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Deutsche Zusammenfassung

Die visuelle Wahrnehmung ist eine der wichtigsten Informationsquellen so-
wohl für Mensch als auch für Roboter. Eine besondere Herausforderung dabei
liegt in der Erfassung und Interpretation komplexer unstrukturierter Szenen,
besonders dann, wenn Objekte verdeckt sind und die Szene aus einem einzi-
gen Blickwinkel nicht vollständig erfasst werden kann.

Ein wesentliches Problem bei der visuellen Wahrnehmung ist daher die Aus-
wahl der Blickrichtung. Diese kann sowohl durch Augen- oder Kamerabewe-
gung, als auch durch Wechsel der Körper- oder Roboterposition geändert wer-
den. Methoden zur aktiven visuellen Wahrnehmung (Active Vision) steuern se-
lektiv und zielgerichtet die Blickrichtung, entweder zur Unterstützung einer
aktuellen Aufgabe (task-oriented) oder als Reaktion auf einen Reiz (stimulus-
driven). Die Auswahl der Blickrichtung in Abhängigkeit von der aktuellen Auf-
gabe ist der zentrale Gegenstand dieser Arbeit. Verdeckungsprobleme oder In-
konsistenzen in einem Umgebungsmodell sollen durch Änderung der Blick-
richtung aufgelöst werden. Die Umgebung soll dabei mit einer minimalen An-
zahl von Blickrichtungen, die für ein vollständiges Umgebungsmodell notwen-
dig sind, erfasst werden. Die entwickelten Methoden in dieser Arbeit zur akti-
ven visuellen Wahrnehmung werden zudem durch eine Blickstabilisierung er-
gänzt, um eine zuverlässige Wahrnehmung während Roboter- oder Blickrich-
tungsbewegungen zu ermöglichen.

Insgesamt lassen sich die Beiträge der Arbeit in die folgenden drei Themen-
gebiete unterteilen: (1) Semantisches Umgebungsmodell, (2) Aktive visuelle
Wahrnehmung und (3) Blickstabilisierung. Im ersten Teil, dem semantischen
Umgebungsmodell, wird aus der aktuellen Blickrichtung zunächst ein Um-
gebungsmodell bestehend aus geometrischen Primitiven erstellt und mit se-
mantischer Information angereichert. Diese semantische Information umfasst
Interaktionsmöglichkeiten des Roboters mit Objekten, sowie Relationen zwi-
schen geometrischen Primitiven der Szene. Zu den Relationen gehören Nach-
barschaftsrelationen, sowie physikalisch plausible Stützrelationen (Support Re-
lations). Eine Stützrelation existiert zwischen zwei geometrischen Primitiven A
und B, wenn das Entfernen von A dazu führt, dass B seinen bewegungslosen
Zustand verliert, d.h. A stützt B. Basierend auf dem resultierenden semanti-
schen Umgebungsmodell wird eine neue Blickrichtungen so gewählt, dass feh-
lende und aufgabenrelevante Informationen vervollständigt werden. Die Blick-
stabilisierung unterstützt dabei die visuelle Wahrnehmung.
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Die aktuelle Blickrichtung wird mit einem RGB-D Sensor abgetastet. Aus der
daraus resultierenden Punktwolke werden mit einem RANSAC-basierten An-
satz geometrische Primitive gefunden. Die geometrischen Primitive umfassen
Ebenen, Zylinder oder Quader, welche Objekte abstrahieren. Das resultierende
geometrische Modell wird abschließend mit semantischer Information ange-
reichert, die aus (i) Interaktionsmöglichkeiten mit diesen geometrischen Pri-
mitiven, sowie (ii) Relationen zwischen diesen Primitiven besteht. Hier sind
insbesondere die physikalischen Relationen zwischen Elementen des Umge-
bungsmodells wichtig. Dadurch entsteht ein semantisches Modell, das es er-
laubt, mögliche Aktionen zu identifizieren. Mit den physikalischen Relationen
können diese dann vor Ausführung der Aktion auf Plausibilität überprüft wer-
den.

Basierend auf dem erstellten semantischen Modell, welches die Interaktions-
möglichkeiten und die Relationen zwischen den geometrischen Primitiven um-
fasst, wird die Blickrichtung bestimmt, die notwendig ist um aufgabenrele-
vante Informationen zu vervollständigen. Die extrahierte Information aus der
nächsten Blickrichtung wird anschließend in das bestehende Modell der Sze-
ne integriert. Aus den semantischen Relationen zwischen den geometrischen
Primitiven werden dann Salienzkarten erstellt, die der Identifikation und Be-
wertung möglicher Kandidaten für eine neue Blickrichtung dienen. Der Sali-
zenwert, ein Maß für das „Hervorstehen“ eines Umgebungselements, erlaubt
es, die Anzahl der möglichen Blickrichtungskandidaten zu filtern und somit
die zeit- und rechenintensive Untersuchung von Blickrichtungskandidaten zu
reduzieren. Die Evaluation der Blickrichtungskandidaten erfolgt über eine Kos-
tenfunktion, welche den geschätzten Informationsgewinn sowie die zurück-
gelegte Distanz des Roboters berücksichtigt. Noch nicht explorierte Regionen
werden bevorzugt exploriert. Dadurch wird die Anzahl der benötigten Blick-
richtungen minimiert.

Sowohl beim Blickrichtungswechsel, als auch bei der Ausführung von mobilen
Manipulationsaufgaben wird die visuelle Wahrnehmung beeinträchtigt. Daher
ist es notwendig, Methoden zur Blickstabilisierung (Gaze Stabilization) zu ent-
wickeln und in die gesamte Architektur der aktiven visuellen Wahrnehmung
zu integrieren. Die Blickstabilisierung erfolgt dabei, angelehnt an menschliche
Methoden zur Blickstabilisierung, über den Vestibulo-Ocular Reflex, den Opto-
kinetischen Reflex und über ein internes Modell des Roboters. Die Blickstabili-
sierung über das interne Modell des Roboters verwendet dabei Methoden der
inversen Kinematik, um eine vorgegebene Blickrichtung stabil zu halten.

iv



Die vorliegende Arbeit leistet einen Beitrag zur aktiven visuellen Wahrneh-
mung für humanoide Roboter. Es wird ein semantisches Modell der Szene
erstellt, welches durch sukzessive Änderung der Blickrichtung des Roboters
erweitert wird, um Manipulations- und Interaktionsmöglichkeiten mit Objek-
ten der Szene zu explorieren. Weiterhin wird ein biologisch motivierter Ansatz
für die Blickstabilisierung während Roboterbewegungen oder Blickrichtungs-
wechseln vorgestellt.

v





Abstract

Visual perception is one of the most important sources of information for both
humans and robots. A particular challenge is the acquisition and interpretation
of complex unstructured scenes, especially when objects are hidden and the
scene cannot be captured from a single view.

A major issue in visual perception is therefore the selection of the gaze. This
can be changed by eye or camera movement as well as by changing the body
or robot position. Methods for active vision selectively and purposefully con-
trol the gaze, either to support a task (task-oriented) or to respond to a stimulus
(stimulus-driven). The selection of the gaze depending on the current task is
the central subject of this work. Problems of occlusion or inconsistency in an
environment model shall be solved by changing the direction of gaze. The envi-
ronment should be visually captured with a minimum number of movements,
which are necessary for a complete environment model. The developed meth-
ods for active vision will be complemented by a gaze stabilization to enable a
reliable perception during robot or gaze direction movements.

Altogether, the contributions can be divided into the following three topics:
(1) Semantic scene representation, (2) Active vision, and (3) Gaze stabilization.
In the first part, the semantic scene representation, an environment model con-
sisting of geometric primitives is created from the current view aligned with
the gaze direction and enriched with semantic information. This semantic in-
formation includes interaction possibilities of the robot with objects, as well
as relations among geometric primitives of the scene. The relations include
neighborhood relations as well as physically plausible support relations. A
supporting relation exists among two geometric primitives A and B if the re-
moval of A leads to B losing its motionless state, i.e. A supports B. Based
on the resulting semantic environment model, the next gaze direction is cho-
sen to complete missing and task-relevant information. The gaze stabilization
supports the visual perception. The current view is captured with an RGB-D
sensor. From the resulting point cloud geometric primitives are fitted using a
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RANSAC-based approach. The geometric primitives include planes, cylinders
or cuboids, which abstract objects. The resulting geometric model is finally en-
riched with semantic information, which consists of (i) interaction possibilities
with these geometric primitives, as well as (ii) relations between these primi-
tives.

The physical relations among elements of the environment model are especially
important here. This results in a semantic model that allows to identify possi-
ble actions. With the physical relations these can then be checked for plausibil-
ity before the action is executed. Based on the created semantic model, which
includes the interaction possibilities and the relations among the geometric
primitives, the next-best-view is determined, which is necessary to complete
task-relevant information. The extracted information from the next-best-view
is then integrated into the existing model of the scene. The semantic relations
among the geometric primitives are then used to create salience maps, which
serve to identify and evaluate possible candidates for a new viewing direction.
The salience value, a measure of the " interestingness " of an object, allows to
filter the number of possible views and thus reduces the time and computation-
ally intensive examination of the viewing direction candidates. The evaluation
of the viewing direction candidates is carried out via a cost function, which
takes into account the estimated information gain and the distance travelled by
the robot. Not yet explored regions are preferred. This minimizes the number
of required views.

Visual perception is impaired both when changing the gaze direction and when
performing mobile manipulation tasks. Therefore, it is necessary to develop
methods for gaze stabilization and to integrate them into the overall architec-
ture of the active vision system. The gaze stabilization is based on human gaze
stabilization methods, the vestibulo-ocular reflex, the optokinetic reflex and an
internal model of the robot. The gaze stabilization via the internal model of
the robot uses methods of inverse kinematics to keep a given gaze direction
stable.

The present work contributes to active vision for humanoid robots. A seman-
tic model of the scene is created, which is extended by successively changing
the robot’s view in order to explore possibilities of manipulation and interac-
tion with objects of the scene. Furthermore, a biologically motivated approach
for gaze stabilization during robot movements or changes of gaze direction is
presented.
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1. Introduction

A humanoid robot1 is a robot that resembles a human. Typically, robots are tai-
lored to a specific task, e. g., monotonous assembly tasks, and do not generalize
well. What makes humanoid robots unique is that they are designed to perform
human tasks in a variety of different areas, especially in human engineered en-
vironments (Kemp et al., 2008). This includes, but is not limited to, collabora-
tive tasks in highly unstructured industrial environments (Asfour et al., 2018),
daily kitchen activities, or personal assistance in household environments (As-
four et al., 2006). Other applications include emergency situations (Spenko
et al., 2018) like rescue operations in destroyed power plants (Tsagarakis et al.,
2017), or industrial disaster challenges (Radford et al., 2015).

Despite recent and enormous advances in humanoid robotics (Hoffman et al.,
2019), (Asfour et al., 2019b), (Kaneko et al., 2019), and (Radford et al., 2015), the
desire for autonomous humanoid robots performing non-trivial tasks and in-
teracting smoothly with the environment is not yet satisfied. A major challenge
to increase the autonomy of humanoid robots is the automatic visual percep-
tion of unstructured and cluttered environments, where scene elements and
relevant objects are hidden in the current view.

1.1. Motivation and Problem Statement

Without doubt, visual perception is among the most powerful sense, for both
humans and humanoid robots. Visual perception allows to intuitively interpret
the current scene and further to infer an understanding of the scene, describing
objects and their relations. In general, similar to humans, robots have to deal
with partial information from a single view due to occlusions as well as lim-
ited sensor data. Active vision methods (Aloimonos et al., 1988; Bajcsy, 1988)

1The etymology of the word humanoid is a hybrid of the Latin word humanus and the Greek
suffix -oid meaning resembling.
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Chapter 1. Introduction

Figure 1.1.: ARMAR-6 (Asfour et al., 2019b) in front of a cluttered table-top sce-
nario. In order to generate a complete scene model, the robot has to
change the view, i. e., the gaze direction and the platform position.
Here, the question arises which view the robot should choose. Pos-
sible views not yet visited by the robot are illustrated transparently.

selectively and purposefully control the gaze direction and the robot’s posi-
tion, either to support a current task (task-oriented) or to react to a stimulus
(stimulus-driven). Visual perception is active in humans (Findlay and Gilchrist,
2003) and thus should be active for humanoid robots as well.

Figure 1.1 depicts an example of a cluttered scenario and the issue that arises
with occlusion because the relevant part of the table-top scenario is hidden
from the current view. Imagine the robot wants to interact with the scene and
grasp the black pipe from the table-top. Since the scene is unknown to the
robot, the robot first needs to autonomously create a scene model and infer an
understanding. Due to the fact that relevant parts are hidden from the current
view, it is impossible for the robot to create a complete semantic scene model
from a single view only. In this example, transparent robot silhouettes are over-
laid over the image to indicate possible robot views. These views are not yet
visited by the robot and thus offer the potential to provide additional informa-
tion. Selecting a suitable view for the robot allows to perceive relevant parts of
the scene and finally to reason over them. Moreover, when moving the robot
induces noise to the camera images.
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1.1. Motivation and Problem Statement

Ultimately, for the automatic perception of unknown environments, robots re-
quire the following abilities. First, robots need to recognize which objects are
present in the scene. This is done by mapping the sensor data from the cur-
rent view to a meaningful representation and then to identify objects. Second,
possible actions associated with the objects need to be derived. For example,
whether an object is graspable at all, and if so, which grasp should the robot
select. Third, relations among the objects have to be inferred for further rea-
soning. This includes, for example, inference of stability and support relations
between objects that are in contact. This knowledge allows to understand the
effects of manipulation actions. Fourth, robots need to change their gaze di-
rection and their position purposefully for the automatic perception. Changing
the gaze additionally induces noise into the perception which needs to be com-
pensated. And finally, the extracted information needs to be available as soon
as possible. This aspect covers all previous steps equally.

Visual perception is not only limited to geometric information. In addition to
geometric information, semantic knowledge, for example, allows to interpret
and understand the scene. Especially in cluttered and unstructured scenes, se-
mantic and support knowledge is central for safe action execution. Due to oc-
clusions, however, support relations among objects and scene elements cannot
be reliably inferred from a single view only.
Overall, the major challenges for a humanoid robot to perceive a scene au-
tonomously can be summarized as follows.

(1) Incomplete Knowledge: The scene is completely unknown or only par-
tially known to the robot.

(2) Occlusion: Relevant parts of the scene are invisible or only partially visi-
ble in the current view. This is a special case of the first challenge.

(3) Visual Sensor Constraints: The sensor has a limited field of view, and
sensor measurements are incomplete and noisy.

(4) Self-induced noise: The robot induces noise to the visual perception by
moving the head and the body.

(5) Time Constraints: Relevant information needs to be available as soon as
possible.

Similar challenges for view planning of object modeling tasks have been pre-
sented in Vasquez-Gomez et al. (2014). Indeed, the list of constraints is not
complete, and depending on the current task or the scenario, other issues can

3



Chapter 1. Introduction

be more prominent. The subsequent section will answer how an active ap-
proach addresses these challenges for perceiving a scene autonomously.

1.2. Active Scene Understanding

In humans, visual perception is active. Humans constantly change their gaze
to attend regions of interest. Thereby, humans can perceive a scene seamlessly.
For example, a human would simply take a step to the side and look behind
the occluding object depicted in the table-top scenario of Figure 1.1 to validate
the unconscious inference of physical support among the objects. An active ap-
proach for visual perception addresses the challenges (1) - (5) stated in the pre-
vious section by changing the robot’s position and gaze direction. In order to
do this autonomously, the question arises, which among the endless possibili-
ties of views is the best. This issue is addressed by planning the Next-Best-View
(NBV). Given the described challenges for a humanoid that arise when perceiv-
ing the scene, planning the NBV is subject to many constraints. For example,
planning all the required views in advance is not possible because the scene is
unknown or changing. In addition, an exhaustive search would consume too
much time. Hence, the view of the robot needs to be selective and include task
relevant information. By allowing the robot to selectively change the current
view, occlusion can be mitigated by shifting the position and observing the
previously occluded region. Furthermore, a robot can actively search for and
discover possible actions in the scene.
This thesis presents an active vision system that mitigates occlusion and ex-
plores the scene for object support relations. With respect to the previously
raised issues, the goal of the presented active vision system is to:

(1) Explore the scene for missing and relevant information.

(2) Mitigate the effect of occlusions.

(3) Resolve inconsistencies or ambiguities in the extracted scene model and
validate uncertainties of the support relations and actions.

(4) Stabilize the gaze and compensate for self-induced motion.

(5) Minimize the number of views necessary to complete the current task.

Overall, a humanoid robot’s perception should be active, similar to visual per-
ception in humans.
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1.3. Contributions of the Thesis

1.3. Contributions of the Thesis

This thesis presents a novel approach for humanoid robots to create a semantic
scene model autonomously. Such a model is constructed given the sensor data
from the current view. Next, the thesis presents an active vision method that
iteratively determines the NBV and thus updates the scene model. Finally, a
gaze stabilization controller is integrated to allow for perception during mo-
tion. Overall, the goals (1) to (5) of this thesis are formulated to answer the
following questions:

(i) What objects are present in the scene?

(ii) What are the relations among the objects?

(iii) What is the NBV to improve the current perception?

(iv) How to allow for perception during motion?

(v) How can results be made available as soon as possible to the robot?

Figure 1.2 visualizes the structure of this thesis, which can be divided into the
following parts (1) Semantic Scene Representation, (2) Next-Best-View Plan-
ning, (3) View Selection and Gaze Stabilization. The major contributions to
these topics are highlighted in the following.

Part 1
Semantic Scene 
Representation

Part 2
Next-Best-View 

Planning

Part 3
View Selection and
Gaze Stabilization

Figure 1.2.: The structure of the automatic scene perception approach. The ap-
proach starts by describing a semantic scene model built from the
current view. The subsequent part determines the NBV to improve
the scene model. Finally, a gaze stabilization controller is linked to
allow perception during motion. The outline of this thesis follows
the structure of the approach.
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Chapter 1. Introduction

Semantic Scene Representation The robot captures the current view with
an RGB-D sensor, and basic geometric shapes are fitted against the point cloud
obtained from the current view. These geometric shapes, such as cuboids or
cylinders, are abstracting objects and scene elements. The geometric model is
then enriched with semantic information. Inferred spatial and semantic rela-
tionships among objects and scene elements allow for an understanding of the
scene. The semantic scene model is iteratively improved by merging results
from consecutive views into a global consistent scene model.

Next-Best-View Planning The presented scene model, is extended with an
active vision method that deals with the Next-Best-View (NBV) problem. Plan-
ning the NBV allows completing the scene model. Therefore, possible views
are sampled based on the semantic information already available in the previ-
ously presented scene representation. A view comprises the robot’s position
and gaze direction. In a subsequent step, the sampled views are then evaluated
and ranked. The evaluation considers tasks aspects that a relevant for the auto-
matic perception, such as the traveled distance and the volumetric information
gain. By choosing the view which maximizes the utility function as the next
view, the number of views necessary to interpret the scene is minimized.

View Selection and Gaze Stabilization Changing the gaze as well as execut-
ing manipulation actions impairs the visual perception. Thus, it is necessary to
stabilize the gaze during motion. To this end, gaze stabilization methods are
implemented on the ARMAR humanoid robots and further coupled with an
active vision method that determines the next gaze direction for grasping and
manipulations tasks. This part of the thesis investigates the link between active
vision and gaze stabilization and evaluates the benefit of using gaze stabiliza-
tion in real world experiments.

1.4. Outline of the Thesis

This thesis is structured into six chapters. Chapter 1 gives an introduction to
the problem and is followed by an overview of related work in Chapter 2.
The Chapters 3 to 5 describe the core of a technical system towards an au-
tonomous system for visual scene perception in unstructured and unknown
environments. These chapters share a similar general structure and begin with
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an introduction to particular problems involved with the automatic perception
of unknown environments. The chapters continue with the approach as well as
an evaluation and presentation of the results. Each approach contributes to the
stated goals (1) to (5) achieved contributions of the presented approach.

Chapter 2 gives an overview of relevant work and reviews related methods
with respect to the presented approach. Related vision paradigms are intro-
duced first. In particular, the term Active Vision is defined and differentiated
from other definitions as it is key to perceive a scene autonomously. Next, the
chapter proceeds with an in-depth review of existing approaches, which are
relevant for this thesis, and a discussion of their advantages and limitations.

Chapter 3 defines the scene representation for unknown environments com-
prising geometric as well as semantic information. An approach to fuse results
from consecutive views is also presented and evaluated. The chapter concludes
with a brief summary of the semantic scene perception method and discusses
the impact of this approach.

Chapter 4 presents a novel active vision method to autonomously determine
the Next-Best-View, which completes the scene model presented in the pre-
vious chapter. Therefore, the chapter describes the extensions to the system
architecture of the semantic scene representation. Finally, the chapter summa-
rizes the results and discusses the major advantages as well as limitations of
the presented NBV approach.

Chapter 5 links the presented active vision method with a gaze stabilization
approach that is required to allow visual perception during motion. After an
introduction to the problem, modalities for gaze stabilization and their depen-
dency on a view target are presented. The chapter continues with an integration
into the system architecture and a task-oriented evaluation. The chapter con-
cludes with a summary and discussion on the importance of gaze stabilization
and active vision for visual perception.

Chapter 6 concludes this work with a general discussion on the contributions
of the thesis. It further gives an overview of future work on autonomous visual
perception of unknown scenes.
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2. Related Work

This chapter starts with a brief introduction of vision paradigms and surveys
relevant work and alternative approaches with respect to this thesis. Since this
thesis covers different robotic research areas, the state-of-the-art can be roughly
grouped into the following three major categories: (i) Active Vision, (ii) Scene
Understanding, and (iii) Gaze Stabilization. The structure is visualized in Fig-
ure 2.1.
To begin with, this chapter starts with definitions and ideas of visual percep-
tion paradigms relevant to this thesis in Section 2.1. Next, Section 2.1.2 classi-
fies the approach of this thesis in terms of the given definitions as active vision
method. Selected seminal contributions are also addressed in the following.
The chapter continues in Section 2.2 with an overview of the relevant work on
scene representation and understanding. Followed by active vision methods
in Section 2.3. In particular, the section reviews active vision methods dealing
with the Next-Best-View (NBV) problem. Described works are put into relation
with the approach of this thesis and differences are highlighted. Subsequently,
Section 2.4 details methods for gaze stabilization and gaze control. Finally, Sec-
tion 2.5 summarizes and discusses the content of this chapter briefly.

2.1. Vision Paradigms

Vision is the most important information source in humans and a broad re-
search area not only in robotics but also in neuro- and cognitive science. The
seminal work Vision of Marr (1982) defines vision as the reconstruction of a
description, and his theory has since influenced not only computational neu-
roscience but also other vision research. His work presents perception as the
reconstruction of a description and presents vision as a processing chain with
clear separation. This is known as Marr’s paradigm. Marr argues that in order
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Active Vision

Scene 
Understanding

Gaze 
Stabilization

this thesis

Figure 2.1.: The different research areas related to this work. Active vision is
highly context and task-dependent. Therefore, this approach over-
laps different research areas. The approach, as presented in this
thesis, comprises of an active vision system to determine the Next-
Best-View (NBV). The NBV improves a semantic scene model and
allows to reason over stability and support among objects. Finally,
the system architecture is extended by required gaze stabilization
modalities to enable visual perception during motion.

to understand the visual process, different levels of abstraction have to be con-
sidered. To separate the visual process, he distinguishes between the following
three abstraction levels:

(1) Computational theory level: This level defines the mathematical analysis
and mapping from one kind of information to another.

(2) Representation and algorithm level: Here, the implementation of the com-
putational theory is done.

(3) Hardware implementation level: This level describes the physical realiza-
tion of the previous level.

The succinct description and the clear classification of the levels made Marr’s
paradigm popular, which can also be mapped to this thesis. The first level cor-
responds to the description of the method, i. e., the thesis itself. The second
level equates to the implementation available in the Robot Development En-
vironment (RDE) ArmarX (Vahrenkamp et al., 2015). The last level confers to
the humanoid robot system, where the method is executed and evaluated. The
separation is important when designing a perception algorithm. In his work,
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Marr delineates the representation to extract a shape model from images into a
process of

(1) first drafting a primal sketch from an image,

(2) then a 2.5D sketch of the scene, and

(3) finally, a 3D model representation.

As one can see, the model of the representation is built iteratively. Methods to
build such a representation are addressed in Chapter 3. In Marr’s work, the
representation is constructed using viewer centered coordinate frames (egocen-
tric). In robotics, especially in humanoid robotics, vision is embodied, active,
and goal-directed. Hence, many robotic researchers advocated that vision is
active, leading to new perspectives, which are discussed in the following.

2.1.1. An Active Approach to Vision

The assumption of a passive observer, the disembodied approach, and the lack
of feedback are the main criticisms directed at Marr’s work. Notably, the active
perception paradigm (Bajcsy, 1988) and active vision paradigm (Aloimonos
et al., 1988) in robotics have been proposed to acknowledge that vision is an
active process and not a passive process. Definitions of vision paradigms that
deal with vision as an active process include

(1) active vision (Aloimonos et al., 1988),
(2) active perception (Bajcsy, 1988) and (Bajcsy et al., 2018),
(3) animate vision (Ballard, 1991), and
(4) interactive perception (Bohg et al., 2017).

Since humanoid robotics has a strong link to the human being, the idea of foveal
vision in humans is briefly introduced in the following.

Foveal Vision

Vision in humans is also active. This is due to the fovea centralis. The fovea cen-
tralis is a small area in the human retina which covers around two percent of
the retinal surface. In this small area, vision has the highest acuity and allows
for color perception (foveal vision). Visual input projected on areas of the retina
other than the fovea centralis are perceived with lower resolution, and the color
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Figure 2.2.: Recorded eye movements given a task. Left: Eye movements with
the task “give the ages of the people.” Right: Eye movements with
the task “remember the clothes worn by the people.” The experi-
ment is described in Yarbus (1967). Figures taken from Archibald
(2008) (© 2008 Cabinet).

information cannot be distinguished. The remaining part of the retina is hence
used to monitor the scene (peripheral vision). Therefore, humans have to shift
the gaze to perceive a view of the scene with high resolution.
In Yarbus (1967), subjects were asked to perceive a picture given a specific task
while their eye movements were recorded. Depending on the tasks, the record-
ings show different movements and different regions of interest in the picture.
Figure 2.2 shows the recorded eye movements overlaid of the picture.

In robotics, foveal vision is inspired by biological systems and mimics the hu-
man fovea centralis. In robotics, foveal vision is usually modeled by adding
additional cameras with higher resolution (Fiala et al., 1994) or by using a pair
of foveated wide angle lenses (Kuniyoshi et al., 1996). Other robotics systems
with foveal vision, such as the Karlsruhe Humanoid Head (Asfour et al., 2008),
are described in Appendix B. Relevant work on visual attention is discussed
in Section 2.3.2. Shifting the attention is of utmost importance for foveal vision
due to the narrow area with high visual acuity.

Active Vision and Active Perception

The active vision paradigm in robotics was coined by Aloimonos et al. in the late
1980s. The basic idea of active vision methods is the purposeful manipulation
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of the camera pose and the camera parameters to improve visual perception.
The authors wrote in their work

“An observer is called active when engaged in some kind of activity whose
purpose is to control the geometric parameters of the sensory apparatus.”

(Aloimonos et al., 1988, p. 333)

Similar to the active vision concept by Aloimonos et al., a broader definition
was given by Bajcsy with active perception (Bajcsy, 1988). The author explains
the term as follows:

“Active Perception (Active Vision specifically) is defined as a study of
Modeling and Control strategies for perception. By modeling we mean
models of sensors, processing modules and their interaction.”

(Bajcsy, 1988, p. 996)

Therefore, the definition encompasses active vision as well and is not only lim-
ited to cameras. However, the focus of active perception is more on modeling
and control strategies for perception according to the author.

Indeed, both definitions of an active observer are in contrast to the assumption
of Marr’s approach (Marr, 1982), where the observer is assumed to be passive.
However, the purposeful manipulation of the camera pose is required to miti-
gate occlusions in the scene and to overcome the limited sensor’s field of view.
Both occlusion and sensor limitations, make active vision challenging even if a
priori information is available. Despite these difficulties, an active observer is
also necessary for many robotic applications and improves a robot’s visual per-
ception significantly. The early work of Aloimonos et al. (1988) further shows
the superiority of an active observer vs. a passive one. For example, many vi-
sion problems, such as shape from shading, where an object’s surface normals
are estimated under different lighting conditions, are ill-posed problems when
formulated with a static observer. By knowing the camera motion, the shape
from shading problem can convert to a well-posed problem with an active ob-
server. In addition, the early work active vision (Aloimonos et al., 1988) makes
strong claims about the advantages of an active observer, i. e., one that can ac-
tively control the camera. One of the major claims is that active vision can also
deal with noise in perception by controlling the camera.

13



Chapter 2. Related Work

The control of the camera is either to support the execution of the current task
(task-oriented) or to respond to a perceived sensor cue (stimulus-driven). The link
to perception and the current tasks was described by Aloimonos (1990) a few
years later. Therefore, vision should not only be active but should be designed
to solve a particular task. For example, active vision improves visual segmen-
tation (Mishra et al., 2012), Simultaneous Localization and Mapping (SLAM)
(Frintrop and Jensfelt, 2008), or visual object search (Welke, 2011). The ap-
proach presented in this thesis also has a strong link to the current task, i. e.,
creating a semantic representation of the environment.

Animate Vision

A more refined definition of active vision, called animate vision, was given by
Ballard (1991). The animate vision paradigm is inspired by biological systems
and anthropomorphic features. As an extension to active vision, the animate
vision definition explicitly takes foveated vision into account and emphasizes
gaze control of a vision system. Gaze control is the umbrella term for differ-
ent mechanisms to keep a target centered. This includes, for example, gaze
stabilization behavior or saccadic movements to attend a new region of inter-
est. The importance of gaze control, in conjunction with gaze stabilization, is
highlighted in Section 2.4 with respect to relevant work. In Section 5.2, a gaze
stabilization controller is integrated into an active vision system.
The definition of animate vision also emphasizes the usage of the coordinate
system, which acts as a reference for the scene model. In contrast to Marr, the
coordinate system should be a world coordinate system (exocentric) and not
viewer centered (egocentric). Animate vision assumes that the observer moves
with a known motion, and therefore, the coordinate system can be exocentric
and aligned with respect to a fixed position and orientation in the scene. An
exocentric coordinate frame allows to merge information from multiple views
and to facilitate a spatio-temporal memory structure to store processed results.
A memory-based structure is nowadays widely used in robotic systems. For
example, with the knowledge service openEASE (Beetz et al., 2015), robots can
recall memorized manipulation episodes. A different action matching and re-
trieval mechanism to recall episodes were presented in (Rothfuss et al., 2018).
Animate vision, however, utilizes foveal vision, and not every robotic system is
equipped with one. Additionally, mapping the viewer-centered coordinate sys-
tem to a world coordinate system can be inaccurate, since the transformation
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is often imprecise due to kinematics inaccuracies or errors in the localization of
the agent. Besides that, the core idea of an active observer is similar.

Revisiting Active Perception

In a broader context, the active perception paradigm has been revisited recently
(Bajcsy et al., 2018). The authors Bajcsy, Aloimonos, and Tsotsos extend the
active perception definition to more sensor modalities and give an overview
of the development and view on active perception. Among other things, the
new definition takes up the concepts of animate vision and generalizes them
to other sensor modalities. The definition of active perception is thus distilled
to

“An agent is an active perceiver if it knows why it wishes to sense, and then
chooses what to perceive, and determines how, when and where to achieve
that perception.” (Bajcsy et al., 2018, p. 178)

The components why, what, how, when, where are used to distinguish the term
from other definitions, and the why component is identified as key distinguish-
ing factor. Figure 2.3 visualizes the elements of the active perception definition.
For this thesis, the where and how components are important. The where in-
cludes the particular view and the how includes the alignment of the camera.
Altogether, the authors point out that an agent has to be active in order to per-
ceive.

Interactive Perception

The definition of active perception can also include interaction with the envi-
ronment. Interaction is key for robotic systems and therefore a major focus for
the definition of interactive perception (Bohg et al., 2017). Interactive perception
is defined as any kind of forceful interaction with the environment to improve
perception. Formally, the definition is restricted to interaction that affects the
space S × A × t, where S denotes the sensor information, A the action pa-
rameters, and t the time. The action space A is further divided into forceful
interaction and interaction that only affects the sensory apparatus and not the
environment. Thereby, the authors distinguish their definition from the active

15



Chapter 2. Related Work

Figure 2.3.: The definition of active perception decomposed into basic elements,
why, what, how, when, where. Depending on the why an active ob-
server controls the other elements what, how, when, and where. Fig-
ure taken from Bajcsy et al. (2018) (© 2018 IEEE).

perception definition. Interactive perception supports grasping actions or the
segmentation of unknown objects (Tsikos and Bajcsy, 1991; Schiebener, 2017).

2.1.2. Classification of the Approach

So far, this chapter presented several vision paradigms for an active observer,
which often have several features in common, and the definitions are overlap-
ping. In the following, features of the approach, as presented in this work, are
described. Figure 2.4 distinguishes the vision paradigms by their main charac-
teristic.

Altogether, this thesis builds an active vision system due to the following rea-
sons. First and foremost, the observer is active. An active observer constitutes
the key element of active vision. Although the scope of this approach is consis-
tent with other definitions, such as active perception, the definition of active vi-
sion is more suitable since only unimodal sensory input is considered. Further,

16



2.1. Vision Paradigms

Active Vision

Active Perception

Animate Vision

Interactive Perception

Classic Computer Vision

active static

anthropomorphic 
features

explicit forceful interaction
with the environment

Observer

Sensory 

Input

uni modalmulti modal

Figure 2.4.: Differentiation of vision paradigms as used in the thesis. Defini-
tions share common design features. Here key design features are
identified and used to distinguish the definitions.

the focus is more on the autonomous perception of unknown environments
than on manipulation actions. Animate vision emphasizes the advantage of
anthropomorphic features, which are also used by the methods. However, an-
other focus of animate vision is behavior-based control, and the focus of this
work is more on planning. Therefore, the approach, as presented in this thesis,
can be seen as active vision method.

2.1.3. Summary

This chapter provided an overview of relevant vision paradigms that have in-
fluenced and shaped the research areas in robotic vision. In particular, this
includes the definition of active vision (Aloimonos et al., 1988), active percep-
tion (Bajcsy, 1988) and (Bajcsy et al., 2018), animate vision (Ballard, 1991), and
interactive perception (Bohg et al., 2017). The approach, as presented in this

thesis, can be seen as an active vision approach.

Robotic vision differs from classic computer vision in the way that the embod-
iment of the robot is a key aspect. A robot is an active observer. Having an
active observer resolves many issues, which are difficult for a passive observer.
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Image processing X X X X X

View selection - X X X X

Embodiment - X X X X

Anthropomorphic features - - X - -

Multi-modal sensory input - - - X -

Change environment - - - X -

Table 2.1.: Definitions of vision paradigms. A checkmark X indicates that
the feature is explicitly taken into account by the definition. Table
adapted from Asfour (2019).

Chapter 1 formulated the challenges (1) to (5) for an autonomous visual percep-
tion. This includes, for example, the effect of occlusion, which can be resolved
by changing the view. In particular, for humanoid robotics being active is even
necessary due to the anthropomorphic design. Robots have to focus on what’s
relevant for their current task. Hence, the active aspect is an essential part of this
thesis and constitutes the core of the presented approaches. Table 2.1 summa-
rizes the different definitions with the main focus on visual perception. With
respect to the presented vision paradigms, the approach of this work was clas-
sified as an active vision method.
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2.2. Scene Modeling and Scene Understanding

As pointed out by Marr, the representation of the perceived sensor stimuli
plays a crucial role in perception. A scene model is required to map the real
world to an internal representation for the robot. Therefore, this section de-
scribes different approaches to build a scene model and its automatic interpre-
tation.
The major aspect of a scene model is the spatial representation of the scene.
Indeed, a scene model is not limited to the spatial representation, but can also
incorporate different aspects, such as semantic or temporal information. Scene
understanding is the automatic interpretation of the current scene model or the
image. Both, a scene model as well as semantic scene understanding are essen-
tial for a robot when interacting with the scene. In addition to the embodiment,
robotic vision differs further from classic computer vision or machine vision:
While classic computer vision focuses more on 2D vision and the interpreta-
tion of camera images or videos. Robotic vision, instead, relies more on 3D
information of the scene and considers the robot’s embodiment and its ability
to interact with the scene. Due to the necessity to control a robot in real-time,
robotic vision requires a fast computational time, if not real-time, to process
information required for the robot’s control (Corke, 2011). The focus in this
section is therefore on 3D scene modeling and 3D scene understanding with
respect to robotic vision.
The section is organized as follows. Section 2.2.1 overviews scene modeling
approaches in general. Section 2.2.2 details methods that decompose a scene
using geometric primitives. Section 2.2.3 reports on scene understanding meth-
ods. This section concludes with a summary.

2.2.1. Scene Modeling

Choosing a scene model is also an important aspect when designing an active
vision system since the model has to support the current task. Therefore, dif-
ferent design goals have to be considered for the scene representation. After
the robot’s current view has been captured with a sensor, the data needs to
be mapped to a meaningful representation. The extracted scene model is then
used for further processing and allows for view independence and further rea-
soning. This step of building a scene model comes with a loss of geometric
information. Choosing the model for the scene representation is therefore an
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important step to communicate and analyze the content of the scene.
Since a scene can be represented in several ways, a good choice of a scene model
is one that contains all the necessary information and details required for the
current task. At the same time, the scene model should also be memory and
access efficient, since robotic vision is time constrained and a robot’s resources
are limited. The choice of the scene model often depends on the current task.
For example, mesh based representations are popular whenever a model of an
object is created automatically. These approaches often utilize a polygon mesh
or a function to approximate a surface or the shape of an object. The advan-
tage of a polygon mesh is that this approach can be mapped to any kind of
surface. By increasing the number of polygons in the mesh, the precision of
the scene model can be increased. Implicit surface models (Bloomenthal and
Bajaj, 1997) are another way to model the surface of an object. These models
map geometric surface models to the sensor data. In general, these methods
have high accuracy and can also model uncertainty. However, implicit surface
models are often limited to the geometry of the object. Hence they cannot be
used for a complex room layout.

For scene modeling, different approaches are used. In the following, it is as-
sumed that the data is available either as point cloud or RGB-D image. In
robotics, the most common methods are to store the data as an accumulated
point cloud or in a voxel grid. Here, mapping a scene with methods like Kinect-
Fusion (Newcombe et al., 2011; Izadi et al., 2011) are very popular due to online
capabilities. KinectFusion runs on a Graphics Processing Unit (GPU) and rep-
resents the volumetric 3D map as implicit surface model using the Truncated
Signed Distance Function (TSDF). Recent methods are surveyed in Zollhöfer
et al. (2018).

Henry et al. (2012) utilize a surfel-based map for dense 3D modeling of indoor
environments. surfels are point primitives without explicit connectivity (Pfis-
ter et al., 2000). A surfel also comprises normal, color, and other information.
Therefore, multiple views from an RGB-D sensor are registered with respect to
each other using a modified version of the Iterative Closest Point (ICP) algo-
rithm, called RGB-D ICP. The representation is to enable compact representa-
tions and visualizations of 3D maps. Wagner et al. (2013) focus on dense map-
ping of the environment. To register multiple views, the authors utilize the
KinectFusion algorithm to represent the environment in real-time for DLR’s
humanoid robot Justin. The method utilizes the robot’s forward kinematics
model to improve the registration process. Further, the work also includes a
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multi-scale approach to deal with the large map volumes to reduce storage and
keep the required accuracy.
Approaches presented in this thesis make use of ElasticFusion as presented
in Whelan et al. (2017). The core idea of ElasticFusion is similar to Kinect-
Fusion and features loop closure to improve the registration result. It uses a
surfel-based representation and is able to detect the light source. To improve
accuracy small local model-to-model loop closures combined with larger scale
global loop closures are implemented. The loop closure ability is one of the ma-
jor differences to KinectFusion. Similar to KinectFusion the approach assumes
a low latency data throughput and requires a GPU. Noteworthy, some exten-
sions to dynamic environments have been proposed. However, they have not
been proven practically on a real humanoid robot since they are computation-
ally expensive and sacrifice accuracy of the registration for the sake of having
a dynamic scene model.

Input data can be reduced by employing a voxel grid. Voxelized representa-
tions approximate a scene by discretizing the spatial data with a 3D grid. The
major disadvantage is the memory requirement. An octree-based representa-
tion can be used to reduce the required storage size of the scene. This data
representation is more memory efficient since it allows for a flexible and multi-
resolution. The more compacter representation is an advantage of voxelization
over surface-based approaches. It contains the necessary trade-off between ac-
curacy and efficiency. In addition, they allow to easily model the occupancy
state of a voxel in a probabilistic manner. Therefore, voxelized representation
can aggregate data from multiple sensors. For an overview of probabilistic
scene models the reader is referred to Thrun et al. (2005). Due to the discretiza-
tion, voxelized representations are advantageous in terms of free space reason-
ing. This is a limitation of geometric primitive based representation since it is
difficult to reason over unknown space.
The work in Hornung et al. (2013) presents OctoMap, a popular framework
based on Octrees. The octree data structure is used to represent the scene with
a probabilistic 3D occupancy grid. The octree data structure allows for a mem-
ory efficient data representation. Each voxel has a loglikelihood probability of
being occupied to represent free space. The loglikelihood is used to make an
update easier. Knowing the current pose of the sensor, the map is updated by
casting rays to the sensor measurements. Thereby, the framework allows com-
bining different sensor modalities. Another framework, GPU-Voxels (Hermann
et al., 2014), optimize update and query speeds with a GPU implementation to
speed-up collision detection and path planning.
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2.2.2. Geometric Primitive Detection

To interpret the data, a common approach is to decompose it into geometric
primitives, such as planes, cylinder, or other parameterized surface types. Early
work in Roberts (1963) on 3D representation already had the assumption of ge-
ometrical primitives. The survey of Kaiser et al. (2018) gives an overview of
72 geometric primitive detection methods. The work divides the different ap-
proaches into seven categories: RANSAC, Hough transform, Primitive grow-
ing, Local statistics, Clustering parameter, Automatic clustering, and Segmen-
tation then fitting. Theoretical methods are then compared qualitatively. For
robotics, the RANSAC as well as the Segmentation then fitting categories are par-
ticularly relevant. Segmentation then fitting approaches apply first a segmen-
tation and then reason over each segment. Methods belonging to the RANSAC
category fit the geometric primitive models using Random Sample Consensus
(RANSAC) based approaches (Schnabel et al., 2007, 2008; Li et al., 2011). Due to
the RANSAC based nature, these approaches are also robust against outliers.
Figure 2.5 displays an example of geometric primitives.

Schnabel et al. (2007) use registered LIDAR scans to obtain a point cloud based
representation, which is then automatically decomposed into geometric primi-
tives. An octree is used to accelerate the model fitting. The advantage of such
representation is that it already classifies the surface into geometric elements
and therefore reduces redundancy. Further, the representation requires less
storage compared to voxelized representations since large surfaces can be rep-
resented with a few parameters. The work of Schnabel et al. (2007) has also
been utilized for robotics applications in Berner et al. (2013).
The idea of approximating objects with geometric primitives has been used for

Figure 2.5.: Left: A LIDAR scan decomposed into parts. A RANSAC based ge-
ometric primitive approach is used. Right: This approach has also
been utilized for robotic applications. Figure taken from Schnabel
et al. (2007) and Berner et al. (2013) (© 2007 and 2013 IEEE).
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Figure 2.6.: A kitchen environment and detected elements. Figure taken from
Rusu et al. (2008) (© 2008 Elsevier). After a LIDAR scan of the scene
is taken, the given point cloud is filtered, segmented and object hy-
pothesis are fitted. Finally, a functional reasoning step infers classi-
fied objects.

indoor environments. Rusu et al. (2008) build a 3D scene model for indoor en-
vironments based on point cloud data. After noise filtering, the point cloud
of the current view is registered into a single consistent point cloud using the
ICP algorithm. The coordinate system is a predefined world coordinate sys-
tem. After registration, the point cloud is segmented into plausible parts, and
against each segment object hypotheses are fitted. The representation includes
a functional reasoning process for kitchen environments. The approach was
designed for mobile robots working in kitchen scenarios. Therefore, the scene
is represented as cuboids to approximate the structure. High-level features,
such as knobs, are extracted as well. Figure 2.6 visualize a point cloud based
map for a kitchen scenario. While cuboids might work well for kitchen envi-
ronments, real world scenes are often more complex, and thus other geometric
shapes have to be considered. This work was also extended with a NBV plan-
ning approach (Blodow et al., 2011). A more complex algorithm is presented
in Hager and Wegbreit (2011), which handles dynamic environments as well.
The approach uses a priori information about the 3D model of the objects and
is therefore limited to parametric models, such as cuboids or cylinders. To be
computationally efficient, the scene parsing algorithm consists of approxima-
tion algorithms derived from a maximum a posteriori (MAP) formulation of the
scene. The algorithm is able to infer support relations and detect changes in the
scenes. Changes are molded as Markov dynamical system model. The view,
however, is static. The scene parsing algorithm is evaluated in several complex
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Figure 2.7.: Experimental results of Hager and Wegbreit (2011) (© 2011 Sage).
The scene is captured with a stereo camera system and decomposed
into parametric geometric models. Left: the scene comprising of
17 objects. Middle: the disparity image. Right: the resulting scene
model.

scenes both in simulation as well as with a stereo camera system. Experimental
results are depicted in Figure 2.7.

Geometric primitives can also be used to improve other robotic tasks. The ap-
proach of Richtsfeld et al. (2012) fits planes and non-uniform rational B-splines
against a segmented point cloud in order to detect objects. Relations between
patches are modeled in a graph structure and used as object hypotheses. Other
application includes SLAM, which can be improved by fitting planes to the
scene (Biswas and Veloso, 2012). Here, the work detects planes from an RGB-
D sensor. The plane detection has several advantages as it already decreases
the input size of the data being processed. Next, planes are projected to 2D
and used for localization within a 2D map of the environment. For humanoid
robots, a 2D environment representation is not sufficient as it does not allow
for planning manipulation actions with the environment. Geometric primitives
can also be used for staircase detection (Westfechtel et al., 2016), segmentation
(Pham et al., 2016), and footstep planning (Wahrmann et al., 2019). A major dis-
advantage of RANSAC based methods is that they have many parameters to
tune. Therefore, Fang et al. (2018) presented a parameter-free plane extraction
method.

2.2.3. Scene Understanding

Having a scene model is not sufficient for most robotics tasks. To support the
current task, the robot needs to infer relationships and semantic information as
well. Semantic information can be derived from a 2D segmentation of the cur-
rent view and then combined with a simultaneously created 3D map of the en-
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vironment (McCormac et al., 2017). Another application field that benefits from
semantic information is object detection, where especially spatial relationships
are helpful. Meißner (2020) uses spatial relations that are encoded as an implicit
shape model. These are then used to choose a Next-Best-View (NBV) for object
search tasks. More details on the NBV problem is given in Section 2.3.1. Spa-
tial relationships, such as neighborhood relationships, are required to match
shapes in the scene. Neighborhood relations between the geometric primitives
are represented within a graph structure (Schnabel et al., 2008). These neigh-
borhood relations can then be used to redetect distinct shapes in the scene. The
set of geometric primitives matched to the point cloud represents the vertices in
the topology graph. An edge is added if two primitives are adjacent to capture
neighborhood relation between the primitives. This graph structure can then
be used to identify structures in the environment. The authors additionally
present an algorithm for querying the scene graph.

Spatial information is also important to improve the accuracy of a scene model.
Gupta et al. (2010) use relationships to refine a model based on cuboids. These
blocks are pairwise enriched with additional simple relationships. Based on es-
timated depth relationships, split and merge proposals for the extracted blocks
are created. To join two primitives that are separated by an occluding obstacle,
the authors use volumetric constraints as a hint. Rosman and Ramamoorthy
(2011) model the scene with respect to spatial relationships from a segmented
point cloud. A graph-based structure is derived from a contact point network
to abstract the objects. Spatial relationships are extracted from a minimum
weighted spanning tree. The tree is based on support vectors, trained by a Sup-
port Vector Machine (SVM). Neighborhood relations are then described with
on and adjacent relations. Such relationships can also be extracted from video
streams and not only single images. Zampogiannis et al. (2015) learn the spatial
semantics of manipulation actions. During manipulation actions, the objects
are tracked in an RGB-D video. They extract directional relative space relations
between involved objects, such as in, left, right, front, behind, below, or above. The
approach is validated on the Baxter humanoid robot.
Semantic reasoning can also be used to parse large scale point clouds into seg-
ments forming semantically meaningful spaces to extract structural and build-
ing elements (Armeni et al., 2016). Parsing the scene into semantic objects with
an active observer was studied by Zheng et al. (2019).

Other relations are physically plausible relations, which are often derived from
spatial relations. Such physically plausible relationships are important for ma-
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Figure 2.8.: Processing pipeline for support classification as presented in Silber-
man et al. (2012) (© 2012 Springer). Based on RGB-D images planes
are fitted using RANSAC and finally physical support is inferred.

nipulation actions. These relationships can then be used to define a manipula-
tion order for cluttered environments (Panda et al., 2013). For example, given a
sufficient understanding of the scene, a robot can manipulate objects in a mean-
ingful way or utilize the structure of the scene.
Silberman et al. (2012) identify support relations in indoor scenes by a max-
imum a-posteriori (MAP) inference, interpreting major surfaces and objects
from RGB-D images. First, the scene is segmented into objects and surfaces.
Supporting planes, as well as the floor and ceiling planes, are found using a
RANSAC approach. In an additional step, physical relations are parsed from
the model. The dataset is published as the NYUv2 dataset. The algorithm is
outlined in Figure 2.8.

Jia et al. (2013) present a global stability criterion by averaging over the center
of mass and volume. The approach fits 3D cuboids against an over-segmented
RGB-D image. The fitted cuboids are then used to refine the initial segmenta-
tion. Boxes are considered as unstable if the projected support area does not
include the center of mass. The work then infers three different support rela-
tions: on top, partially on-top, or side support. The reasoning process is then
used to extract features to propose a splitting and merging approach of the
boxes. Mojtahedzadeh et al. (2015) identify contact points and differentiate be-
tween contact types. The result of their method is a Support Graph (SG), which
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Figure 2.9.: Experimental results of Mojtahedzadeh et al. (2015) (© 2015 Else-
vier). The approach extracts support relations by geometrical and
static analysis. Left: the scene. Middle: detected objects. Right: The
inferred physical support visualized as support graph spawning
among the objects.

models the support among objects. The contact points are then aggregated into
a network to determine support relations between the objects. The network is
called Contact Point set network (CPSN). The goal is to reason which object can
be removed from the stack without affecting the static equilibrium. To this end,
the work distinguishes between complete (CSO) and incomplete set of objects
(ICSO), i. e., not all objects in the scene are captured. For the first category, a
non-linear system is solved to test if an object can be removed from a CSO. A
machine learning approach is proposed for the incomplete case, i. e., the ICSO.
The feature vector for an object is composed of geometrical features. These in-
clude the axis-aligned bounding box, the centroid, six distinct points of interest.
However, the approach assumes that the scene is perfectly segmented, and the
authors therefore manually label the data. Figure 2.9 shows the results of an
experiment and extracted support relations.
Kartmann et al. (2018) build on the work of Mojtahedzadeh et al. (2015) with
the focus on safe bimanual manipulation actions with a humanoid robot. Real
world experiments with the ARMAR-III robot evaluate the methods. Section 3.2.2
details the method further. Both in (Kartmann et al., 2018) and (Mojtahedzadeh
et al., 2015) the scene has to be manually labeled, and views are chosen manu-
ally as well.

2.2.4. Summary

This section gave an overview of relevant work for 3D modeling and inter-
preting a scene. A scene model is essential for real-world robotic applications.
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The presented methods on scene modeling differ in terms of representing and
storing the data. Here, efficiency is a major design criterion since a robot’s
computational resources are limited. Another crucial aspect is the interpreta-
tion of the 3D model. Therefore, the scene model must have a suitable spatial
representation. Geometric primitives are particularly suitable here. With few
exceptions, views are selected manually and not automatically. Also, the data
needs to be interpreted with additional reasoning steps. Spatial and physi-
cal reasoning allow improving many robotic applications. Table 2.2 overviews
the most important scene representation approaches. Further, inferring phys-
ically plausible support relations among objects is required for a humanoid
robot when interacting with the scene. Finally, with a few exceptions, the pre-
sented works focus on the semantic scene representation and thus not consider
an active agent.

2.3. Active Vision

In the survey of active vision system in robotics of Chen et al. (2011) it is stated
that,

“high-level representation and reasoning depend on, but also affect the low
level vision perception.” (Chen et al., 2011, p. 1370)

It follows that geometric and semantic information, as well as knowledge of
spatial relationships, needs to be combined to fully utilize a robotic vision sys-
tem. Hence in the following an overview of active vision systems is given. The
survey of Chen et al. (2011) covers industrial and mobile robotics as well. Due
to the wide application in robotics, the authors distinguish active vision sys-
tems in its purpose/task and method. Such purposes of active vision systems
include, but not limited to, grasping, exploration, object modeling, and site model-
ing. These purposes are especially relevant for humanoid robots, and thus in
the following presented active vision methods are categorized with respect to
these purposes.
The section is organized as follows. First, early works on active vision methods
are reported, followed by active vision methods with the focus on grasping.
Next, Section 2.3.1 overviews NBV methods focusing on object modeling or ex-
ploration. Furthermore, deep learning approaches are presented. Due to the
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complexity of the NBV problem, deep learning approaches are only of limited
use for a robotic system but are becoming more and more popular. Section 2.3.2
covers attention based methods. These methods are often biologically inspired.
Finally, results are summarized.

An active vision system can have different aspects. Therefore, Aloimonos (1990)
presents an active vision system, called Medusa, to consider different aspects of
perception, such as object tracking. The idea behind this system is that the
perception process is decomposed into simple processes, which are then con-
sidered by a master controller to plan the gaze. By this layer of abstraction, the
individual process can be very simple, but overall the system can be powerful
due to many processes.

To obtain a scene representation, for example, various approaches have been
suggested. Marchand and Chaumette (1999) developed a scene exploration al-
gorithm for static scenes composed of cylinders and polyhedral objects. Their
approach features three stages: exploration, primitive reconstruction, incre-
mental reconstruction. Their active vision system reflects different aspects,
such as exploration.

Besides exploration, another particular application of active vision is object
grasping. To this end, Rasolzadeh et al. (2010) present a visual attention sys-
tem for the Karlsruhe Humanoid Head (Asfour et al., 2008). The cognitive
system leverages peripheral and foveal cameras in order to segment, detect,
and grasp objects. The focus of attention is determined by combining dynami-
cally bottom-up and top-down saliency. Therefore, an artificial neural network
approach is used to learn the optimal bias of the top-down saliency map. A
stochastic Winner-Takes-All (WTA) approach is used to shift the view to the
regions with the highest saliency value. The system also models the Inhibi-
tion of Return (IOR) mechanism, which is used to promote the exploration of
unattended areas. Attention mechanisms can also include task-relevant infor-
mation, such as grasping and manipulation actions. Bohg et al. (2012) present a
complete grasping pipeline for object grasping. The system includes an atten-
tion mechanism to fixate the object. The attention mechanism uses geometric
information and determines fixation points which are then used as initial seed
points for the object segmentation. The system is evaluated on the humanoid
robot ARMAR-III (Asfour et al., 2006).
An important aspect for grasping and manipulation actions is the uncertainty
of object localization results (Eidenberger and Scharinger, 2010). Welke et al.
(2013) also propose a view selection strategy based on the uncertainty of object
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localization results. The approach is tailored to known objects, but works in
dynamic scenes. In addition to the requirement that the environment is known
a priori the work neither considers occlusion and only moves the cameras of
the robot and not the robot itself.
Other aspects include reliable grasping, i. e., to detect failure or grasp success.
Arruda et al. (2016) present a view selection strategy for grasping unknown
objects. Here, the active vision system is clearly task-driven. The camera is
mounted on the wrist of a dexterous Schunk hand. The active vision system
is designed to maximize surface reconstruction quality around contact points
and to refine grasp gaze direction planning to improve safety. A 3D occupancy
map is used to model the scene.
Kahn et al. (2015) use a frontier-based approach to grasp hidden objects. The
camera planning is optimized for the grasping trajectory. The approach in-
cludes the NBV problem, which is highlighted in Chapter 4 of this thesis. Gualtieri
and Platt (2017) investigated the choice of a view pose to increase the accuracy
of a grasp detection method for the Baxter robot.

With the research peak in deep learning, these approaches are also quite pop-
ular for application in active vision. Sünderhauf et al. (2017) give an overview
of recent achievements and challenges in robotics using deep learning. The au-
thors point out the difficulty with deep learning. A major issue is the embodi-
ment of the robot that relates to active vision and active perception approaches.
Especially the authors note that

“a more holistic approach to active scene understanding is still missing
from current research.” (Sünderhauf et al., 2017, p. 408)

Approaches are mainly evaluated in simulation due to the lack of training data.
In Ammirato et al. (2017), an annotated dataset for active vision is presented.
The dataset is for object search. The approach is for mobile robots and thus
steers only a mobile platform. The authors also present a reinforcement learn-
ing approach for predicting the next motion for object classification tasks. The
next best motion consists of six direction commands. By executing these com-
mands, the robot gets a new view. Although sophisticated learning approaches
for active vision are limited due to the embodiment of the robot, there are some
notable exceptions. Cheng et al. (2018) present a reinforcement learning ap-
proach, which keeps an object within the field of view during manipulation
actions and is able to deal with occlusion. The approach is evaluated in simu-
lation and the estimation is memoryless.
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2.3.1. Next-Best-View Planning

As already mentioned, active vision should be goal-driven (Aloimonos, 1990).
One particular problem is the generation of a complete scene model or object
model. The NBV problem is defined as finding the next view to iteratively
obtain a reasonably complete model of a scene or an object. Again, the camera
should be controlled in a goal-directed manner. In general, the total number of
views for the object or the scene model should be minimized.
The NBV was widely addressed for inspection tasks using a robotic arm with a
priori knowledge about the object. For more details, the reader is referred to the
survey of Scott et al. (2003) that distinguishes between model-based and model-
free approaches. However, the problem is different if no a priori information is
available or if solved with a humanoid robot. In the following this focus is on
NBV designed for humanoid robots, but also present other relevant approach
not related to humanoid robotics.

The NBV problem was pioneered by Connolly (1985). The early work presents
two algorithms to address the NBV problem, namely (1) the Planetarium al-
gorithm, and (2) the Normal algorithm. The first algorithm samples views on
a sphere and uses ray casting to estimate the unknown space. The second al-
gorithm uses surface normals to compute the NBV. Connolly acknowledges
that the estimation takes too much time and therefore suggested the second
approach. Both algorithms assume that the object needs to be inside a sphere.
Further, the work does not consider occlusion or any kinematic constraints,
such as the limited degrees of freedom of a robot.

Notably, the NBV problem has been improved by the work of Pito (1999) and
Banta et al. (2000). Pito uses a polygon mesh as a data structure and surface nor-
mals to get an accurate 3D reconstruction for an object on a turntable. The work
distinguishes between what must be scanned and how. To this end, the work
introduces an intermediate positional space (PS) between object and workspace
to facilitate what must be scanned. Pito uses surface patches to determine the
NBV. The representation used by Pito, i. e., a polygon mesh, has some advan-
tages over the volumetric model space for object modeling tasks. However, as
pointed out by Torabi and Gupta (2011), the approach does not scale to robotic
systems with many degrees of freedom. Here, presented works mainly con-
sider volumetric approaches since they allow for probabilistic occupancy esti-
mation and visibility checking.
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Figure 2.10.: Reconstruction of a NAO robot by a NBV approach which con-
siders sensor inaccuracies. Left: the real object. Right: the re-
constructed point cloud. Figure taken from Vasquez-Gomez et al.
(2017) (© 2017 Springer).

In mobile robotics, building a model of the scene, i. e., the exploration, can be
reduced to 2D. In the context of mobile robotics, frontier-based approaches are
very popular. A frontier is defined as the border between unknown and known
environment (Yamauchi, 1997). It is also crucial to take some safe space for
the robot into account while exploring the area (Gonzalez-Banos and Latombe,
2002). However, an exploration strategy, which is limited to 2D, is not suitable
for manipulation actions, since important elements of a scene can be missed.
This includes, for example, a table-top scenario.

Another issue is that possible views are highly dependent on the robotic sys-
tem. This can be due to the fact that the view is unreachable (Torabi and Gupta,
2011) or the position of the camera is inaccurate (Vasquez-Gomez et al., 2017).
Other constraints for sensor planning have been addressed as well (Tarabanis
et al., 1995; Yu and Gupta, 2004). For humanoids, the kinematic constraints
are especially important since a humanoid needs to utilize the whole-body to
be able to reach more view positions. Other works take explicitly the kinematic
constraints of a humanoid robot into account when dealing with the NBV prob-
lem (Stasse et al., 2008; Foissotte et al., 2009). In humanoid and mobile robots,
the NBV differs compared to static robotic arms, since the next view also needs
to overlap the current view in order to allow for a registration. A reason for
this is that, the camera position derived purely from forward kinematics is im-
precise. The position error when moving the camera has been addressed by
Vasquez-Gomez et al. (2017) for an industrial robot manipulator. Figure 2.10
displays experimental results of Vasquez-Gomez et al. (2017).
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Suppa et al. (2004) present a physical space exploration for industrial eye-in-
hand systems, namely the Kuka KR 16 robot. The exploration is sensor-based
and maximizes knowledge about the configuration space while minimizing the
number of views. The work also provides a comparison of update rules of the
scene model.

For humanoids robots, not only an object model but also the scene is impor-
tant. The goal of the NBV approach distinguishes between object modeling or
scene exploration. Torabi and Gupta (2011) present a system for a 6 Degrees
of Freedom (DoF) industrial robotic arm, that incorporates both modeling and
exploration. After each scan the NBV is computed with a different goal to ex-
plore the scene and thus allow the robot to reach poses collision-free. Kriegel
et al. (2013) use a utility function to balance between exploration and object
modeling. In their work, the authors utilize both a volumetric as well as a sur-
face based approach to represent the scene and the objects. Table 2.3 outlines a
comparison of NBV approaches.

In general, most of the Next-Best-View approaches use a sampling strategy to
determine possible views. These views are then evaluated in a second step, i. e.,
by computing the information gain. In general terms, the expected information
gain for a view is defined as the change of information entropy

IG(v) = H(v)−H(vt−1) , (2.1)

where v is the evaluated view and vt−1 the current view and H(·) the total in-
formation gain. H(v) can be predicted by summing the changes in the entropy
of each voxel. The idea of many NBV algorithms is to select the view which
maximizes the function IG(v) and therefore add as much information to the
model as possible. For the information gain, the work follows the notation of
Isler et al. (2016). In many works, the basic idea to predict the information gain
for a volumetric representation can be mainly reduced to count the number
of newly observed voxels in a view. The number of unknown voxels can be
obtained using a ray casting method for a possible view candidate. Thus, the
predicted information gain for a view can be formulated as

IG(v) =
X

∀r∈Rv

X

∀x∈Xr

I , (2.2)

where Rv are all possible rays in view v and Xr the set of traversed voxels by
the current ray r. Now the formulation of the information gain I(x) can model
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different aspects to further improve the choice of the NBV. The choice of the
NBV and therefore the formulation of the information gain depends on the
tasks. Common tasks in robotics are object modeling or scene exploration.

Potthast and Sukhatme (2014) argue that the likelihood of observing an un-
known voxel decreases as more unknown voxel are traversed. They introduce
a more general approach for estimating the NBV. Their probabilistic framework
is designed for cluttered environments and directly reasons about the unknown
space. The unknown space is obtained by using a point cloud based representa-
tion of the scene. Both the laser scanner as well as the RGB-D camera of a PR2
robot are used to evaluate the approach. For humanoid robots other aspects
have to be considered as well. This can be done by modeling the NBV with a
utility function. Vasquez-Gomez et al. (2014) model a utility function, which
also considers a required overlap of the view to support the registration of the
view and penalizing movements of the robotic system. In robotic systems, it is
important to also consider the costs to reach a view. Besides that, the estimated
consumed power can be integrated over the whole movement of a humanoid
robot (Oßwald et al., 2017).

In their work, Isler et al. (2016) present different information gain formulations
for an object modeling task by a mobile robot. The authors evaluated their pro-
posed formulation with respect to each other and as well as against previous
work of Kriegel et al. (2015) and Vasquez-Gomez et al. (2014). The formulations
vary with respect to the proximity and spatial location of voxels. Their system
was evaluated using a synthetic model dataset and on a Kuka youBot with six
DoF. For evaluation, the surface coverage, the normalized robot motion and the
entropy were used. The accuracy of the reconstruction result was not qualita-
tively assessed. Figure 2.11 displays experimental results of the work published
in Isler et al. (2016).
Based on the work of Isler et al. (2016), Daudelin and Campbell (2017) con-
sider object probabilities by modeling the probability of a voxel belonging to
the object being scanned. Their approach modifies the work of Isler et al. (2016)
and limits the sampling to an area near frontier regions. Frontier regions are
defined as the border between unknown and known space. Hence, the proba-
bility of a voxel belonging to an object is independent of the current view and
can be computed once for each NBV algorithm iterations. The system was also
evaluated in simulation as well as using a Kuka youBot. Figure 2.12 displays
experimental results of the work published in Daudelin and Campbell (2017).
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Figure 2.11.: NBV approach for object modeling as presented in Isler et al.
(2016) (© 2016 IEEE). Left: Scene of the experiment. Middle: Point
clouds of the reconstruction result. Right: Voxelized representa-
tion of the object reconstruction result.

Figure 2.12.: Experiment results of Daudelin and Campbell (2017) (© 2017
IEEE). Left: Scene of the experiment. Middle: Point clouds of the
reconstruction result. Right: Voxelized representation. The NBV
system is based on the work of Isler et al. (2016).

Besides object modeling tasks, the NBV can also be used to cover a scene.
Oßwald and Bennewitz (2018) present a GPU based NBV system for humanoid
robots that attends user defined region of interests. Here, a crucial factor is how
to balance the costs for reaching a view and the information gain. Evaluation
has been performed in simulation. Figure 2.13 shows parts of the experiments.
Similar work was done by Monica et al. (2019) where a humanoid robot NAO
utilizes body movement primitives. For robot localization an external tracking
system was used.

Another important aspect when designing a NBV system is the termination
of the algorithms. The importance of the self-termination criteria has been
stressed by Torabi and Gupta (2011). Typical approaches limit the total num-
ber of views. However, this is not compelling since the algorithm always has
to visit the specified number of views. When dealing with object modeling
the NBV planning terminates if the surface of the object does not contain any
unknown patches.

In general, the evaluation is computationally expensive. The kinematic con-
straints of a humanoid robot can be exploited when pruning the number of
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views before evaluation (Oßwald et al., 2017). Here, the inverse reachability
maps are used to quickly check if the robot is able to reach the view pose.
Isler et al. (2016) remove already visited view candidates. Other approaches
(Oßwald and Bennewitz, 2018; Monica et al., 2016) implement a GPU version.
Another way to deal with this issue is to utilize hierarchical ray casting (Vasquez-
Gomez et al., 2014). The basic idea is that all view candidates are evaluated with
fewer rays first and subsequently only the view candidates with the highest
score are subjected to further evaluation while the number of rays is increased.
Finally, the last remaining view candidates are evaluated with all possible rays.
According to Vasquez-Gomez et al. (2014) this leads to a drastic speed-up, i. e.,
20 times more performance to the standard case. Other approaches, such as
Daudelin and Campbell (2017), use a look-up table to store the intermediate
result for already computed positions.

Since then, several approaches for the NBV have been suggested. A compar-
ison and benchmark of popular NBV approaches for object modeling is pre-
sented in Karaszewski et al. (2016). Interestingly, no NBV method outper-
formed the others. Other NBV algorithms focus on change detection. Monica
et al. (2016) propose a NBV algorithm based on large scale point clouds. Their
work is based on Connolly (1985) and Banta et al. (2000). After an initial scan of
the environment, their saliency-based approach tracks relevant changes caused
by human manipulation. These changes are detected by activity saliencies us-
ing a Gaussian mixture model to track a human subject. Points of Interest (PoIs)
are computed from the possible changed regions. A NBV planning algorithm
is then executed to determine the next position of the robot manipulator.

Monica and Aleotti (2018b) present a NBV planning system using a surfels-
based representation. The space between unknown and known surfels is de-

Figure 2.13.: The Next-Best-View approach explores user-defined regions of in-
terest. The first image shows the simulated environment with an
overlay of the utility map. User-defined regions of interest are vi-
sualized in red. The NBV approach is described in Oßwald and
Bennewitz (2018) (© 2018 IEEE).
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Figure 2.14.: Parts of an NBV experiments. Left: the scene. Middle: saliency map
of point clouds segments. Right: 3D volumetric representation.
Image taken from Monica and Aleotti (2018a) (© 2018a Springer).

noted as frontiers. View candidates are evaluated using the total area of visible
frontier surfels. The authors argue that this representation has several advan-
tages over a voxelized representation since the data is stored in a more com-
pact way. PoIs are given as input to the algorithm. With respect to runtime the
method shows a significant speed-up. However, this can be explained by the
fact that, volumetric approaches are quite slow as they need to reason over all
the unknown space if not limited to frontier regions as in Daudelin and Camp-
bell (2017). Meißner (2020) uses spatial relations among objects to speed-up
object search.

2.3.2. Visual Attention

Selecting the next view pose can also be attention driven. While the NBV prob-
lem is a top-down approach, i. e., clearly task driven, the view can be also se-
lected based on visual stimuli as a bottom-up, i. e., purely driven by sensor
input. In humans, visual saliency plays a crucial rule to control our gaze (Koch
and Ullman, 1987). These aspects can be also transferred to robots, where it is
important to focus on relevant regions as well. Bajcsy and Campos (1992) also
pointed out that

“the perceptual system must be selective or it will suffer from an overflow
of information.” (Bajcsy and Campos, 1992, p. 32)

In robotics, attention systems are often inspired by attention mechanisms dis-
covered in humans, such as Itti et al. (1998) or Treisman and Gelade (1980).
For an extensive review of visual attention approaches, the reader is referred

39



Chapter 2. Related Work

to the surveys in Frintrop et al. (2010) and Borji and Itti (2013) and more re-
cently, Potapova et al. (2017) and Nguyen et al. (2018). The survey by Frintrop
et al. (2010) stems more from a cognitive perspective, whereas the survey by
Potapova et al. (2017) reviews work not considered in previous studies (Frin-
trop et al., 2010; Chen et al., 2011) with the focus on 3D visual attention in both
human and robot vision. The survey further covers different areas of expertise
in biological vision and neurophysiology, computer vision, as well as robotic
vision. Many visual cues can be considered when shifting the attention of the
robot. However, attention can also include multimodal cues, such as acoustic
sensory processing capabilities (Schauerte, 2016). Despite that visual informa-
tion is the most important sensory cue. In robotics, 3D information is central
when interacting with the environment. Therefore, this section mainly focuses
on 3D visual attention and foveated attention for robotic systems since this is
especially important for humanoid robots. The section will also include rele-
vant 2D based approaches.

Interestingly, humans can shift the attention without moving the eye. Attention
shifts by moving the eye are called overt attention. In contrast to that are covert
attention systems. An early visual attention system for humanoid robots was
developed by Vijayakumar et al. (2001). The overt visual attention system is
based on the visual flow and was developed for the humanoid robot DB with
30 DoF. The attention system utilizes both peripheral and foveal vision and
is biologically inspired. A saliency map is generated by observing the optical
flow and a WTA network is used to determine the next view direction. The
approach uses only 2D features to shift the attention and during robot move-
ments the image processing of the cameras is stopped. Simply discarding the
images during motion is quite a common approach. Interestingly, the authors
acknowledge the link to gaze stabilization, which is discussed in Chapter 5 of
this thesis. Walther et al. (2005) show the effects of attention in object recogni-
tion tasks. Notably, that spatial attention improves the performance of object
learning and recognition in cluttered scenes. Regions are selected using a WTA
approach based on saliency values, which are computed with a multi-scale fea-
ture extraction process. An Inhibition of Return (IOR) is used to attend new
regions. Welke (2011) proposes an inhibition of return mechanism that allows
to generate a sequence of gaze directions.

Frintrop (2006) presents an attention system, called VOCUS, which uses both
top-down and bottom-up cues to select regions of interest in images. Bottom-
up cues are based on visual features such as color, orientation or contrast. Com-
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Figure 2.15.: A gaze control mechanism to support SLAM. The system support
exploration of unknown areas and the redetection of landmarks
to improve localization. Figure taken from Frintrop and Jensfelt
(2008) (© 2008 IEEE).

pared to the iNVT by Itti et al. a different color space is used. These features are
similar to the ones developed by Itti and Koch. Top-down cues include the cur-
rent tasks. Both cues are aggregated into a single saliency map and the highest
saliency is selected, i. e., a WTA approach. The regions of interest can then be
used to support an object recognition system. In Frintrop and Jensfelt (2008),
the VOCUS system has been used in combination with a behavior driven SLAM
system for mobile robots. The system implements an attention driven approach
to redetect landmarks for loop-closure while also exploring the scene. Regions
of interest are either based on salient regions or on prediction landmarks in the
scene. The method is outlined in Figure 2.15.

Other visual attention approaches are designed for object discovery (Horbert
et al., 2015; Garcia et al., 2015).

Attention can also be used in combination with a NBV approach. The work of
Monica et al. (2016) detects hand motions to shift the camera view. The work re-
quires an initial scan of the environment. Xu et al. (2016) present a 3D attention
approach and a NBV system. The system is based on 3-D recurrent attention
model. The system allows for online identification of objects and consists of two
levels of attention. The system is evaluated in on the PR2 robot with an eye-
in-hand RGB-D camera. When addressing the NBV problem, the saliency can
also be used when determining the next view. Monica and Aleotti (2018a) use
saliency cues to filter the candidates for the NBV evaluation. The point cloud
is segmented using Locally Convex Connected Patches (LCCP) and a saliency
value is computed for each segment. View candidates are then ranked by the
given saliency value and only the highest scores are considered for further eval-
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Publication Utility Function

Author Year Information

Gain

Path Costs Task

Potthast and Sukhatme 2014 X - -

Xu et al. 2016 X - -

Oßwald et al. 2017 X X -

Oßwald and Bennewitz 2018 X X X

Monica et al. 2019 X - -

This approach X X X

Table 2.4.: Comparison of relevant Next-Best-View approaches for humanoid
robots.

uation. Thereby, the number of candidates that are considered for evaluation
can be drastically reduced. Figure 2.14 shows experimental results from the
proposed method.

2.3.3. Summary

This section overviewed relevant active vision approaches. Active vision is
controlling the camera purposefully to improve the current perception and is
required for many robotic applications. An important application for active
vision is the determination of the Next-Best-View (NBV) for scene exploration.
An overview of the most important next-best-view approaches is provided in
Table 2.4.

Methods addressing the NBV problem iteratively determine a view using a util-
ity function, which evaluates views. For object modeling and scene exploration
tasks, the volumetric information gain is a central element for planning. Be-
sides the information gain, some methods also consider the path costs to reach
a view. The NBV problem is mainly addressed in industrial robotic applica-
tions, but is now more and more common in humanoid robots, where it is much
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more complex. For humanoid robots it is important to include anthropomor-
phic aspects in the system design. In particular, this includes the reachability
checks and the costs to reach a view. The majority of NBV planning systems for
humanoid robots focused on the modeling of the utility function rather than on
the execution on a real robot system.

2.4. Gaze Control and Stabilization

As highlighted in the animate vision concept (Ballard, 1991) gaze control is
a crucial aspect in robotics. Gaze control is either to attend a new region of
interest, to fixate a moving target, or to stabilize the gaze.
Methods on identifying regions of interest have been addressed in the previous
sections. This section focuses on switching and stabilization of the gaze, which
is required to enable perception during motion. Gaze stabilization is especially
important during locomotion and while shifting the gaze. During the eye and
head movement, self-motion stimuli are often simply ignored by discarding the
data (Vijayakumar et al., 2001).

Gaze stabilization methods are often inspired by human head and eye stabi-
lization strategies replicating human reflexes. In humans, gaze stabilization
for the eyes is mainly governed by the Vestibulo-Ocular Reflex (VOR) and the
Optokinetic Reflex (OKR) (Miles, 1998). The VOR generates compensatory eye-
movements to counter head movements. Head movements are detected by the
acceleration measured in the vestibular system, a sensory system located in the
human inner ear. The OKR stabilizes the view with eye movements to cancel
the retinal slip, i. e., minimize the optical flow in the image. In robotics systems,
an Inertial Measurement Unit (IMU) can mimic the human vestibular system
to implement the VOR (Corke et al., 2007). The retinal slip can be directly com-
puted from the optical flow in the image (Farnebäck, 2003) to implement the
OKR. Both reflexes can be complementary since the reflexes have different sta-
bilization goals. The VOR compensates for fast movements while the OKR
compensates for slower ones (Schweigart et al., 1997). Similar to the VOR, the
Vestibulo-Collic Reflex (VCR) stabilizes the head in humans.
Shibata and Schaal (2001) present a learning system to combine both the VOR
and the OKR for the humanoid robot DB. The work only considers eye move-
ments. Since gaze includes both head and eye movements, the head can also
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support the stabilization. In humans, this is mainly done by the Vestibulo-
Collic Reflex, which is similar to the VOR. Kryczka et al. (2012) present a method
for head stabilization based on inertial measurement data. The system is evalu-
ated on the KOBIAN humanoid robotic platform. Gaze stabilization modalities
are often biologically inspired. This includes, for example, an integrated eye
and head stabilization framework for the iCub platform inspired by cerebel-
lar theories (Vannucci et al., 2016). The work coordinates the Vestibulo-Collic
Reflex (VCR), the Vestibulo-Ocular Reflex (VOR), and the Optokinetic Reflex
(OKR).

Other methods, compensating for self-induced perturbations only, rely purely
on kinematics information (Kryczka et al., 2012), (Roncone et al., 2014), and
(Habra and Ronsse, 2016). These methods use an internal model of the robot
and using Inverse Kinematics (IK) (Habra and Ronsse, 2016; Roncone et al.,
2016) to predict the position of the cameras while also computing head motions
to compensate for the self-induced motions. The idea behind these methods is
to intercept the motor commands which are then applied to a simulated robot
model in order to predict and correct the next head position. New motor com-
mands are then generated for the head to keep the visual frame stable. Habra
and Ronsse (2016) propose a feed-forward gaze stabilization controller based
on copies of motor commands. The inverse Jacobian defined by the gaze stabi-
lization controller is relaxed by minimizing the optical flow. Furthermore, a fast
method to approximate the optical flow using the robot’s kinematics is derived.
The approach was recently evaluated in simulation using the active head of the
humanoid robot ARMAR-4 (Asfour et al., 2013). Gaze stabilization methods
based on the IK are quite efficient since they can effectively compensate per-
turbations with a feed-forward controller. However, they can only compensate
for self-induced perturbations. To this end, Habra et al. (2017) present a bio-
inspired system that combines VOR and OKR with an IK method. The system
is based on the reafference-principle (von Holst, 1954; von Holst and Mittel-
staedt, 1950) and removes self-induced motions from sensor values, i. e., the
optical flow and the head rotational velocity measured by an IMU. Thereby,
eye stabilization reflexes are only invoked if the perturbation is not induced
by the robot and therefore cannot be compensated by an inverse kinematics
method. The system is evaluated in the humanoid robot ARMAR-III and ex-
periments have been later extended in Habra et al. (2017) to the humanoid robot
ARMAR-4.
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Indeed, gaze stabilization and gaze control are intertwined. Roncone et al.
(2016) designed a gaze control architecture allowing head stabilization and ob-
ject tracking by executing saccadic eye movements on the iCub robot. Nonethe-
less, the system only allows for a single object to be tracked and does not sup-
port attention shifts based on the task acuity, which are required for a more
complex scenario like grasping.

Other robotic applications include object tracking. Ude et al. (2003) integrated
foveal and peripheral vision to track moving objects. Once a new area of inter-
est is selected, the robot directs its gaze towards it and the object is subjected
to a more detailed analysis. The system detects events to trigger saccadic eye
motions. After a saccade, the robot starts pursuing the area of interest within
the high-resolution foveal region. Similar work was studied by Omrčen and
Ude (2010). The authors realized an object tracking controller for a Karlsruhe
Humanoid Head (Asfour et al., 2008) using a virtual joint. In Ude and Asfour
(2008), the authors exploit the properties of an active humanoid vision system
to construct an effective object recognition system, where wide angle views
were used to search for objects, direct the gaze towards them and keep them in
the center of narrow-angle views. Milighetti et al. (2011) present a system for
the Karlsruhe Humanoid Head. The system uses a Kalman filter approach to
predict the trajectory of a moving target.

2.4.1. Summary

Methods for gaze control and gaze stabilization were presented in this section.
Both coordinate the gaze. Gaze stabilization and gaze control mechanisms are
not only present in humans, but also in almost any animals with visual percep-
tion.

Gaze control is a crucial concept in humanoid robotics due to the anthropo-
morphic design. Gaze control includes stabilization, tracking, and attention
switching. These are several aspects of a humanoid gaze control system that
need to be considered. Gaze stabilization methods are required to improve vi-
sual perception and to reduce image blur. An overview of the most important
gaze stabilization approaches is provided in Table 2.5. Typically, gaze stabiliza-
tion methods either mimic human inspired stabilization reflexes, such as the
Vestibulo-Ocular Reflex, or are based on an internal model. In Chapter 5 of this
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Publication Gaze Stablization Modalities Active Vision

Author Year
Eyes Head Both

bottom-up top-down

VOR OKR VCR IK

Shibata and Schaal 2001 X X - - - -

Kryczka et al. 2012 X X - X - -

Vannucci et al. 2016 X X X - - -

Roncone et al. 2014 - - - X - -

Habra and Ronsse 2016 - - - X - -

Roncone et al. 2016 X - - X X -

Habra et al. 2017
X X - X

- -

This approach X X

Table 2.5.: Comparison of relevant approaches for gaze stabilization.

thesis, methods for gaze stabilization are linked to an active vision method.
Gaze stabilization modalities enable visual perception during motion.

2.5. Discussion

This chapter discussed the most relevant work with respect to this thesis. There-
fore, a definition of the most relevant concepts was given. Here, the active vi-
sion paradigm is essential since an active vision method considers the robot as
an active observer. Active vision methods purposefully manipulate the camera
pose and camera parameters in order to improve the current perception. Thus,
active vision is linked to a task or is stimulus driven. The approach of this the-
sis was classified as active vision method.
After the concepts were introduced, the chapter reported on related work. In
particular, this includes work on scene modeling and understanding, active
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vision methods, especially NBV planning, as well as gaze control and stabi-
lization modalities. Alternatives to scene modeling, as presented in Chapter 3,
were also presented. Similar to that, active vision methods that deal with the
NBV problem are classified and positioned with respect to the approach in
Chapter 4. Visual attention methods, relevant for humanoids, are also listed.
Gaze stabilization is necessary to enable visual perception while moving as
shown in Chapter 5. Hence, this chapter also gave an overview of gaze con-
trol and gaze stabilization methods.
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Knowledge about the environment is of utmost importance for both humans
and robots when interacting with the scene. This knowledge includes not only
the geometric structure of the scene, but also the physical relationships among
objects and possible actions that can be performed.
For example, a humanoid robot exploring a partially collapsed building must
autonomously create a scene representation. The actual scene can largely differ
from the expected situation. Therefore a robot’s mission cannot be planned
in advance and the scene representation including interaction possibilities has
to be extracted autonomously. Some tasks even require an understanding of
the effects of actions, especially in search and rescue operations. If a person is
buried under a steel girder, the steel girder must be lifted first.

This chapter introduces a 3D scene model including a semantic representation
of unknown environments. The scene model is extracted from the robot’s cur-
rent view, i. e., from visual sensor data streams and forms the basis for the
subsequent Next-Best-View (NBV) planning method described in Chapter 4.
The geometric primitive detection method presented here corresponds to the
Segmentation then fitting according to the classification of Kaiser et al. (2018).
Methods presented here include results from Kaiser et al. (2015a), Grotz et al.
(2017b), Kartmann et al. (2018), and Grotz et al. (2019).
Figure 3.1 depicts the data flow and different processing steps. The data flow
starts with visual sensor data streams followed by segmentation. For each seg-
ment, geometric primitives are extracted. The geometric primitives build a
geometric representation of the scene. The outline of the chapter follows the
processing steps for semantic scene perception. Hence, Section 3.1 begins with
a method to build a geometric scene model from the current view. Section 3.2
completes the semantic scene representation by describing methods for scene
understanding and the extraction of affordances. Section 3.3 presents a spatio-
temporal approach to fuse results from multiple views. Section 3.4 describes
evaluation of the methods and Section 3.5 summarizes the results.
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Scene Model
RGB-D
Sensor

Scene Analysis Robot ControlView Sampling
Next-Best-

View

Part 1
Semantic Scene 
Representation

Figure 3.1.: Semantic scene representation of unknown environments from vi-
sual sensor data streams. A 3D geometric scene model is con-
structed. Spatial relations, including support and stability, are in-
ferred among objects. Figure adapted from Grotz et al. (2017b).

3.1. Geometric Scene Modeling

A 3D scene representation is of utmost importance for a humanoid robot. With-
out it a robot cannot interact with the scene. In a first step, spatial information
must be encoded into a 3D model of the scene. The scene model has to cover
all necessary geometric details. At the same time, the scene model must allow
a compact and memory efficient representation, as the resources of the robot,
e. g., CPU and memory, are limited. In this approach, the objects are there-
fore abstracted using geometric primitives. The set of considered geometric
primitives consists of cuboids, cylinders, planes and spheres. Using geomet-
ric primitives has two advantages. They preserve geometric properties of the
scene while at the same time they allow for a simplification of the input data.
Thus, a geometric primitive based representation requires less memory as well
as an easier analysis in subsequent steps. The scene model interprets the ac-
quired visual sensor data. Since the field of view is limited, multiple views
must be considered. To aggregate data from multiple views, the robot must
also register the current view with respect to previous views. The following as-
sumes that the pose of each view is known in relation to the world coordinate
system. The problem of registering views with respect to each other is briefly
described in Appendix A.5. A temporal parameter is introduced to differen-
tiate between two different point clouds that were recorded at different times.
I In the following, a superscript notation denotes this temporal information.
(i) The superscript · t denotes data at time t, e. g., P t denotes the point cloud
captured at time t. (ii) The superscript · 1,t denotes aggregated data from time
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1 to t, e. g., P1,t denotes the registered point cloud from time 1 to time t. The
temporal parameter t is omitted in the following if it can be derived from the
context.

To create a geometric model, the point cloud P captured from the current view
is decomposed by segmentation into plausible and disjoint regions Pi, such
that

P =
⋃
i

Pi and (3.1)

Pi ∩ Pj = ∅ ∀i, j i 6= j . (3.2)

The additional segmentation step divides the visual sensor data into plausi-
ble and disjoint parts. These can already indicate possible objects in the scene.
The process of segmentation is described in Appendix A.6. Subsequent steps
therefore process already partitioned data. For subsequent steps, the segmen-
tation not only reduces the input size but also enables the parallel execution.
For example, the extraction of the geometric primitives can be accelerated sig-
nificantly by parallel execution. After the segmentation step, the geometric
primitives ψi are iteratively fitted to each segment in the point cloud. For this
purpose, a method based on Random Sample Consensus (RANSAC) (Fischler
and Bolles, 1987) estimates the model parameters from a set of points. A cus-
tomized approach uses the geometric primitive fitting methods provided by
the widely used Point Cloud Library (PCL) (Rusu and Cousins, 2011). For-
mally, this step allows the decomposition of a segmented point cloud acquired
at time t into a set of geometric primitives

Ψt = {ψt1, . . . , ψtmt
} . (3.3)

For further processing, each geometric primitive ψi is linked to an inlier point
cloud Pψi

⊂ Psi of the corresponding segment si. Inliers are points that match
the fitted model of the geometric primitive. As emphasized in Schnabel et al.
(2007), it is important to distinguish between the segment and the inlier point
cloud. For each Pψi

, the RANSAC based approach randomly selects a certain
minimum number of points to determine the model parameters as a new model
hypothesis. The points associated with the segment si are then tested to see if
they belong to the fitted model, i. e., if they count as inliers. Fitting the model
is done for each geometric primitive shape and the model with the highest
number of inliers is selected as best model. Finally, the model inliers Pψi

are re-
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Figure 3.2.: An input point cloud and the fitted geometric primitives.

moved from the point cloud Psi and the step is repeated until no more geomet-
ric primitives are found for the segment si or the cardinality of the remaining
points in Psi is smaller than a threshold. This means that each fitted geomet-
ric primitive must have at least τmin inlier points. Similar to that, the number of
maximum points is limited by τmax. For more details on the approach see Kaiser
et al. (2015a) and Grotz et al. (2017b). For each geometric primitives ψi geomet-
ric properties like the oriented bounding box OBB(ψi) are calculated from the
inlier point cloud Pψi

. Figure 3.2 shows an example scene model from a point
cloud. Algorithm 1 outlines the fitting of geometric primitives as described in
Kaiser et al. (2015b).

3.2. Semantic Scene Modeling

Scene understanding of unstructured environments plays an essential role in
the autonomous planning and execution of grasping and manipulation tasks.
Therefore, the geometric information has to be interpreted first to allow for
further reasoning and better understanding. Section 3.2.1 presents a method
that represents spatial relationships among the extracted geometric primitives.
Spatial relations indicate how a geometric primitive is located in the scene in
relation to another geometric primitive. Similar to that, Section 3.2.2 discusses
a method that analyses stability and support relations between the extracted
geometric primitives. These relations are used by the active vision method de-
veloped in the following chapter. Finally, Section 3.2.3 recaps the automatic ex-
traction of interaction possibilities, so called affordances, from geometric prim-
itives. Both, reasoning over support and stability as well as the autonomous
extraction of affordances are not the major focus of this thesis. Therefore, this

52



3.2. Semantic Scene Modeling

Algorithm 1: Geometric Primitive Extraction
Data: Segmented Point Cloud P1 . . .Pn, Minimum number of inliers τmin,

Maximum number of inliers τmax

Result: Geometric Primitives Ψ

Ψ← ∅;
foreach Pi ∈ P1 . . .Pn do

while |Pi| ∈ [τmin, τmax] do

ψplane ← RANSACplane(Psi);

ψcylinder ← RANSACcylinder(Psi);

ψsphere ← RANSACsphere(Psi);

ψbest ← arg maxψ∈{ψplane,ψcylinder,ψsphere}|Pψ|;

if ψbest = ∅ then

break;

ψnew ← EuclideanClustering(Pψbest);

ComputeGeometricProperties(ψnew);

Ψ← Ψ ∪ ψnew;

Pi ← Pi \ Pψnew ;

return Ψ

section recaps the most relevant definitions for the NBV approach. Methods are
described in detail in Kartmann et al. (2018) and in Kaiser and Asfour (2018).

3.2.1. Spatial Reasoning

Spatial relations among extracted geometric primitives are encoded using a
graph structure. The approach presented here is similar to work of Schnabel
et al. (2008). Formally the spatial relations are modeled with a graph G = (V,E).
The vertices V of graph map the set of extracted geometric primitives ψi ∈ Ψ.
The edges E model the spatial relations among the geometric primitives. First,
a distinguished geometric primitive is selected as the root of the graph. Typ-
ically, this is defined as the ground floor plane or the table-top. Specifically,
the root ρ of the graph is identified as the geometric primitive with the lowest
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Figure 3.3.: The humanoid robot ARMAR-III in a kitchen environment. The
robot does not have any knowledge about the scene. The goal of
the experiment is to lift a box from the table. Since both sides of the
box are required for executing the manipulation action more than
one view is required. Hence, multiple-views are registered with
respect to each other and the geometric primitives are fitted.

height in the scene with respect to the robot and thus

ρ = arg min
ψ∈Ψ

height(ψ) . (3.4)

Second, the remaining geometric primitives are iteratively checked for inter-
sections and added to the graph of the scene representation. Formally, an edge
e = (ψi, ψj) is added to the graph if

OBB(ψi) ∩̇OBB(ψj) 6= ∅ , (3.5)

where OBB(·) denotes the associated Oriented Bounding Box (OBB). When cal-
culating the OBBs, both OBB(ψi) and OBB(ψj) are slightly extended by ε > 0 in
order to account for perceptual inaccuracies. Formally, the intersection opera-
tor X∩̇Y for two sets X and Y is defined as follows:

X∩̇Y = {x ∈ X | ∃ y ∈ Y : ‖x− y‖2 ≤ ε} . (3.6)

In practice, the parameter ε depends on the sensor and setting ε = 5 cm yields
good results. To speed up the process, geometric primitives outside the current
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Figure 3.4.: Left: The input point cloud registered from multiple-views. The
scene is shown in Figure 3.3. Right: Extracted geometric primitives
including spatial relations. Figures taken from Grotz et al. (2017b)
(© 2017b IEEE).

field of view are discarded. Thus the number of computationally exhaustive
intersection tests is reduced. Figure 3.4 depicts an exemplary set of geometric
primitives the obtained scene graph. The scene is shown in Figure 3.3.

3.2.2. Stability and Support Reasoning

Support relations among geometric primitives are based on the spatial extent
of the geometric primitives. The notation and definition of the support rela-
tions follow the work of Mojtahedzadeh et al. (2015) and Kartmann et al. (2018).
Similar to the spatial reasoning, the support graph Gs = (V,E) spans the geo-
metric primitives. However, support relations are not symmetric. Therefore,
the support graph is a directed graph. Again, the vertices V map the set of
geometric primitives ψ. Furthermore, the edges E model possible support re-
lations among the objects. Two geometric primitives ψi, ψj ∈ Ψ are denoted as
SUPP(ψi, ψj) ⇐⇒ ψi supports ψj . In other words, ψj loses its motionless state
if ψi is removed, then ψi supports ψj .

To determine the support relations, all pairs of geometric primitives in contact
are identified. For each pair (ψi, ψj) in contact, a separating plane is constructed
at the contact points. A support relation edge is added to the graph. The edge
starts from the geometric primitive below the constructed separating plane and
ends at the geometric primitive above the supporting plane.
In the following, a geometric primitive is considered unstable if there is no sup-
port for the geometric primitive. Vice versa a geometric primitive ψj is consid-
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Figure 3.5.: Left: Input point cloud. Right: Fitted geometric primitives and ex-
tracted support relations based on the input point cloud.

ered stable if a path exists from ψj to ρ with (ψj, ·) . . . (·, ρ) ∈ E. A major reason
why a geometric primitive is considered unstable is because of an incomplete
scene model. This means that a supporting geometric primitive is missing or
the scene is not yet fully explored. Therefore, support relations are of particular
interest as a hint for incomplete data of the scene model. Figure 3.5 shows an
example for extracted geometric primitives and the support graph.

3.2.3. Affordance Extraction

The geometric scene model can be further enriched with affordances. Affor-
dances are interaction possibilities that are associated with an object in relation
to the abilities of an agent. The term affordances was coined by Gibson (1979).
Hence, only relevant parts are given in the following. For more details about
the method and implementation, the reader is referred to Kaiser et al. (2016)
and Kaiser (2018). Affordances are detected by sampling the surface and ge-
ometric properties of the geometric primitives with respect to the end-effector
of the robot. A detailed formulation is outside the scope of work. More for-
mally, an affordance is defined as a function which maps an end-effector pose
x ∈ SE(3) to a belief expression d ∈ D. These interaction possibilities in-
clude affordances such as (i) support, (ii) lean, (iii) grasp, (iv) hold, (v) push,
and (vi) lift. Affordances are automatically extracted by sampling end-effector
poses using the geometric primitives. The geometric properties, such as the
normal, size, and orientation of the fitted geometric primitives are the basis to
determine the affordances in the scene. Figure 3.6 visualizes an examples scene
with an extracted lift affordance for the humanoid robot ARMAR-III.
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Figure 3.6.: An executed bimanual lift affordance for the humanoid robot
ARMAR-III. Left: An external view of the experiment. Right: Ge-
ometric primitives and extracted affordances are visualized and se-
lected by an operator. Figure taken from the experiment of Grotz
et al. (2017b) (© 2017b IEEE).

3.3. Spatio-Temporal Fusion of Geometric
Primitives

Two sets of geometric primitives Ψt1 and Ψt2 resulting from multiple individ-
ual extraction processes at times t1 and t2 cannot be considered as entirely in-
dependent of each other. For example, a consistent geometric primitive that
is too large to be visible within the robot’s field of view and thus results in an
arrangement of multiple smaller extracted geometric primitives. Parts of the
larger geometric primitive, however, can be detected from different views. To
this end, this section describes a fusion step for geometric primitives extracted
from multiple views.
Let Ψ1,t denote the set of existing primitives from previous views. Then, given
the scene graph of the geometric primitives Ψ1,t, other geometric primitives
Ψt+1 from the current view are fused with previous ones. The Jaccard index
(Jaccard, 1912) is a measure for to express the similarity of two sets. The Jac-
card index is defined as:

J(ψi, ψj) =
|Pψi
∩ Pψj

|
|Pψi
∪ Pψj

|
=

|Pψi
∩ Pψj

|
|Pψi
|+ |Pψj

| − |Pψi
∩ Pψj

|
, (3.7)
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Algorithm 2: Spatio-temporal Fusion of Geometric Primitives.
Data: New primitives Ψt+1, Previously fused primitives Ψ1,t

Result: Set of fused primitives Ψ1,t+1

Ψ̂1,t ← FrustrumCulling(Ψ1,t)

foreach ψ ∈ Ψ̂1,t do

foreach ϕ ∈ Ψt+1 do

if OBB(ϕ) ∩OBB(ψ) = ∅ then

continue;

if not CompareModelParameters(ϕ, ψ) then

continue;

if ϕ ⊂ Ψ then

Ψt+1← Ψt+1 \ ϕ;

else if Inlier(ϕ, ψ) > λo ∧ Inlier(ψ, ϕ) < λp then

Ψt+1← Ψt+1 \ ϕ;

else if Inlier(ψ, ϕ) > λo ∧ Inlier(ϕ, ψ) < λp;

then

Ψ̂1,t← Ψ̂1,t \ ψ;

Ψ1,t+1 ← Ψ̂1,t ∪Ψt+1;

return Ψ1,t+1;

where | · | denotes the cardinality, e. g., here the number of points. Since geomet-
rical properties such as the OBB are already available the following equation is
used instead

Inlier(ψi, ψj) =
|Pψi
∩OBB(ψj)|
|Pψi
|

. (3.8)

Algorithm 2 outlines the spatio-temporal fusion of geometric primitives. As
soon as a new set of geometric primitives Ψt+1 is computed, the current geo-
metric primitives Ψ1,t are filtered according to the robot’s current field of view.
Thereby, geometric primitives, which are not visible in the field of view, are
discarded and thus the overall computing time is reduced. To begin with, each
pair of geometric primitives ψ ∈ Ψ1,t and ϕ ∈ Ψt+1 is tested if both overlap at
all. During this step, it is tested whether OBB(ψ) and OBB(ϕ) are intersecting.
If two geometric primitives ψ and ϕ are intersecting, then Equation 3.8 is used
to evaluate the geometric similarity. This ratio expresses the degree of coverage
between two primitives. When the degree of coverage between ψ andϕ exceeds
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Add Primitive to Ψ

Figure 3.7.: Workflow of the spatio-temporal fusion of geometric primitives.

a threshold value λo, the covered geometric primitive is removed from the new
set of geometric primitives and only the large geometric primitive is kept. To
prevent partially overlapping geometric primitives from being removed, the
number of inliers between ϕ and ψ is also checked. The threshold value is de-
noted by the lower bound λp. This is due to the fact that the OBB can be larger
than the actual geometric primitive. For this work, the following thresholds are
used λo = 0.7 and λp = 0.3. Figure 3.7 visualizes the workflow for fusing a new
geometric primitive ϕ ∈ Ψt+1.

3.3.1. Support Graph Combination

For the scene model and semantic scene understanding, the information from
multiple views must be combined. The following approach for merging sup-
port graphs is used in Chapter 4. A simple strategy to combine the support
graph information is to extract the scene model and support relations after ev-
ery single view from a global point cloud P1,t+1, containing all the registered
previous views. In the following, this case will be denoted as Point Cloud only
(PC). To speed-up the process, the global point cloud is first downsampled be-
cause the geometric primitive fitting step is computationally expensive and the
calculation time scales with the input size of the point cloud. Overall, there
are two major arguments against computing the support graph from a global
point cloud: (a) the total runtime is significantly increased, and (b) the regis-
tration of the views may not be optimal, so that the RANSAC based geometric
primitive fitting might fail to find all inliers for a geometric shape. Therefore
the geometric primitives and the support graph are iteratively extracted from
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Point Cloud Support Graph Combination

t Input Registered PC SG PC + SG

1 P1 P1,1 = P1 G1
s G1

s G1
s

2 P2 P1,2 = P1 ∪ P2 G2
s G1,2

s G1
s ∪ G2

s

...
...

...
...

...
...

n Pn P1,n =
⋃n
i=1Pi Gns G1,n

s Gn−1
s ∪ Gns

Table 3.1.: Schema of support graph combination methods.

each view. The result then is fused with a global consistent support graph G1,t
s .

Given the support graph Gt+1
s = (V t+1, Et+1) extracted from the current view,

the vertices, i. e., the geometric primitives, are first matched with vertices of
the existing support graph Gts = (V t, Et). The approach is similar to the fusion
of geometric primitives as presented in Section 3.4.2. For this purpose, shape,
position, and orientation as well as the extent of the geometric primitives are
compared. Similarly, it is tested if an edge e = (A, B) ∈ Et+1 already exists in
Et. If e 6∈ Et then it is added as a new edge. For each edge e, the number of
times the edge e has been extracted and matched is counted. The number of
matches is denoted as occ(e). This allows the NBV algorithm to later validate
the existence of the support relations, which have been visible only a few times.
This support graph fusion method is called Support Graph (SG).
Finally, these two methods are combined into a method called (PC + SG). For
this method, the point cloud is registered as proposed in the first approach (PC).
The support graph Gt+1

s = (V t+1, Et+1) is extracted fromP1,t+1 and merged with
Gts as described in the second approach (SG). Table 3.1 outlines the different
support graph combination methods.

3.4. Evaluation

This section presents real world experiments to assess the quality of the scene
model. The following experiments were performed using the humanoid robots
ARMAR-III (Asfour et al., 2006) and ARMAR-6 (Asfour et al., 2019b). In the
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first case, the RGB-D sensor ASUS Xtion Pro is used for the experiments, while
in the second case, the Carmine Primesense 1.09 is used. Both work in a sim-
ilar way. The major difference is that the ASUS Xtion Pro has a larger sensing
distance and the Carmine Primesense has a lower minimum sensing distance.
Robot and sensor systems are described in Appendix B.

3.4.1. Qualitative Evaluation

For the qualitative evaluation of the geometric primitive fusion, the humanoid
robot ARMAR-6 is located in a corridor. The scene was chosen because of the
many branches and corners, and thus several views are necessary to cover the
entire area. The robot moves within the corridor and constantly shifts the gaze.
Here ElasticFusion (Whelan et al., 2017) is used to register multiple views.
To increase the robustness of the registration, the robot’s forward kinematics
and odometry are included. The Locally Convex Connected Patches (LCCP)
method (Stein et al., 2014) is used to segment the point cloud. Due to the build-
ing architecture, the scene mainly consists of planes. The entrance corridor has
a total length of 33.5 m and a total width of 2.78 m. Besides that, there is a sec-
ond corridor branching off from the main corridor, which is not visible from
the entrance and thus requires the robot to change the position. Additionally,
many embellishments around the room entrances hide parts of the walls. Fig-
ure 3.8 shows parts of the scene, the floor plan, the registered views as point
cloud, and the extracted geometric primitives.

3.4.2. Spatio-Temporal Primitive Fusion Experiment

To assess the presented method on semantic scene perception, the accuracy
of the spatio-temporal fusion of geometric primitives is investigated by com-
paring primitives fused from real RGB-D camera data with manually labeled
ground truth.
The ground truth is created by using a simulated version of the environment.
The simulation uses CAD models of the kitchen elements. A simulated RGB-D
sensor with the same camera parameters as the sensor mounted on ARMAR-
III captures the scene. Since the pose of the camera is known exactly, the ad-
ditional registration step is not necessary, which typically induces noise to the
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(a) Scene (b) Floor layout

(c) Fused Point cloud (d) Extracted Geometric primitives

Figure 3.8.: Qualitative evaluation of the geometric primitives fitting with the
humanoid robot ARMAR-6. ARMAR-6 is scanning a large corridor.
The point cloud was segmented using the LCCP method. Geomet-
ric primitives are extracted and fused iteratively.
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estimated camera pose. The captured ground truth point cloud G is then man-
ually labeled and thus G = {G1 . . . Gm}, with mutually disjoint segments Gi:

Gi ∩Gj = ∅ ∀i 6= j . (3.9)

For each ground truth segment Gi, the OBBs are computed. Given OBB(Gi),
the extracted geometric primitive ψj ∈ Ψ is selected that maximizes the number
of inliers as specified by the inlier ratio defined in Equation 3.8 is denoted as
ψ(Gi). Formally,

ψ(Gi) = arg max
j

Inlier(Gi,Ψj) . (3.10)

Equation 3.10 is now used to quantify the quality of extracted geometric primi-
tives Ψ compared to a ground truth segmentationG. The value is then averaged
and denoted as InlierIndex(G,Ψ) with

InlierIndex(G,Ψ) =
1

m

m∑
i=1

Inlier(Gi, ψ(Gi)) . (3.11)

Since Equation 3.11 only captures over-segmentation, the Jaccard index is used
to determine overlap. Therefore, the formulation in Equation 3.7 is adjusted,
summed and averaged with

OverlappingIndex(G,Ψ) =
1

m

m∑
i=1

max
j

|Gi∩̇Ψj|
|Gi ∪Ψj|

. (3.12)

An outline of the experimental setup is shown in Figure 3.9.

A total of 58 point clouds resembling a kitchen environment were recorded
from different angles using the sensory equipment of the humanoid robot ARMAR-
III. The robot is moved through the kitchen environment. Captured point clouds
are sequentially processed by utilizing the approach presented in this chapter.
Figure 3.10 plots the corresponding values of Equation 3.11 and Equation 3.12
for the geometric primitives aggregated from consecutive frames over time.
Since the robot is constantly moving, and thus new parts of the scene become
visible over time, the number of inliers increases monotonically until the scene
is fully covered. Over time, both indices converge towards the maximum value
of 1. This indicates that the result of the spatio-temporal fusion of iteratively
detected geometric primitives eventually almost resembles the ground truth
primitives. Figure 3.11 displays the number of removed and modified primi-
tives over time in the same experimental setup. It can be seen that the number
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of geometric primitive modifications drops after the scene is reasonably well
covered by the aggregated scene model, indicating that the method for spatio-
temporal primitive fusion eventually reaches a state of equilibrium, where ad-
ditional views of the scene have only little influence on the aggregated geomet-
ric primitive model.

3.5. Summary

This chapter presented a method for a semantic scene perception of unknown
environments using RGB-D sensor data. This is the first key component for the
automatic perception of unknown environments.
The scene model is based on the detection of geometric primitives comprising
planes, cylinders, spheres, and cuboids. These geometric primitives store the
geometric information of the environment and thereby represent objects and
elements in the scene. The geometric representation is then enriched with se-
mantic information. Semantic information is inferred by the construction of a
graph-based scene representation that takes neighborhood relations among ge-
ometric primitives into account. The spatial reasoning also makes it possible to
identify physically plausible support relations among the geometric primitives,
which are essential for the interaction with the scene.
Further, a method for spatio-temporal fusion of geometric primitives was shown.
The method is needed when combining consecutive views, as it resolves incon-
sistency in the scene model and reduces computation time. Finally, the methods
were evaluated on the humanoid robots ARMAR-III and ARMAR-6.
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Figure 3.9.: Kitchen scenario as described in Section 3.4.2. Top: The image
shows the registered result of the source point cloud. Middle: Mul-
tiple views are first registered and then geometric primitives are ex-
tracted. Bottom: Primitives are extracted iteratively from consecu-
tive frames. Figures taken from Grotz et al. (2017b) (© 2017b IEEE).

65



Chapter 3. Semantic Scene Representation

0 10 20 30 40 50

view number

0.0

0.2

0.4

0.6

0.8

1.0

ra
ti

o
 (

%
)

InlierIndex
OverlappingIndex

Figure 3.10.: The plot visualizes the inlier ratio (Equation 3.11) and the overlap-
ping index (Equation 3.12) over time. After 30 views, most of the
scene is mapped to geometric primitives. In the following views
the scene model is refined as can be seen from the increasing Over-
lappingIndex value. Figure taken from Grotz et al. (2017b) (© 2017b
IEEE).
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Figure 3.11.: Number of primitives modified, removed and added. After 40
views the scene is almost fully covered. Thus, only a few geo-
metric primitives are added. Re-detected primitives are updated.
Figure taken from Grotz et al. (2017b) (© 2017b IEEE).
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Extracting a complete scene model from a single view is not possible since rel-
evant parts of the scene are hidden. Figure 4.1 illustrates an example, where
more than one view is required. The essential part of the table-top is hidden,
a common issue when dealing with a cluttered environment. This prevalent
limitation is due to occlusions. Hence, it is crucial to actively control the cam-
era, by changing the robot’s position and gaze direction, in order to mitigate
the effect of occlusion and to resolve inconsistencies in the scene model. What
is visible and relevant in a view is one of the major questions an active vision
system should answer. To overcome these limitations, this chapter describes an
active vision system for automatic scene perception. The active vision system
determines the Next-Best-View (NBV), which yields an improvement of the
semantic scene representation. Therefore information from the scene model
is considered. Figure 4.2 outlines the system architecture. The algorithm de-
scribed here follows the idea of many NBV approaches, e. g., Connolly (1985),
Banta et al. (2000), Vasquez-Gomez et al. (2017), Monica et al. (2016) or Oßwald
et al. (2017), which divide view planning into two steps: (1) view sampling,
and (2) view evaluation. The first step samples possible views, which are then
subjected to further evaluation in the second step. The NBV is then defined as
the view which scores best in the evaluation. The presented approach includes
results of Sippel (2019) and Grotz et al. (2019).
The chapter is organized as follows. Section 4.2 describes the view sampling
and presents a novel approach using support relations among objects as a hint.
Section 4.3 deals with the view evaluation to determine the NBV with respect to
the semantic scene model. The view evaluation balances between exploration
and validation of the scene model using a utility function described in Sec-
tion 4.3.3. The formulation of the utility function includes task-oriented mea-
sures derived from the semantic scene model. Section 4.5 presents the evalua-
tion of the methods. Finally, Section 4.6 concludes the chapter.
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Figure 4.1.: A table-top scenario. The robot cannot perceive the scene com-
pletely from the initial view due to occlusion. The robot has to
change the position in order to extract a complete representation of
the scene. Left: External view showing ARMAR-6 at the initial posi-
tion before exploring the scene. Right: The semantic scene represen-
tation extracted from the initial view with occlusion. The semantic
scene representation comprises of fitted geometric primitives and
support relations in the scene. The contact points between objects,
however, are not visible from the initial view.

4.1. View Representation

A view v ∈ SE(3) specifies the coordinate system of the visual sensor, i. e., the
center and the orientation with respect to the world coordinate system. The
orientation of the camera coordinate system includes the robot’s gaze direction
as well. A common approach is to sample views on a sphere with fixed radius
r around a center p, e. g., as proposed in Monica et al. (2016). Without loss of
generality, the sphere is centered at the origin of the world coordinate system,
namely p =  = (0, 0, 0). To move the center of the sphere to a Point of Interest
(PoI), all coordinates are simply translated by the position of the PoI. The sphere
S2 of radius r is given by

S2
r =

{
(x, y, z) = p ∈ R3 | ‖p‖ = r

}
.

To reduce the sampling size, views are further subjected to the upper half space
with z > 0, since it is silently assumed that the ground plane is z = 0. In this
work, the radius r is set to 1.5 m to account for inaccuracies in the depth image.
While the maximum sensing range for structured light sensors is much higher,
the depth error is not linear with respect to the sensed distance. Once the sphere
is constructed, views are sampled. Possible views are then defined as camera
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Figure 4.2.: The system architecture to determine the Next-Best-View. The se-
mantic scene model is extracted from the current view as described
in Chapter 3. Based on the physical plausible support relations
views are sampled and evaluated using a utility function.

coordinate systems on the sphere with the view axis intersecting the center o
of the sphere. Further, a rotation around the view direction is neglected as it
does not contribute significantly to what is visible in the current view. Thus,
for a view v = (R, t) the rotation R is composed of R = Rx ·Rz, with Rx being a
rotation around the x-axis andRz a rotation around the z-axis respectively. For-
mally, the set of all possible views V given the previous constraints is defined
as

V =
{

(R, t) | R = Rx ·Rz ∈ SO(3), t ∈ S2
r

}
⊂ SE(3) . (4.1)

Evaluating all possible views in V is not possible and the space for sampling
views has to be discretized. Discretizing the set affects the quality of the eval-
uated view slightly due to the opening angle of the visual sensor and the over-
lap between neighboring views, i. e., moving the sensor only slightly will only
change slightly what is visible in the image. Formally, let V ⊂ SE(3) be the set
of all sampled views. The Next-Best-View (NBV) is then defined as the view

v̂ = arg max
v∈V

u(v) , (Next-Best-View)

which maximizes a utility function u(·), that models different aspects, such as
information gain or path costs. The utility function is described in detail in
Section 4.3.3. To reach the NBV v̂, the view v̂ = (R, t) is translated into a plat-
form position and a gaze direction. The platform position (x, y) is given by the
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projection x
y

 =

1 0 0

0 1 0

 · t (4.2)

and the platform orientation α is given by

α = −π
2

+ arctan2 (−t2, t1) (4.3)

where ti is the i-th element of vector t. The range of arctan2 (·, ·) is (−π, π]. Af-
ter the robot has reached the new platform position and orientation, the gaze
direction is set to the camera orientation R using Inverse Kinematics (IK). Un-
reachable views are discarded.

4.2. View Sampling

A standard approach to sample views is to sample equidistantly on the view
sphere (Monica et al., 2016; Banta et al., 2000). Depending on the utility func-
tion, the evaluation can be time consuming. One way to reduce the overall
computation time, is to limit the number of sampled views.

4.2.1. Standard View Sampling

The easiest way to generate possible views is to sample equidistantly on each
view sphere and to set the view direction to the center of the sphere. Given
the radius r of the view sphere, possible views can be sampled using spherical
coordinates (r, θ, ϕ), with θ being the polar angle and ϕ being the azimuthal
angle, with 0 ≤ ϕ < 2π, 0 ≤ θ ≤ π, and r > 0. The spherical coordinates can
then be translated to Cartesian coordinates with


x

y

z

 =


r · sin(θ) · cos(ϕ)

r · sin(θ) · sin(ϕ)

r · cos(θ)

 . (4.4)
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Algorithm 3: Points of Interest Generation
Data: Support Graph Gs = (V,E), View sphere S, Previous view poses

v̂0, . . . , v̂t

PoI ← ∅;
foreach A ∈ V do

U ← {B ∈ V |(B, A) ∈ E};
if U = ∅ then

θ ← GetLargestArc(S, v̂0, . . . , v̂t);

x← ComputeContactPoints(A, θ
2
);

PoI ← PoI
⋃
{(x, s)};

foreach B ∈ U do

x← A +
(B− A)

1

2
||B− A||2

;

s← ComputeSaliency(x);

PoI ← PoI
⋃
{(x, s)};

return PoI ;

Thus, to sample k views linearly on the view sphere, the subset of possible
views can be expressed as

xk,r =

{
(r, θ, ϕ) = (r,

2πm

k
,
2πn

k
) | 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π,m, n ∈ Z0

}
,

with k being the step size of the samples.

Instead of sampling views equidistantly, views can also be sampled randomly.
To sample the view poses randomly, choose uϕ and uθ to be standard uniformly
distributed random variables, i. e., uϕ, uθ ∼ U(0, 1). Given uϕ, uθ, the azimuthal
angle is then ϕ = 2πuϕ and the polar angle is θ = arccos(2uθ − 1). Using Equa-
tion 4.4, the spherical coordinates can be mapped to Cartesian coordinates.
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4.2.2. Top-Down View Sampling

The following presents an approach that utilizes the semantic information to
compute possible views instead of randomly sampling views on a sphere. This
sampling strategy is a top-down approach since it uses higher level informa-
tion. To this end, Points of Interest are identified in the scene and used to com-
pute views. The semantic information and the support relations are used to
generate PoIs in two different and independent steps. Algorithm 3 illustrates
the approach. In a first step, for each unsupported object, PoIs are generated
based on an object’s extent and previous views. Therefore, the largest arc on the
view sphere between previous positions of the robot is determined. The PoI is
then the intersection of the object from the line of the middle of the largest arc
to the object’s center. The underlying concept is that each object must have at
least one support edge due to gravity. A missing support for an object can be
explained by the fact, that either the object itself is not fully visible or that other
supporting objects are missing. A maximum saliency value, i. e. s(v) = 1, is
used to account for further exploration of the object and its area. In a second
step, points of interest are computed based on the edges between objects. Here,
the idea is to consider a relation in the support graph as more stable depending
on the number of times it has been observed. In this case, the saliency value
s(v) is computed as

s(v) = λs + (1− λs) cos

(
π

2
· occ(ex)

n

)
, (4.5)

where ex is the edge associated with the point of interest x, occ(ex) is the number
of times the edge ex was observed and n the number of total views and λs ∈
[0, 1] is parameter to define the importance of the support edge validation.

The points of interest are then projected on to the view sphere to represent
possible views of the robot. Similar to Grotz et al. (2017a), the saliency value
is propagated to neighboring views on the sphere with a decreasing value. An
example is shown in Figure 4.3. Occlusions are mitigated by checking if the line
of sight between the PoI x and the projected PoI v is free. In case of occlusion
the saliency value is inverted. Algorithm 4 lists the top-down view sampling
approach.
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4.2. View Sampling

(a) (b)

(c) (d)

Figure 4.3.: Identified Points of Interest (PoIs) in the scene. These points are
then projected to the view sphere. (a) shows the point cloud of the
current view. (b) shows the generated PoIs. (c) visualizes the projec-
tion using ray casting. (d) shows the view sphere with the projected
PoIs.

Algorithm 4: Top-down View Sampling
Data: Support Graph Gs, Sphere Center cx, Voxel Map V

S ← CreateViewSphere(cx);

PoI ← GeneratePoI(Gs, S, . . .);

foreach (x, s) ∈ PoI do

v← ProjectToSphere(x);

r← SingleRayCast(x, v, V );

if IsIntersectionFree(r, V ) and IsReachable(v) then

AddToViewSphere(v, S);
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Chapter 4. Next-Best-View Planning

4.3. View Evaluation

Given the sample view poses as described in the previous section, the views
have to be evaluated in order to determine the Next-Best-View. A typical ap-
proach is to predict the information gain, as described in the subsequent sec-
tion. However, as noted by Vasquez-Gomez et al. (2014) relying only on the
information gain does not consider the costs for the robot to reach the NBV.
Hence, using a utility function the traveled distance and other costs need to
be taken into account. In the following, two functions are described in order
to evaluate a view: the predicted information gain and the path costs. Finally,
both functions are combined and balanced in a utility function.

4.3.1. Predicted Information Gain

To quantify the quality of a sampled view v, the expected information gain is a
popular approach. The expected information gain is the information an agent
expects to gain when attending view v. In general, the expected information
gain IG(v) is defined as the difference between the previous entropy H(v)t−1

and the entropy H(v) when attending the view, with

IG(v) = H(v)−H(v)t−1. (Information Gain)

Information gain formulations have been used for active SLAM systems (Thrun
et al., 2005). Different formulations have been proposed to model the volumet-
ric information gain. A comparison of different NBV formulations for object
modeling tasks, is described for mobile robots in Isler et al. (2016) and for eye-
in-hand robotic arms in Karaszewski et al. (2016). Here, the mathematical no-
tation of Isler et al. (2016) is used. The volumetric information gain is predicted
by casting rays from the view pose v and counting the number of unknown
voxels. The predicted volumetric information gain for a view v ∈ V in general
is expressed as

IG(v) =
X

∀r∈Rv

X

∀x∈Xr

I . (4.6)

Here, Xr denotes the set of all traversed voxels x by ray r. Typically, an oc-
cupancy map is used to allow for voxel counting. In this work, the OctoMap
(Hornung et al., 2013) implementation is used. To speed-up ray casting a hier-
archical approach as suggested in Vasquez-Gomez et al. (2014) is used. There-
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fore, every 30th ray is considered. That reduces the number of rays to check
from 640 · 480 = 307200 to 10240. Next, the views with the highest information
gain are evaluated again, but this time without skipping a ray.

4.3.2. Path Costs

To reach a view v ∈ SE(3), a collision-free path is computed using a Rapidly
Exploring Random Tree (RRT) (Lavalle, 1998) based planner and the platform
of the robot is moved along the path segments. The path planner is part of
the robotics toolbox Simox (Vahrenkamp et al., 2013). Figure 4.4 shows an ex-
ample of a planned path. The planned path consists of several tuples with
platform position and orientation, i. e., pathv = (p0, α0), . . . (pn, αn), where n is
the path segment that corresponds to view v as specified in Equation 4.2 and
Equation 4.3. The costs to reach the final position (pn, αn) are given by sum-
ming up the partial costs. Since the humanoid robots used for the experiment
have a holonomic platform, rotational and translational movements can be exe-
cuted at the same time. Therefore, the costs to reach an intermediate position of
the path (pi, αi) considers rotation and translation independently. The former,
i. e., translational costs, are given by Euclidean distance between the path seg-
ments, while the latter, i. e., rotational costs, are given by the angle difference.
The angle difference of two angles αi−1 and αi, is confined to (−π, π] with

∆(αi−1, αi) = arctan2 (sin(αi−1 − αi), cos(αi−1 − αi)) . (4.7)

Figure 4.4.: Path planning example using a Rapidly Exploring Random Tree
(RRT) based approach. The scene shows a CAD model of the ex-
hibition booth at CeBIT 2018.
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Chapter 4. Next-Best-View Planning

To compare both costs, the two are divided by the maximum velocity of the
platform. For each path segment from (pi−1, αi−1) to (pi, αi) the maximum of
the translational and rotational costs is used. Thus, the costs d(pi−1, αi−1, pi, αi)

are defined by

d(pi−1, αi−1, pi, αi) = max (
‖pi−1 − pi‖2

vellin
,
|∆(αi−1, αi)|

velrot
) , (4.8)

where vellin is the maximum linear velocity and velrot is the maximum rota-
tional velocity respectively. Hence, d(·) provides an upper bound of the time
to reach the next path segment (pi, αi). In order to reach a view v, in addition
to the platform movements, the gaze has to be shifted as well. However, the
time to set joint angles is significantly smaller compared to time to move the
platform. Here, the time to shift the gaze is neglected as it does not contribute
significantly to the costs. The total path costs c(v) to reach a view v are thus
defined as

c(v) =


∞, if view v is unreachable
X

(pi, αi)∈pathv

d(pi−1, αi−1, pi, αi), otherwise. (4.9)

4.3.3. Utility Function

Once a set of view poses is chosen, each view needs to be evaluated in order
to select the Next-Best-View v̂. A standard approach is to use the estimated
volumetric information gain. However, the NBV does not depend solely on
explored space and this approach is only an estimate. Different aspects, such as
platform movement costs and task specific dependencies need to be considered
as well. Vasquez-Gomez et al. (2014) mentions several constraints and aspects
that a Next-Best-View system needs to consider. This includes, for example,
the reachability of the view or the navigation distance. As already mentioned
in Chapter 2, the NBV differs for humanoid robots compared to industrial eye-
in-hand systems by uncertainty of the camera pose.

To evaluate the sampled view set, relevant aspects of the current task are mod-
eled with a utility function (Vasquez-Gomez et al., 2017). Since the utility func-
tion covers different aspects, the parts of the utility function must be normal-

76



4.4. System Architecture

ized. Hence, the information gain is set to

IG(v) =
IG(v)

arg maxv IG(v)− arg minv IG(v)
, (4.10)

and the path costs are set to

c(v) =
c(v)

arg maxv c(v)− arg minv c(v)
. (4.11)

This normalizes both functions to [0 . . . 1].

In this work, the NBV is determined using the following utility function u

with

u(v) : V → R (4.12)

v 7→ IG(v)− λ · c(v) . (4.13)

Here, IG(v) models the predicted information gain and c(v) are the costs of
reaching view v. The weight λ balances between exploration and path costs.
The utility function is similar to the function proposed in Oßwald and Ben-
newitz (2018). The only differences are that a different cost function has been
used and both the costs and the information gain have been normalized. Nor-
malizing is important since both measures have to be compared with each
other.

4.4. System Architecture

The system architecture for the autonomous perception of unknown environ-
ments is shown in Figure 4.2. The system comprises several components. The
components to extract a scene model from the current view are described in
Chapter 3. For the determination of the Next-Best-View the two components
named View Sampling and View Evaluation are of particular interest. The former
component, is responsible for sampling views. Two approaches have been pre-
sented in this chapter and the interfaces allow for an easy extension. The latter
component, is responsible for evaluating the views. Again, several methods
are presented in this chapter. Figure 4.5 illustrates the workflow of comput-
ing a NBV. The system is designed in a modular way that allows reusing and
exchanging of the components.
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View Sampling

View Evaluation

Goal 

reached

Yes

No

Robot Control

Initialization

Finish

Path Planning Update Model

Figure 4.5.: Workflow of the NBV planning. Views are sampled, and evaluated.
Once the robot reaches the NBV the scene representation is updated
and termination criteria are checked.

Algorithm 5: Next-Best-View Planning
Data: Support Graph Gs, Sphere Center cx, Voxel Map V

V ← SampleViews();

foreach (v, s) ∈ V do

(R, t)← ComputePlatformPosition(v);

IG ← PredictInformationGain(v);

p← PathPlanning(v);

h← ComputePathCosts(v);

v̂ ← arg maxv∈V c(v);

return v̂;

The active vision system terminates if the current view pose does not contribute
significantly, i. e., u(v̂) < λquality, or after n views are reached. Depending on
the scene the total number of views is limited to n, e. g., n = 10. Algorithm 5
outlines the NBV planning.

4.5. Evaluation

Both the view sampling and as well as the view evaluation are qualitatively
and quantitatively assessed in several experiments. Experiments are conducted
using the humanoid robot ARMAR-6. Section B.2 gives an overview of the
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Figure 4.6.: ARMAR-6 simulated experiment. Top: A cluttered table-top sce-
nario. Bottom Left: The registered point cloud of the cluttered table-
top. Bottom Right: The ground truth segmentation of the scene.

sensor setup and the robotic platform. Among the several visual sensors, the
Primesense Carmine 1.09 is used to capture RGB-D data. To reduce sensor noise,
the depth measurement is limited to 3 m. To create the scene model, as de-
scribed in Section 3.1, the segmentation was manually refined to avoid bias of
the RANSAC based geometric primitive fitting and to make experiments re-
producible. The leaf size of the voxel grid for occlusion checking was set to
1 cm.

4.5.1. View Sampling in Simulation

The goal of this experiment is to quantitatively asses the top-down view sam-
pling strategy described in Section 4.2. Therefore, a simulated environment is
used. Figure 4.6 visualizes the scenario setup. For the saliency computation in
Equation 4.5, λs = 0.75 is used, as it shows a good balance between exploration
and validation of support relations. To show the effectiveness of the saliency
value, the utility function in Equation 4.13 is substituted by the saliency value
described in Equation 4.5. The position of the view sphere was fixed and the
radius set to 1.5 m. Figure 4.7 shows the view sphere after the initial view. To
quantify the approach, a Support Graph GGTs = (V GT , EGT ) is created man-
ually. This allows to compare the extracted Support Graph Gis = (V i, Ei) of
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Chapter 4. Next-Best-View Planning

Figure 4.7.: The view sphere including the projected Points of Interest (PoIs) of
the simulated experiment. The rays project the PoIs to the sphere
and a saliency value models the interest of the view pose. Parts of
the sphere have been made transparent for visualization purposes.
The selected Next-Best-View is visualized by the robot pose shown
in gray.

the i-th view using the F1-score, which measures the accuracy of the extracted
support graph and is defined as

F1 = 2 · precision · recall

precision + recall
, (4.14)

where an F1 = 1 means that both Support Graphs (SGs) match. In Equation 4.14
precision and recall are given as

precision =

∣∣V GT ∩ V i
∣∣+
∣∣EGT ∩ Ei

∣∣
|V i|+ |Ei|

(4.15)

and

recall =

∣∣V GT ∩ V i
∣∣+
∣∣EGT ∩ Ei

∣∣
|V GT |+ |EGT |

. (4.16)

True positives are vertices and edges that exist in GGTs as well as in Gis. False
positives equal the number of vertices and edges in Gis, but not in GGTs . A pos-
sible reason for false positives is due to an erroneous RANSAC model fitting.
False negatives are the vertices and the edges missing in Gis. Different methods
include the combination of each view based on the spatial information (PC),
the support graph (SG) or both (PC + SG). The active vision system was com-
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Figure 4.8.: The F1 score for the first 10 next best views of the simulated exper-
iment. The extracted support graph of the scene is compared to a
ground truth support graph. Different methods include the combi-
nation of each view based on the spatial information (PC), the sup-
port graph (SG) or both (PC + SG) as described in Section 3.3.1. The
active vision system was compared to random placement by fus-
ing the information on the support graph (Random SG) and spatial
information (Random PC).

pared to random placement of the robot while fusing the information on the
support graph (Random SG) and spatial information (Random PC). Figure 4.8
shows a plot of the F1- score for different matching approaches, as described
in Section 3.3.1. Notably, all approaches yield an increase with respect to the
F1-score after the second view. However, extracting the support graph from a
single registered point cloud only, results in a decline of the F1-score after the
fourth view. One reason for this is the fitting of the geometric primitives, which
works with a fixed error threshold of the fitted geometric model. Furthermore,
the F1-score increases with the random placement of the robot as well. How-
ever, the random placement of the robot does not consider the distance to reach
the next view. Therefore, the total distance traveled by the robot during explo-
ration might be significantly larger than with the proposed methods. This is
not taken into account by the F1- score.
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4.5.2. Real World Experiment

To qualitatively assess the top-down view sampling strategy, the following ex-
periment is performed on the humanoid robot ARMAR-6. The goal is to show
that (a) the system runs on real robot system, and (b) it yields an improvement
with respect to the extracted SG. The real world evaluation is similar to the
previous evaluation in simulation. This time, however, the noise of the sensor
and the registration error injects noise into the system. Therefore, the support
graph is fused with the approach (SG) as it performs well in simulation while
reducing computation time. Figure 4.9 depicts three selected next best views
at different timestamps of the experiment. The scene is relatively simple, but
due to occlusion requires multiple views to extract a complete support graph
of the scene. As one can observe from the first view (first column of Figure 4.9),
no support relations are extracted due to an occluding object. The active vision
system therefore generates PoIs between each object pair and the robot attends
the NBV. In the second column, the support graph is still incomplete, but the
most important support relations are discovered. Finally, in the third column
the NBV discovers a missing support relation.
Overall, this experiment showed that the system is able to perform on a real
robotic system using the top-down view sampling and its saliency measure
only.

4.5.3. Evaluation of the Utility Function

The following experiment quantitatively evaluates the utility function, which
determines the quality of a view. Therefore, a simulated environment is used,
which shows the humanoid robot ARMAR-6 at an exhibition booth. The sim-
ulation uses a CAD model of a real exhibition booth at CeBIT 2018, where the
robot was presented to the public for the first time. The layout of the booth in-
cluded five meeting points, where visitors could get in touch and information
was displayed. For this experiment, three of the contact points were identified
as Points of Interest (PoIs). The goal of the experiment is that the robot visu-
ally investigates these regions. Figure 4.10 shows the simulated scene and the
possible views to evaluate.

To compare the utility function to other methods, possible views are sampled
first, as described in Section 4.2. For evaluation, the views are kept fixed. Fur-
ther, to avoid bias of the RRT planner the Euclidean distance was used to cal-
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(1a) External Perspective
(first view)

(2a) External Perspective
(second view)

(3a) External Perspective
(third view)

(1b) Point Cloud
(first view)

(2b) Point Cloud
(second view)

(3b) Point Cloud
(third view)

(1c) Geometric Primitives
(first view)

(2c) Geometric Primitives
(second view)

(3c) Geometric Primitives
(third view)

(1d) Support Graph
(first view)

(2d) Support Graph
(second view)

(3d) Support Graph
(third view)

Figure 4.9.: A real world experiment with ARMAR-6. The figure shows three
next-best-views at different timestamps of the experiment. After
the second view more support relations are discovered by the robot.
First row: Scene and position of the robot. Second row: Current point
clouds. Third row: Extracted geometric primitives. Fourth row: Ex-
tracted support graph. Figure taken from Grotz et al. (2019) (© 2019
IEEE).
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culate the distance between the views. The experiment was repeated with dif-
ferent methods to determine the quality of a view. Therefore, the following
methods are used:

(1) Occupancy: Only unknown voxels are considered to determine the NBV.
Views are evaluated with Equation 4.6.

(2) Utility: A combination of unknown voxels and distance to the views is
considered. Views are evaluated with Equation 4.13.

(3) Random: The robot selects a random view. Views are evaluated with
v 7→ x with x ∼ U(0, 1).

The random strategy is kept as a baseline. To compare the different methods
with respect to each other, the following criteria are used.

(1) Total number of unknown voxels, and
(2) Traveled distance

The number of unknown voxels was determined by defining a 3D bounding
box for the environment. Figure 4.11 shows the number of unknown voxels
and the accumulated path costs. Independent of the evaluation, all methods
yield a lower number of unknown voxels after each view. Since the occupancy
evaluation only considers the information gain, it performs best with respect
to the other methods. Figure 4.12 shows the accumulated estimated path costs.
The utility function scores best, since it is the only method that considers the
estimated path costs. In contrast, the occupancy evaluation shows the highest
costs. This is due to the fact that, it is a greedy method that only considers the

Figure 4.10.: The initial view. Possible next-best-views are indicated with robot
silhouettes. The color scheme uses a heatmap to indicate the score.
A low score is blue, whereas a high score is shown with a red color.
Unreachable views are shown in gray.
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Figure 4.11.: The scene is shown in Figure 4.10. The utility function considers
the estimated path costs and thus is able to reduce to accumulated
distances. In contrast to that, the occupancy evaluation is a greedy
method that only considers the expected information gain.
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Figure 4.12.: The accumulated estimated path costs. The utility function con-
siders the estimated path costs and thus is able to reduce to ac-
cumulated distances. In contrast, the occupancy evaluation is a
greedy method that only considers the expected information gain.
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Figure 4.13.: The evaluation after 6 views. The color scheme uses a heatmap
to indicate the score. A low score is blue, whereas a high score is
shown with a red color. Unreachable views are shown in grey.

expected information gain. Figure 4.13 shows the simulated experiment with
the occupancy evaluation after 6 views.

The experiment showed that the method increases the scene coverage with each
view. While the view evaluation using the volumetric information gain scores
best with respect to the scene coverage it also results in the highest path costs.
Finally, the utility function shows a good balance between the scene coverage
and path costs.

4.5.4. Real World Scene Coverage

This experiment evaluates the performance of the system on a real robotic sys-
tem. ARMAR-6 is located in front of a cluttered table-top scenario. The robot
does not have any knowledge about the scene or the objects on the table. The
goal is to extract a scene model including physical relationships among the
objects. The height during the view sampling was kept fixed during the ex-
periment, i. e., the torso joint of the robot was disabled. Figure 4.14 depicts the
scene.

Similar to the simulated experiment, this experiment was repeated with the
occupancy and the utility evaluation. Figure 4.17 and Figure 4.18 show the
first three views for the occupancy evaluation and the utility evaluation re-
spectively. Using the occupancy evaluation, the robot visits the view with the
highest number of unknown voxels. Again, the number of unknown voxels
and the path costs are plotted for each view in Figure 4.15 and Figure 4.12.
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(a) External view. (b) First view of the robot.

Figure 4.14.: Experiment Setup. The goal of this is experiment is to show that
ARMAR-6 can autonomously explore the table-top scenario.

The experiment confirms the observations from the previous experiment on a
real humanoid robot system. One can see a significant reduction of the un-
known voxel count using the occupancy method. However, this method re-
quires the most path costs.

4.6. Summary

This chapter presented an integrated active vision system to support the cre-
ation of a semantic scene model including the extraction of physically plausi-
ble support relations as described in Chapter 3 based on multiple views of the
scene. This is a key contribution to the autonomous perception of unknown
environments. The scene is iteratively explored by planning the Next-Best-
View (NBV). Therefore, views are sampled based on semantic information of
the scene model. Sample views are then subjected to further evaluation. The
formulation of a utility function includes aspects of the semantic information
as well. A comprehensive, quantitative evaluation of the proposed NBV sys-
tem shows that multiple views are necessary to mitigate the effect of occluded
objects. Both the evaluation in simulation as well as the real world experiment
show a completion of the support graph after a few attended NBVs. The real
world experiment demonstrates the necessity of the active vision method for
cluttered table-top scenarios.
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Figure 4.15.: The utility function considers the estimated path costs and thus
is able to reduce to accumulated distances. In contrast, the occu-
pancy evaluation is a greedy method that only considers the ex-
pected information gain.
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Figure 4.16.: The utility function considers the estimated path costs and thus
is able to reduce to accumulated distances. In contrast, the occu-
pancy evaluation is a greedy method that only considers the ex-
pected information gain.
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(1a) External View
(first view)

(1b) Evaluated Views
(first view)

(2a) External View
(second view)

(2b) Evaluated Views
(second view)

(3a) External View
(third view)

(3b) Evaluated Views
(third view)

Figure 4.17.: A real world experiment with ARMAR-6. The figure shows the
first three views. The NBV is determined by counting the number
of unknown voxels.
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(1c) External View
(first view)

(1d) Evaluated Views
(first view)

(2c) External View
(second view)

(2d) Evaluated Views
(second view)

(3c) External View
(third view)

(3d) Evaluated Views
(third view)

Figure 4.18.: A real world experiment with ARMAR-6. The figure shows the
first three views. The NBV is determined by using the utility func-
tion. The utility function considers both the information gain as
well as the traveled distance by the robot.
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5. View Selection and Gaze
Stabilization

Changing the gaze or executing manipulation actions impairs the visual per-
ception. Therefore, it is necessary to stabilize a humanoid robot’s gaze. Fig-
ure 5.1 shows an example of ARMAR-6’s camera images taken from a real
world experiment without any camera stabilization. Camera images are blurry,
the illumination changes, and the region of interest, e. g., an object being local-
ized, is out of view due to motion of the robot. As consequence, vision based
algorithms perform poorly due to noisy input data. Hence, the visual percep-
tion needs to be stabilized. Indeed, it is difficult to compensate for all distur-
bances. Methods for stabilization, however, are able to deal with some issues,
such as keeping the region of interest centered, and thereby support vision-
based tasks.

Figure 5.1.: Camera images of ARMAR-6’s PrimeSense RGB-D sensor while the
head is moving at different times. During the gaze shift towards the
grasped spray bottle camera images are blurry.

This chapter investigates the link between gaze stabilization methods and ac-
tive vision methods. Both, active vision and gaze stabilization, support inde-
pendently a humanoid robot’s visual perception and are crucial for a robust
operation in real world scenarios. In fact, both components actively control a
robot’s gaze, i. e., head and eyes, and therefore these two components need to
be orchestrated in order to avoid a resource conflict. For example, an active
vision system itself shifts the gaze and thereby induces noise to the visual per-
ception since it moves the camera. Such self-induced perturbation needs to be
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compensated by gaze stabilization. This also includes movements of the robot,
such as changing a robot’s position or moving a joint. Hence, the system ar-
chitecture presented in this chapter includes both gaze stabilization and active
vision while also considering the interaction and the synchronization of both.
Ultimately, the goal is a higher level gaze control architecture combining active
vision and gaze stabilization.
This chapter first describes a view selection mechanism in Section 5.1 followed
by gaze stabilization methods in Section 5.2. Section 5.3 outlines the system
architecture, comprising of gaze stabilization and active vision. The evaluation
consists of several real-world experiments described in Section 5.4.

Methods and results presented in this chapter are published at peer-reviewed
conferences and mainly based on the work of Grotz et al. (2017a), Habra et al.
(2017), and Sippel (2016).

5.1. View Selection

The active vision system, described in the following, focuses on supporting the
execution of grasping and manipulation tasks on a humanoid robot. Therefore,
the definition of a Next-Best-View is extended to include other task related and
bottom-up information as well. However, this definition is in line with the
ideas and the methods presented in previous chapters. Since some gaze sta-
bilization methods require a fixation point in the scene, the term view target is
used referring to a 3D point in the scene with respect to the world coordinate
system, whereas the term view refers to a 6D camera pose. In conjunction with
Chapter 4, given a view target in the scene the view, i. e., the pose of the cam-
era, can be directly computed to shift the gaze and fixate the given view target.
Since the focus of this chapter is on grasping and manipulation, the proposed
methods in Welke et al. (2013) are used and extended to determine a view tar-
get. In particular, for grasping and manipulation actions, the pose of the object
to interact with has to be known. In the context of this work, the object local-
ization is provided by methods described and evaluated in Azad et al. (2009)
and Azad et al. (2007).

The idea behind the active vision system is that possible views are represented
on a sphere around the center of the robot’s head. The representation is similar
to the view sphere defined in Section 4.1. However, the representation here is
egocentric since coordinates are stored with respect to the robot. Further, the
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direction of the representation is inverted. Each point on the sphere represents
a gaze direction with an associated saliency value. The saliency value is to
measure the interestingness of an item, i. e., by which an item stands out from
its neighborhood. The intuition behind this representation is that the saliency
value corresponds to the importance of the information that can be gained if
the robot shifts its gaze to the direction of the point. Such a sphere is known as
sensory ego-sphere (Peters et al., 2009) and allows to consider multimodal sensor
cues (Ruesch et al., 2008). In this implementation, the sensory ego-sphere is
discretized to 40, 000 equally distributed points. Saliency values skj from differ-
ent sources for a point pj on the sphere are accumulated using a weighted sum.
Thus, the aggregated saliency value sj is defined as

sj =
1∑
wk

∑
k=1

wks
k
j , (5.1)

wherewk is the associated weight of the computed saliency values skj . In the fol-
lowing, the index k for the saliency value ski is omitted and the object saliency
value is referred to as si as it can be derived from the context. To track out-
dated values, a timestamp t is added to each saliency value skj . Values with
a timestamp older than 5 s are simply discarded if not specified otherwise. A
post-processing step prunes unreachable points on the sphere, e. g., where no
Inverse Kinematics (IK) solution exists and the robot is thus unable to direct its
gaze to the point. Thus, these targets are not considered by the view selection
mechanism. Similar to the definition of the Next-Best-View (NBV) as given in
Chapter 4, the active vision system selects the point pĵ on the sphere with maxi-
mum saliency value, i. e., ĵ = arg maxj sj . Next, joint positions for the head and
eye joints are computed using the IK solver of the Simox library (Vahrenkamp
et al., 2013) and the view is shifted accordingly. Figure 5.2 illustrates the com-
putation of a view target and the selection of a view. Multiple saliency values
from different sources are combined and post processed. The computation of
saliency values is described in the following section. The system architecture
also allows setting manual view targets, which are then considered by the view
selection mechanism.

5.1.1. Saliency Computation

The computation of the object saliency value is described in the following and
follows the work of Welke et al. (2013). A point pi on the sphere contains multi-
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Saliency Values
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Working Memory
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Manual Targets

Figure 5.2.: System architecture to compute a view target. Multiple saliency val-
ues are considered in a dynamic saliency combination step and post
processed. Saliency values are computed, for example, based on the
uncertainty of object localization results. The view direction with
the highest saliency is chosen as NBV. Figure adapted from Grotz
et al. (2017a) (© 2017a IEEE).

ple saliency values. For grasping and manipulation, the most important visual
component is the object pose. Besides that, a very small random noise is added
to get a variance in gaze directions.
Formally, a saliency value is computed as follows. Let oi be a target object that
the robot is going to grasp or manipulate and thus needs to be localized in order
to know the object pose pi = (Ri, ti) ∈ SE(3). Due to sensor noise, the object
localization result is inaccurate. New object localization results are fused with
a Kalman filter. The respective uncertainty about the object pose is modeled as
a multivariate normal distribution Ni(µi,Σi) with mean µi =  and covariance
matrix Σi. Overall, the localization result of object oi is given by the quadruple

(Ri, t, µi,Σi) , (Object Localization Result)

where the first two elements are the 6D object pose and the last two elements
model the object’s pose uncertainty. An object pose with low uncertainty is
desired and hence localization results for the same object oi from multiple views
are fused and the uncertainty is updated. Thus, when changing the view, the
object localization uncertainty needs to be considered. The first step to compute
a saliency value is to map the covariance matrix Σi to a scalar value. Hence, the
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Figure 5.3.: Parts of the saliency ego-sphere for ARMAR-6. Different views
are represented on a sphere around the robot’s head. The sensory
ego-sphere consists of 40,000 nodes each representing a possible
view with a saliency value. Saliency values are visualized with a
heatmap. The color blue indicates zero saliency and red a maxi-
mum saliency.

uncertainty is translated to the scalar value

σi = det(Σi)
1
6 . (5.2)

The idea behind this is that the saliency value si of object oi indicates the im-
portance of the information given its pose uncertainty. Thus, it is set to equal
to the differential entropy

ui =
1

2
ln
((

2πeσi
2
)3
)
. (5.3)

For grasping and manipulation tasks, the importance of the object localization
result can vary and therefore the saliency value should be task-specific. Hence,
a task acuity is used in the calculation of object saliencies. The value αi models
the acuity of the object localization as required by the task. Similar to Equa-
tion 5.3, the differential entropy is utilized and thus the specific task acuity is
modeled with

bi =
1

2
ln
((

2πeαi
2
)3
)
. (5.4)

With Equation 5.3 and Equation 5.4, the final saliency for an object oi is then
set to si = ui − bi. To avoid the accumulation of negative saliency values, si is
clamped to be ≥ 0. Figure 5.3 depicts the saliency ego-sphere for ARMAR-6.
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5.2. Gaze Stabilization Methods

Keeping the area of interest centered in the field of view is a vital prerequisite
for retrieving any useful information with cameras. This is even more impor-
tant for foveated camera systems since the field of view is more narrow. Addi-
tionally, most vision algorithms rely on a stable camera image to reach optimal
performance.
Gaze stabilization computes compensatory head and eye movements to com-
pensate for disturbance in visual perception. In humans, the eye is mainly
stabilized by the Vestibulo-Ocular Reflex (VOR) and Optokinetic Reflex (OKR)
(Miles, 1998). For the ARMAR humanoid robots, several gaze stabilization
methods have been developed. This includes most recently Sippel (2016) and
the gaze stabilization controller described in Habra and Ronsse (2016), which
was extended for the ARMAR humanoid robots in Habra et al. (2017). The con-
troller is of particular interest as it allows fixation of the given view target. For
details the reader is referred to Habra et al. (2017) and Habra (2017) since the
focus of this chapter is not on gaze stabilization, but more on the link between
gaze stabilization and active vision.
The basic idea of the aforementioned gaze stabilization controller rests upon in-
tercepting the robot’s motor command, apply them to an internal robot model.
Thereby, the internal model predicts the new gaze direction of the robot and
computes the deviation to the desired view target xdes. In the next step, com-
pensatory head and eye motor commands are computed to correct the gaze
and to fixate the view target. Figure 5.4 illustrates the functionality of the gaze
stabilization controller, which is described in the following.

Given the current view target xFP , the gaze stabilization controller formulates
the task of determining the robot’s joint parameters in order to direct the gaze
at the view target xdes using a virtual end-effector. Thus, the gaze stabilization
controller can be seen as classical control of a robot and hence solved with in-
verse kinematics method. The idea of using a virtual end-effector is described
in Omrčen and Ude (2010). Due to more degrees of freedom available it is
underdetermined and the solution is not unique. Indeed, the system of linear
equations can be subject to additional constraints. For example, in Habra and
Ronsse (2016) the optical flow is minimized. Compensatory eye and head ve-
locities q̇head are computed as sum of (1) feedback of the position error ẋFB, and
(2) feed-forward velocity ẋpred. The gaze stabilization controller as presented in
Habra and Ronsse (2016) was adapted and revised for the use for the ARMAR
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Figure 5.4.: Inverse kinematics methods for gaze stabilization. Based on the
current joint velocities compensatory head and eye movements are
computed to stabilize a given fixation point in the scene. Figure
adapted from Habra and Ronsse (2016) (© 2016 IEEE).

humanoid robots as presented in Habra et al. (2017). In particular, the changes
include that the term ẋpred is computed as a compensation for the self-induced
motion. Instead of estimating the self-induced motion based on intercepted ve-
locity commands sent to the whole-body joints the velocity is directly measured
from the encoder to compute the feed-forward term. Further, the feed-forward
compensation was extended to include the result of the self-localization of the
robot. Finally, the kinematic redundancy resolution was adjusted to take into
account the difference between the eye and neck joints for active vision. Indeed,
many vision based algorithms rely on an accurate stereo calibration. Thus, neck
joints are preferred and eye joints are only moved when necessary to keep the
stereo calibration as accurate as possible. Concretely, the weight factors for ve-
locity minimization of the eye joints were set eight times higher than for the
neck joints.

5.3. Gaze Control Architecture

The higher level gaze control architecture comprising a gaze stabilization sys-
tem (Section 5.2) and a view selection system (Section 5.1), as shown in Fig-
ure 5.5, is described in the following. From a functionality point of view, both
systems are intertwined since both systems update the gaze target by control-
ling the head motors and the gaze stabilization indirectly feedbacks the view
selection by providing more stable input images. From a software engineering
point of view, the systems are developed as standalone components. A well-
defined interface allows for interaction between these components.
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Head Control

Saccadic Gaze Shift
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update view target

Gaze Stabilization

joint positions 𝑞 joint velocities ሶ𝑞
stabilization

control loop

Figure 5.5.: The gaze control architecture with the active vision and the gaze
stabilization components. The active vision method computes a
Next-Best-View (NBV), which is constantly fixated by the gaze sta-
bilization system. Both components support the visual percep-
tion by selecting the NBV and stabilizing the current view. Figure
adapted from Grotz et al. (2017a) (© 2017a IEEE).

First, the view target is determined either based on the current task or based on
salient regions in the scene. A new gaze directions is selected in regular inter-
vals or the view selection is invoked to shift the gaze to a new target. Once a
new view target x is computed, the gaze stabilization system is triggered to al-
low the execution of saccadic eye movements and to support visual perception
by stabilizing the new view target. Saliency values for object localization are
computed and passed to the view selection component. Sensor input values
for the gaze stabilization consists of joint velocities, joint position, the com-
puted sparse optical flow and acceleration values of an Inertial Measurement
Unit (IMU). Output values of the gaze stabilization system are joint velocities
for the head and eye. These velocities are passed to the hardware abstraction
layer of the robot. Two human inspired reflexes for gaze stabilization can be
invoked: the Vestibulo-Ocular Reflex (VOR) and the Optokinetic Reflex (OKR).
Self-induced motions are predicted and removed from the sensor values. The
system architecture is inspired by the reafference principle. For more details,
the reader is referred to Habra et al. (2017). In the following only self-induced
motions by the robot are considered since they are the most common perturba-
tions. Figure 5.6 illustrates the gaze control system architecture.
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Figure 5.6.: The gaze control system combining gaze stabilization and active
vision. The view target is determined by the active vision system
while the gaze stabilization system computes motor commands to
fixate and stabilize the current view target. The active vision system
passes the view target to the gaze stabilization controller. The gaze
stabilization controller supports the active vision system by provid-
ing stable camera images. Figure adapted from Grotz et al. (2017a)
(© 2017a IEEE).

5.4. Evaluation

The presented gaze control system architecture, consisting of an integrated ac-
tive vision system with gaze stabilization and a view selection strategy, has
been validated in real world experiments to assess the interaction between gaze
stabilization and active vision.

The following experiments were performed on ARMAR-III. First, a task-oriented
experiment quantitatively evaluates the merits of using a gaze stabilization
controller for visual perception tasks. In this experiments, objects are local-
ized while the robot is subjected to a sinusoidal perturbation. Second, the link
between active vision and gaze stabilization is qualitatively assessed with a
grasping while moving action, a complex real world experiment. All experi-
ments utilize foveal cameras, which are beneficial for the first and required by
the second experiment. On the one hand, foveal cameras allow to increase the
object localization accuracy and also enable to localize objects from a distance.

99



Chapter 5. View Selection and Gaze Stabilization

On the other hand, foveal cameras are more prone to movements of the robot
since the field of view is smaller. The subsequent experiment shows that gaze
stabilization enables to utilize foveal cameras while the robot is in motion.

5.4.1. Object Localization While Moving

Stabilization results of the gaze stabilization methods are reported in Habra
(2017) with peripheral vision. Here, the gaze stabilization controller is evalu-
ated in a more task-oriented setting using foveal vision. Object localization, i. e.,
6-D pose estimation of unknown and known objects is a typical task-oriented
setting relying on visual perception. Knowing an object’s pose allows for in-
teraction, such as grasping or manipulating the object. Accuracy of the object
localization methods was previously evaluated in Azad et al. (2007, 2009). Fur-
ther, the object localization methods have been used extensively in large scale
experiments (Wächter et al., 2018). However, previous experiments ignored
self-induced motions and external camera perturbations. Up to now, in order
to localize objects the robot’s platform was stopped and motion of the camera
was minimized when localizing objects. Results during motion of the robot
have been discarded since objects were either not found or the localization re-
sult was erroneous. Therefore, the effectiveness of gaze stabilization to support
object localization with foveal cameras during self-induced motions is evalu-
ated in the following. The setup of the experiment was carefully designed to
reproduce similar real world applications. Several objects are placed in front of
ARMAR-III, at a distance of 1.50 m, as shown in Figure 5.7.

The gaze of the robot was initially set to a fixed view target x in the scene. This
initial view target ensures that the localized object is visible in the center of
the foveal cameras. Any other components controlling the head, such as the
previously presented view selection, were deactivated during the experiment
to avoid a conflict of control and for the sake of repeatability.
Since the utilized methods for object localization can be split into single colored
objects and textured objects, the experiment was repeated with different kind
of objects. A single colored object, i. e., the green cup shown in Figure 5.7, is
localized while the robot periodically moves the torso joint. The torso velocity
q̇torso for the motion is generated using the sinusoidal function

q̇torso = A · cos(2πft) , (5.5)
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Figure 5.7.: Setup of the object localization experiment. Several objects are
placed in front of the humanoid robot ARMAR-III. The torso is sub-
jected to a sinusoidal motion while the objects are constantly local-
ized. Figure taken from Grotz et al. (2017a) (© 2017a IEEE).

with a frequency of f = 0.25 Hz and with an amplitude of A = 20°. The
frequency reflects the typical movements of the robot. In addition, the sinu-
soidal motion prevents a backlash at the joint limits which would trigger unpre-
dictable camera perturbations. Overall, the self-induced motion is designed in
such a way that camera perturbation and thus image noise are as reproducible
as possible. Other body joints and platforms are kept fixed at the initial joint an-
gle during the whole experiment. Thus, head and eyes follow the self-induced
torso motion according to the sinusoidal motion in lateral direction without
gaze stabilization. Figure 5.8 shows recorded images of the left foveal camera
at selected key frames of the experiments. In this experiment, objects are local-
ized every 50 ms for single colored objects and 70 ms for textured objects respec-
tively. The difference is due to the fact that the approach for localizing textured
objects computes keypoints and descriptors. There this approach is more com-
putationally intensive than the approach for single colored objects, which uses
a HSV color segmentation to detect possible objects in the image. Each individ-
ual experiment lasted 10 s. The cameras settings, i. e., auto exposure and auto
white balance were configured once and then kept fixed during the experiment
to avoid any bias. The same experiment is repeated using a textured object, the
multivitamin juice from the KIT object models database (Kasper et al., 2012).
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Figure 5.8.: Foveal camera images during self-induced motion of the robot. Left:
textured object localization without gaze stabilization, and right:
textured object localization with gaze stabilization. Images taken
from Grotz et al. (2017a) (© 2017a IEEE).

Both experiments, with single colored and with textured objects, show that
gaze stabilization significantly improves the object localization result during
motion of the robot. Figure 5.9 reports the number of successful object local-
izations for the experiments. Gaze stabilization yields a significant increase in
the number of successful localizations for both the textured and single colored
(segmentable). Unstabilized, the object is successfully localized in only 13 % of
all possible attempts for textured objects and in only 2 % for single colored ob-
jects respectively. The reason for the difference in the numbers can be explained
by the fact that the detection of single colored objects is more prone to blurred
images. The approach further depends on the current illumination which is
changing when the robot is moving. Further, the recognition method for tex-
tured objects utilizes Scale Invariant Feature Transform (SIFT) and is therefore
robust to local geometric distortion and also partially invariant to changes in
illumination.

To support the robot’s autonomy, it is preferred to adjust automatically the cam-
era parameters for the current scene. The cameras offer an automatic mode for
online control of autoexposure and other parameters. However, such adaption
takes time if the illumination changes. Therefore, both object localization ex-
periments were repeated with fixed settings and with the camera’s automatic
mode. Figure 5.9 depicts the number of successful object localization. Inde-
pendent of using camera autoexposure, gaze stabilization increases the rate of
successful localizations. The camera images shown in Figure 5.8 clearly depict
a difference in the observed perceptual blur between the unstabilized and the
stabilized case. Crete et al. (2007) propose a no-reference image quality met-
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Figure 5.9.: Number of successful object localization results. The experiment
setup is illustrated in Figure 5.7. Left figure taken from Grotz et al.
(2017a) (© 2017a IEEE).

ric to quantify the perceptual blur of images without requiring a baseline. The
metric first blurs a given image artificially and then compares the variations
between neighboring pixels between the images. The underlying principle is
that neighboring pixels change with a large variation when the input image is
only slightly blurred. A lower value of the metric indicates to a low perceptual
blur in the image, while a high value corresponds to a high perceptual blur in
the image. In addition, the work of Crete et al. (2007) also provides a corre-
lation between subjective tests and the perceptual blur measured by the given
metric. Figure 5.10 plots measured perceptual blur during the experiment. The
plotted results indicate that the camera images for the stabilized case are signif-
icantly less blurry than for the unstabilized case. Unstabilized, the no-reference
image quality metric shows that the image quality is degraded by the induced
perturbation of the torso joint.

5.4.2. Grasping While Moving Experiment

The previous section shows a successful integration of gaze stabilization con-
troller presented in Habra et al. (2017). Further, the object localization experi-
ments using foveal vision demonstrate that gaze stabilization is required when
moving. This experiment evaluates the gaze stabilization controller and the
link to active vision in a complex real world application. Again, the humanoid
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Figure 5.10.: Perceptual blur for the right foveal camera images during the ob-
ject localization experiment. Higher values indicate a higher per-
ceptual blur. Three subjective image quality levels are shown with
a dashed line using the correlation provided by Crete et al. (2007).
Plot taken from Grotz et al. (2017a) (© 2017a IEEE).

robot ARMAR-III is placed in a kitchen environment. The robot moves along
a planned trajectory that passes close to a table with a green cup. The goal of
the experiment is to grasp a cup while moving (see Figure 5.11). Mansard et al.
(2007) conducted a similar experiment. In their work, the focus was more on
control using a stack of tasks approach (Mansard and Chaumette, 2007), rather
than combining active vision and gaze stabilization. In addition to the compo-
nent that models object localization uncertainty by computing a saliency value,
a second component draws the attention to single colored blobs in the scene.
To this end, camera images are segmented and for the center of each segment a
constant saliency value is added to the projected point on the sphere.

The position of the cup is unknown to the robot. In order to grasp the cup
while moving an accurate object localization is therefore important. Hence, the
foveated cameras have to be utilized and the object localization processes the
foveal camera images. However, since the field of view for the foveal camera
is very narrow, the gaze has to be shifted to relevant regions. The horizontal
field of view of the foveal camera is 16 deg and the vertical field of view is 8 deg

respectively. For the peripheral cameras the horizontal and a vertical field of
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Figure 5.11.: Object grasping while moving. The left column shows an exter-
nal view of the robot, while the right column shows the images
of the right foveal camera during the experiment. Images taken
from Grotz et al. (2017a) (© 2017a IEEE).
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Figure 5.12.: Scalar value of the object localization uncertainty using the foveal
cameras with and without stabilization as defined in Equation 5.2.
After 25 s, the object is close enough and the visual servoing strat-
egy increases the task acuity. Thus, the active vision system shifts
the gaze from the hand towards the known position of the cup.
Once the cup is again in the field of view it can be localized and
thus the uncertainty of the object localization drops. Figure taken
from Grotz et al. (2017a) (© 2017a IEEE).

view is 60 deg × 45 deg. Given the larger field of view and the position, the cup
is visible in the peripheral cameras. This allows for the active vision system to
compute a saliency value based on the color value using the peripheral cam-
era images. Since no other object is localized so far, the view selection shifts
the attention of the robot and thereby the focus of the foveal camera to col-
ored regions in the scene. From a cognitive perspective, the robot searches for
color blobs in the peripheral view while trying to localize the green cup in the
foveal cameras. As described in Section 5.4.1 the gaze stabilization controller
stabilizes the view and thereby allows to leverage foveated cameras for object
localization.

The grasping processes uses a position-based visual servoing to grasp the ob-
ject of interest, i. e., the green cup. Visual serving (Chaumette and Hutchinson,
2006) uses visual feedback information to control the motion of a robot and it
allows to resolve kinematic inaccuracies of a robot. Here, the implementation
provided in Vahrenkamp et al. (2008) is utilized. The grasping pose is known
a priori to the robot and stored in the robot’s memory as part of the object rep-
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Dense Optical Flow RMSE

Stabilized Unstabilized Decrease (%)

std 0.87 deg/s 1.71 deg/s −49.12 %

mean 1.01 deg/s 2.06 deg/s −50.97 %

max 3.41 deg/s 10.49 deg/s −67.49 %

Table 5.1.: Standard deviation (std), mean value and, max value of the optical flow
root mean square error (RMSE). Table taken from Grotz et al. (2017a)
(© 2017a IEEE). The dense optical flow is computed using the meth-
ods described in Farnebäck (2003).

resentation. Knowing the object pose, the grasping pose can be translated to
a pose in world or robot coordinates. If the final grasping position is reached
by the end-effector the robot executes the grasp on the object. The visual ser-
voing controls the position of the robot’s end-effector until the grasping pose
is reached. Due to inaccuracies in the robot’s kinematics and the object local-
ization result, the visual servoing control loop requires to constantly localize
the end-effector and the green cup. The visual servoing also prioritizes the
end-effector and the object being grasped for the view selection. However, the
platform movement following the predefined trajectory is too fast for the robot
to reach the final grasping pose in time. Additionally, the object is out of reach
and the visual servoing control loop cannot be started too early since it would
position the end-effector at the wrong position. Hence, for this experiment the
visual servoing is therefore slightly modified to cope with the movement of the
robot. To start positioning the end-effector in advance, the object localization
result is projected to a reachable pose within the robot’s base coordinate system
using the speed of the robot and the object localization result. The projected po-
sition intuitively corresponds to the expected position at the time, if the robot
would be able to reach and grasp the object. Consequently, visual servoing runs
with the projected pose in order to continuously align the end-effector. Once
the robot is able to reach the object, the projection step is no longer necessary
and the object’s pose is used for visual servoing. This allows to position the
hand and thus the grasping pose can later be reached more quickly. The view
selection is required for this experiment to work since the foveal camera’s field
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of view is too narrow in order to localize the object or the end-effector during
motion.

Figure 5.11 shows the camera view and an external view of the experiment at
selected key frames. To show the support of gaze stabilization, the experiment
was repeated without the gaze stabilizing controller. Figure 5.12 shows the
object localization uncertainty. The view selection strategy combined with the
gaze stabilization controller reduces the object localization uncertainty signifi-
cantly. Table 5.1 reports the mean values of the optical flow Root-mean-square
error (RMSE). Stabilized, the average optical flow in the camera images is re-
duced by more than 50 %.

5.5. Summary

This chapter extends the system architecture of the active vision system by in-
tegrating a gaze stabilization controller. The experiments of this chapter show
that gaze stabilization is required for visual perception during motion. The
active vision system defines the next view target. The integrated gaze stabi-
lization controller fixates the given view target and stabilizes the view target
during motion.

Experiments show, that by keeping the visual target stable, the object localiza-
tion is able to localize the object more often using the foveal cameras. Further-
more, the cameras are able to adapt to the environment more quickly using
the preferred automatic mode for internal camera parameters. Further, the ex-
periments show that gaze stabilization facilities the robust execution on vision-
based algorithms by providing stable camera images. A complex real world
scenario, where a humanoid robot was able to grasp an object while moving,
demonstrates the successful integration and interaction of the different compo-
nents.
Overall, the chapter shows that an active vision system requires both the de-
termination of the NBV and also a gaze stabilization controller to fully support
vision-based tasks during motion.
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6. Conclusion and Perspective

This chapter briefly reviews the major contributions of this thesis and discusses
the impact of the approach for semantic scene understanding. The contribu-
tions are put into context with the goals formulated in the thesis’ introduction.
Furthermore, the chapter gives a brief overview of future research directions,
based on the research results obtained in this work.

6.1. Contributions

This thesis contributed a novel active vision method for the semantic percep-
tion of unknown environments. A semantic scene representation is created,
which is extended by successively planning the Next-Best-View (NBV). By chang-
ing the robot’s gaze to the Next-Best-View (NBV), the semantic scene represen-
tation is constantly updated. The methods were designed to explore unstruc-
tured and unknown scenes and to provide a semantic scene understanding of
the robot to reason about interaction possibilities with the world. Therefore, the
planning of the Next-Best-View (NBV) considers semantic information. Fur-
thermore, a biologically motivated approach for gaze stabilization is presented
and integrated into the system architecture to enable visual perception dur-
ing motion. Comprehensive evaluations of the proposed methods showed the
successful application and the benefit of using active vision methods. The fol-
lowing sections summarize the major achievements that have been evaluated
and implemented.

Semantic Scene Representation

A robot can generate a semantic scene model using an RGB-D sensor aligned
with the current gaze direction. Geometric primitives are fitted against the
point cloud of the current view. Scene elements and objects are represented by
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these geometric primitives, comprising cuboids, cylinders, and spheres. Hav-
ing this geometric representation, spatial and physically plausible support re-
lations between the geometric primitives are then inferred and other semantic
information is extracted. Relations include spatial or support and stability. The
semantic scene model was iteratively improved by fusing results from consec-
utive views into a global consistent scene model.

Next-Best-View Planning

The scene model was extended with an active vision method to determine the
Next-Best-View. The approach allows humanoid robots to explore unknown
scenes. The thesis presented a novel method that utilizes the semantic informa-
tion of the extracted scene model for exploration. Planning the Next-Best-View
allows to complete the scene model. Therefore, possible views are sampled
based on the semantic information available in the scene representation. A
view comprises of the robot’s position and gaze direction. In a subsequent
step, the sampled views are then evaluated with a utility function, that takes
traveled distance and the volumetric information gain into account. By choos-
ing the view maximizing the utility function, the number of views necessary to
interpret the scene is minimized. A comprehensive, quantitative evaluation of
the proposed methods in simulation, as well as on humanoid robots, show a
significant improvement of the scene model compared to standard Next-Best-
View (NBV) approaches.

View Selection and Gaze Stabilization

One of the goals of this thesis is to allow perception during motion of the robot.
Gaze stabilization methods have been ported to the ARMAR humanoid robots
and evaluated in task-oriented settings. Gaze stabilization yields a significant
decrease in the perceived perpetual blur and thus improves the camera image
quality. Experiments show further that it is necessary to link gaze stabilization
with active vision methods in order to allow perception during motion of the
robot. The active vision methods define the next visual target for the gaze sta-
bilization controller. By keeping the visual target centered in the field of view
vision-based components achieve much higher success. Finally, a comprehen-
sive experiment shows that a humanoid robot is able to successfully grasp an
object while moving.
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6.2. Perspective

The thesis focused on a semantic scene representation supported by an active
vision method. Concepts and methods can also be transferred to further fields
of application. The following outlines a variety of possible future directions
and extensions to this thesis.

Dynamic scenes

The presented semantic scene model has the major limitation of a static scene
that needs to be considered. Regarding future research directions, the exten-
sion to dynamic scenes is an interesting research area. The changes in the scene
could then be utilized as a hint for salient regions. Other research has already
introduced attention based methods that take the motion of the human hand
into account (Monica et al., 2016). Having a dynamic scene model would fur-
ther allow the robot to observe and to validate the success of manipulation
actions.

Human action recognition and joint visual attention

While the focus on this thesis was on semantic scene understanding, other task
relevant information can be taken into account. A promising research direc-
tion would be to extend the active vision system to also include multimodal
cues. This can also include action recognition (Dreher et al., 2019) and antici-
pation of the next action (Koppula and Saxena, 2015). Knowing the human’s
pose and gaze can also be used as a visual hint to shift the attention (joint visual
attention). This is especially important for human-robot interaction. For exam-
ple, joint visual attention would allow the system to include feedback from the
human (Schauerte, 2016). The Next-Best-View system has been developed with
the explicit intention of taking other information sources into account. A crucial
step would be then to investigate how to balance the different task dependent
goals in the utility function and how to priorities them.
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Human inspired gaze control

The architecture presented in this thesis can be extended with a gaze controller
that is biologically inspired. The gaze controller should be able to differentiate
between saccade execution, and other types of human gaze movements. Fur-
thermore, it should consider real-time constraints. Currently, the control loop
of ARMAR-III is 100 Hz. In humans, the saccade execution is much faster and
this would require new control strategies.

Industrial applications

Notably, the approach can be transferred to industrial applications. Up to now,
robots in factories performing monotonous assembly tasks, often have a fixed
camera position. Recent robotic systems, include cameras, but often use static
views when executing pick and place tasks. Here, a smart approach with active
vision could improve not only the model quality but also reduce the overall
time to perceive the objects. Finally, in combination with gaze stabilization,
robots could also detect objects and grasp while moving.
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A. Fundamentals

The chapter describes briefly fundamentals required for the methods presented
in this thesis. Without loss of generality, the representation is restricted to the
Euclidean space R3.

A.1. The Special Orthogonal Group

The group for all rotation matrices in the 3D space is denoted as

SO(3)=̇{R ∈ R3×3|RTR = I, det(R) = 1} . (special orthogonal group)

where I is the identity matrix. Thus multiplication of two rotation matrices
leads to a new rotation matrix. Rotation matrices for a rotation around the X-,
Y-, Z-axis are denoted with Rx, Ry and Rz.

A.2. The Special Euclidean Group

The special euclidean group SO(3) describes poses, consisting of orientation
and translation and movements of rigid object. The special euclidean group
SE(3) is defined with

SE(3)=̇


R t

0 1

 ⊂ R4×4|R ∈ SO(3), t ∈ R3

 . (special euclidean group)
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A.3. Differential Entropy

The differential entropy is the entropy of a continuous random variable (Cover
and Thomas, 2006). In general, the entropy is a measure of average surprisal
of a random variable. Formally, the differential entropy for a N -dimensional
multivariate normal distribution is defined as follows. Let x ∼ N (µ,Σ), then
the differential entropy u is expressed as

u =
1

2
ln
((

2πe
)N
det(Σ)

)
. (A.1)

A.4. Point Cloud Representation

As already mentioned sensor data can be represented via points. Here, a point
cloud is a discrete set of points with respect to a fixed coordinate system. Know-
ing the intrinsic and extrinsic camera parameters the RGB-D image can be
translated into a point cloud. The 2.5D information can be translated to a 3D
point in the camera coordinate system. The transformation is in line with the
concept of animate vision (Ballard, 1991) as described in Chapter 2. Without
loss of generality, for each 3D point pi it is assumed that information about the
color is available, i. e.,

pi = (x, y, z, r, g, b) , (A.2)

where (r, g, b) ∈ [0 . . . 255]3 ⊂ N3
0 is the color information encoded in the RGB

color space and t = (x, y, z) ∈ R3 the spatial information. Thus, a point cloud
P can be formally written as set

P = {p1, . . .pn } , (A.3)

where n is the total number of points. A point cloud also contains other infor-
mation, most importantly the time t when the sensor data was captured. Here
the time of a point cloud is indicated as P t. For brevity, the temporal parameter
t is omitted if it can be derived from the context. In the following, the normal
estimation n̂(pi, r) is defined as a function

n̂(pi, r) : R3 → R3 (A.4)

(x, y, z) 7→ (n1, n2, n3) (A.5)
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Figure A.1.: Left: Using the robot’s odometry only. Right: Registration with
ElasticFusion.

that maps a point pi ∈ P to its computed normal vector (n1, n2, n3). The param-
eter r specifies the radius used by the normal estimation method. Normals of a
point cloud can hint at geometric constraint and are essential for the geometric
primitive extraction as described in Chapter 3.

A.5. View Registration

For perception from multiple view it is important that each view is registered
with respect to each other. That means that for consecutive views the trans-
formation between each view needs to be estimated. The problem is known
as Simultaneous Localization and Mapping (SLAM). Once the relative trans-
formation between each view is determined the captured point cloud of each
single view can be aggregated into a global consistent point cloud. Figure A.1
visualizes multiple views. Due to inaccuracies in the robot’s kinematics the
robot’s forward kinematics give an estimate of the current camera pose, but are
not sufficient for an accurate registration between two consecutive view poses.
Hence, the registration between each view must be refined. A general algo-
rithm to align two point clouds is the Iterative Closest Point (ICP) algorithm,
which optimizes a transformation between two clouds by minimizes the error
between the points. However, Iterative Closest Point (ICP) has some disadvan-
tages. In this work, the state-of-the-art methods ElasticFusion (Whelan et al.,
2017) or RTABMap (Labbe and Michaud, 2013) are utilized to register views if
not stated otherwise. Both methods have real-time capabilities and work with
RGB-D sensor data. Figure A.1 shows an example of a registration result.
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A.6. Point Cloud Segmentation

Segmentation is to split a point cloud P into plausible disjunct regions Pi, such
that:

P =
⋃
i

Pi . (A.6)

For each point in the point cloud a label is assigned. Points sharing similar
characteristics are assigned the same label to represent the data in a more mean-
ingful manner. More formally, a segmentation S(P) of a given point cloud P is
defined as

P = {P1, . . .Pn },Pi ⊆ P ,∀i 6= j : Pi ∩ Pj = ∅ . (A.7)

Segments Pi are regions of interest and hint at possible objects in the scene.
Figure A.2 shows an example.

Figure A.2.: A segmented point cloud. The point cloud is shown in Figure A.1.
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B. Robotic Platforms and Sensors

This chapter lists the robotic platforms and sensors mainly used in the exper-
iments. Experiments in this thesis are conducted using humanoid robots. In
particular, robots of the Karlsruhe ARMAR Humanoid Robot Family (Asfour
et al., 2019a); namely, the humanoid robots ARMAR-III (Asfour et al., 2006) and
ARMAR-6 (Asfour et al., 2018, 2019b). Both robots have a holonomic platform
and feature an anthropomorphic design. While ARMAR-III has more degrees
of freedom in the head, ARMAR-6 offers a wider variety of perception sensors.
The following gives an overview of important aspects of both robotic platforms
and sensors for perception.

B.1. The Humanoid Robot ARMAR-III

The humanoid robot ARMAR-III (Asfour et al., 2006) has an overall 43 De-
grees of Freedom (DoF) and is designed for various daily kitchen activity and
handover tasks. A holonomic platform enables this robot to navigate through
indoor rooms and to rotate on the spot. The robot can localize itself using three
laser scanners mounted near the platform. The robot’s head features seven DoF
in total and is also available as a stand-alone version, known as the Karlsruhe
Humanoid Head (Asfour et al., 2008). More specifically, ARMAR-III’s head has
four DoF in the neck and three DoF in the eyes for common tilt and indepen-
dent pan eye movements. Adding more degrees of freedom than the minimal
requirement allows to control the head redundantly. To mimic human foveal
and peripheral vision, each eye of ARMAR-III contains two Point Grey Dragon-
fly 2 cameras placed next to each other. Camera lenses are detached from the
camera module due to the limited space and thus allow for more compact de-
sign of the eye and thus flexible eye movements. The first camera has a wide
angle lens for peripheral vision, while the second camera has a narrow angle
lens for foveal vision. Each camera has a resolution of 640 px × 480 px. The
cameras deliver a framerate up to 30 Hz sufficient for most vision-based tasks,
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Figure B.1.: The humanoid robot ARMAR-III in a kitchen environment. Figure
taken from (Asfour et al., 2019a) (© 2019a Springer).

such as object localization or object tracking. The ARMAR-III robotic platform
has been widely used, also in large scale applications (Wächter et al., 2018). For
more details about the hardware layout and cognitive abilities, the reader is
referred to Asfour et al. (2006) and Asfour et al. (2008).

B.2. The Humanoid Robot ARMAR-6

The humanoid robot ARMAR-6 is designed as a collaborative agent for main-
tenance tasks in industrial environments (Asfour et al., 2018). Asfour et al.
(2019b) gives a more comprehensive overview of ARMAR-6’s capabilities. Sim-
ilar to ARMAR-III the humanoid robot uses a holonomic platform as well. A
linear torso joint allows to adjust the height of the robot and thus ARMAR-6
can spawn up to a maximum height of 1.9 m. One crucial aspect when work-
ing in industrial environments is the visual perception. Therefore, the robot
is endowed with several perception sensors. Figure B.2 outlines the robot’s
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Figure B.2.: Sensor overview of the humanoid robot ARMAR-6. Figure taken
from Asfour et al. (2019b) (© 2019b IEEE).

structure and its sensor system. Inspired by previous generations of the Karl-
sruhe ARMAR Humanoid Robot Family (Asfour et al., 2019b), ARMAR-6’s
features two Point Grey Flea3 cameras for foveated vision and a Roboception
rc_visard 160 color sensor for stereo vision and on-board depth image compu-
tation. The cameras used for foveal vision feature an image resolution up to
1600 px× 1200 px resolution and framerate up to 60 Hz . Additionally, ARMAR-
6’s head features a Primesense Carmine 1.09 RGB-D sensor with a 640 px×480 px

resolution and framerate up to 30 Hz.
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Glossary

Active Vision

Purposefully control the camera parameters and the position of the cam-
era to improve the current visual perception. See Section 2.1.1.

Affordance

Interaction possibilities with scene elements or objects for an agent. See Sec-
tion 3.2.3.

Next-Best-View

Iteratively determine the next-best-view with respect to a function. Mainly
used for autonomous object modelling tasks and scene exploration.

Robot Development Environment

Software environment, which allows the software development and inte-
gration for robots.

SLAM

Build a map of the current environment while at the same time track a
robot’s location within it.

Support Graph

A graph that models the physical support among objects.
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List of Acronyms

DoF Degrees of Freedom

FOV Field of View

FPS Frame per Second

GPU Graphics Processing Unit

ICP Iterative Closest Point

IK Inverse Kinematics

IMU Inertial Measurement Unit

IOR Inhibition of Return

LCCP Locally Convex Connected Patches

NBV Next-Best-View

OBB Oriented Bounding Box

OKR Optokinetic Reflex

PCL Point Cloud Library
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List of Acronyms

PoI Point of Interest

RANSAC Random Sample Consensus

RDE Robot Development Environment

RGB-D Red, Green, Blue and Depth

RMSE Root-mean-square error

RRT Rapidly Exploring Random Tree

SG Support Graph

SIFT Scale Invariant Feature Transform

SLAM Simultaneous Localization and Mapping

SVM Support Vector Machine

TSDF Truncated Signed Distance Function

VCR Vestibulo-Collic Reflex

VOR Vestibulo-Ocular Reflex

WTA Winner-Takes-All
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List of Symbols

| · | The cardinality, i. e., the number of elements, of a set.

det The determinant of a matrix.

ψ A geometric primitive.

N Multivariate normal distribution N (µ, σ2) of random vector,
where µ denotes the mean and σ2 the variance.

‖ · ‖p p-norm ‖x‖p :=

(∑n
i=1 |xi|p

)1/p

P A point cloud, i. e., a set of points

SE(3) The special euclidean group.

SO(3) The special orthogonal group.

t A timestamp, identifying when a certain event occurred. Usu-
ally in conjunction with sensor data, e. g., P t denotes the point
cloud captured at time t.

U Uniform distribution U(a, b) of random vector in the interval
[0, 1].
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List of Symbols

v ∈ SE(3) A view defined by the coordinate system of the visual sensor.

vtarget ∈ R3 A view target or fixation point defined in the world or the
robot’s coordinate system.
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