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ERROR ANALYSIS FOR FULL DISCRETIZATIONS OF QUASILINEAR WAVE-TYPE
EQUATIONS WITH TWO VARIANTS OF THE IMPLICIT MIDPOINT RULE

BERNHARD MAIER

Institute for Applied and Numerical Mathematics, Karlsruhe Institute of Technology,
Englerstr. 2, 76131 Karlsruhe, Germany

ABSTRACT. We study the full discretization of a general class of first- and second-order quasilinear wave-type
problems with the implicit midpoint rule and a linearized variant thereof. Based on a proof by induction, we
prove wellposedness and a rigorous error estimate for both schemes, combining energy techniques, inverse
estimates, and a linearized fixed-point iteration for the analysis of the nonlinear scheme. To confirm the rel-
evance of the general framework, we derive novel error esitmates for the full discretization of two prominent
examples from nonlinear physics: the Westervelt equation and the Maxwell equations with Kerr nonlinearity.

1. INTRODUCTION

We study the full discretization of quasilinear wave-type problems of the form{
Λ(y(t))∂ty(t) = Ay(t) + F (t, y(t)), t ∈ [0, T ],

y(0) = y0,
(1.1)

in a Hilbert spaceX , where the nonlinear operator Λ is bounded and locally Lipschitz continuous, whereas
A is linear but unbounded inX . The nonlinear right-hand side F is assumed to be sufficiently regular. This
is a very general framework, which covers both first- and second-order quasilinear wave-type problems.
For instance, this includes the Westervelt equation and the Maxwell equations with Kerr nonlinearity,
which are important applications in nonlinear acoustics and optics, respectively.

Despite the importance of quasilinear wave-type problems in physics, there are only very few rigorous
convergence results concerning the full discretization of these equations. In particular, up to our knowledge
the discretization of first-order problems was not analyzed before. Based on the method-of-lines and a
conforming discretization in space, the full discretization of second-order quasilinear hyperbolic problems
was studied by the following authors, using different discretizations in time: On the one hand, Ewing
(1980) and Bales & Dougalis (1989) considered linearly implicit two-step schemes. On the other hand,
various linearly implicit single-step schemes were studied by Bales (1986, 1988). Moreover, Makridakis
(1993) analyzed a class of linearly implicit single-step schemes as well as a linearly and a fully implicit two-
step scheme for quasilinear elastic wave equations. More recently, the full discretization of a specific class
of quasilinear wave equations in 1D based on the Fourier spectral method and trigonometric integrators
was studied by Gauckler et al. (2019).

E-mail address: bernhard.maier@kit.edu.
Key words and phrases. quasilinear wave-type equations; abstract error analysis; full discretization; a priori error estimates;

Westervelt equation; Maxwell equations; Kerr nonlinearity; implicit midpoint rule.
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In the present paper, we also use the method-of-lines for the discretization of quasilinear wave-type
problems of the general form (1.1). The corresponding space discretization was studied by Hochbruck &
Maier (2021), including wellposedness and a rigorous error estimate. We now extend these results to the
full discretization with two variants of the implicit midpoint rule. On the one hand, we study the classical
(fully) implicit midpoint rule, which relies on the solution of nonlinear systems in every time step. On the
other hand, we also analyze a linearized variant thereof, called the linearly impilcit midpoint rule, which
was introduced by Kovács & Lubich (2018) for the time discretization of quasilinear wave-type problems
on unbounded domains.

Contrary to the linear case, a major difficulty in the analysis of numerical schemes for quasilinear
wave-type problems is that bounds on the numerical approximations in the energy norm in general do not
suffice to ensure wellposedness of the numerical scheme. In particular, in our setting pointwise bounds for
the approximations are crucial to ensure essential properties of the discrete counterpart of the nonlinear
operator Λ.

Except Gauckler et al. (2019), who resolve this issue for the special case of the Fourier spectral method
by deriving error estimates not only in the energy norm but also in stronger norms and finally using
Sobolev’s embedding, all previously cited results essentially rely on inverse estimates to obtain these
bounds. As a consequence, these results depend on a step-size restriction τ < Chα for some α > 0
depending on the spatial dimension and the convergence order of the scheme. Here, τ, h > 0 denote the
time step and the space discretization parameter, respectively.

For the analysis of the linearly implicit midpoint rule, we follow a similar approach. First, we use
that pointwise bounds on previous approximations are sufficient to analyze the next step of the linearized
scheme. Hence, we prove wellposedness of the next step of the scheme and derive an error estimate in the
energy norm. Subsequently, we apply inverse estimates to obtain pointwise bounds for the new approxi-
mations under a step-size restriction. Overall, using these arguments alternately we prove wellposedness
and a rigorous error estimate for the linearly implicit midpoint rule by induction.

The analysis of the fully implicit midpoint rule is more involved, since existence and pointwise bounds
of the next approximation are intertwined here. To resolve this dilemma, we approximate each step of the
nonlinear scheme by a linearized fixed-point iteration. Since the analysis for the linearly implicit midpoint
rule extends to these schemes, we directly obtain wellposedness and error estimates for all iterates. To
conclude, we prove convergence of the iteration and provide a rigorous error estimate for the limit, which
corresponds to the next approximation of the fully implicit midpoint rule.

Up to our knowledge, we present the first rigorous analysis for the full discretization of quasilinear
wave-type equations with a nonlinear single-step scheme. Moreover, we emphasize that our abstract results
yield novel results for prominent applications from physics. To strengthen this point, we briefly derive new
error estimates for the full discretization of the Maxwell equations with Kerr nonlinearity as well as the
Westervelt equation. For preliminary versions of these results with a more detailed discussion, we refer to
the doctoral thesis (Maier, 2020).

Note that the space discretization of these applications was analyzed by Hochbruck & Maier (2021).
Besides, the space discretization of the strongly damped Westervelt equation with continuous and discon-
tinuous finite elements was studied by Nikolić & Wohlmuth (2019) and Antonietti et al. (2020), respec-
tively.

Outline. We present the abstract framework in Section 2 and briefly recapitulate the corresponding
space discretization from Hochbruck & Maier (2021) in Section 3. Based on these sections, we introduce
the full discretization with two variants of the implicit midpoint rule in Section 4. Moreover, we state our
main result, which yields wellposedness and a rigorous error estimate for both schemes within the abstract
framework. We first present the corresponding proof for the linearly implicit midpoint rule in Section 5.
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In Section 6, we extend the analysis also to the fully implicit scheme. Finally, we apply the abstract results
to specific examples in Section 7. First, we focus on the Maxwell equations with Kerr nonlinearity in
Section 7.1. We further study the Westervelt equation in Section 7.2.

Notation. Let X and Y be normed spaces. We denote the space of bounded linear operators mapping
from X to Y by L(X,Y ), equipped with the norm

‖A‖L(X,Y ) := sup
x∈X\{0}

‖Ax‖Y
‖x‖X

, A ∈ L(X,Y ).

We write BX(R) for the open ball of radius R > 0 in X centered around 0. For the final time T > 0 and
the step size τ > 0, N ∈ N denotes the maximal number of time steps such that Nτ ≤ T holds. We then
write tr = rτ for r ≤ N . Finally, C > 0 is a generic constant, which may have different values on any
occurrence.

2. ANALYTICAL SETTING

For Hilbert spaces (X, (· | ·)X), (Y, (· | ·)Y ), (Z∂ , (· | ·)Z∂ ), and (Z, (· | ·)Z) with dense and continuous
embeddings Z ↪→ Z∂ ↪→ Y ↪→ X , the induced norms are denoted by ‖·‖X , ‖·‖Y , ‖·‖Z∂ , and ‖·‖Z ,
respectively. We further make use of a seminorm |·|Y on Y , which satisfies for some constant CY > 0

|ξ|Y ≤ CY ‖ξ‖Y , ξ ∈ Y.

We now specify the abstract quasilinear wave-type problem (1.1). For specific examples satisfying these
assumptions, we refer to Section 7.

ASSUMPTION 2.1 There exists a radius RY > 0 such that the operators in (1.1) satisfy

(Λ) {Λ(ξ) | ξ ∈ BY (RY )} ⊂ L(X) is a family of symmetric operators, which are uniformly positive
definite and bounded, i.e., there are constants cΛ, CΛ > 0 with

cΛ‖ϕ‖2X ≤ (Λ(ξ)ϕ | ϕ)X , ‖Λ(ξ)‖L(X) ≤ CΛ, ϕ ∈ X, ξ ∈ BY (RY ). (2.1)

(A) A ∈ L(D(A), X) with Y ⊂ D(A) ⊂ X , where D(A) denotes the domain of A.
(F ) F : [0, T ] × BY (RY ) → X is continuous in time and bounded, i.e., there is a constant CF > 0

with

‖F (t, ξ)‖X ≤ CF , t ∈ [0, T ], ξ ∈ BY (RY ).

Note that all our results are also valid for more general bounded domains instead of spheres BY (RY ).
However, we refrain from this generalization for the sake of readability.

Due to (2.1) the operators

A(ξ) := Λ(ξ)−1A, F(t, ξ) := Λ(ξ)−1F (t, ξ), t ∈ [0, T ], ξ ∈ BY (RY ).

are well defined. Thus, we can rewrite (1.1) as{
∂ty(t) = A(y(t))y(t) + F(t, y(t)), t ∈ [0, T ],

y(0) = y0,
(2.2)

which is more convenient for our analysis.
Since there is no wellposedness result which applies to this quite general problem, we now assume

wellposedness. Again, this is justified in Section 7 for the specific examples.
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ASSUMPTION 2.2 Let RY > 0 such that Assumption 2.1 holds. The quasilinear Cauchy problem (2.2)
has a unique solution y with maximal time of existence t∗(y0) > 0, which satisfies

y ∈ C3([0, T ], X) ∩ C2([0, T ], Y ) ∩ C1([0, T ], Z∂) ∩ C([0, T ], Z ∩BY (RY ))

for T < t∗(y0). Moreover, there exist radii R∂t , RA > 0 such that

‖∂ty(t)‖Y < R∂t , |A(y(t))y(t)|Y < RA

hold uniformly in [0, T ].

Moreover, we introduce for ξ ∈ BY (RY ) the state-dependent inner product

(ϕ | ψ)Λ(ξ) := (Λ(ξ)ϕ | ψ)X , ϕ, ψ ∈ X, (2.3)

and the induced state-dependent norm ‖·‖Λ(ξ), which is equivalent to the norm of X due to (2.1).
Finally, note that due to Assumption 2.2 the weak formulation of (1.1) on (X, (· | ·)X) is equivalent to

the weak formulation of (2.2) on (X, (· | ·)Λ(y)). Hence, it is sufficient to consider (2.2).

3. SPACE DISCRETIZATION

We briefly present the space discretization of (2.2). For further details including wellposedness as well
as a rigorous error analysis, we refer to Hochbruck & Maier (2021).

Based on a finite-dimensional function space Vh we introduce spaces Xh and Yh with

Xh = (Vh, (· | ·)X) ⊂ X, Yh = (Vh, ‖·‖Yh), (3.1)

where ‖·‖Yh corresponds to the norm of Y . Furthermore, |·|Yh is a seminorm on Yh corresponding to |·|Y ,
which satisfies for some constant CYh > 0

|ξh|Yh ≤ CYh‖ξh‖Yh , ξh ∈ Yh. (3.2)

For a sufficiently small space discretization parameter h > 0, we have the inverse estimates

1

CXh,Yh(h)
‖ξh‖Xh ≤ ‖ξh‖Yh ≤ CYh,Xh(h)‖ξh‖Xh , ξh ∈ Yh, (3.3)

with CYh,Xh(h), CXh,Yh(h) > 0 which may depend on h.
For the specific examples in Section 7 these constants are specified by CYh,Xh(h) ∼ h− d2 , where d ∈ N

is the spatial dimension. For the second constant, we obtain CXh,Yh(h) ∼ h−1 for the Westervelt equation,
whereas for the Maxwell equations CXh,Yh(h) is independent of h.

We emphasize that all our results can be generalized to more general nonconforming space discretiza-
tions including the case Xh 6⊂ X , cf. (Maier, 2020). For instance, this includes the space discretization
with isoparametric finite elements. This is relevant as many wellposedness results for quasilinear wave-
type equations are only valid for spatial domains with smooth boundary.

The discrete quasilinear wave-type problem is for discretizations Λh, Ah, and Fh of Λ, A, and F ,
respectively, given by {

Λh(yh(t))∂tyh(t) = Ahyh(t) + Fh(t, yh(t)), t ∈ [0, T ],

yh(0) = y0
h,

(3.4)

where y0
h ∈ Xh is the discrete initial value.
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ASSUMPTION 3.1 There is RYh > 0 such that the discrete operators in (3.4) satisfy uniformly in h > 0

(Λh) {Λh(ξh) | ξh ∈ BYh(RYh)} ⊂ L(Xh) is a family of symmetric operators, which are uniformly
positive definite and bounded, i.e., there are constants cΛh , CΛh > 0 such that

cΛh‖ϕh‖2Xh ≤ (Λh(ξh)ϕh | ϕh)Xh , ‖Λh(ξh)‖L(Xh) ≤ CΛh , ϕh ∈ Xh, ξh ∈ BYh(RYh) (3.5)

holds. Moreover, there are constants LXhΛh
, LYhΛh

> 0 with

‖Λh(ϕh)− Λh(ψh)‖L(Xh) ≤ LXhΛh
‖ϕh − ψh‖Yh , ϕh, ψh ∈ BYh(RYh),

‖
(
Λh(ϕh)− Λh(ψh)

)
ξh‖X ≤ LYhΛh

‖ϕh − ψh‖X |ξh|Yh , ϕh, ψh ∈ BYh(RYh), ξh ∈ Yh.
(Ah) Ah : Xh → Xh is dissipative in Xh, i.e., we have

(Ahξh | ξh)Xh ≤ 0, ξh ∈ Xh. (3.7)

(Fh) We have Fh : [0, T ]×BYh(RYh)→ Xh, which is continuous in time and bounded in Yh, i.e., there
is a constant CFh > 0 such that

|Fh(t, ξh)|Yh ≤ CFh , t ∈ [0, T ], ξh ∈ BYh(RYh) (3.8)

holds. Furthermore, Fh is Lipschitz continuous in the second argument, i.e., there is a constant
LFh > 0 with

‖Fh(t, ϕh)− Fh(t, ψh)‖Xh ≤ LFh‖ϕh − ψh‖Xh , t ∈ [0, T ], ϕh, ψh ∈ BYh(RYh).

As in the continuous setting, the discrete operators

Ah(ξh) := Λh(ξh)
−1
Ah, Fh(t, ξh) := Λh(ξh)

−1
Fh(t, ξh), t ∈ [0, T ], ξh ∈ BYh(RYh), (3.9)

are well defined due to (3.5). Thus, correspondingly to (2.2) we can rewrite (3.4) as{
∂tyh(t) = Ah(yh(t))yh(t) + Fh(t, yh(t)), t ∈ [0, T ],

yh(0) = y0
h,

(3.10)

As shown in (Hochbruck & Maier, 2021, Lem. 3.3), the operators from (3.9) are again Lipschitz con-
tinuous, i.e., for RYh > 0 as in Assumption 3.1 there are constants LAh , LFh > 0 such that for all
ϕh, ψh ∈ BYh(RYh), we have

‖
(
Ah(ϕh)−Ah(ψh)

)
ξh‖Xh ≤ LAh |Ah(ϕh)ξh|Yh‖ϕh − ψh‖Xh , ξh ∈ Xh, (3.11)

‖Fh(t, ϕh)− Fh(t, ψh)‖Xh ≤ LFh‖ϕh − ψh‖Xh , t ∈ [0, T ]. (3.12)

Corresponding to (2.3) we introduce for ξh ∈ BYh(RYh) the discrete state-dependent inner product
(· | ·)Λh(ξh) as well as the induced discrete state-dependent norm ‖·‖Λh(ξh), which is again equivalent to
the norm of Xh due to (3.5). More precisely, there are constants cΛh , CΛh > 0 with

cΛh‖ξh‖2Xh ≤ ‖ξh‖
2
Λh(ζh) ≤ CΛh‖ξh‖2Xh , ξh ∈ Xh. (3.13)

Moreover, as shown in the following lemma the discrete state-dependent norm is continuous in time, cf.
(Hochbruck & Maier, 2021, Lem. 3.2).

LEMMA 3.2 Let RYh > 0 be the radius from Assumption 3.1. Moreover, let R̂∂t > 0 and

zh ∈ C1([0, T ], Yh) ∩ C([0, T ], BYh(RYh)),

with ‖∂tzh‖Yh < R̂∂t . Then, it holds

‖ξh‖Λh(zh(t)) ≤ eC
′|t−s|‖ξh‖Λh(zh(s)), s, t ∈ [0, T ], ξh ∈ Xh (3.14)

with the constant C ′ = 1
2L

Xh
Λh
c−1
Λh
R̂∂t .
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Z Z∂ Y X

Yh Xh

↪→ ↪→ ↪→

=

Ih ⊂ Πh

Jh

FIGURE 1. Overview of the relations of the discrete and continuous function spaces and
the relating operators, cf. (Hochbruck & Maier, 2021, Fig. 1).

Thus, as in the continuous setting the weak form of (3.4) on Xh = (Vh, (· | ·)X) is identical to the weak
form of (3.10) on (Vh, (· | ·)Λh(yh)) if the solution yh of (3.10) is sufficiently regular.

Finally, we use the following operators relating the continuous and the discrete spaces. These relations
are also shown in Figure 1.

(Jh) The reference operator Jh : Y → Xh is linear and bounded with

‖Jhξ‖Xh ≤ CJh‖ξ‖Y , ξ ∈ Y. (3.15)

(Ih) The interpolation operator Ih : Y → Yh is bounded with

‖Ihξ‖Yh ≤ CIh‖ξ‖Y , |Ihξ|Yh ≤ CIh |ξ|Y , ξ ∈ Y.
(Πh) The projection Πh : X → Xh satisfies

(ϕh | ψ)X = (ϕh | Πhψ)X , ϕh ∈ Xh, ψ ∈ X.
Preliminary to the analysis, we state the following assumptions. First, we fix the radii introduced above

for the rest of this paper.

ASSUMPTION 3.3 Let RYh > 0 be the radius from Assumption 3.1 and y0
h ∈ BYh(RYh). Furthermore, let

RY , R∂t , RA > 0 be chosen such that Assumption 2.2 and

CIhRY < RYh

hold. Finally, we set RAh > 0 with

max
{
CIhRA, |Ah(y0

h)y0
h|Yh

}
< RAh .

Moreover, we assume consistency of the space discretization. To this end, we define the constant
CAh,Yh,Xh(h) > 0 such that

|Ah(ξh)ζh|Yh ≤ CAh,Yh,Xh(h)‖ζh‖X , ξh ∈ BYh(RYh), ζh ∈ Xh, (3.16)

holds for h > 0 sufficiently small. We further introduce the constant

Cmax(h) = max{1, CYh,Xh(h), CAh,Yh,Xh(h)}, (3.17)

which in general deteriorates for h→ 0. Finally, we define the remainder terms

RΛ(ξ) := Λh(Ihξ)Jh −ΠhΛ(ξ), ξ ∈ BY (RY ), (3.18a)

RA := AhJh −ΠhA, (3.18b)

RF (t, ξ) := Fh(t, Ihξ)−ΠhF (t, ξ), t ∈ [0, T ], ξ ∈ BY (RY ), (3.18c)

to relate the continuous operators and their discrete counterparts.
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ASSUMPTION 3.4 Let Assumption 3.3 be satisfied. Moreover, for h→ 0 we have

(A1) ‖(Id−Jh)ζ‖X → 0,
(A3) Cmax(h)‖(Ih − Jh)ζ‖X → 0,
(A5) Cmax(h)‖RΛ(ξ)ζ∂‖X → 0,

(A2) Cmax(h)‖Jhy0 − y0
h‖X → 0,

(A4) Cmax(h)‖RAζ‖X → 0,
(A6) Cmax(h) sup[0,T ]‖RF (·, ξ)‖X → 0,

uniformly for ζ∂ ∈ Z∂ , ζ ∈ Z, and ξ ∈ Z ∩BY (RY ).

Under these assumptions, Hochbruck & Maier (2021) prove wellposedness as well as a rigorous error
estimate for the spatially discrete quasilinear wave-type problem (3.4).

4. FULL DISCRETIZATION

Following the method-of-lines approach, we apply two variants of the implicit midpoint rule with step
size τ > 0 to the spatially discrete quasilinear wave-type equation (3.10). On the one hand, we consider
the fully implicit midpoint rule

yn+1
h = ynh + τA

n+1/2
h y

n+1/2
h + τF

n+1/2
h , y

n+1/2
h =

yn+1
h + ynh

2
, (4.1)

with the short notation

A
n+1/2
h := Ah

(
y
n+1/2
h

)
, F

n+1/2
h := Fh

(
tn+1/2, y

n+1/2
h

)
. (4.2)

On the other hand, as proposed by Kovács & Lubich (2018) for quasilinear wave-type problems on
unbounded domains, we also analyze the linearly implicit midpoint rule

yn+1
h = ynh + τA

n+1/2
h y

n+1/2
h + τF

n+1/2
h , yn+1/2

h
=

3ynh − y
n−1
h

2
, (4.3)

where based on the notation y−1
h = y0

h we use the approximation y1/2
h = y0

h in the first step. Moreover, we
introduce the abbreviations

A
n+1/2
h := Ah

(
yn+1/2
h

)
, F

n+1/2
h := Fh

(
tn+1/2, y

n+1/2
h

)
.

Note that we use the same notation for the approximations obtained by either of the schemes for the sake
of readability, as we state the main results in a unified fashion. Since the technical details of the analysis of
these schemes are well separated in the following two sections, it is always clear from the context which
scheme we refer to.

In our main result, we prove wellposedness as well as a rigorous error estimate for either of the implicit
midpoint rules. This is based on the following step-size restriction: There exist constants ε0, C0 > 0 such
that the discretization parameters τ, h > 0 satisfy

τCmax(h)
1
2 ≤ C0h

ε0 , (4.4)

where Cmax(h) is the constant defined in (3.17).
Although the implicit midpoint rule is in general unconditionally stable when applied to linear problems,

we emphasize that the step-size restriction (4.4) is essential here, as the wellposedness of both schemes
relies on bounds for the iterates in the stronger space Yh. Hence, as stated in Makridakis (1993), this
restriction is not induced by the techniques used for the analysis, but inherent in the problem itself.

We now state our main result, which is proven in Section 5 and Section 6.
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THEOREM 4.1 Let Assumption 3.4 be true, T < t∗(y0), and N ∈ N with τN ≤ T . Then, there exist
h0, τ0 > 0 such that for all h < h0 and τ < τ0 satisfying the step-size restriction (4.4), both the fully and
the linearly implicit midpoint rule (4.1) and (4.3), respectively, are wellposed and satisfy for n = 0, . . . , N
the error estimate

‖y(tn)− ynh‖X ≤ ‖(Id−Jh)y(tn)‖X + C(1 + tn)eCtn
(
‖Jhy0 − y0

h‖X + sup
[0,tn]

‖(Ih − Jh)y‖X

+ τ2
(

sup
[0,tn]

‖∂ty‖Y + sup
[0,tn]

‖∂2
t y‖Y + sup

[0,tn]

‖∂3
t y‖X

)
+ sup
s1,s2∈[0,tn]

‖RΛ(y(s1))∂ty(s2)‖X + sup
[0,tn]

‖RAy‖X + sup
[0,tn]

‖RF (·, y)‖X
)
,

(4.5)

with a constant C > 0 independent of τ , h, n and T . The upper bound τ0 depends on the constants ε0, C0

from the step-size restriction (4.4). Furthermore, we have

‖y(tn)− ynh‖X → 0, n = 0, . . . , N, (4.6)

for τ, h→ 0 satisfying the step-size restriction (4.4).

In (Hochbruck & Maier, 2021, Sec. 5), a refined framework for the space discretization of quasilinear
wave-type equations with nonlinearities Λ and F that are local in space is studied. In this special case,
which is for convenience also briefly presented in Appendix A, we get the following refined version of our
main result.

COROLLARY 4.1 Let (A1)–(A4) of Assumption 3.4 as well as Assumption A.1 be satisfied. Then, the
statements of Theorem 4.1 hold. In particular, the approximations obtained by the linearly or fully implicit
midpoint rule (4.1) or (4.3), respectively, satisfies for n = 0, . . . , N the refined estimate

‖y(tn)− ynh‖X≤ ‖(Id−Jh)y(tn)‖X + C(1 + tn)eCtn
(
‖Jhy0 − y0

h‖X + sup
[0,tn]

‖(Ih − Jh)y‖X

+ τ2
(

sup
[0,tn]

‖∂ty‖Y + sup
[0,tn]

‖∂2
t y‖Y + sup

[0,tn]

‖∂3
t y‖X

)
+ sup

[0,tn]

‖(Ih − Jh)∂ty‖X

+ sup
s1,s2∈[0,tn]

‖(Id−Ih)Λ(y(s1))∂ty(s2)‖X+ sup
[0,tn]

‖RAy‖X+ sup
[0,tn]

‖(Id−Ih)F (·, y)‖X
)
,

with a constant C > 0 independent of τ , h, n and T .

Proof. The result directly follows from Theorem 4.1 and Lemma A.2. �

REMARK 4.1 For the sake of readability, we only state our results for the time discretization with a constant
step size. However, all results can also be generalized to variable step sizes τi ∈ [τmin, τmax], i = 1, . . . , N ,
for 0 < τmin < τmax < τ0 fixed. For the linearly implicit midpoint rule (4.3), we then use the extrapola-
tions

yn+1/2
h

= ynh +
τn+1

2τn

(
ynh − yn−1

h

)
, n = 1, . . . , N − 1.

We conclude this section with a comparison of the two variants of the implicit midpoint rule. In Figure 2,
the dependencies of both schemes are illustrated. On the bottom left of both subfigures, one step of either
of the schemes given in (4.1) and (4.3) is indicated by FIMn+1 and LIMn+1, respectively. Previous
steps of both schemes are denoted by the subscripts n and n − 1. The corresponding approximations yih,
i = n − 1, n, n + 1, are shown on the right. Moreover, the black arrows indicate the usual dependencies
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..
.

..
.

FIMn−1 yn−1
h

FIMn ynh

FIMn+1 yn+1
h

...

...

(A) Fully
implicit
midpoint
rule.

..
.

..
.

LIMn−1 yn−1
h

LIMn ynh

LIMn+1 yn+1
h

...

...

(B) Linearly
implicit mid-
point rule.

FIGURE 2. FIMn+1, LIMn+1 correspond to (4.1), (4.3), respectively and FIMn, LIMn

denote (4.1), (4.3) with n replaced by n− 1.

also known from linear problems; e.g., the current step FIMn+1 of the fully implicit midpoint rule depends
on the previous approximation ynh to provide yn+1

h .
For the fully implicit midpoint rule (4.1), the nonlinearities are evaluated at the implicitly given mid-

point. Thus, as shown in Figure 2a on the left, characteristic properties of FIMn+1 also depend on yn+1
h ,

which is currently unknown. This is indicated by the dashed blue arrows. In contrast, for the linearly
implicit midpoint rule (4.3) we use the extrapolated approximation of the midpoint to linearize the scheme.
Hence, characteristic properties of LIMn+1 do not rely on yn+1

h , but only on ynh and yn−1
h , as indicated by

the dashed green arrows in Figure 2b.
The linearly implicit midpoint rule is appealing with respect to the computational efficiency, as only a

linear system has to be solved in every step, whereas the fully implicit midpoint rule is nonlinear. Moreover,
as illustrated in Figure 2 it is also more convenient for the analysis, since the characteristic properties of
the current step do not depend on the unknown. In particular, proving the existence of a unique solution
of (4.1) in the required spaces is significantly more involved as its counterpart for the linearized scheme
(4.3). Hence, we first focus in Section 5 on the linearly implicit midpoint rule and extend these results in
Section 6 to the fully implicit midpoint rule.

5. ERROR ANALYSIS FOR THE LINEARLY IMPLICIT MIDPOINT RULE

In this section we present the analysis of the linearly implicit midpoint rule (4.3). Usually, the analysis of
fully discrete schemes consists of two steps, where we first show existence of all iterates and subsequently
tackle the error analysis. However, as indicated in Figure 2 this approach is not feasible here as these proofs
are intertwined. More precisely, even for the linearly implicit midpoint rule the wellposedness of the next
step of the scheme relies on bounds on the previous iterates in the Yh-norm. To resolve this dilemma, we
proceed as follows.
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(W )(W η
h ) (Eηh)

(Cηh)

η + 1 x η

FIGURE 3. Relations between the main steps for the analysis of the full discretization
with the linearly implicit midpoint rule.

Roadmap for the analysis of the linearly implicit midpoint rule.
(W ) Assumption 2.2 implies wellposedness of the continuous quasilinear Cauchy problem (2.2), i.e.,

for all T < t∗(y0) the bound ‖y‖Y < RY holds uniformly on [0, T ].
(W η

h ) Based on the assumption that the first η ≥ 0 steps of the linarly implicit midpoint rule (4.3) are well
defined, in Lemma 5.1 we prove existence of range of time steps (0, τη0 ) such that the next iterate
yη+1
h exists and satisfies ‖yη+1

h ‖Yh < RYh . More precisely, we first show that the next iterate yη+1
h

is uniquely defined in Xh and subsequently introduce τη0 as the supremum over all time steps for
which essential bounds in Yh for the error analysis are satisfied. Finally, we ensure τη0 > 0 using
that Yh is finite dimensional. However, at this point, this is based on a severe step-size restriction.

(Eηh) Using (W ), (W η
h ), and energy techniques, we bound the error eη+1

h = Jhy(tη+1) − yη+1
h based

on errors of the previous iterates eηh, eη−1
h in Lemma 5.2. As this is not suitable for the first step of

the linearly implicit midpoint rule due to the different approximation of the midpoint y1/2
h = y0

h,
we further provide an alternative estimate in Lemma 5.3.

(Cηh) Based on an inverse estimate, the consistency from Assumption 3.4, and a uniform bound for the
previous errors enh with n ≤ η, we prove ‖yη+1

h − Ihy(tη+1)‖Yh → 0 for τ, h → 0 under the
step-size restriction (4.4). From this we conclude that the current step LIMη+1 is wellposed under
this relaxed step-size restriction and we may proceed with (W η+1

h ).

Overall, we show Theorem 4.1 for the linearly implicit midpoint rule by induction, as we alternately prove
(W η

h ), (Eηh), and (Cηh). This is also illustrated in Figure 3, with the blue ellipse indicating the proof by
induction.

Note that the overall structure of this approach is quite similar to the analysis for the space discretization
of quasilinear wave-type problems, cf. (Hochbruck & Maier, 2021, Sec. 4). Moreover, we emphasize that
the analysis of the linearly implicit midpoint rule for nonconforming space discretizations is discussed in
detail in (Maier, 2020, Sec. 7.1.1).

The first step is to show wellposedness of a single step of the linearly implicit midpoint rule.

LEMMA 5.1 Let Assumption 3.3 be satisfied. For 0 ≤ η < N fixed we assume

‖yηh‖Yh <
1
2 (RYh + CIhRY ), |Aηhy

η
h|Yh <

1
2 (RAh + CIhRA), ‖yη+1/2

h
‖Yh < RYh . (5.1)

If η > 0, we further assume

‖yη−1/2
h ‖Yh , ‖yη−1/2

h
‖Yh < RYh . (5.2)
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Then, the linearly implicit midpoint rule (4.3) has a unique solution yη+1
h ∈ Xh. Moreover, there is a

constant τη0 > 0 which may depend on the space discretization parameter h such that for all τ < τη0 we
have the bounds

‖yη+1/2
h ‖Yh , ‖y

η+1
h ‖Yh < RYh , |Aη+1/2

h y
η+1/2
h |Yh < RAh .

Proof. The proof consists of two parts, where we first prove existence of the next iterate yη+1
h in Xh and

subsequently derive the required bounds in Yh.
(1) To show existence, we first observe that (4.3) is equivalent to(

Id− τ2A
η+1/2
h

)
y
η+1/2
h = yηh + τ

2F
η+1/2
h , (5.3)

which is well defined due to (5.1) and Assumption 3.1. Since A
η+1/2
h is a dissipative operator in

(Xh, ‖·‖Λh(y
η+1/2
h )

), the norm equivalence (3.13) implies(
Id−τ

2
A
η+1/2
h

)−1 ∈ L(Xh)

for all τ > 0. Thus, yη+1/2
h ∈ Xh and hence also yη+1

h ∈ Xh is uniquely given by (5.3).
(2) To prove the bounds in Yh, we introduce

τη0 = sup{τ∗∈ [0, 1] |‖yη+1/2
h ‖Yh , ‖y

η+1
h ‖Yh<RYh , |A

η+1/2
h y

η+1/2
h |Yh<RAh , for all τ < τ∗}.

In the remainder of the proof, we show τη0 > 0 using Banach’s fixed-point theorem. However, we
emphasize that this only yields a pessimistic lower bound, which strongly depends on the spatial
discretization parameter h. Nevertheless, this is necessary and sufficient to prove wellposedness.
Since we derive an improved restraint at the end of this section, we do not keep track of the exact
value of the lower bound τ∗(h) > 0 in the following, but use τ∗(h) as a monotonically decreasing
generic constant for the sake of readability.

Preliminary to the application of the fixed-point theorem, we define

Eητ =
{
ξh ∈ Xh | ‖ξh‖Yh , ‖2ξh − y

η
h‖Yh < RYh , |A

η+1/2
h ξh|Yh < RAh

}
.

In order to prove that this space is non-empty, we first deduce from (3.2), (3.3), and (3.11)

|Aη+1/2
h yηh|Yh ≤ CYhCYh,Xh(h)‖

(
A
η+1/2
h −A

η
h

)
yηh‖Xh + |Aηhy

η
h|Yh

≤
(
1 + CYhCYh,Xh(h)LAh‖yη+1/2

h
− yηh‖Xh

)
|Aηhy

η
h|Yh .

On the one hand, for η > 0 we obtain from (3.8), (3.9), (4.3), and (5.2) the bound

‖yη+1/2
h

− yηh‖Xh = 1
2‖y

η
h − y

η−1
h ‖Xh ≤ τ

2 c
−1
Λh

(
CAh(h)CXh,Yh(h)RYh + CXh,Yh(h)CFh

)
,

which for some constant CAhyh(h) > 0 implies

|Aη+1/2
h yηh|Yh ≤ (1 + τCAhyh(h))|Aηhy

η
h|Yh . (5.4)

Thus, we have yηh ∈ Eητ for τ < τ∗(h). On the other hand, y0
h ∈ E0

τ follows directly from
y

1/2
h = y0

h and (5.2).
We introduce the mapping

Φητ : Eητ → Eητ , Φητ (ξh) = yηh + τ
2A

η+1/2
h ξh + τ

2F
η+1/2
h .

Since Xh is finite dimensional, there is CAh(h) > 0, which might deteriorate for h→ 0, such that

‖Ah‖L(Xh) ≤ CAh(h). (5.5)

In particular, this yields that Φητ is contractive for τ < τ∗(h).
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Moreover, due to (3.2), (3.3), (3.5), and (3.8) there exists CAhΦ(h) > 0 with

|Aη+1/2
h Φητ (ξh)|Yh ≤ |A

η+1/2
h yηh|Yh + τCAhΦ(h)

Thus, (5.4) yields |Aη+1/2
h Φητ (ξh)|Yh < RAh for τ < τ∗(h). Since the other bounds necessary for

Φητ (ξh) ∈ Eητ follow with similar arguments, this yields that Φητ is well defined.
Banach’s fixed-point theorem and (5.3) imply yη+1/2

h ∈ Eητ , which concludes the proof. �
Preliminary to the derivation of error estimates for a single step of the scheme, we derive an error

recursion for the linearly implicit midpoint rule (4.3). To this end, based on the continuous solution y of
(2.2) we introduce the short notation

ỹ n = y
(
tn
)
, ỹ n+1/2 = y

(
tn+1/2

)
, Ãn+1/2 := A(ỹ n+1/2), F̃n+1/2 := F(tn+1/2, ỹ

n+1/2), (5.6)

such that the continuous solution satisfies

ỹ n+1 = ỹ n + τÃn+1/2ỹ
n+1/2 + τ F̃n+1/2 + δn+1. (5.7)

This is a perturbed version of (4.3) with the additional defect δn+1.
We point out that, contrary to the notation for the fully discrete scheme (4.2), in the short notation (5.6)

for the continuous solution the superscript n+ 1/2 denotes the exact evaluation at tn+1/2 instead of the
implicit approximation of the midpoint introduced in (4.1). To take this into account in the error analysis,
we further define the defect

δ̂n+1/2 =
ỹ n+1 + ỹ n

2
− ỹ n+1/2. (5.8)

Finally, we introduce the short notation

Λ̃
n+1/2
h := Λh(Ihỹ

n+1/2), Ã
n+1/2
h := Ah(Ihỹ

n+1/2), F̃
n+1/2
h := Fh(tn+1/2, Ihỹ

n+1/2),

and the discrete errors

enh := Jhỹ
n − ynh , e

n+1/2
h :=

en+1
h + enh

2
. (5.9)

Hence, we obtain from (4.3) and (5.7) the error recursion

en+1
h = enh + τÃ

n+1/2
h e

n+1/2
h + τgn+1

h,LI , (5.10)

with the right-hand side

gn+1
h,LI =

(
Ã
n+1/2
h −A

n+1/2
h

)
y
n+1/2
h + F̃

n+1/2
h − F

n+1/2
h +

(
Λ̃
n+1/2
h

)−1
Πh

(
Aδ̂n+1/2 + 1

τ δ
n+1
)

+
(
Λ̃
n+1/2
h

)−1
(
RΛ(ỹ n+1/2)

(
1
τ (ỹ n+1−ỹ n)

)
− RA

(
1
2 (ỹ n+1+ỹ n)

)
− RF (tn+1/2, ỹ

n+1/2)
)
.

(5.11)
In the next lemma, we provide an error estimate for one step of the linearly implicit midpoint rule. For
the proof, we follow the ideas from (Hochbruck et al., 2018, Lem. 5.1), where the time discretization of
quasilinear wave-type equations with algebraically stable Runge–Kutta schemes is studied.
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LEMMA 5.2 If the assumptions of Lemma 5.1 are satisfied for 0 ≤ η < N fixed, then for τ < τη0 the error
of the linearly implicit midpoint rule (4.3) satisfies the bound

‖eη+1
h ‖2

Λ̃η+1
h

≤ eCτ‖eηh‖
2
Λ̃ηh

+ Cτ‖Jhỹ η+1/2 − yη+1/2
h

‖2
Λ̃
η+1/2
h

+ Cτ

(
‖(Ih − Jh)ỹ η+1/2‖2Xh

+ sup
s1,s2∈[tη,tη+1]

‖RΛ(y(s1))∂ty(s2)‖2Xh + sup
[tη,tη+1]

‖RAy‖2Xh + sup
[tη,tη+1]

‖RF (·, y)‖2Xh

+ τ4
(

sup
[tη,tη+1]

‖∂3
t y‖2X + sup

[tη,tη+1]

‖∂2
t y‖2Y

))
,

(5.12)
with constants C,C > 0, which are independent of η, h and τ .

We point out that, as we do not exploit the specific definition of the extrapolated midpoint yn+1/2
h , this

result is also valid for different linearized versions of the fully implicit midpoint rule (4.1). Thus, we trace
the constants appearing with the linearization throughout the proof.
Proof of Lemma 5.2. First, we derive from (5.9) and (5.10)

‖eη+1
h ‖2

Λ̃
η+1/2
h

− ‖eηh‖
2

Λ̃
η+1/2
h

=
(
eη+1
h + eηh | e

η+1
h − eηh

)
Λ̃
η+1/2
h

= 2τ
(
e
η+1/2
h | Ãη+1/2

h e
η+1/2
h + gη+1

h,LI

)
Λ̃
η+1/2
h

.

Hence, the dissipativity (3.7) of Ah and Young’s inequality imply

‖eη+1
h ‖2

Λ̃
η+1/2
h

− ‖eηh‖
2

Λ̃
η+1/2
h

≤ τ‖eη+1/2
h ‖2

Λ̃
η+1/2
h

+ τ‖gη+1
h,LI ‖

2

Λ̃
η+1/2
h

, (5.13)

To bound eη+1/2
h , we use again (5.10), (3.7), and the Cauchy–Schwarz inequality to prove

‖eη+1/2
h ‖2

Λ̃
η+1/2
h

=
(
e
η+1/2
h | eηh

)
Λ̃
η+1/2
h

+ τ
2

(
e
η+1/2
h | Ãη+1/2

h e
η+1/2
h + gη+1

h,LI

)
Λ̃
η+1/2
h

≤ ‖eη+1/2
h ‖

Λ̃
η+1/2
h

(
‖eηh‖Λ̃η+1/2

h

+ τ
2‖g

η+1
h,LI ‖Λ̃η+1/2

h

)
.

(5.14)

Hence, together with (5.13), the norm equivalence (3.14), and τ < τη0 ≤ 1 we conclude

‖eη+1
h ‖2

Λ̃η+1
h

≤ eCτ‖eηh‖
2
Λ̃ηh

+ 3
2eC

′ττ‖gη+1
h,LI ‖

2

Λ̃
η+1/2
h

. (5.15)

In the remainder, we provide a bound for the right-hand side gη+1
h,LI . To begin with, (5.11), the triangle

inequality, and A ∈ L(Y,X) imply

‖gη+1
h,LI ‖Λ̃η+1/2

h

≤ ‖
(
Ã
η+1/2
h −A

η+1/2
h

)
y
η+1/2
h ‖

Λ̃
η+1/2
h

+ ‖F̃η+1/2
h − F

η+1/2
h ‖

Λ̃
η+1/2
h

+ ‖RΛ(ỹ n+1/2)
(

1
τ (ỹ n+1 − ỹ n)

)
‖Xh + ‖RA

(
1
2 (ỹ n+1 + ỹ n)

)
‖Xh

+ ‖RF (tn+1/2, ỹ
n+1/2)‖Xh + ‖δ̂n+1/2‖Y + ‖ 1

τ δ
n+1‖X .

(5.16)

For the first term, we have with (3.13), (3.11), and Lemma 5.1 the bound

‖
(
Ã
η+1/2
h −A

η+1/2
h

)
y
η+1/2
h ‖

Λ̃
η+1/2
h

≤ C
1
2

Λh
LAhRAh‖Ihỹ η+1/2 − yη+1/2

h
‖Xh .

Similarly, we derive for the second term with (3.13) and (3.12)

‖F̃η+1/2
h − F

η+1/2
h ‖

Λ̃
η+1/2
h

≤ C
1
2

Λh
LFh‖Ihỹ η+1/2 − yη+1/2

h
‖Xh .
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Thus, due to

‖Ihỹ η+1/2 − yη+1/2
h

‖Xh ≤ ‖(Ih − Jh)ỹ η+1/2‖Xh + c
− 1

2

Λh
‖Jhỹ η+1/2 − yη+1/2

h
‖

Λ̃
η+1/2
h

both terms are dominated by the right-hand side of (5.12) with

C = 3
2eC

′
C

1
2

Λh
c
− 1

2

Λh

(
LAhRAh + LFh

)
.

This is also the case for the terms depending on the three remainders RΛ,RA,RF , as we have

1
τ (ỹ η+1 − ỹ η) =

∫ 1

0

∂ty(tη + sτ) ds.

Finally, for the two terms depending on the defects δη+1 and δ̂η+1/2, we obtain with Taylor’s theorem the
bounds

‖ 1
τ δ
η+1‖X ≤ Cτ2 sup

[tη,tη+1]

‖∂3
t y‖X , ‖δ̂η+1/2‖Y ≤ Cτ2 sup

[tη,tη+1]

‖∂2
t y‖Y . (5.17)

Thus, the result follows from (5.15) and (5.16). �
In order to apply the error estimate from Lemma 5.2 for the error analysis of the linearly implicit mid-

point rule (4.3), we further bound the error term depending on the extrapolated midpoint. More precisely,
for 1 ≤ η < N we obtain with (3.13), (3.15), and Taylor’s theorem

‖Jhỹ η+1/2 − yη+1/2
h

‖
Λ̃
η+1/2
h

≤ 3
2‖Jhỹ

η − yηh‖Λ̃η+1/2
h

+ 1
2‖Jhỹ

η−1 − yη−1
h ‖

Λ̃
η+1/2
h

+ 1
2‖Jh(2ỹ η+1/2 − 3ỹ η + ỹ η−1)‖

Λ̃
η+1/2
h

≤ 3
2eCτ‖eηh‖Λ̃ηh + 1

2eCτ‖eη−1
h ‖Λ̃η−1

h
+ Cτ2 sup

[tη−1,tη+1/2]

‖∂2
t y‖Y .

(5.18)

In particular, if the error terms depending on eηh and eη−1
h are of order τ2, then this directly transfers to the

error of the extrapolated midpoint. This is different for η = 0, as y1/2
h = y0

h yields

‖Jhỹ 1/2 − y1/2
h
‖

Λ̃
1/2
h

≤ 2c
− 1

2

Λh
CJh‖ỹ 1/2 − ỹ 0‖Y + 2‖Jhỹ 0 − y0

h‖Λ̃1/2
h

≤ c−
1
2

Λh
CJhτ sup

[t0,t1/2]

‖∂ty‖Y + 2eC
′ τ
2 ‖e0

h‖Λ̃0
h
,

(5.19)

i.e., this error contribution is at most of order τ .
To overcome this difficulty, we provide an alternative error estimate for the first step. In particular, if

we apply Young’s inequality with modified weights in the previous proof, we obtain for η = 0

‖e1
h‖2Λ̃1

h

≤ C‖e0
h‖2Λ̃0

h

+ Cτ2‖g1
h,LI‖2Λ̃1/2

h

,

instead of (5.15). Based on a similar bound for g1
h,LI as above and (5.19), we get the following result.

LEMMA 5.3 If the assumptions of Lemma 5.1 are satisfied for 0 ≤ η < N fixed, then for τ < τη0 the error
of the linearly implicit midpoint rule (4.3) satisfies

‖e1
h‖2Λ̃1

h

≤ C‖e0
h‖2Λ̃0

h

+ Cτ

(
‖(Ih − Jh)ỹ 1/2‖2Xh + τ4

(
sup

[t0,t1]

‖∂3
t y‖2X + sup

[t0,t1]

‖∂2
t y‖2Y + sup

[t0,t1/2]

‖∂ty‖2Y
)

+ sup
s1,s2∈[t0,t1]

‖RΛ(y(s1))∂ty(s2)‖2Xh + sup
[t0,t1]

‖RAy‖2Xh + sup
[t0,t1]

‖RF (·, y)‖2Xh

)
,

with a constant C > 0 independent of h and τ .



ERROR ANALYSIS FOR FULL DISCRETIZATIONS OF QUASILINEAR WAVE-TYPE EQUATIONS 15

Yh

Ihy
0

Ihy

y0
h y1

h

y2
h

yηh yη+1
h

CIhRY

1
2(CIhRY+RYh)

RYh

(A) Balls for the solutions y and yh.
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(B) Balls for the differential operators A and
Ah applied to the respective solution y and
yh.

FIGURE 4. Illustration of the different balls centered at the origin with the radii specified
in Assumption 3.3. Additionally, the concept of the proof of Theorem 4.1 is depicted.

Using the preliminary lemmas alternately, we now prove Theorem 4.1 for the linearly implicit midpoint
rule (4.3) by induction. The basic idea for the induction step η y η+1 is illustrated in Figure 4.

For t ∈ [0, tη+1] the interpolation Ihy (blue) of the solution of (2.2) is shown in Figure 4a. Moreover,
for n ≤ η the discrete approximations ynh (green) obtained by (4.3) are depicted. Correspondingly, the
application of the differential operators A and Ah to the respective quantities are shown in Figure 4b. Due
to the induction hypothesis, the discrete approximations are bounded by the intermediate radii.

Thus, Lemma 5.1 yields that both yη+1
h and A

η+1
h yη+1

h exist and are contained in the balls centered at the
origin with radii RYh and RAh , respectively. To conclude the induction step, we prove that these bounds
are not sharp. More precisely, the error estimates from Lemma 5.2 and Lemma 5.3 together with the
consistency from Assumption 3.4 and the step-size restriction (4.4) imply that the errors indicated by the
red arrows are sufficiently small such that the approximations are also bounded by the intermediate radii.
This finally proves the induction hypothesis for η + 1.
Proof of Theorem 4.1 for the linearly implicit midpoint rule. The proof consists of two parts. In the first
part, we prove by induction that the linearly implicit midpoint rule is wellposed and that the approximations
satisfy for n = 0, . . . , N the bound

e−Ctn‖enh‖2Λ̃nh ≤ C‖e
0
h‖2Λ̃0

h

+ Cτ

n−1∑
r=0

e−Ctr‖erh‖2Λ̃rh + Ctn sup
[0,tn]

‖(Ih − Jh)y‖2Xh

+ Ctnτ
4
(

sup
[0,tn]

‖∂ty‖2Y + sup
[0,tn]

‖∂2
t y‖2Y + sup

[0,tn]

‖∂3
t y‖2X

)
+ Ctn

(
sup

s1,s2∈[0,tn]

‖RΛ(y(s1))∂ty(s2)‖2Xh + sup
[0,tn]

‖RAy‖2Xh + sup
[0,tn]

‖RF (·, y)‖2Xh
)
.

(5.20)

In the second part, we conclude the rigorous error estimate (4.5).
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1. For n = 0, due to Assumption 3.4 there is a constant h > 0 such that the initial value satisfies

‖y0
h‖Yh < 1

2 (RYh + CIhRY ), |Ah(y0
h)y0

h|Yh < 1
2 (RAh + CIhRA),

for all h < h. Hence, with y1/2
h = y0

h ∈ BYh(RYh) Lemma 5.1 and Lemma 5.3 imply wellposed-
ness as well as (5.20) for the first step.

For the induction step, we assume that the assumptions of Lemma 5.1 and (5.20) are true up to
some n = η ∈ {0, . . . , N − 1} arbitrary but fixed. To close the induction argument, we show that
this then transfers to n = η + 1.

First, due to Lemma 5.1 we get existence of

y
η+1/2
h , yη+1

h ∈ BYh(RYh), A
η+1/2
h y

η+1/2
h ∈ BYh(RAh).

Thus, we obtain from (5.12) and (5.18)

‖eη+1
h ‖2

Λ̃η+1
h

≤ eCτ‖eηh‖
2
Λ̃ηh

+ Cτ‖eη−1
h ‖2

Λ̃η−1
h

+ Cτ

(
‖(Ih − Jh)ỹ η+1/2‖2Xh

+ sup
s1,s2∈[tη,tη+1]

‖RΛ(y(s1))∂ty(s2)‖2Xh+ sup
[tη,tη+1]

‖RAy‖2Xh+ sup
[tη,tη+1]

‖RF (·, y)‖2Xh

+ τ4
(

sup
[tη,tη+1]

‖∂3
t y‖2X + sup

[tη−1,tη+1]

‖∂2
t y‖2Y

))
.

Using the induction hypothesis to replace ‖eηh‖2Λ̃ηh
, this yields (5.20) for n = η + 1.

To conclude this part of the proof, we have to show that the step-size restriction (4.4) is sufficient
to ensure that the assumptions of Lemma 5.1 also valid for n = η+1. Note that we only focus on
the corresponding estimates for yη+1

h and A
η+1
h yη+1

h here, as the bound for yη+3/2
h follows with

similar arguments. For all details, we refer to the proof of (Maier, 2020, Thm. 7.3).
With the discrete Gronwall inequality, (5.20) implies

‖eη+1
h ‖Λ̃η+1

h
≤ C(1 + tη+1)eCtη+1

(
‖e0
h‖Λ̃0

h
+ sup

[0,tη+1]

‖(Ih − Jh)y‖X

+ τ2
(

sup
[0,tη+1]

‖∂ty‖Y + sup
[0,tη+1]

‖∂2
t y‖Y + sup

[0,tη+1]

‖∂3
t y‖X

)
+ sup
s1,s2∈[0,tη+1]

‖RΛ(y(s1))∂ty(s2)‖X + sup
[0,tη+1]

‖RAy‖X + sup
[0,tη+1]

‖RF (·, y)‖X
)
.

(5.21)

Since this bound also holds for tη+1 being replaced by T in the right-hand side, we get from
Assumption 3.4

Cmax(h)‖eη+1
h ‖Xh → 0,

uniformly in η for τ, h → 0 satisfying the step-size restriction (4.4). Thus, (Hochbruck & Maier,
2021, Lem. 4.6) directly yields the existence of τ0 > 0 and h0 ≤ h independent of η such that

‖yη+1
h ‖Yh < 1

2 (RYh + CIhRY ), |Aη+1
h yη+1

h |Yh < 1
2 (RAh + CIhRA)

holds for all τ < τ0 and h < h0 satisfying the step-size restriction (4.4).
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2. To prove the error estimate (4.5), we first split the error into

‖y(tn)− ynh‖X ≤ ‖(Id−Jh)y(tn)‖X + ‖enh‖X ,
where the first term already appears in the right-hand side of (4.5). The bound for the second
term follows from the norm equivalence (3.13) and the bound for the discrete error (5.21). Finally,
Assumption 3.4 yields (4.6). �

6. ERROR ANALYSIS FOR THE FULLY IMPLICIT MIDPOINT RULE

Based on the results obtained in the previous section for the linearized scheme we now focus on the
analysis of the fully implicit midpoint rule (4.1), which is more involved. In particular, a very important
detail in the wellposedness result in Lemma 5.1 is that we only rely on the step size restriction for the
derivation of the bounds, but not for the existence of the next approximation. This allows us to relax the
step size restriction in the overall proof by induction, since the error estimates yield improved bounds.
However, for the fully implicit midpoint rule this approach is not feasible, since existence of the next
approximation is intertwined with the required bounds. Hence, if we apply Banach’s fixed-point theorem
to derive existence and the bounds simultaneously, relaxing the severe step size restriction using the error
estimates is not an option.

To circumvent these analytical difficulties, we approximate the fully implicit scheme using a fixed-
point iteration in every time step. This yields a sequence of linear problems, for which the results from the
previous section are directly applicable. More precisely, for η ∈ {0, . . . , N − 1} we consider the sequence(
yη+1,k
h

)
k∈N0

given by

yη+1,k+1
h = yηh + τA

η+1/2,k
h y

η+1/2,k+1
h + τF

η+1/2,k
h , k ≥ 0, (6.1)

and yη+1,0
h = 2y

η+1/2
h − yηh. Here, yη+1/2

h again denotes the extrapolated midpoint introduced in (4.3).
Moreover, we use the notation

y
η+1/2,k
h =

yη+1,k
h + yηh

2
, A

η+1/2,k
h := Ah(y

η+1/2,k
h ), F

η+1/2,k
h := Fh(tn, y

η+1/2,k
h ).

Note that if the sequence given by (6.1) has a fixed point, this is the next approximation yη+1
h of the fully

implicit midpoint rule.
Overall, we proceed as follows.

Roadmap for the analysis of the fully implicit midpoint rule.
(W ) Assumption 2.2 yields wellposedness of the continuous quasilinear Cauchy problem (2.2), i.e., for

all T < t∗(y0) the bound ‖y‖Y < RY holds uniformly on [0, T ].
(W η,k

h ) Based on the assumption that the first η ≥ 0 steps of the fully implicit midpoint rule (4.1) are
well defined, we prove in Lemma 6.1 that there exists a range of time steps (0, τη0 ) such that all
approximations yη+1,k

h of the fixed-point iteration (6.1) exist with ‖yη+1,k
h ‖Yh < RYh . To do so,

we apply the corresponding result for the linearly implicit midpoint rule from Lemma 5.1.
(Eη,kh ) Using (W ), (W η,k

h ), and Lemma 5.2, we bound the errors eη+1,k
h = Jhy(tη+1) − yη+1,k

h of the
fixed-point iteration by the errors of the previous approximations eη+1,k−1

h and eηh in Lemma 6.2.
(Cη,kh ) Based on an inverse estimate, the consistency from Assumption 3.4, and convergence of the pre-

vious errors eηh, eη−1
h , we show in Lemma 6.3 that the step-size restriction (4.4) is sufficient to

ensure improved bounds on all iterates.
(Lηh) In Lemma 6.4, we show that (6.1) defines a Cauchy sequence in Xh with limit yη+1

h .
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(W )(W η
h ) (Eηh)

(Cηh)

(W ) (W η,k
h )(Eη,kh )

(Cη,kh )
η + 1 x η

0 x k

(Lηh)

k →∞

FIGURE 5. Relations between the main steps for the analysis of the full discretization
with the fully implicit midpoint rule.

(W η
h ) Since we further obtain bounds for yη+1

h in Yh under the step-size restriction (4.4), this yields
wellposedness of the next step of the fully implicit midpoint rule.

(Eηh) Using (W ), (W η,k
h ), and Lemma 5.2, we bound the error eη+1

h = Jhy(tη+1) − yη+1
h of next step

of the fully implicit midpoint rule based on eηh in Lemma 6.5.
(Cηh) As for the linearly implicit midpoint rule, we conclude from an inverse estimate, the consistency

from Assumption 3.4, and a uniform bound for the previous errors enh with n ≤ η that the current
step FIMη+1 is wellposed under the step-size restriction (4.4) and we may proceed with (W η+1

h ).

Overall, we show Theorem 4.1 for the fully implicit midpoint rule by induction, as we alternately apply
(W η

h ), (Eηh), and (Cηh). To prove (W η
h ), we approximate each step of the fully implicit midpoint rule by a

fixed-point iteration, for which we again show wellposedness and an error esitmate, using (W η,k
h ), (Eη,kh ),

and (Cη,kh ). Finally, we conclude convergence of the fixed-point iteration in (Lηh). This approach is also
illustrated in Figure 5, with the blue ellipse indicating the induction proof for the fully implicit midpoint
rule. The analysis of the fixed-point iteration is characterized by the embedded green ellipse.

Again, we emphasize that the analysis of the fully implicit midpoint rule for nonconforming space
discretizations is presented in detail in (Maier, 2020, Sec. 7.1.2).

Before we start with the analysis, we briefly discuss the relation to Banach’s fixed-point theorem.

REMARK 6.1 With the introduction of the fixed-point iteration, our approach resembles the proof of Ba-
nach’s fixed-point theorem. However, we emphasize that the theorem is not directly applicable here, as it
does not allow for a differentiated treatment of the weaker space Xh and the stronger space Yh. In par-
ticular, to apply the theorem we would require yη+1,k

h 7→ yη+1,k+1
h to be a contractive self-mapping on

BYh(RYh). As shown in the proof of Lemma 5.1, this is only possible under a severe restriction on the
time step, which in this case can not be relaxed afterwards as the fully implicit midpoint rule is a nonlinear
scheme.

We now prove wellposedness of a single step of the fixed-point iteration. Note that we omit k = 0
here, as in this case the fixed-point iteration coincides with the linearly implicit midpoint rule and hence
Lemma 5.1 is applicable.

LEMMA 6.1 Let Assumption 3.3 be satisfied. For 0 ≤ η < N fixed we assume

‖yηh‖Yh <
1
2 (RYh + CIhRY ), |Aηhy

η
h|Yh <

1
2 (RAh + CIhRA), ‖yη+1/2,1

h ‖Yh < RYh .
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Then, the fixed-point iteration (6.1) has a unique solution yη+1,k+1
h ∈ Xh. Furthermore, there is a constant

τη0 > 0, which may depend on the space discretization parameter h, such that for all τ < τη0 we have

‖yη+1/2,k+1
h ‖Yh , ‖y

η+1,k+1
h ‖Yh < RYh , |Aη+1/2,k

h y
η+1/2,k+1
h |Yh < RAh . (6.2)

Proof. The result follows from Lemma 5.1 by induction over k ∈ N, with yη+1/2,k
h and yη+1,k+1

h instead
of yη+1/2

h and yη+1
h , respectively. �

With the notation

eη+1,k
h := Jhỹ

η+1 − yη+1,k
h , e

η+1/2,k
h :=

eη+1,k
h + eηh

2
,

we derive as in (5.10) from (5.7) and (6.1) the error equation for the fixed-point iteration

eη+1,k+1
h = eηh + τÃ

η+1/2
h e

η+1/2,k+1
h + τgη+1,k+1

h,FI , k ≥ 0,

with right-hand side

gη+1,k+1
h,FI =

(
Ã
n+1/2
h −An+1/2,k

h

)
y
n+1/2,k+1
h +F̃

n+1/2
h −Fn+1/2,k

h +
(
Λ̃
n+1/2
h

)−1
Πh

(
Aδ̂n+1/2+ 1

τ δ
n+1
)

+
(
Λ̃
n+1/2
h

)−1
(
RΛ(ỹ n+1/2)

(
1
τ (ỹ n+1−ỹ n)

)
−RA

(
1
2 (ỹ n+1+ỹ n)

)
−RF (tn+1/2, ỹ

n+1/2)
)
.

In the next lemma we provide an error recursion for one step of the fixed-point iteration.

LEMMA 6.2 If the assumptions of Lemma 6.1 are satisfied for 0 ≤ η < N fixed, then for k ∈ N and
τ < τη0 the error of the fixed-point iteration (6.1) satisfies the bound

‖eη+1,k+1
h ‖2

Λ̃η+1
h

≤ eCτ‖eηh‖
2
Λ̃ηh

+ 1
2Cτ‖e

η+1,k
h ‖2

Λ̃η+1
h

+ Cτ

(
‖(Ih − Jh)ỹ η+1/2‖2Xh

+ sup
s1,s2∈[tη,tη+1]

‖RΛ(y(s1))∂ty(s2)‖2Xh + sup
[tη,tη+1]

‖RAy‖2Xh + sup
[tη,tη+1]

‖RF (·, y)‖2Xh

+ τ4
(

sup
[tη,tη+1]

‖∂3
t y‖2X + sup

[tη,tη+1]

‖∂2
t y‖2Y

))
,

with constants C,C > 0, which are independent of η, k, h, and τ .

Proof. With similar arguments as in (5.18), we obtain

‖Jhỹ η+1/2 − yη+1/2,k
h ‖

Λ̃
η+1/2
h

≤ 1
2‖Jhỹ

η+1 − yη+1,k
h ‖

Λ̃
η+1/2
h

+ 1
2‖Jhỹ

η − yηh‖Λ̃η+1/2
h

+ 1
2‖Jh(2ỹ η+1/2 − ỹ η+1 − ỹ η)‖

Λ̃
η+1/2
h

≤ 1
2‖e

η+1,k
h ‖

Λ̃
η+1/2
h

+ 1
2‖e

η
h‖Λ̃η+1/2

h

+ Cτ2 sup
[tη,tη+1]

‖∂2
t y‖Y .

Thus, using Lemma 5.2 with the same replacements as in the previous proof, i.e., with y
η+1/2,k
h and

yη+1,k+1
h instead of yη+1/2

h and yη+1
h , respectively, yields the result. �

Based on this error estimate, we now improve the wellposedness result from Lemma 6.1 for the fixed-
point iteration for 0 ≤ η < N fixed. To do so, we rely on wellposedness and convergence for the previous
steps of the fully implicit midpoint rule. In particular, we assume for some n ≤ η that the errors enh of the
previous approximations obtained by the fully implicit midpoint rule (4.1) satisfy

Cmax(h)‖enh‖Xh → 0 (6.3)

uniformly in n for h, τ → 0 under the step-size restriction (4.4), where Cmax(h) is given in (3.17). At the
end of this section, we close this argument in the proof by induction for Theorem 4.1.
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LEMMA 6.3 Let Assumption 3.4 and the assumptions of Lemma 5.1 be satisfied for 0 ≤ η < N fixed.
If (6.3) holds for n ∈

{
max{0, η − 1}, η

}
, then there exist τη0 , h

η
0 > 0 such that the fixed-point iteration

(6.1) is wellposed for all h < hη0 and τ < τη0 under the step-size restriction (4.4). In particular, for k ∈ N
the iterates satisfy

‖yη+1,k
h ‖Yh < 1

2 (RYh + CIhRY ), |Aη+1,k
h yη+1,k

h |Yh < 1
2 (RAh + CIhRA). (6.4)

Proof. Let 0 < η < N be fixed. For τη0 , h
η
0 > 0 fixed at the end of this proof, we define Eη

(
τη0 , h

η
0

)
> 0

as the minimal constant such that

Eη
(
τη0 , h

η
0

)
≥ C‖eηh‖

2
Λ̃ηh

+ Cτ

(
‖(Ih − Jh)ỹ η+1/2‖2Xh + τ4

(
sup

[tη,tη+1]

‖∂3
t y‖2X + sup

[tη,tη+1]

‖∂2
t y‖2Y

)
+ sup
s1,s2∈[tη,tη+1]

‖RΛ(y(s1))∂ty(s2)‖2Xh + sup
[tη,tη+1]

‖RAy‖2Xh + sup
[tη,tη+1]

‖RF (·, y)‖2Xh

)
holds for all τ < τη0 and h < hη0 under the step-size restriction (4.4). This constant is well defined, since
Assumption 3.4 and (6.3) imply

Cmax(h)Eη
(
τη0 , h

η
0

)
→ 0, (6.5)

for τη0 , h
η
0 → 0.

We first prove that all iterates satisfy the error estimate

‖eη+1,k
h ‖2

Λ̃η+1
h

≤
(
Cτ
)k‖Jhỹ η+1/2 − yη+1/2

h
‖2 + Eη

(
τη0 , h

η
0

) k∑
i=1

(
Cτ
)i−1

, k ∈ N. (6.6)

For k = 1, this bound follows directly from Lemma 5.2, as the fixed-point iteration (6.1) coincides with
the linearly implicit midpoint rule (4.3) with a modified initial value. Moreover, Lemma 6.2 implies

‖eη+1,k+1
h ‖2

Λ̃η+1
h

≤ Cτ‖eη+1,k
h ‖2

Λ̃η+1
h

+ Eη
(
τη0 , h

η
0

)
.

Thus, (6.6) follows with a proof by induction over k ∈ N.
Since C is in particular independent of h, τ , and η, we get from (6.6) for τ < 1

C

‖eη+1,k
h ‖2

Λ̃η+1
h

≤
(
Cτ
)k‖Jhỹ η+1/2 − yη+1/2

h
‖2 +

Eη
(
τη0 , h

η
0

)
1− C ′τ

.

Due to (5.18), (6.3), (6.5), and the norm equivalence (3.13) the assumptions of (Hochbruck & Maier, 2021,
Lem. 4.6) are satisfied. This proves existence of τη0 < 1

C and hη0 > 0 such that (6.4) holds.
Finally, as (6.4) follows for η = 0 with similar arguments using Lemma 5.3 instead of Lemma 5.2, this

concludes the proof. �
We now turn towards the analysis of the fully implicit midpoint rule (4.1). To prove wellposedness, we

show that the fixed-point iteration (6.1) is convergent in Xh. Moreover, we provide the necessary bounds
for the limit in Yh. This is illustrated in Figure 6, where the interpolation Ihy (blue) of the solution of (2.2)
and the last approximation yηh (green) of the fully implicit midpoint rule are depicted. In Lemma 6.4, we
prove that the iterates of the fixed-point iterations yη+1,k

h (purple) converge to the limit yη+1
h (green), which

is the next approximation of the fully implicit midpoint rule. Subsequently, in Lemma 6.5, we extend the
error estimate for the iterates, indicated by the orange arrow, to an error estimate for the fully implicit
midpoint rule (red). Finally, as indicated by the dashed green line on the right, we might proceed with the
next step of the induction proof for Theorem 4.1.
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Yh
Ihy(tη+1)

Ihy

yηh

yη+1,0
h

yη+1,1
h

yη+1,κ
h

yη+1
h

FIGURE 6. Visualization of the fixed-point iteration.

LEMMA 6.4 For 0 ≤ η < N fixed let the assumptions of Lemma 6.3 be satisfied. Then, there are
τη0 , h

η
0 > 0 such that for all h < hη0 and τ < τη0 under the step-size restriction (4.4) the sequence defined

by (6.1) converges in Xh to the limit yη+1
h ∈ Xh. Moreover, we have

‖yη+1
h ‖Yh < RYh , |Aη+1

h yη+1
h |Yh < RAh . (6.7)

Proof. In the first part of the proof, we prove that (6.1) yields a Cauchy sequence in Xh. To this end, we
get from (6.1) for k ∈ N

yη+1,k+1
h − yη+1,k

h − τ
2A

η+1/2,k
h

(
yη+1,k+1
h − yη+1,k

h

)
= τ

(
A
η+1/2,k
h −A

η+1/2,k−1
h

)
y
η+1/2,k
h + τ

(
F
η+1/2,k
h − F

η+1/2,k−1
h

)
.

Thus, the weighted inner product with yη+1,k+1
h − yη+1,k

h implies due to (3.7) and the Cauchy–Schwarz
inequality

‖yη+1,k+1
h − yη+1,k

h ‖
Λh(y

η+1/2,k+1
h )

≤ τ‖
(
A
η+1/2,k
h −A

η+1/2,k−1
h

)
y
η+1/2,k
h ‖

Λh(y
η+1/2,k+1
h )

+ τ‖Fη+1/2,k
h − F

η+1/2,k−1
h ‖

Λh(y
η+1/2,k+1
h )

.

With (3.11), (3.12), (3.13), and (6.2), we deduce the existence of constants τη0 > 0 and εc ∈ (0, 1) such
that

‖yη+1,k+1
h − yη+1,k

h ‖Xh ≤ τc
− 1

2

Λh
C

1
2

Λh
(LAhRAh + LFh)‖yη+1,k

h − yη+1,k−1
h ‖Xh

≤ εc‖yη+1,k
h − yη+1,k−1

h ‖Xh
≤ εkc ‖y

η+1,1
h − yη+1,0

h ‖Xh ,

for all τ < τη0 , where we used the same argument iteratively in the last step. Thus, we conclude that(
yη+1,k
h

)
k∈N is a Cauchy sequence in Xh, since for ` > m ≥ 1 we have

‖yη+1,`
h − yη+1,m

h ‖Xh ≤ ‖y
η+1,`
h − yη+1,`−1

h ‖Xh + · · ·+ ‖yη+1,m+1
h − yη+1,m

h ‖Xh
≤ εmc

(
ε`−m−1

c + · · ·+ εc + 1
)
‖yη+1,1
h − yη+1,0

h ‖Xh

≤ εmc
1− εc

‖yη+1,1
h − yη+1,0

h ‖Xh .

As Xh is a complete space, the Cauchy sequence converges to the limit yη+1
h ∈ Xh.
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In the second part of the proof, we focus on (6.7). First, there is k0, which may depend on τ , h, and η
such that

CYh,Xh(h)‖yη+1
h − yη+1,k

h ‖Xh ≤ 1
2

(
RYh − CIhRY

)
,

for all k ≥ k0. Thus, (3.3) and (6.4) yield

‖yη+1
h ‖Yh ≤ CYh,Xh(h)‖yη+1

h − yη+1,k
h ‖Xh + ‖yη+1,k

h ‖Yh < RYh .

Since the second bound in (6.7) follows with similar arguments from (3.11) and (5.5), this concludes the
proof. �

Moreover, we provide an error bound for a single step of the fully implicit midpoint rule. To do so, we
first derive correspondingly to (5.10) and (5.11) the error recursion

en+1
h = enh + τÃ

n+1/2
h e

n+1/2
h + τgn+1

h,FI ,

with the right-hand side

gη+1
h,FI =

(
Ã
n+1/2
h −A

n+1/2
h

)
y
n+1/2
h + F̃

n+1/2
h − F

n+1/2
h +

(
Λ̃
n+1/2
h

)−1
Πh

(
Aδ̂n+1/2 + 1

τ δ
n+1
)

+
(
Λ̃
n+1/2
h

)−1
(
RΛ(ỹ n+1/2)

(
1
τ (ỹ n+1−ỹ n)

)
−RA

(
1
2 (ỹ n+1+ỹ n)

)
−RF (tn+1/2, ỹ

n+1/2)
)
.

(6.8)

LEMMA 6.5 If for 0 ≤ η < N fixed the assumptions of Lemma 6.4 are true, then there exist τη0 , h
η
0 > 0

such that for all h < hη0 and τ < τη0 under the step-size restriction (4.4) the error of the fully implicit
midpoint rule (4.1) satisfies

‖eη+1
h ‖2

Λ̃η+1
h

≤ eCτ‖eηh‖
2
Λ̃ηh

+ Cτ

(
‖(Ih − Jh)ỹ η+1/2‖2Xh + τ4

(
sup

[tη,tη+1]

‖∂3
t y‖2X + sup

[tη,tη+1]

‖∂2
t y‖2Y

)
+ sup

[tη,tη+1]

‖RΛ(y)∂ty‖2Xh + sup
[tη,tη+1]

‖RAy‖2Xh + sup
[tη,tη+1]

‖RF (·, y)‖2Xh

)
.

Proof. We mainly apply the same ideas as in the proof of Lemma 5.2 with gη+1
h,FI instead of gη+1

h,LI . For the
right-hand side (6.8), this yields

‖gη+1
h,FI ‖Λ̃η+1/2

h

≤ C ′‖Jhỹ η+1/2 − yη+1/2
h ‖

Λ̃
η+1/2
h

+ C
(
‖(Ih − Jh)ỹ η+1/2‖Xh+ ‖δ̂η+1/2‖Y + ‖ 1

τ δ
η+1‖X

+ sup
[tη,tη+1]

‖RΛ(ỹ η+1/2)∂ty‖Xh + ‖RA(ỹ η+1 + ỹ η)‖Xh + ‖RF (tη+1/2, ỹ
η+1/2)‖Xh

)
,

with C ′ = 2
3e−C

′
C. Furthermore, we derive with (3.13), (3.15), (5.8), and (5.14) the bound

‖Jhỹ η+1/2 − yη+1/2
h ‖

Λ̃
η+1/2
h

≤ C
1
2

Λh
CJh‖δ̂η+1/2‖Y + ‖eηh‖Λ̃η+1/2

h

+ τ
2‖g

η+1
h,FI ‖Λ̃η+1/2

h

.

Due to τη0 < 1
C < 1

C′ , this implies

‖gη+1
h,FI ‖Λ̃η+1/2

h

≤ (1− τ
2C
′)−1C

(
‖eηh‖Λ̃η+1/2

h

+ ‖(Ih − Jh)ỹ η+1/2‖Xh + sup
[tη,tη+1]

‖RΛ(ỹ η+1/2)∂ty‖Xh

+ ‖RAỹ η+1/2‖Xh + ‖RF (tη+1/2, ỹ
η+1/2)‖Xh + ‖δ̂n+1/2‖Y + ‖ 1

τ δ
η+1‖Xh

)
,

which together with (5.15) and (5.17) yields the result. �
We now conclude the main result for the fully implicit midpoint rule (4.1).
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Proof of Theorem 4.1 for the fully implicit midpoint rule. As for the linearly implicit midpoint rule at
the end of Section 5, we prove the result by induction, i.e., we alternately use Lemma 6.4 and Lemma 6.5
to prove existence of the next approximation and the error bound (5.20). Finally, we conclude that the
step-size restriction (4.4) is sufficient to ensure that Lemma 6.4 is also applicable for the next step. �

7. APPLICATION OF THE ABSTRACT RESULT

Finally, we derive more specific bounds for the full discretization of two important classes of applica-
tions which fit into our abstract framework. More precisely, we first study the Maxwell equations with Kerr
nonlinearity and subsequently discuss the full discretization of the Westervelt equation. We point out that
the full discretization of these examples is also discussed in detail in Maier (2020), where Sections 3.3 and
8.2 are devoted to the Maxwell equations and Sections 3.2 and 8.1 to the Westervelt equation, respectively.
Moreover, the corresponding space discretization of these examples is studied in (Hochbruck & Maier,
2021, Sec. 6). Thus, we only briefly discuss the space discretization and focus on the full discretization
here.

7.1. Maxwell equations. We consider the Maxwell equations with Kerr nonlinearity, which state that the
magnetic and electric fields H,E : [0, T ]× Ω→ R satisfy

∂tH = −∇×E, on [0, T ]× Ω,(
(1 + |E|2χ) Id +2(E⊗ E)χ

)
∂tE = ∇×H, on [0, T ]× Ω,

H(0) = H0, E(0) = E0 on Ω,

(7.1)

on a finite time interval [0, T ] and a bounded domain Ω ⊂ R3, with initial values H0,E0 : Ω → R3 and
subject to homogeneous perfectly conducting boundary conditions. Moreover, ∇× and ⊗ are the curl
operator and the Kronecker product, respectively, and χ ∈ L∞(Ω) denotes the nonlinear susceptibility.

As discussed in (Hochbruck & Maier, 2021, Sec. 6.1) and in more detail in (Maier, 2020, Sec. 8.2), the
problem (7.1) fits into the abstract framework (2.2) with the spaces

X = L2(Ω)3 × L2(Ω)3, Y = H2(Ω)3 × {ϕ ∈ H2(Ω)3 | ϕ× ν = 0},
Z∂ = Hp(Ω)3 × {ϕ ∈ Hp(Ω)3 | ϕ× ν = 0}, Z = Hp+1(Ω)3 × {ϕ ∈ Hp+1(Ω)3 | ϕ× ν = 0},

for p ≥ 3, equipped with the standard inner products and |·|Y = ‖·‖Y . Here, ×ν is the cross product with
the outer unit normal of Ω. For the discretization in space, we use the discontinuous Galerkin finite element
method. In particular, the discrete spaces are given by (3.1) with Vh ⊂ L2(Ω)6 consisting of piecewise
polynomials of degree at most p ∈ N on an exact mesh of Ω, and

‖·‖Yh = ‖·‖L∞(Ω)3×L∞(Ω)3 , |·|Yh = ‖·‖Yh .

Hence, the estimates (3.3) and (3.16) hold with constants

CXh,Yh(h) = C, CYh,Xh(h) = Ch−
3
2 , CAh,Yh,Xh(h) = Ch−

5
2 .

In particular, there exists C0 > 0 such that for all ε0 > 0 the step-size restriction (4.4) is a direct conse-
quence of

τ ≤ C0h
5
4 +ε0 . (7.2)

Corollary 4.1 then yields the following result, which, up to our knowledge, is the first rigorous error
estimate for the full discretization of the quasilinear Maxwell equations.
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THEOREM 7.1 Let Assumption 3.3 be true, χ be sufficiently smooth, and p ≥ 3. In particular, for T > 0
let the solution (H,E) of (7.1) satisfy

(H,E) ∈ C3([0, T ], X) ∩ C2([0, T ], Y ) ∩ C1([0, T ], Z∂) ∩ C([0, T ], Z)

Then, there are h0, τ0 > 0 such that for all h < h0 and τ < τ0 satisfying the step-size restriction (7.2), the
approximations (Hn

h ,E
n
h) of both the fully and the linearly implicit midpoint rule (4.1) and (4.3) applied

to (7.1) are well defined for n = 0, . . . , N . Moreover, we have the estimate

‖H(tn)−Hn
h‖L2(Ω)3 + ‖E(tn)− Enh‖L2(Ω)3 ≤ CH,E,χ(1 + tn)eCtn

(
hp + τ2

)
,

where CH,E,χ, C > 0 are constants independent of h, t, and T , but CH,E,χ depends on H, E, and χ,
including their derivatives.

7.2. Westervelt equation. We further consider the Westervelt equation (Westervelt, 1963), which is a
fundamental model in nonlinear acoustics. It states that on a finite time interval [0, T ] and a bounded
domain Ω ⊂ Rd, d = 1, 2, 3, the pressure u : [0, T ]× Ω→ R satisfies{

(1− κu)∂2
t u = ∆u+ κ(∂tu)2 on [0, T ]× Ω,

u(0) = u0, ∂tu(0) = v0 on Ω,
(7.3)

with initial values u0, v0 : Ω → R and homogeneous Dirichlet boundary conditions. Here, κ ∈ R models
the nonlinearity of the medium.

Introducing the spaces

X = H1
0 (Ω)× L2(Ω), Y =

(
H2(Ω) ∩H1

0 (Ω)
)
×
(
H2(Ω) ∩H1

0 (Ω)
)
,

Z∂ =
(
Hp(Ω) ∩H1

0 (Ω)
)
×
(
Hp−1(Ω) ∩H1

0 (Ω)
)
, Z =

(
Hp+1(Ω) ∩H1

0 (Ω)
)
×
(
Hp(Ω) ∩H1

0 (Ω)
)
,

for p ≥ 2, equipped with the standard inner products and

|ξ|Y = ‖ξv‖H2(Ω)∩H1
0 (Ω), ξ = (ξu, ξv) ∈ Y,

the Westervelt equation (7.3) also fits into the abstract framework (2.2). The discrete spaces are given by
(3.1), with Vh ⊂ C(Ω)2 being the Lagrangian finite element space of order p, and

‖ξh‖Yh = ‖ξh‖L∞(Ω)×L∞(Ω), |ξh|Yh = ‖ψh‖L3(Ω), ξh = (ϕh, ψh) ∈ Vh.
As shown in (Hochbruck & Maier, 2021, Sec. 6.2), this yields the constants

CXh,Yh(h) = Ch−1, CYh,Xh(h) = Ch−
d
2 , CAh,Yh,Xh(h) = Ch−1− d6 .

Thus, there is C0 > 0 such that for all ε0 > 0 the step-size restriction (4.4) follows from

τ ≤ C0h
6+d
12 +ε0 . (7.4)

The abstract result from Corollary 4.1 then yields the following.

THEOREM 7.2 Let Assumption 3.3 be true, p ≥ 2, and T > 0. If the solution (u, ∂tu) of (7.3) satisfies

(u, ∂tu) = y ∈ C1([0, T ], Z∂) ∩ C([0, T ], Z),

then there exist h0, τ0 > 0 such that for all h < h0 and τ < τ0 satisfying the step-size restriction (7.4), the
approximations (unh, v

n
h) of both the fully and the linearly implicit midpoint rule (4.1) and (4.3) applied to

(7.1) are well defined for n = 0, . . . , N . Furthermore, they satisfy

‖u(tn)− unh‖H1
0 (Ω) + ‖∂tu(t)− vnh‖L2(Ω) ≤ Cu(1 + t)eCt

(
hp + τ2

)
,

where Cu, C > 0 are constants independent of h, t, and T , but Cu depends on u including derivatives.
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Note that compared to the analysis in Maier (2020), the introduction of the seminorms |·|Y and |·|Yh
allows for a more relaxed constant Cmax(h) and thus also for a more relaxed step-size restriction (7.4). In
particular, we obtain that the error estimate stated above is also valid for p = 2, whereas (Maier, 2020,
Thm. 8.2) is restricted to p ≥ 3.
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HOCHBRUCK, M., PAŽUR, T. & SCHNAUBELT, R. (2018) Error analysis of implicit Runge-Kutta methods for quasilinear hyper-
bolic evolution equations. Numer. Math., 138, 557–579.
HOCHBRUCK, M. & MAIER, B. (2021) Error analysis for space discretizations of quasilinear wave-type equations. CRC 1173
Preprint 2021/2. Karlsruhe Institute of Technology.
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APPENDIX A. DISCRETIZATION OF LOCAL NONLINEARITIES

For the special case of nonlinearities Λ and F that are local in space, refined bounds for the nonlinear
remainders RΛ and RF from (3.18a) and (3.18c), respectively, are shown in (Hochbruck & Maier, 2021,
Sec. 5). Since these estimates are also useful for the full discretization considered here, we briefly recall
the assumptions and the estimates.

In the following assumption, we narrow down the abstract framework to the special case of partial
differential equations.

ASSUMPTION A.1 Let d, dr ∈ N such that X , Y , Z, Xh, and Yh are function spaces consisting of
functions mapping from a bounded domain Ω ⊂ Rd to Rdr . Moreover, the following properties hold.

(λf) For ξ ∈ BY (RY ) we have Λ(ξ) ∈ L(Y ). Further, Λ and F are local in space, i.e., there exist
λ : Ω×Rdr → Rdr×dr and f : [0, T ]×Ω×Rdr → Rdr such that for all t ∈ [0, T ], ξ ∈ BY (RY ),
and ϕ ∈ X it holds(
Λ(ξ)ϕ

)
(x) = λ(x, ξ(x))ϕ(x),

(
F (t, ξ)

)
(x) = f(t, x, ξ(x)), x ∈ Ω.

(Ih) The operator Ih is a nodal interpolation operator, i.e., for some M ∈ N we have

Ihξ =

M∑
m=0

ξ(xm)φmh , Ihξ(x) = ξ(x), ξ ∈ Y, x ∈ ΩIh ,

with the interpolation points ΩIh ={x0, . . . , xM}⊂Ω and the basis functions {φ0
h, . . . , φ

M
h }⊂Yh.

(ΛhFh) For t ∈ [0, T ], ξh ∈ BYh(RYh), and ψh ∈ Xh the discrete nonlinearities are given by

Λh(ξh)ψh =

M∑
m=0

λ(xm, ξh(xm))ψh(xm)φmh , Fh(t, ξh) =

M∑
m=0

f(t, xm, ξh(xm))φmh .

This yields the following estimate for the nonlinear remainder terms.

LEMMA A.2 ((Hochbruck & Maier, 2021, Lem. 5.2)) If Assumption 3.1 and Assumption A.1 hold, then
we have for t ∈ [0, T ], ξ ∈ Y , and ζ ∈ BY (RY )

‖RΛ(ζ)ξ‖X ≤ ‖(Id−Ih)Λ(ζ)ξ‖X + CΛh‖(Ih − Jh)ξ‖X ,
‖RF (t, ζ)‖X ≤ ‖(Id−Ih)F (t, ζ)‖X .


