

ance equations of mass, momentum and energy, which form 

the basis for various kinds of transport Grifoll et al. (2005) ; 

Van Genuchten (1982) ; Zhang (1998) ; Zheng and Bennett (2002) . 

Time-delay equations, on the other hand, are often phenomeno- 

logically motivated Cascetta (2013) and are based on the continu- 

ity equation of, e.g., liquid elements, such as plugs Kicsiny (2014) ; 

Niemi (1977) ; Zenger and Ylinen (1994) . 

The relation between PDE and time-delay models was inves- 

tigated by Karafyllis and Krstic (2014, 2020) . While the focus of 

Karafyllis and Krstic (2014, 2020) is on system-theoretic aspects 
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of the two kinds of models, the present research is motivated by 

the control-oriented advantages of the time-delay representations: 

they enjoy a wider range of common analysis techniques and con- 

trol algorithms, including adaptive ones Evesque et al. (2003) ; 

Zhong (2006) , and are easier to implement in full-plant simu- 

lations in the environments such as Simulink where time-delay 

blocks are standard. 

Herein, we adopt the methodology which consists in deriving 

fundamentally motivated PDE models that are subsequently ap- 

proximated by or transformed into time-delay equations. Prior ex- 

amples of this constructive approach are found in Bresch-Pietri and 

Petit (2016) ; Bresch-Pietri et al. (2013) ; Diagne et al. (2013) ; 

Rodriguez et al. (2016) ; Witrant and Niculescu (2010) but they do 

not suitably describe the complexity of our process as is explained 

next. 

Our practical application is the FFE process GEA Wiegand 

GmbH (2016) where two types of transport dynamics are crucial: 

the flow of liquid through completely filled pipes and the flow 

of evaporating liquid film down the sides of partially filled tubes 

Paramalingam (2004) ; Schwaer et al. (2020) ; Winchester (20 0 0) . 

The flow through the pipes is the easier case where the den- 

sity, concentration or temperature transport can be well described 

by classical transport models with time-varying velocity Bresch- 

Pietri and Petit (2016) ; Dobos et al. (2009) ; Rodriguez et al. (2016) ; 

Zenger and Ylinen (1994) . As for the transport of evaporating 

falling films, it is often modeled by assuming that velocity is 

mailto:anton.pon.math@gmail.com


constant and evaporation is uniformly distributed along the tubes 

Bojnourd et al. (2015) ; Paramalingam (2004) ; Quaak et al. (1994) ; 

Stefanov and Hoo (2003) ; Winchester and Marsh (1999) . In real- 

ity, though, the velocity of liquid films depends on time-varying 

quantities, such as mass flow, density or viscosity Craster and 

Matar (2009) , which causes time-varying transport delays of the 

liquid elements in the tubes. Moreover, there are wave phenom- 

ena which essentially influence the dynamics of the liquid film and 

lead to accumulations of liquid elements at different points in the 

tubes Albert et al. (2014) ; Bandi et al. (2018) ; Ruyer-Quil and Man- 

neville (20 0 0) . Therefore, the aforementioned transport models are 

only rough approximations of the real behavior. 

To model more realistic behavior of the evaporating falling film, 

there exist computational fluid dynamics simulations which are 

based on coupled Navier-Stokes equations for liquid and vapor 

phase Donaldson and Thimmaiah (2016) ; Kharangate et al. (2015) . 

However, such detailed models as in Albert et al. (2014) ; 

Bandi et al. (2018) ; Kharangate et al. (2015) ; Ruyer-Quil and Man- 

neville (20 0 0) are too complex for control design and hard to em- 

bed in full plant simulations. 

Therefore, we develop two novel transport models based on 

fundamental balance equations. Apart from liquid films, they can 

be applied to other transport processes that satisfy certain assump- 

tions. The models and their characteristic features can be described 

as follows: 

1. Dynamic Plug Flow (DPF): Transported instances, e.g., liquid ele- 

ments, move without overtaking such that the First-In-First-Out 

(FIFO) principle holds. The instances may have different veloc- 

ities but the velocity of a single instance stays constant during 

its travel. 

2. Overtaking Particle Flow (OPF): The instances can overtake one 

another. At the input they assume different velocities accord- 

ing to a probability-like distribution function but still, each in- 

stance’s velocity stays constant during its travel. 

Both models are able to show advanced dynamic effects, such 

as wave phenomena or time-varying residence times. Furthermore, 

the second model (OPF) has the remarkable property of modeling 

diffusion without the commonly used second-order spatial deriva- 

tive term in the PDE which is achieved by assigning different ve- 

locities to the incoming instances. 

The DPF and OPF transport models were originally intro- 

duced in Hofmann et al. (2020) . This paper differs in that 

here we consider evaporation from the falling film, the con- 

tribution being as follows. Since the assumption of uniform 

evaporation (the total vapor mass flow from the tube is dis- 

tributed uniformly among the liquid flow elements), as applied in 

Bojnourd et al. (2015) ; Paramalingam (2004) ; Quaak et al. (1994) ; 

Stefanov and Hoo (2003) ; Winchester and Marsh (1999) , may 

prove disadvantageous as explained later in the paper, we present 

two new approaches to model evaporation: 

1. Water-proportional evaporation model where the total vapor 

mass flow from the tube is distributed among the liquid flow 

elements proportionally to the water content of the element. 

2. Localized evaporation model where vapor mass flow from each 

liquid element is calculated separately. 

Uniting the transport and evaporation models, for technical rea- 

sons mentioned later we limit our attention to the following four 

combinations: 

1. DPF with uniform evaporation. 

2. DPF with water-proportional evaporation. 

3. OPF with water-proportional evaporation. 

4. OPF with localized evaporation. 

Fig. 1. Scheme of an FFE with two passes, each consisting of Plate and Tubes. While 

the first pass is visualized in detail, the second one is roughly sketched. 

The models are first constructed in the form of a sys- 

tem of PDEs with boundary inputs and outputs. Since the PDE 

models are hyperbolic, we apply the method of characteristics 

Courant and Hilbert (1989) ; Sarra (2003) to obtain the corre- 

sponding time-delay i/o relations. The latter are advantageous 

for simulation and control design Bresch-Pietri and Petit (2016) ; 

Rodriguez et al. (2016) ; Witrant and Niculescu (2010) . Although 

this contribution focuses on transport models for evaporating liq- 

uid films, our results may also be applied to other transport 

processes, e.g., in traffic flow Daganzo (1994) ; Či ̌ci ́c and Johans- 

son (2018) ; Zhang (1998) which can be motivated via analogies. 

The plan of the paper is as follows. In Sec. 2 , the falling film 

evaporator process is specified and motivated as a technical ap- 

plication of our models. Two novel models of evaporating liquid 

films, DPF and OPF, are introduced in Sec. 3 and Sec. 4 , respec- 

tively. Each model is first explained in the general terms ( Sec. 3.1 

and 4.1 ), then derived as a system of PDEs ( Sec. 3.2 and 4.2 ) 

and subsequently, under certain evaporation assumptions, trans- 

formed into time-delay i/o equations ( Sec. 3.3, 3.4, 4.3 and 4.4 ). 

Section 5 shows the results of simulation of our new models and 

discusses their ability to map the observed qualitative i/o behavior. 

In Sec. 6 , we sum up the results. 

2. Preliminaries 

In this section we describe the falling film evaporator and recall 

some formulas that will be used in the subsequent constructions. 

2.1. Falling Film Evaporator: Process Description 

FFEs are industrial heat exchangers. They are often applied in 

the food, pharmaceutical or chemical industry to concentrate liquid 

temperature-sensitive products, such as milk, orange juice, coffee, 

drugs or bio-ethanol. The flow capacity of these plants is up to 150 

tons per hour, see GEA Wiegand GmbH (2016) . 

Figure 1 shows the scheme of a two-pass FFE. Raw product 

(water-based solution of some useful material), is pumped onto the 



Table 1 

Symbol and subscript nomenclature. 

Symbols Units 

A cross-sectional area m 

2 

c velocity m s −1 

c p specific heat capacity J kg 
−1 

K −1 

d inner diameter of tubes m 

g gravity acceleration m s −2 

h filling level m 

�h v enthalpy of evaporation J kg 
−1 

k heat transfer coefficient W m 

−2 K −1 

� length of tubes m 

˙ m mass flow kg s −1 

M mass kg 

n number of tubes in pass –

Re Reynolds number –

s film thickness m 

w dry matter content kg kg 
−1 

η dynamic viscosity kg m 

−1 s −1 

ϑ temperature K 

� volumetric mass density kg m 

−3 

τ time delay s 

Subscripts 

0 initial value 

d dry matter 

fsh flash evaporation 

h homogeneous 

H heat chamber 

i input 

max maximum 

min minimum 

o output 

O orifices in plate tank 

p particular 

P plate 

R ring 

T tubes 

v vapor 

w water 

Fig. 2. Flow diagram of an FFE pass 

first distribution plate (Plate 1). From there it falls down the nar- 

row vertical Tubes 1, uniformly covering their inner walls as a thin 

“falling film”. The tubes are heated from the outside by hot water 

vapor coming from the Heat Chamber which causes some water 

content to evaporate from the film. The vapor is sucked out by the 

compressor into the Heat Chamber and repurposed for heating the 

tubes. Meanwhile, the intermediate product coming out of Tubes 

1 drops into a reservoir, is transported onto Plate 2 and under- 

goes the similar second pass through Tubes 2, turning into the fi- 

nal concentrated product. In each pass, the concentration increases, 

while being limited by viscosity constraints. If viscosity becomes 

too high, deposits on the tube walls cause undesired fouling Díaz- 

Ovalle et al. (2017) . 

The nomenclature of symbols and subscripts used throughout 

the paper is shown in Table 1 . 

2.2. FFE Pass Model 

Figure 2 depicts the flow diagram of an FFE pass. For the Plate 

block, we borrow the model from Schwaer et al. (2020) which 

is essentially a low-pass filter whose time constant depends on 

the operation point. Additionally, there is a small mass flow ˙ m fsh 

which evaporates from the liquid when it enters the Plate and thus 

undergoes a fast reduction in pressure Paramalingam (2004) . In 

Sections 3 and 4 we develop novel transport models for the Tubes 

block: the so-called DPF and OPF models. 

In order to assess the quality of our models, we will compare 

them qualitatively to the i/o behavior of one FFE pass which is 

observed in practice. The behavior is illustrated by Fig. 3 where 

changes in the output mass flow and dry matter content are shown 

in response to an up/down-step in the input mass flow while evap- 

oration mass flow and input dry matter content are kept constant. 

In case of an up-step, we expect a delay in the response of the out- 

put mass flow with some overshoot. In case of a down-step, there 

is also a delayed response. The overshoot is caused by wave-like 

effects Bandi et al. (2018) ; Albert et al. (2014) . Regarding dry mat- 

ter content, the delay is similar to that of the output mass flow. 

Since larger input mass flow causes larger transport velocity and 

shorter residence of liquid inside the tube, it leads to less evapo- 

ration which can be concluded from both the mass flow and dry 

matter content plots. 

To justify the qualitative i/o behavior in Fig. 3 , we present data 

from an up-step experiment in a one-tube pilot plant with water 

and constant evaporation, see Fig. 3 . As no direct measurement of 

˙ m o, T is available, we calculate it via numerical differentiation of the 

water level in the reservoir after the tube and, to this end, basic 

moving average filter is used ( Hofmann et al., 2021 ). In this exper- 

iment, we observe both the delayed response and the overshoot. 

2.3. Average Film Velocity at the Tube’s Inlet 

The average film velocity at the inlet of the evaporator tubes 

c̄ i, T will be used in the boundary conditions of the PDEs. Here we 

derive the formula for c̄ i, T via the average film thickness denoted s̄ . 

The film’s cross-sectional area, combined over n tubes in one 

pass, is A R = πn (d − s̄ ) ̄s and the input mass flow into the tubes is 

˙ m i, T = � ̄c i, T A R . Thus, we find 

c̄ i, T = 

˙ m i, T 

�πn 

(
d − s̄ 

)
s̄ 
. (1) 

There exist numerous correlations Åkesjö (2018) ; 

Lukach et al. (1972) ; Martin et al. (2002) to determine the 

average film thickness s̄ . In this paper, the formula 

s̄ = 

(
3 η2 

g� 

2 
Re 

)1 / 3 

, Re = 

˙ m i, T 

ηπdn 

(2) 

is applied which was developed by Nusselt Nusselt (1916) for sta- 

tionary laminar flow. 

As ˙ m i, T , � and η can vary with time, time-varying quantities 

c̄ i, T (t) , ˙ m i, T (t) , �(t) and s̄ (t) are formally substituted in (1) . 

3. First Transport Model: Dynamic Plug Flow (DPF) 

3.1. General Principles of the Model 

Fig. 4 serves as a kinematic diagram of the DPF transport model. 

For convenience, water/dry content separation and evaporation is 

disregarded in Fig. 4 . The model is based on the following assump- 

tions: 

1. Particles entering the tube at time t achieve the same velocity 

c̄ i, T (t) and move together, forming a “plug”. Function c̄ i, T (t) is 

continuously differentiable. 

2. Plugs may have different velocities but the velocity of a single 

plug stays constant during its travel along the tube. 

3. Plugs cannot overtake each other (the First-In-First-Out or FIFO 

principle). 



Fig. 3. I/o behavior of a single FFE pass 

Fig. 4. Sketches of DPF 

4. Plugs consist of separated, non-interacting parts: water and dry 

matter. 

5. Infinitesimal vapor mass flow ˙ μv (t, x ) d x evaporates from the 

water part of the plug at point x and time t . Thus, ˙ μv (t , x ) is 

the linear density of the vapor mass flow distribution along the 

tube. The measurement unit of ˙ μv is kg / (s · m) . 

3.2. PDE Description of DPF 

In order to obtain the partial differential equations of DPF, let 

us consider a tube of length � and introduce the spatial variable x 

measured along the tube with x = 0 being the inlet and x = � the 

outlet. State variables ξw 

(t, x ) and ξd (t, x ) will denote the linear 

density of water and dry content, respectively, over all n tubes of 

one pass (all tubes behave exactly similarly). Moreover, c(t, x ) de- 

notes the flow velocity at a given point. 

The PDEs are derived essentially in the same way that a sim- 

pler case is treated in (Winchester, 20 0 0, pp. 26–31) , i.e., by con- 

sidering mass and momentum balances over infinitesimal flow ele- 

ments. Thus, the following model is built, where x ∈ [0 , � ] , t ≥ t 0 : 

∂ξw 

(t, x ) 

∂t 
+ c(t, x ) 

∂ξw 

(t, x ) 

∂x 
+ ξw 

(t, x ) 
∂c(t, x ) 

∂x 
= − ˙ μv (t, x ) , (3a) 

IC: ξw 

(t 0 , x ) = ξw , 0 (x ) , 

BC: ξw 

(t, 0) = 

˙ m i, T (t) 
(
1 − w i, T (t) 

)
c( t, 0) 

, 

∂ξd (t, x ) 

∂t 
+ c(t, x ) 

∂ξd (t, x ) 

∂x 
+ ξd (t, x ) 

∂c(t, x ) 

∂x 
= 0 , (3b) 

IC: ξd (t 0 , x ) = ξd , 0 (x ) , 

BC: ξd (t, 0) = 

˙ m i, T (t) w i, T (t) 

c(t, 0) 
, 

∂c(t, x ) 

∂t 
+ c(t, x ) 

∂c(t, x ) 

∂x 
= 0 , (3c) 

IC: c(t 0 , x ) = c 0 (x ) , 

BC: c(t, 0) = c̄ i, T (t) , 

Output 1: ˙ m o, T (t) = 

(
ξw 

(t, � ) + ξd (t , � ) 
)
c(t , � ) , 

Output 2: w o, T (t) = 

ξd (t, � ) 

ξw 

(t, � ) + ξd (t, � ) 
. 

The mass balances for water and dry matter content yield 

(3a) and (3b) . Equation (3c) is simply a mathematical formulation 

of Assumption 2 but it can also be interpreted as the momentum 

balance simplified by the assumption of one-dimensional flow and 

neglecting interaction between the plugs as well as external forces. 

The PDEs are equipped with initial conditions (IC), boundary con- 

ditions (BC, defined by the mass flow and dry mass content on the 

input boundary x = 0 ) and output values for mass flow and dry 

mass content taken at the output boundary x = � . 

Observe that (3c) is the inviscid Burger’s equation Polyanin and 

Zaitsev (2016) ; Sarra (2003) . The solution of this equation may in- 

clude singularities, so-called shock waves , that occur at the inter- 

sections of characteristics and must be treated as generalized so- 

lutions . We are not interested in studying shock waves because 

they can not appear in the real FFE due to the rather moderate 

and smooth nature of the falling film. Speaking about reality, the 



liquid flow always exhibits some diffusion which can be modeled 

by adding the second-order term D 

∂ 2 c(t,x ) 

∂x 2 
to the right hand side 

of (3c) . The diffusion inhibits formation of the shock waves, how- 

ever, adding it would be a divergence from our original plan of 

focusing on first-order PDEs and would make it impossible to ob- 

tain a time-delay representation of the i/o dynamics. Therefore, we 

choose another way of avoiding the shock waves: to exclude them 

by enforcing a constraint on the rate of change of the input flow 

velocity. The constraint is specified below, see (6) . 

Our next goal is to convert the PDE model (3) to the time-delay 

form by solving it via the method of characteristics. Therefore, as- 

sumptions specifying the evaporation term ˙ μv are necessary. In 

Sec. 3.3 and 3.4 , we consider, respectively, uniform evaporation and 

evaporation proportional to the water content. 

3.3. Input-Output Behavior of DPF with Uniform Evaporation Model 

We recall the formula for the total vapor mass flow ˙ m v coming 

out of the tubes 

˙ m v (t) = 

kπd�n 

(
ϑ H (t) − ϑ T (t) 

)
�h v ( t) 

(4) 

which follows from the energy balance Paramalingam (2004) ; 

Winchester (20 0 0) ; Quaak et al. (1994) . Generally, the heat trans- 

fer coefficient k in (4) depends on the dry matter content w of the 

liquid. However, including this feature would not let us solve the 

PDEs and obtain time-delay i/o equations of one FFE pass. Thus, 

in this model we use (4) with constant k identified for stationary 

input dry matter content w i, T . 

Remark 1. Dependence of the heat transfer coefficient k on dry 

matter content w is considered later in the model of overtaking 

particle flow (OPF) with localized evaporation, see Sec. 4.4 . 

The assumption of uniform evaporation along the tubes, i.e., 

˙ μv (t, x ) = q (t ) with q (t ) = 

˙ m v (t ) 

� 
(5) 

is often applied in publications on modeling the dynam- 

ics of FFE tubes Winchester (20 0 0) ; Paramalingam (20 04) ; 

Quaak et al. (1994) ; Stefanov and Hoo (2003) . Substituting (5) into 

(3a) , we are ready to solve (3) and obtain the time-delay represen- 

tation of the i/o dynamics. 

Theorem 1 (Input-output behavior of DPF with uniform evapo- 

ration) . Consider the DPF model given by (3) , (5) and assume that 

the functions ˙ m i, T (t) > 0 , w i, T (t) ∈ [0 , 1) , c̄ i, T (t) > 0 , ξw , 0 (x ) > 0 , 

ξd , 0 (x ) > 0 , c 0 (x ) > 0 , and ˙ m v (t) > 0 are smooth and satisfy 

˙ c̄ i, T (t) < 

c̄ 2 
i, T 

(t) 

� 
, ∀ t ≥ t 0 , (6) 

d c 0 (x ) 

d x 
(� − x ) > −c 0 (x ) , ∀ x ∈ [0 , � ] , (7) 

c 0 (0) = c̄ i, T (t 0 ) . (8) 

Then there exists the classical solution of the PDE system (3) , (5) . For 

t ≥ t 0 + 

� 

c̄ i, T (t 0 ) 
(9) 

the outputs ˙ m o, T and w o, T are independent of the initial conditions 

and are solely determined by the boundary conditions (i.e., by the in- 

put variables ˙ m i, T , w i, T and c̄ i, T ). The i/o relations are then given by 

the time-delay equations 

˙ m o, T (t) = 

˙ m i, T (θ ) 

ν(t, θ ) 

( 

1 − c̄ i, T (θ ) 

˙ m i, T (θ ) 

t ∫ 
θ

q (α) ν(α, θ ) d α

) 

∣∣∣∣∣
θ= t −τ (t ) 

, 

(10a) 

w o, T (t) = w i, T (θ ) 

( 

1 − c̄ i, T (θ ) 

˙ m i, T (θ ) 

t ∫ 
θ

q (α) ν(α, θ ) d α

) −1 
∣∣∣∣∣∣
θ= t −τ (t ) 

(10b) 

where the mass dispersion factor ν(α, θ ) is defined as 

ν(α, θ ) = 1 −
˙ c̄ i, T (θ ) 

c̄ i, T (θ ) 
(α − θ ) (11) 

and time delay τ (t) is implicitly defined by 

τ (t) = 

� 

c̄ i, T (t − τ (t)) 
. (12) 

Proof. The proof, shown in Appendix A , involves applying the 

method of characteristics to obtain the general solution of the 

PDEs (3) and consequently the outputs of the system. As explained 

in the Appendix, conditions (6) –(8) guarantee that the plugs can- 

not overtake one another, thus making sure that Assumption 3 is 

satisfied. �

Remark 2. The problem of computing τ (t) according to (12) is ad- 

dressed later in Sec. 3.5 . 

3.4. Input-Output Behavior of DPF with Water-Proportional 

Evaporation Model 

Although the assumption of uniform evaporation is far-spread 

in the literature, it is prone to failure which becomes obvious if 

one considers a plug containing rather small amount of water. If 

evaporation is too active, such a plug may soon evaporate all its 

water content, i.e., ξw 

may become zero. Beyond that point, ac- 

cording to (3a) , the variable ξw 

keeps decreasing and turns nega- 

tive, in contradiction to its physical meaning. 

The situation just described does not always take place: for in- 

stance, the uniform evaporation model works well in the simu- 

lations of Sec. 5 because there is “enough” water in the product, 

evaporation is “slow” and the product moves “quickly”, avoiding 

the drying out. Judging by its popularity, the uniform evaporation 

model probably works in most real scenarios happening in FFEs, 

however, it still is fragile. 

To counter the problem, we introduce a more robust model 

where evaporation mass flow from a given plug is proportional to 

its water content , thus, the plug’s water content cannot go below 

zero. Instead, more vapor flow is redistributed to the plugs con- 

taining more water. This assumption allows the physical interpreta- 

tion: water molecules jump from liquid to vapor with equal prob- 

ability, i.e., where there is more water there is more evaporation. 

Mathematically, the assumption is 

˙ μv (t, x ) = b(t ) ξw 

(t , x ) with b(t ) = 

˙ m v (t ) 

M w 

(t ) 
(13) 

where the total vapor mass flow ˙ m v (t) is given by (4) and M w 

is 

the total mass of water inside the tubes: 

M w 

(t) = 

� ∫ 
0 

ξw 

(t, x ) d x . (14) 

Factor b(t) in (13) may be called instantaneous evaporation rate . 



Theorem 2 (Input-output behavior of DPF with water-proportional 

evaporation) . Consider the DPF model given by (3) , (13) and assume 

that the functions ˙ m i, T (t) > 0 , w i, T (t) ∈ [0 , 1) , c̄ i, T (t) > 0 , ξw , 0 (x ) > 

0 , ξd , 0 (x ) > 0 , c 0 (x ) > 0 , and ˙ m v (t) > 0 are smooth and satisfy (6) , 

(7) , (8) . Then there exists the classical solution of the PDE system (3) , 

(13) . For 

t ≥ t 0 + 

� 

c̄ i, T (t 0 ) 
(15) 

the outputs ˙ m o, T and w o, T are independent of the initial conditions 

and are solely determined by the boundary conditions (i.e., by the in- 

put variables ˙ m i, T , w i, T and c̄ i, T ). The i/o relations are then given by 

the time-delay equations 

˙ m o, T (t) = 

˙ m i, T (θ ) 
[
w i, T (θ ) + 

(
1 − w i, T (θ ) 

)
β(θ, t) 

]
ν(t, θ ) 

∣∣∣∣∣
θ= t −τ (t ) 

, 

(16a) 

w o, T (t) = 

w i, T (θ ) 

w i, T (θ ) + 

(
1 − w i, T (θ ) 

)
β(θ, t) 

∣∣∣∣∣
θ= t −τ (t ) 

(16b) 

where notation (11) , (12) is used and the integral evaporation rate 

β(θ, t) is defined as 

β(θ, t) = exp 

( 

−
t ∫ 

θ

b(α) d α

) 

. (17) 

The latter via the definition (13) of b(t) depends on the total water 

mass M w 

(t) which is calculated for t ≥ t 0 + �/ ̄c i, T (t 0 ) , as 

M w 

(t) = 

t ∫ 
t −τ (t ) 

˙ m i, T ( θ ) 
(
1 − w i, T (θ ) 

)
β(θ, t) d θ . (18) 

Proof. Similarly to the proof of Theorem 1 , the statement follows 

from the general solution of PDEs (3) under assumption (13) which 

is obtained in Appendix B . Observe that the time delay τ can be 

still defined via (12) because in our model evaporation does not 

affect the velocity of plugs. �

Remark 3. Instead of (18) , the overall mass of water M w 

can be 

obtained via water mass balance over the tubes: 

d M w 

(t) 

d t 
= 

(
1 − w i, T (t) 

)
˙ m i, T (t) −

(
1 − w o, T (t) 

)
˙ m o, T (t) − ˙ m v (t) . 

(19) 

However, this approach may lead to accumulation of the numerical 

integration error. Thus, the finite-time integration formula (18) is 

likely easier to implement numerically than (19) . 

3.5. Calculation of Time Delay 

The time delay value τ (t) in the DPF model is expressed by the 

implicit equation (12) . Using the definition directly during simula- 

tion is impractical. For this reason, we propose to resolve it using 

the method of dynamic inversion Getz and Marsden (1995) . The 

method is to replace (12) with 

d 

d t 

(
τ (t) ̄c i, T 

(
t − τ (t) 

)
− � 

)
= −γ

(
τ (t) ̄c i, T 

(
t − τ (t) 

)
− � 

)
, γ = const > 0 (20) 

where γ ensures exponentially decreasing equation error. Evaluat- 

ing the derivative in (20) leads to the equation 

d τ (t) 
d t 

= 

τ (t) ̇ c̄ i, T (θ )+ γ
(
τ (t) ̄c i, T (θ ) −� 

)
τ (t)  c̄ i, T (θ ) −c̄ i, T (θ ) 

∣∣∣∣
θ= t −τ (t ) 

, t ≥ t f , 

τ (t f ) = t f − t 0 

(21) 

where t f is such that t f − τ (t f ) = t 0 , so by (12) 

t f = t 0 + 

� 

c̄ i, T (t 0 ) 
. (22) 

Remark 4. In Cascetta (2013) , the time-delay formulation (10) of 

the DPF is proposed for a general transportation system and is 

called Dynamic Network Loading Model . However, the relation to 

the corresponding PDE description and implementation of (12) are 

not discussed there. Moreover, neither sink nor source terms are 

considered in Cascetta (2013) . 

4. Second Transport Model: Overtaking Particle Flow (OPF) 

4.1. General Principles of the Model 

To enable overtaking of particles, we consider non-interacting 

particles moving in a two -dimensional space just like cars on a 

highway driving down parallel lanes ( Fig. 5 ). Instead of a few lanes, 

however, we have a continuum: the “lanes” are assigned specific 

velocities to them, ranging continuously from c min to c max . In other 

words, we extend the original spatial domain [0 , � ] by adding the 

second coordinate c ∈ [ c min , c max ] . All particles having coordinate c

move along the x axis with the same velocity c. As they are re- 

stricted to a separate lane, they can overtake neighboring particles 

on the slower lanes, hence the name OPF. 

The input boundary x = 0 is populated with particles of the in- 

put mass flow according to some velocity distribution function. The 

distribution is generally time-varying. For instance, it is reasonable 

to suppose that the higher mass flow means predominantly faster 

particles which is represented by a distribution centered around a 

higher value of c. Accordingly, Fig. 5 shows the scenario when at 

time t 0 the input mass flow ˙ m i, T (t 0 ) is small; its particles, colored 

blue, are assigned slower lanes, although some of them are a little 

faster than others. Later, at time t 1 , the blue particles have moved 

some distance towards the output; meanwhile, the input flow has 

increased and the new particles, colored red, are starting on the 

faster lanes. At time t 2 , the fast particles have overtaken the slow 

ones and arrive at the output first; they appear in the output mass 

flow. 

To consider evaporation, the mass flow is split into two parallel 

flows: one for dry matter and another for water. Both flows gain 

the same velocities on the input boundary, the only difference be- 

ing that water flow experiences evaporation. 

4.2. PDE Description of OPF 

Let us denote ξw 

(t, x, c) and ξd (t, x, c) the state of, respectively, 

water and dry matter flows. The value of ξw 

(t, x, c) (and similarly 

ξd (t, x, c) for dry matter) represents the areal density of water in 

the point (x, c) at time t . Areal density over the extended spa- 

tial domain [0 , � ] × [ c min , c max ] is understood as “mass divided by 

length and by velocity”. The dimensional unit of ξw 

and ξd is thus 

kg · s / m 

2 . 

To develop the PDE description of OPF with evaporation, we 

make the following assumptions: 

1. Distribution of the input mass flow ˙ m i, T (t) along the input 

boundary x = 0 is specified by time-varying “density” function 

f (c, t) satisfying 

c max ∫ 
c min 

f (c, t) d c ≡ 1 (23) 

so that 

ξw 

(t, 0 , c) + ξd (t, 0 , c) = f (c, t ) ˙ m i, T (t ) /c. (24) 



Fig. 5. Sketch of OPF 

2. Water and dry matter particles follow the same velocity distri- 

bution which, together with the previous assumption, yields 

ξw 

(t, 0 , c) = f (t, c) ˙ m i, T (t) 
(
1 − w i, T (t) 

)
/c, (25a) 

ξd (t, 0 , c) = f (t, c) ˙ m i, T (t) w i, T (t) /c. (25b) 

3. Velocity of each particle stays constant. 

4. Infinitesimal evaporation mass flow in point x from the part of 

the water flow moving at velocity c is ˙ μv (t, x, c) d x d c. There- 

fore, ˙ μv (t, x, c) is the areal density of the vapor mass flow dis- 

tribution over the domain [0 , � ] × [ c min , c max ] . The dimensional 

unit of ˙ μv is kg / m 

2 , i.e., mass flow divided by length and by 

velocity. 

The mass balance yields the following PDEs, defined on x ∈ 

[0 , � ] , t ≥ t 0 , c ∈ [ c min , c max ] : 

∂ξw 

(t, x, c) 

∂t 
+ c 

∂ξw 

(t, x, c) 

∂x 
= − ˙ μv (t, x, c) , (26a) 

IC: ξw 

(t 0 , x, c) = ξw , 0 (x, c) , 

BC: ξw 

(t, 0 , c) = f (c, t ) ˙ m i, T (t ) 
(
1 − w i, T (t) 

)
/c, 

∂ξd (t, x, c) 

∂t 
+ c 

∂ξd (t, x, c) 

∂x 
= 0 , (26b) 

IC: ξd (t 0 , x, c) = ξd , 0 (x, c) , 

BC: ξd (t, 0 , c) = f (c, t ) ˙ m i, T (t ) w i, T (t ) /c 

Output 1: ˙ m o, T (t) = 

c max ∫ 
c min 

(
ξw 

(t, �, c) + ξd (t, �, c) 
)
c d c , (26c) 

Output 2: w o, T (t) = 

1 

˙ m o, T (t) 

c max ∫ 
c min 

ξd (t, �, c) c d c. (26d) 

Remark 5. The velocity distribution function f (c, t) is to be deter- 

mined experimentally using parametric system identification tech- 

niques. Specifically, one can assume that f (·, t) belongs to a certain 

class of functions [ c min , c max ] → R ≥0 parameterized by a vector of 

time-varying parameters. The parameters may vary depending on 

the input mass flow, product concentration, etc. The choice of the 

class of distribution functions can be based on phenomenological 

Fig. 6. Shape of the velocity distribution function (27) 

or fundamental reasons. In this paper, for illustrative purposes, we 

use the cosine distribution (see Fig. 6 ): 

f (c, t) = 

{ 

1 
δ

(
1 + cos 

2 π(c−c̄ i, T (t)) 

δ

)
, | c − c̄ i, T (t) | ≤ δ

2 
, 

0 , otherwise 
(27) 

where c̄ i, T (t) is the mean velocity which in our simulations de- 

pends on the input mass flow so that the larger the flow, the 

faster it is, see (1) . The support of the distribution (27) is C(t) = 

[ ̄c i, T (t) − δ/ 2 , ̄c i, T (t) + δ/ 2] . Thus, one must ensure that c min and 

c max are such that C(t) ⊂ [ c min , c max ] at all times, i.e., for all re- 

alistically possible values of c̄ i, T (t) . 

4.3. Input-Output Behavior of OPF with Water-Proportional 

Evaporation Model 

The assumption of uniform evaporation which we regarded 

in the context of DPF ( Sec. 3.3 ) is not suitable for OPF due to 

the fundamental reason that ξw 

(t, x, c) = 0 in some points (x, c) . 

Those points cannot evaporate any mass without ξw 

going negative 

which would not be physical. Thus, we skip the uniform evapora- 

tion and study evaporation proportional to the water content. It is 

defined similarly to (13) , i.e., 

˙ μv (t, x, c) = b(t ) ξw 

(t , x, c) with b(t ) := 

˙ m v (t ) 

M w 

(t ) 
, (28) 

total vapor mass flow ˙ m v (t) given by (4) and total mass of water 

calculated as 

M w 

(t) = 

� ∫ 
0 

c max ∫ 
c min 

ξw 

(t, x, c) d c d x . (29) 

Theorem 3 (Input-output behavior of OPF with water-proportional 

evaporation) . Consider the OPF model (26) , (28) and assume that 

the functions ˙ m i, T (t) > 0 , w i, T (t) ∈ [0 , 1) , c̄ i, T (t) > 0 , ξw , 0 (x, c) > 0 , 

 



 

ξd , 0 (x, c) > 0 , ˙ m v (t) > 0 , and f (c, t) > 0 are smooth. Then there ex- 

ists the classical solution of the PDE system (26) , (28) . For 

t ≥ t 0 + 

� 

c min 

(30) 

the outputs ˙ m o, T and w o, T are independent of the initial conditions 

and are solely determined by the boundary conditions (i.e., by the in- 

put variables ˙ m i, T , w i, T and input velocity distribution function f ). The 

i/o relations are then given by the time-delay equations 

˙ m o, T (t) = 

c max ∫ 
c min 

f (c, θ ) ˙ m i, T (θ ) 
[ 

w i, T (θ ) + 

(
1 − w i, T (θ ) 

)
β(θ, t) 

] ∣∣∣
θ= t−�/c 

d c, 

(31a) 

w o, T (t) = 

1 

˙ m o, T (t) 

c max ∫ 
c min 

f (c, θ ) ˙ m i, T (θ ) w i, T (θ ) 

∣∣∣
θ= t−�/c 

d c (31b) 

where notation (17) is used and the total water mass M w 

(t) is 

calculated as 

M w 

(t) = 

� ∫ 
0 

c max ∫ 
c min 

f (c, θ ) ˙ m i, T (θ ) 
(
1 − w i, T (θ ) 

)
β(θ, t) 

c 

∣∣∣∣∣
θ= t−x/c 

d c d x. 

(32) 

Proof. The i/o equations are obtained via the method of character- 

istics which gives the general solution of PDEs (26) under assump- 

tion (28) , see Appendix C . �

4.4. Input-Output Behavior of OPF with Localized Evaporation Model 

In this subsection we introduce another evaporation model, 

namely, localized evaporation . Notice that the previously discussed 

uniform and water-proportional evaporation models are based on 

the calculation of the total vapor flow (4) from the whole tube and 

distribution thereof among the liquid flow elements (uniformly or 

proportionally to the water mass in a given element). The localized 

evaporation model, on the contrary, directly considers local evapo- 

ration from each flow element separately. 

An advantage of the localized approach is that the local vapor 

mass flow can depend on the local properties of the product. It 

is indeed reasonable as the heat transfer coefficient k goes down 

as the dry matter fraction w increases which results in reduced 

evaporation Holman (1989) . 

Remark 6. Localized evaporation can in principle be applied to the 

DPF model as well. However, resulting PDEs are not solvable an- 

alytically. The difficulties arise essentially from the compressions 

and rarefactions in DPF due to varying plug velocities which com- 

plicates the dynamics of dry matter content w (t, x ) . The prob- 

lem can be avoided in OPF because the flow is split into separate 

“lanes” with different velocities ( Fig. 5 ). Thus, we opt to study the 

localized evaporation model only in case of OPF. 

The following assumptions specify the localized evaporation 

model under the requirement that the resulting PDEs be solvable 

explicitly and thus convertible to time-delay i/o relations: 

1. To approximate the relationship between the heat transfer co- 

efficient k and the dry mass fraction w , we adopt the linear 

model 

k (w ) = k 0 − k 1 w, k 0 , k 1 = const > 0 (33) 

proposed by Winchester Winchester (20 0 0) . Obviously, this 

model only makes sense for w < k 0 /k 1 . As dry mass fraction 

increases and approaches the limit value k 0 /k 1 from below, k 

turns to zero and evaporation halts. Relation (33) applies to 

each infinitesimal flow element, w then being the local dry 

mass fraction, i.e., the ratio ξd / (ξw 

+ ξd ) . 

Linearity of (33) is crucial because it leads to a coupling be- 

tween the PDEs for ξw 

and ξd in the form of a rational term 

which results in an integrable characteristic equation. 

2. Let us call siblings the infinitesimal flow elements that origi- 

nated on the input boundary x = 0 at the same time, say t 1 , 

but with different c-coordinates. We will assume that the vapor 

flow from the siblings is distributed between them proportion- 

ally to the same distribution function f (c, t 1 ) that was used to 

distribute the input flow among them. 

This assumption simplifies the model by way of decoupling the 

dynamics of the group of siblings from the dynamics of other 

flow elements. Furthermore, it ensures that all siblings always 

have the same dry mass fraction, essentially decoupling them 

from each other. 

Formalizing these ideas, vapor mass flow density in the point 

(x, c) is specified as 

˙ μv (t, x, c) = φ(t, x, c) k (t, x, c) p(t) (34) 

where, in accordance with (33) , the local heat transfer coefficient 

k (t, x, c) is 

k (t, x, c) = k 0 − k 1 
ξd (t, x, c) 

ξw 

(t, x, c) + ξd (t, x, c) 
, (35) 

the distribution factor φ(t, x, c) , following the second assumption 

above, is governed by the equations 

∂φ(t,x,c) 
∂t 

+ c ∂φ(t,x,c) 
∂x 

= 0 , 

IC: φ(0 , x, c) = φ0 (x, c) , 
BC: φ(t, 0 , c) = f (c, t) 

(36) 

and the coefficient p(t) is chosen to match (34) with the total va- 

por mass flow formula (4) : 

p(t) = 

πdn 

(
ϑ H (t) − ϑ T (t) 

)
�h v ( t) 

. (37) 

Theorem 4 (Input-output behavior of OPF with localized evap- 

oration) . Consider the OPF model (26) , (34) –(37) and assume that 

the functions ˙ m i, T (t) > 0 , w i, T (t) ∈ [0 , 1) , c̄ i, T (t) > 0 , ξw , 0 (x, c) > 0 , 

ξd , 0 (x, c) > 0 , ˙ m v (t) > 0 , and f (c, t) > 0 are smooth. Then there ex- 

ists the classical solution of the PDE system (26) , (34) –(37) . For 

t ≥ t 0 + 

� 

c min 

(38) 

the outputs ˙ m o, T and w o, T are independent of the initial conditions 

and are solely determined by the boundary conditions (i.e., by the in- 

put variables ˙ m i, T , w i, T and input velocity distribution function f ). The 

i/o relations are then given by the time-delay equations 

˙ m o, T (t) = 

c max ∫ 
c min 

f (c, θ ) ˙ m i, T (θ ) w i, T (θ ) �

(
1 

w i, T (θ ) 
, 

c � (θ, t) 

˙ m i, T (θ ) w i, T (θ ) 

)∣∣∣∣
θ= t−�/c 

d c, 

(39a) 

w o, T (t) = 

1 

˙ m o, T (t) 

c max ∫ 
c min 

f (c, θ ) ˙ m i, T (θ ) w i, T (θ ) 

∣∣∣
θ= t−�/c 

d c (39b) 

where the function � is defined via the Lambert W-function as 

�(a, b) = 

k 1 
k 0 

(
W 

[(
k 0 
k 1 

a − 1 

)
exp 

(
k 0 
k 1 

a − 1 − k 2 0 

k 1 
b 

)]
+ 1 

)
(40) 

and we use the abbreviation 

� (θ, t) = 

t ∫ 
θ

p(α) d α. (41) 



Fig. 7. Still frames from the animation of the illustrative OPF example 

Proof. The i/o equations are obtained via the method of character- 

istics which gives the general solution of the PDE system (26) with 

(34) –(37) , see Appendix D . �

4.5. Animation of Illustrative Example 

In order to visualize the behavior of the OPF model with water- 

proportional evaporation, let us consider an example. The anima- 

tion of the combined “water + dry matter” PDE state ξd + ξw 

as 

well as the mass flows ˙ m i, T and ˙ m o, T can be found online as Sup- 

plementary Material for this paper. Figure 7 shows several snap- 

shots from the video. 

The animation corresponds to the following scenario. Initially, 

the flow is stationary with input mass flow ˙ m i, T = 0 . 5 and constant 

vapor mass flow ˙ m v ≡ 0 . 2 . Some time later, two impulses appear in 

the input mass flow, a small one followed by a larger one, so that 

˙ m i, T (t) = 

{ 

1 , 1 ≤ t ≤ 2 , 

2 , 3 ≤ t ≤ 4 , 

0 . 5 , otherwise. 

The average flow velocity depends on the mass flow according to 

the formula 

c̄ i, T (t) = 0 . 04 + 0 . 06 

˙ m i, T (t) 

and the velocity distribution function is chosen to be cosine 

(27) with δ = 0 . 02 . The dry mass fraction of the incoming liquid 

is w i, T (t) ≡ 0 . 36 and the length of the tube is � = 1 . 

Let us point out a few features in Fig. 7 : 

1. Overtaking of the small and slow mass flow impulse by the 

large and fast one is apparent between Fig. 7 and 7 . 

2. As the impulses are faster than the “normal” mass flow of 0.5, 

they take up positions with larger c-values and leave gaps in 



Fig. 8. Simulations of DPF and OPF with different evaporation models 

the area of small c. The gaps, when they arrive at the output 

boundary, appear as an undershoot in the output mass flow 

(Fig. ). The undershoot is apparent in the output because the 

input steps are sharp. Compare it to the more realistic scenario 

in Fig. 8 c below where the input mass flow is filtered by the 

distribution plate and no undershoot is observed. 

3. Water-proportional evaporation leads to an exponential shape 

of the stationary state function ξw 

which can be observed in 

Fig. 7 . 

5. Simulation 

In this section, the simulation results of the novel DPF and OPF 

models of Sec. 3 and 4 are compared to the qualitative i/o behavior 

in Fig. 3 . 

To simulate realistic situations, up/down-steps of the mass flow 

into the plate are executed between the levels ˙ m i, P0 and ˙ m i, P1 . 

These scenarios occur during ramp-up of the falling film evapora- 

tor or when changing the operation point Schwaer et al. (2020) . 

The parameters and constants used for this study are shown in 

Table 2 and refer to the first of four passes in an FFE used in 

the process of milk powder production. Time-varying liquid prop- 

erties of the milk, such as density � and dynamic viscosity η, are 

calculated using the correlations in Schwaer et al. (2020) . Simu- 

lations of this study include the distribution plate dynamics from 

Schwaer et al. (2020) . 

Table 2 

Parameters and constants for the 

simulation-based model compari- 

son. 

Symbol Value Unit 

A O 0.005 m 

2 

A P 2.14 m 

2 

c max 0.44 m s −1 

c min 0.22 m s −1 

d 0.05 m 

g 9.81 m s −2 

k 1045 W m 

−2 K −1 

k 0 1896 W m 

−2 K −1 

k 1 2361 W m 

−2 K −1 

� 17.7 m 

n 131 - 

˙ m i, P0 5 kg s −1 

˙ m i, P1 6.6 kg s −1 

w i, P 0.36 kg kg 
−1 

γ 10 s −1 

δ 0.15 m s −1 

ϑ H 57.3 ◦C 

ϑ i, P 72 ◦C 

ϑ T 54.7 ◦C 

Falling film dynamics are implemented in Simulink in the form 

of time-delay i/o equations: 

• (10), (21) for DPF with uniform evaporation; 
• (16), (18), (21) for DPF with water-proportional evaporation; 



• (31), (32) for OPF with water-proportional evaporation. 
• (39) for OPF with localized evaporation. 

All models assume the same average input velocity function (1) : 

the larger the flow, the higher its velocity. For OPF, the cosine ve- 

locity distribution function (27) is used. The integral delays in the 

models are approximated with finite sums where the number of 

summands is selected empirically taking into account how fast the 

processes are. The model has the structure of a finite-time integra- 

tor and thus the numerical error caused by the approximation is 

not accumulated. 

The time delay blocks in Simulink are initialized with arbitrary 

but realistic values. After 400 seconds of simulation time, when 

the stationary flow has established, the up/down-steps in ˙ m i, P are 

performed. 

Remark 7. Alternatively to the time-delay equations, PDE models 

(3) and (26) could be implemented in Simulink directly with the 

method developed in Ponomarev et al. (2020) . 

Figure 8 depicts comparative simulation results. Let us make 

some observations: 

1. All models respond to an up-step in the input mass flow with 

an overshoot. It qualitatively agrees with the expected behavior 

( Fig. 3 ). 

2. Water-proportional evaporation model, both for DPF and OPF, 

causes immediate response to a change in ˙ m i, T , particularly in 

terms of w o, T ( Fig. 8 ). Indeed, an increase in the amount of 

incoming water immediately increases evaporation mass flow 

near the inlet and decreases it near the outlet; as a result, the 

output dry matter content starts going down. The symmetric 

effect is present when input mass flow decreases. 

3. Uniform and localized evaporation models, on the other hand, 

exhibit a distinct delay followed by a transient, both in the out- 

put mass flow and output dry matter content ( Figs. 8, 8 c). 

4. OPF exhibits smoother transients in ˙ m o, T compared to DPF 

( Fig. 8 ). It is explained by the diffusion-like properties of the 

velocity distribution function inside OPF. 

5. Switching DPF to OPF while using the same water-proportional 

evaporation model affects ˙ m o, T more noticeably than w o, T 

( Fig. 8 ). Conversely, changing the evaporation model has more 

effect on w o, T than on ˙ m o, T ( Figs. 8, 8 c). 

6. The lower w o, T of OPF with localized evaporation compared 

to the other models ( Fig. 8 c) is explained by the dependence 

(33) of the heat transfer coefficient on the local dry matter con- 

tent: as the latter goes up, the former decreases, resulting in 

reduced local evaporation. 

6. Conclusion and Outlook 

In pursuit of a control-oriented model of the falling film evap- 

orator two new transport models to describe the falling film have 

been developed: Dynamic Plug Flow (DPF) and Overtaking Particle 

Flow (OPF). Furthermore, in addition to the well-known uniform 

evaporation model two new ones have been proposed, motivated 

by technical as well as fundamental reasons: water-proportional 

and localized evaporation. The models are expressed as systems of 

hyperbolic partial differential equations and as input-output time- 

delay equations. The latter are advantageous from the simulation 

viewpoint. 

Comparative simulations provide some insight into choosing the 

transport and evaporation models. The choice between the trans- 

port models (DPF vs. OPF) can be made knowing that OPF produces 

smoother output mass flow compared to DPF due to a diffusion- 

like effect. However, the amount of calculation associated with 

simulation of OPF is higher because of its distributed integral delay 

as opposed to the pointwise delay in DPF. 

If DPF is selected, there are two alternatives for the evaporation 

model: uniform and water-proportional. The latter yields smoother 

transient in the output dry matter content. Another difference that 

should be taken into account: uniform evaporation model exhibits 

delayed initial response whereas the water-proportional one re- 

sponds immediately to any changes in the input mass flow. Ar- 

guably, the instant response at the output is unrealistic. However, 

the main part of the transient is still delayed. Therefore, depending 

on whether the instant response is small enough to be regarded as 

a modeling error, the water-proportional evaporation model may 

still prove useful. 

If, on the other hand, OPF is the favored transport model, then 

the choice of evaporation model is between water-proportional 

and localized. Unlike water-proportional model which again re- 

sponds instantly to any changes in the input mass flow, local- 

ized evaporation demonstrates a purely delayed transient. Water- 

proportional model is more computationally expensive due to the 

need of calculating the total mass of water inside the tube in the 

form of a double integral. Localized evaporation model, although 

simpler numerically, contains an important part that may require 

nontrivial experimental identification, namely, the heat transfer co- 

efficient as a function of the dry matter content. 

In the upcoming paper Hofmann et al., (2021) we demonstrate 

the results of experimental identification and validation of the OPF 

model with water-proportional evaporation. The experiments have 

been done at a pilot plant representing one tube of the FFE. They 

show that the model is a good description of the real process. 

Prospective work includes integration of this falling film model 

into the full multi-pass evaporator model. The complete model can 

be used for numerical experiments, operator training and other 

purposes. In the next step, it may require further simplification to 

enable system-theoretic control design process. The end goal is a 

“new and improved” multivariable control system. 
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Appendix A. Proof of Theorem 1 

Here we prove Theorem 1 which asserts the input-output re- 

lations for the DPF model with uniform evaporation. Initially, 

in the following Lemma we derive the solution of the DPF 

equations (3) under the uniform evaporation assumption (5) using 

the standard method of characteristics Courant and Hilbert (1989) . 

Afterwards, the input-output relations are obtained from the PDE 

solution, proving the Theorem. 

Lemma 1. Under the conditions of Theorem 1 the PDE system (3) , 

(5) admits the classical solution given, for t ∈ [ t 0 , t 0 + �/c 0 (0)] , by 

ξw 

(t, x ) = 

1 

μ(t, x ) 

( 

ξw,0 

(
x i (t, x ) 

)
−

t ∫ 
t 0 

q (α) μ(α, x ) d α

) 

, (A.1a) 

ξd (t, x ) = 

ξd,0 

(
x i (t, x ) 

)
μ(t, x ) 

, (A.1b) 



c(t, x ) = c 0 
(
x i (t, x ) 

)
, (A.1c) 

x i (t, x ) = x − c 0 
(
x i (t, x ) 

)
(t − t 0 ) (A.1d) 

where 

μ(t, x ) := 1 + 

d c 0 (x ) 

d x 

∣∣∣∣
x i (t,x ) 

(t − t 0 ) (A.2) 

and, for t ≥ t 0 + �/ ̄c i, T (t 0 ) , by 

ξw 

(t, x ) = 

1 

ν(t, θ ) 

( 

˙ m i, T (θ ) 
(
1 − w i, T (θ ) 

)
c̄ i, T (θ ) 

−
t ∫ 

θ

q (α) ν(α, θ ) d α

) 

∣∣∣∣∣
θ= t i (t,x ) 

, 

(A.3a) 

ξd (t, x ) = 

˙ m i, T (θ ) w i, T (θ ) 

ν(t, θ ) ̄c i, T (θ ) 

∣∣∣∣
θ= t i (t,x ) 

, (A.3b) 

c(t, x ) = c̄ i, T 
(
t i (t, x ) 

)
, (A.3c) 

t i (t, x ) = t − x 

c̄ i, T 
(
t i (t, x ) 

) (A.3d) 

where 

ν(t, θ ) := 1 −
˙ c̄ i, T (θ ) 

c̄ i, T (θ ) 
(t − θ ) . (A.4) 

Proof. Direct application of the method of characteristics to (3) is 

not possible due to the terms ξw 

∂c 
∂x 

in (3a) and ξd 
∂c 
∂x 

in (3b) . How- 

ever, by introducing the variable ζ (t, x ) := 

∂c(t,x ) 
∂x 

, the system (3) of 

three PDEs with assumption (5) can be transformed into the fol- 

lowing system of four PDEs 

∂ξw 

(t, x ) 

∂t 
+ c(t, x ) 

∂ξw 

(t, x ) 

∂x 
= −ξw 

(t, x ) ζ (t, x ) − q (t) , (A.5a) 

IC: ξw 

(t 0 , x ) = ξw , 0 (x ) , 

BC: ξw 

(t, 0) = 

˙ m i, T (t) 
(
1 − w i, T (t) 

)
c( t, 0) 

, 

∂ξd (t, x ) 

∂t 
+ c(t, x ) 

∂ξd (t, x ) 

∂x 
= −ξd (t, x ) ζ (t, x ) , (A.5b) 

IC: ξd (t 0 , x ) = ξd , 0 (x ) , 

BC: ξd (t, 0) = 

˙ m i, T (t) w i, T (t) 

c(t, 0) 
, 

∂c(t, x ) 

∂t 
+ c(t, x ) 

∂c(t, x ) 

∂x 
= 0 , (A.5c) 

IC: c(t 0 , x ) = c 0 (x ) , 

BC: c(t, 0) = c̄ i, T (t) , 

∂ζ (t, x ) 

∂t 
+ c(t, x ) 

∂ζ (t, x ) 

∂x 
= −ζ 2 (t, x ) , (A.5d) 

IC: ζ (t 0 , x ) = 

d c 0 (x ) 

d x 
, 

BC: ζ (t, 0) = −
˙ c̄ i, T (t) 

c̄ i, T (t) 
with 

˙ c̄ i, T (t) := 

d 

d t 
c̄ i, T (t) , 

Output 1: ˙ m o, T (t) = 

(
ξw 

(t, � ) + ξd (t , � ) 
)
c(t , � ) , 

Output 2: w o, T (t) = 

ξd (t, � ) 

ξw 

(t, � ) + ξd (t, � ) 
. 

Let us introduce the parameterization 

(
˜ t (σ ) , ̃  x (σ ) 

)
, σ ≥ 0 , of 

the characteristic time-space curves and denote the values of the 

dependent variables on the curves using the abbreviation 

˜ �(σ ) := �
(

˜ t (σ ) , ̃  x (σ ) 
)

(A.6) 

where � is one of the functions ξw 

, ξd , c or ζ . Comparing the co- 

efficients of the identity 

d ̃

 t 

d σ

∂ ̃  �
∂ ̃  t 

+ 

d ̃

 x 

d σ

∂ ̃  �
∂ ̃  x 

= 

d ̃

 �
d σ

(A.7) 

to the PDEs (A.5) with (5) , the system of characteristic equations is 

obtained: 

d ̃

 t (σ ) 

d σ
= 1 , (A.8a) 

d ̃

 x (σ ) 

d σ
= 

˜ c (σ ) , (A.8b) 

d ̃

 ξw 

(σ ) 

d σ
= − ˜ ξw 

(σ ) ̃  ζ (σ ) − q 
(

˜ t (σ ) 
)
, (A.8c) 

d ̃

 ξd (σ ) 

d σ
= − ˜ ξd (σ ) ̃  ζ (σ ) , (A.8d) 

d ̃

 c (σ ) 

d σ
= 0 , (A.8e) 

d ̃

 ζ (σ ) 

d σ
= − ˜ ζ 2 (σ ) . (A.8f) 

The solution of the ODEs (A.8) is 

˜ t (σ ) = 

˜ t (0) + σ, (A.9a) 

˜ x (σ ) = 

˜ x (0) + 

˜ c (0) σ, (A.9b) 

˜ ξw 

(σ ) = 

1 

1 + 

˜ ζ (0) σ

( 

˜ ξw 

(0) −
σ∫ 

0 

q 
(

˜ t (0) + α
)(

1 + 

˜ ζ (0) α
)

d α

) 

, 

(A.9c) 

˜ ξd (σ ) = 

˜ ξd (0) 

1 + 

˜ ζ (0) σ
, (A.9d) 

˜ c (σ ) = 

˜ c (0) , (A.9e) 

˜ ζ (σ ) = 

˜ ζ (0) 

1 + 

˜ ζ (0) σ
. (A.9f) 

Looking to find the solution of the PDEs (A.5) in a given point 

(t, x ) , we are interested in the characteristic curve 
(

˜ t (·) , ̃  x (·) 
)

that 

passes through the point (t, x ) , i.e., the curve that satisfies the 

boundary condition 

˜ t (σ ) = t, ˜ x (σ ) = x (A.10) 

with some σ > 0 . As for the other boundary condition, let us pick 

the point 
(

˜ t (0) , ̃  x (0) 
)
. Recall that, in terms of plug flow, the char- 

acteristic curve 
(

˜ t (·) , ̃  x (·) 
)

is the trajectory of a single plug, so (
˜ t (0) , ̃  x (0) 

)
determines the time and place of “birth” of the plug. 

There are two possibilities regarding the plug’s origin: 



              

1. Suppose the plug crossing the point x at time t originated from 

the initial mass distribution. Let the initial (at t = t 0 ) position 

of that plug be denoted x i (t, x ) ∈ [0 , � ] , then the corresponding 

characteristic satisfies the boundary condition 

˜ t (0) = t 0 , ˜ x (0) = x i (t, x ) . (A.11) 

Substituting (A.10) and (A.11) into (A.9) , unwrapping the nota- 

tion (A.6) and using the initial conditions from the PDEs (A.5) , 

we get (A.1) . The conclusion is valid for t such that x i (t, x ) ≥ 0 

which is simplified by the following consideration: 

( A. 1 d ) ⇒ 

{ ∂x i (t,x ) 
∂t 

= − d c 0 (x ) 
d x 

∣∣
x i (t,x ) 

∂x i (t,x ) 
∂t 

(t − t 0 ) − c 0 
(
x i (t, x ) 

)
, 

t − t 0 = 

x −x i (t,x ) 

c 0 

(
x i (t,x ) 

)
(A.12a) 

⇒ 

∂x i (t, x ) 

∂t 
= 

c 2 0 

(
x i (t, x ) 

)
d c 0 (x ) 

d x 

∣∣
x i (t,x ) 

(
x − x i (t, x ) 

)
+ c 0 

(
x i (t, x ) 

) (A.12b) 

(7) ⇒ 

[
x i (t, x ) ∈ [0 , x ] ⊂ [0 , � ] ⇒ 

∂x i (t, x ) 

∂t 
< 0 

]
(A.12c) 

and since, by (A.1d) , x i (t 0 , x ) = x and x i (t 1 , x ) = 0 for t 1 = t 0 + 

x/c 0 (0) , we conclude that x i (t, x ) ≥ 0 for t ∈ [ t 0 , t 1 ] as a strictly 

decreasing function on the interval. Hence, (A.1) is indeed valid 

for all t ∈ [ t 0 , t 1 ] , as reflected in the statement of the Lemma. 

2. Suppose the plug crossing the point x at time t originated from 

the input mass flow. Let t i (t, x ) ≥ t 0 be the moment that the 

plug enters through the input boundary x = 0 . Then the bound- 

ary condition for the corresponding characteristic is 

˜ t (0) = t i (t, x ) , ˜ x (0) = 0 . (A.13) 

Similarly to the previous case, we obtain the expression 

(A.3) which applies for t such that t i (t, x ) ≥ t 0 . Then we find 

( A. 3 d ) ⇒ 

∂t i (t, x ) 

∂t 
= 1 + 

x ˙ c̄ i, T 
(
t i (t, x ) 

)
c̄ 2 

i, T 

(
t i (t, x ) 

) ∂t i (t, x ) 

∂t 
(A.14a) 

⇒ 

∂t i (t, x ) 

∂t 
= 

c̄ 2 
i, T 

(
t i (t, x ) 

)
/x 

c̄ 2 
i, T 

(
t i (t, x ) 

)
/x − ˙ c̄ i, T 

(
t i (t, x ) 

) (A.14b) 

(6) ⇒ 

[
t i (t, x ) ≥ t 0 ⇒ 

∂t i (t, x ) 

∂t 
> 0 

]
(A.14c) 

and since, by (A.3d) , t i (t 1 , x ) = t 0 for t 1 = t 0 + x/ ̄c i, T (t 0 ) , we con- 

clude that t i (t, x ) ≥ t 0 for t ≥ t 1 as a strictly increasing function 

on the interval. Hence, (A.3) is indeed valid for all t ≥ t 1 , as re- 

flected in the statement of the Lemma. 

According to (8) , which asserts c 0 (0) = c̄ i, T (t 0 ) , the two cases 

just considered cover all t ≥ t 0 without overlap. Thus, the solution 

is complete and single-valued. 

The velocity constraints (6) and (7) ensure that the denomina- 

tors of the expressions appearing in the Lemma, i.e., μ(t, x ) and 

ν(t, x ) , are strictly positive. Thus, the solution is continuous. 

Let us finally prove that there is no overtaking between the 

plugs. Firstly, consider the plugs from the initial distribution and 

recall that x i (t, x ) is defined as the starting position of such a plug 

that at time t crosses the point x . It follows from (A.12c) that the 

further the plug starts from the point x , the later it will appear 

there. Similarly, take a plug from the input flow. From (A.14c) , the 

later the plug enters the tube, the later it reaches the point x . Fur- 

thermore, the plugs from the initial distribution and those from 

the input flow do not cross paths because, due to (8) , the “initial”

plug starting at the inlet ( x = 0 ) and the “input” plug entering first 

(at t = t 0 ) move with the same velocity. Thus, there is no overtak- 

ing, and the solution is classical. �

Remark 8. The values μ and ν in Lemma 1 may be called mass 

dispersion factors as they are responsible for the gradual changes 

in the linear density profile due to the velocity differences of the 

neighboring plugs. 

To finalize the proof of Theorem 1 , it remains to substitute x = � 

in (A.3) which yields, for t ≥ t 0 + �/ ̄c i, T (t 0 ) , 

˙ m o, T (t) = 

˙ m i, T (θ ) 

ν(t, θ ) 

( 

1 − c̄ i, T (θ ) 

˙ m i, T (θ ) 

t ∫ 
θ

q (α) ν(α, θ ) d α

) 

∣∣∣∣∣
θ= t i (t,� ) 

, 

(A.15a) 

w o, T (t) = w i, T (θ ) 

( 

1 − c̄ i, T (θ ) 

˙ m i, T (θ ) 

t ∫ 
θ

q (α) ν(α, θ ) d α

) −1 
∣∣∣∣∣∣
θ= t i (t,� ) 

(A.15b) 

whence, employing the time delay τ (t) introduced by the formula 

τ (t) := t − t i (t, � ) , (A.16) 

the statement of Theorem 1 is reached. 

Appendix B. Proof of Theorem 2 

Here we outline the proof of Theorem 2 describing the 

input-output relations for the DPF with water-proportional evap- 

oration. The following Lemma states the solution of the DPF 

equations (3) under evaporation proportional to the water content 

(13) . Thereafter, the input-output equations are obtained. 

Lemma 2. Under the conditions of Theorem 2 the PDE system (3) , 

(13) admits the classical solution given, for t ∈ [ t 0 , t 0 + �/c 0 (0)] , by 

ξw 

(t, x ) = 

ξw,0 

(
x i (t, x ) 

)
β(t 0 , t) 

μ(t, x ) 
, (B.1a) 

ξd (t, x ) = 

ξd,0 

(
x i (t, x ) 

)
μ(t, x ) 

, (B.1b) 

c(t, x ) = c 0 
(
x i (t, x ) 

)
, (B.1c) 

x i (t, x ) = x − c 0 
(
x i (t, x ) 

)
(t − t 0 ) (B.1d) 

where 

β(t 1 , t 2 ) := exp 

( 

−
t 2 ∫ 

t 1 

b(α) d α

) 

(B.2) 

and, for t ≥ t 0 + �/ ̄c i, T (t 0 ) , by 

ξw 

(t, x ) = 

˙ m i, T (θ ) 
(
1 − w i, T (θ ) 

)
β(θ, t) 

ν(t, θ ) ̄c i, T (θ ) 

∣∣∣∣∣
θ= t i (t,x ) 

, (B.3a) 

ξd (t, x ) = 

˙ m i, T (θ ) w i, T (θ ) 

ν(t, θ ) ̄c i, T (θ ) 

∣∣∣∣
θ= t i (t,x ) 

, (B.3b) 

c(t, x ) = c̄ i, T 
(
t i (t, x ) 

)
, (B.3c) 

t i (t, x ) = t − x 

c̄ i, T 
(
t i (t, x ) 

) . (B.3d) 



              

The factors μ(t, x ) and ν(t, x ) are defined by (A.2) and (A.4) . 

Proof. The PDEs are solved similarly to the case of uniform evap- 

oration ( Appendix A ). The only difference is in the behavior of ξw 

. 

The corresponding characteristic equation becomes 

d ̃

 ξw 

(σ ) 

d σ
= − ˜ ξw 

(σ ) 
(
b( ̃ t (σ )) + 

˜ ζ (σ ) 
)

(B.4) 

and the general solution thereof is 

˜ ξw 

(σ ) = 

˜ ξw 

(0) β
(

˜ t (0) , ̃  t (0) + σ
)

1 + 

˜ ζ (0) σ
. (B.5) 

The rest of the proof repeats that of Lemma 1 . �

To arrive at the equations (16) of Theorem 2 , we substitute x = 

� in (B.3) and introduce the time delay again as τ (t) := t − t i (t, � ) . 

This yields the outputs of the model (3), (13) for t ≥ t 0 + �/ ̄c i, T (t 0 ) 

in the desired form (16) . As we note that equations (16) implicitly 

(via β) involve the total water mass M w 

(t) , the latter is calculated 

for t ≥ t 0 + �/ ̄c i, T (t 0 ) by plugging (B.3a) in (14) and obtaining (18) . 

Appendix C. Proof of Theorem 2 

Here we prove Theorem 3 which gives the input-output re- 

lations for the OPF model with water-proportional evaporation. 

In the following Lemma we derive the solution of the OPF 

equations (26) under the water-proportional evaporation assump- 

tion (28) . Then, the input-output relations are obtained from the 

PDE solution, proving the Theorem. 

Lemma 3. Under the conditions of Theorem 3 the PDE system (26) , 

(28) admits the classical solution given, for t ∈ [ t 0 , t 0 + x/c) , by 

ξw 

( t, x, c ) = ξw , 0 ( x − ( t − t 0 ) c, c ) β( t 0 , t ) , (C.1a) 

ξd ( t, x, c ) = ξd , 0 ( x − ( t − t 0 ) c, c ) (C.1b) 

and, for t ≥ t 0 + x/c, by 

ξw 

(t, x, c) = f (c, θ ) ˙ m i, T (θ ) 
(
1 − w i, T (θ ) 

)
β(θ, t) /c 

∣∣∣
θ= t−x/c 

, (C.2a) 

ξd (t, x, c) = f (c, θ ) ˙ m i, T (θ ) w i, T (θ ) /c 

∣∣∣
θ= t−x/c 

. (C.2b) 

Proof. As (26) is a system of 2-dimensional (in space) PDEs, 

the characteristic curve is defined in the 3-dimensional time- 

space as 
(

˜ t (σ ) , ̃  x (σ ) , ̃  c (σ ) 
)
. Extending the notation (A.6) to the 

3-dimensional case and proceeding in the same way as in 

Appendix A , we obtain the characteristic system 

d ̃

 t (σ ) 

d σ
= 1 , (C.3a) 

d ̃

 x (σ ) 

d σ
= 

˜ c (σ ) , (C.3b) 

d ̃

 c (σ ) 

d σ
= 0 , (C.3c) 

d ̃

 ξw 

(σ ) 

d σ
= −b 

(
˜ t (σ ) 

)
˜ ξw 

(σ ) , (C.3d) 

d ̃

 ξd (σ ) 

d σ
= 0 . (C.3e) 

The general solution of the ODEs (C.3) is 

˜ t (σ ) = 

˜ t (0) + σ, (C.4a) 

˜ x (σ ) = 

˜ x (0) + 

˜ c (0) σ, (C.4b) 

˜ c (σ ) = 

˜ c (0) , (C.4c) 

˜ ξw 

(σ ) = 

˜ ξw 

(0) β
(

˜ t (0) , ̃  t (σ ) 
)
, (C.4d) 

˜ ξd (σ ) = 

˜ ξd (0) (C.4e) 

where 

β(t 1 , t 2 ) := exp 

( 

−
t 2 ∫ 

t 1 

b(α) d α

) 

. (C.5) 

Similarly to the proof of Lemma 1 in Appendix A , two boundary 

conditions are imposed on the characteristic curve, the first being 

˜ t (σ ) = t, ˜ x (σ ) = x, ˜ c (σ ) = c (C.6) 

and with regards to the second boundary condition we distinguish 

two cases: 

1. If t 0 ≤ t < t 0 + x/c, then we take 

˜ t (0) = t 0 , ˜ x (0) = 

(
x − (t − t 0 ) c 

)
∈ (0 , x ] , ˜ c (0) = c 

(C.7) 

which yields the first part of solution (C.1) . 

2. If t ≥ t 0 + x/c, then 

˜ t (0) = t − x/c ≥ t 0 , ˜ x (0) = 0 , ˜ c (0) = c (C.8) 

which yields, using the boundary conditions from the PDEs 

(26) , the other part (C.2) . 

Note that the OPF model does not need any restrictions on 

the initial and input velocities beyond their smoothness, unlike 

the DPF where we imposed the constraints (6) –(8) to ensure that 

the characteristics never cross. Indeed, it can be easily seen that 

the OPF characteristic curves (C.4) cannot intersect unless they 

coincide. �

Finally, the outputs of the PDEs (26) are obtained for t ≥ t 0 + 

�/c min from (C.2) as (31) , and the total water mass M w 

is cal- 

culated by substituting (C.2) into (29) which yields (32) . Thus, 

Theorem 3 is established. 

Appendix D. Proof of Theorem 4 

Here we describe the proof of Theorem 4 concerned with the 

input-output relations for the OPF model with localized evapora- 

tion. In the following Lemma we derive the solution of the OPF 

equations (26) under the localized evaporation model (34) –(37) . 

Thence, the input-output relations are obtained, proving the Theo- 

rem. 

Lemma 4. Under the conditions of Theorem 4 the PDE system (26) , 

(34) –(37) admits the classical solution given, for t ∈ [ t 0 , t 0 + x/c) , by 

ξw 

(t, x, c) 

ξd (t, x, c) 
= �

(
ξw , 0 (χ, c) 

ξd , 0 (χ, c) 
+ 1 , 

φ0 (χ, c) � (t 0 , t) 

ξd , 0 (χ, c) 

)∣∣∣∣
χ= x −(t−t 0 ) c 

− 1 , 

(D.1a) 

ξd ( t, x, c ) = ξd , 0 ( x − ( t − t 0 ) c, c ) (D.1b) 

and, for t ≥ t 0 + x/c, by 

ξw 

(t, x, c) 

ξd (t, x, c) 
= �

(
1 

w i, T (θ ) 
, 

c � (θ, t) 

˙ m i, T (θ ) w i, T (θ ) 

)∣∣∣∣
θ= t−x/c 

− 1 , (D.2a) 

 



ξd (t, x, c) = f (c, θ ) ˙ m i, T (θ ) w i, T (θ ) /c 

∣∣∣
θ= t−x/c 

. (D.2b) 

Here � is defined via the Lambert W-function as 

�(a, b) := 

k 1 
k 0 

(
W 

[(
k 0 
k 1 

a − 1 

)
exp 

(
k 0 
k 1 

a − 1 − k 2 0 

k 1 
b 

)]
+ 1 

)
(D.3) 

and we use the abbreviation 

� (t 1 , t 2 ) := 

t 2 ∫ 
t 1 

p(α) d α. (D.4) 

Proof. The PDEs (26) of OPF with localized evaporation model 

(34) –(37) are solved similarly to the case of water-proportional 

evaporation ( Appendix C ). The only difference is in the behavior of 

ξw 

and in the additional PDE (36) for φ. The corresponding char- 

acteristic equations for ξw 

and φ are 

d ̃

 ξw 

(σ ) 

d σ
= − ˜ φ(σ ) 

(
k 0 − k 1 

˜ ξd (σ ) 

˜ ξw 

(σ ) + 

˜ ξd (σ ) 

)
p 
(

˜ t ( σ ) 
)
, (D.5a) 

d ̃

 φ(σ ) 

d σ
= 0 . (D.5b) 

To solve the system of characteristic equations, we introduce 

the new variable 

˜ ω (σ ) := 

˜ ξw 

(σ ) 

˜ ξd (σ ) 
+ 1 (D.6) 

which satisfies the ODE 

d ̃  ω (σ ) 

d σ
= −

˜ φ(σ ) p 
(

˜ t (σ ) 
)

˜ ξd (σ ) 

k 0 ˜ ω (σ ) − k 1 
˜ ω (σ ) 

. (D.7) 

Solving it together with the rest of the system (C.3) yields the gen- 

eral solution 

˜ ω (σ ) = �

(
˜ ξw 

(0) 

˜ ξd (0) 
+ 1 , 

˜ φ(0) 

˜ ξd (0) 
� 

(
˜ t (0) , ̃  t (0) + σ

))
. (D.8) 

To obtain the general solution of the PDEs, two boundary con- 

ditions are imposed on the characteristic curve, the first being 

˜ t (σ ) = t, ˜ x (σ ) = x, ˜ c (σ ) = c (D.9) 

and with regards to the second boundary condition we distinguish 

two cases: 

1. If t 0 ≤ t < t 0 + x/c, then we take 

˜ t (0) = t 0 , ˜ x (0) = x − (t − t 0 ) c ∈ (0 , x ] , ˜ c (0) = c 

(D.10) 

which yields 

ω(t, x, c) = �

(
ξw , 0 (χ, c) 

ξd , 0 (χ, c) 
+ 1 , 

φ0 (χ, c) � (t 0 , t) 

ξd , 0 (χ, c) 

)∣∣∣∣
χ= x −(t−t 0 ) c 

(D.11) 

where ω(t, x, c) is connected to ˜ ω (σ ) by the notation scheme 

(A.6) . It leads to (D.1) . 

2. If t ≥ t 0 + x/c, then 

˜ t (0) = t − x/c ≥ t 0 , ˜ x (0) = 0 , ˜ c (0) = c (D.12) 

which, using the boundary conditions from the PDEs (26) , leads 

to (D.2) . 

This completes the proof of the Lemma. �

The outputs of the OPF model (26) for t ≥ t 0 + �/c min are com- 

puted via (D.2) and found to be in the form (39) . This finally proves 

Theorem 4 . 
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