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The motion of the human body can be described by the motion of its center of mass

(CoM). Since the trajectory of the CoM is a crucial variable during running, one can

assume that trained runners would try to keep their CoM trajectory constant from

stride to stride. However, when exposed to fatigue, runners might have to adapt

certain biomechanical parameters. The Uncontrolled Manifold approach (UCM) and the

Tolerance, Noise, and Covariation (TNC) approach are used to analyze changes in

movement variability while considering the overall task of keeping a certain task relevant

variable constant. The purpose of this study was to investigate if and how runners

adjust their CoM trajectory during a run to fatigue at a constant speed on a treadmill

and how fatigue affects the variability of the CoM trajectory. Additionally, the results

obtained with the TNC approach were compared to the results obtained with the UCM

analysis in an earlier study on the same dataset. Therefore, two TNC analyses were

conducted to assess effects of fatigue on the CoM trajectory from two viewpoints:

one analyzing the CoM with respect to a lab coordinate system (PVlab) and another

one analyzing the CoM with respect to the right foot (PVfoot). Full body kinematics

of 13 healthy young athletes were captured in a rested and in a fatigued state and

an anthropometric model was used to calculate the CoM based on the joint angles.

Variability was quantified by the coefficient of variation of the length of the position

vector of the CoM and by the components Tolerance, Noise, and Covariation which

were analyzed both in 3D and the projections in the vertical, anterior-posterior and

medio-lateral coordinate axes. Concerning PVlab we found that runners increased their

stride-to-stride variability in medio-lateral direction (1%). Concerning PVfoot we found

that runners lowered their CoM (4mm) and increased their stride-to-stride variability in
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the absorption phase in both 3D and in the vertical direction. Although we identified

statistically relevant differences between the two running states, we have to point out

that the effects were small (CV ≤ 1%) and must be interpreted cautiously.

Keywords: motor control, tolerance noise covariation (TNC), uncontrolled manifold (UCM), locomotion, mid-

distance running

INTRODUCTION

One of the key questions in the field of motor control is how
humans are able to perform skilled movements. Competitive
sports might be seen as performing movements in perfection: a
gymnast, for example, is able to perform complex movements
with maximal aesthetics, and an endurance athlete performs
his/her movements with maximal efficiency. With respect to that,
variability might be seen as counterproductive, since it causes
deviations from the singular “optimal movement” in a given
situation. However, a certain amount of variability is desirable
since it could avoid overload injuries (Hamill et al., 2012). So, the
benefit of variability might depend on the variable we are looking
at. It was shown that parameters such as movement speed,
footwear, expertise, and fatigue affect movement variability
(Jordan and Newell, 2008; Fuller et al., 2016; García-Pinillos
et al., 2020). Since fatigue is an unavoidable phenomenon in
endurance sports, the question arises as to how fatigue affects
motor variability and whether athletes are still able to perform
their movements with the same consistency in a fatigued state.

Variability analyses are well-established within the field of
motor control, with different degrees of complexity (Sternad,
2018). Namely, these are the Goal Equivalent Manifold (GEM,
Cusumano and Cesari, 2006), the Uncontrolled Manifold (UCM,
Scholz and Schöner, 1999) and the Tolerance, Noise and
Covariation (TNC, Müller and Sternad, 2004) approaches, all
of which allow analysis of functional structure and repartition
of movement variability. Common to these approaches is the
examination of a task-relevant performance variable (PV). Its
value should show low variability and stay close to the optimum
over several movement repetitions to ensure successful task
completion. The execution of the movement is described by
execution variables (EV’s). A main difference between the TNC
approach and the UCM and GEM approach is the fact that the
TNC analyses the variability on the level of the PV whereas the
UCM and GEM analyze the variability on the level of EV. There
exist different kinds of variability: If variability among the EV’s
does not increase variability of the PV it is supposed to be “good,”
since this variability could be essential for adaptations or motor
learning (Latash et al., 2010). On the other hand, variability
among the EV’s which affects the PV is considered to be “bad”
since it causes deviations from the desired PV-value. To analyze
the effect of the variability of certain EV’s, the PV has to be
formulated as a function of the EV’s. One example of a PV might
be hitting a target, e.g., a specific field on a dartboard, with a dart.
This PV could be described as a function of the EV’s release angle
and velocity (Müller and Sternad, 2004).

The approaches mentioned above have mostly been applied
to movements with a restricted number of degrees of freedom

and far less often to whole-body movements. Some recent studies
have analyzed walking using diverse analyses (GEM: Dingwell,
Bohnsack-McLagan, and Cusumano 2018; UCM: Yamagata
et al., 2019; and TNC: Hamacher et al., 2019). Using a GEM
approach, Dingwell et al. (2018) showed that the structure
of stride-to-stride variability was speed-dependent: variability
affecting the PV decreased with speed. Yamagata et al. (2019)
showed a relationship between incident falls and stride-to-stride-
variability in older adults using an UCM approach. The study by
Hamacher et al. (2019) investigated the stride-to-stride variability
in walking by means of the TNC approach and has highlighted
the usefulness of this approach for gaining deeper insight into
related motor adaptations. Using the TNC approach, Hamacher
et al. (2019) found decreases in gait variability during dual task
walking due to the component “noise.” However, there are only
a few studies analyzing the stride-to-stride variability in running.
Dingwell et al. (2018) found tighter control in running compared
to walking as indicted by quicker corrections. In our earlier
studies we found higher stride-to-stride variability in novices
compared to experts and only slight changes due to fatigue
using an UCM approach (Möhler et al., 2019, 2020). Brahms
et al. (2020) analyzed the coefficient of variation (CV) of several
spatiotemporal parameters (stride time and length, contact time)
and peak acceleration during an overground run with constant
speed. They found no effects of fatigue, which is interpreted as a
confirmation for the insensitivity of linear variability measures.
Skowronek et al. (2021) investigated the effects of an aerobic
running protocol on jump rhythm using the Optojump Next
system. They found that the rhythm of movement is impaired by
the anaerobic fatiguing protocol. To date, the TNC approach has
not been used to study running.

As stated above, a PV has to be determined first in all
mentioned approaches and should be kept constant between
movement repetitions. In the case of endurance running, it
can be assumed that runners adopted a subject-specific optimal
running style over years of training (Williams and Cavanagh,
1987; Moore, 2016). This optimal running style should be kept
constant from stride-to-stride if the ambient conditions do
not change. The CoM trajectory can be used to describe this
running style (Blickhan, 1989; Dutto and Smith, 2002) and
is one of several biomechanical parameters which influence
running economy (Williams and Cavanagh, 1987; Tartaruga
et al., 2012; Moore, 2016). It has been shown that during a run
to fatigue with self-selected speed, runners adjust their speed
rather than their vertical CoM position, which underlines the
importance of keeping this parameter constant (Girard et al.,
2013). When running on a treadmill however, speed is mostly
fixed and runners are thus not able to adjust their running speed.
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Consequently, the question is whether and how runners adjust
their CoM trajectory when they are not able to adjust their speed
when they become fatigued and how fatigue affects the variability
of the CoM trajectory.

The CoM trajectory can be described with respect to different
reference points when running on a treadmill. The origin of the
lab coordinate system as a fixed reference point (Möhler et al.,
2019) is one possible viewpoint. However, Moore et al. (2016)
found that the alignment of the ground reaction force with the leg
axis led to increases in running economy. This seems plausible,
since the runner tries to accelerate his/her body (represented
by the CoM) forwards and upwards against gravity by pushing
his/her body over the legs (Heise and Martin, 2001), so the
description of the CoM trajectory in a body-related coordinate
system (e.g., relative to the pushing foot) might be better suited
as a relevant PV during running than the CoM trajectory in
a lab coordinate system (e.g., relative to an arbitrarily chosen
point in the lab). Besides, even if a 3D analysis is desirable
(Papi et al., 2015), the separate analysis of the three dimensions
as complementary measures could provide valuable information
since the observed variability could be repartitioned in the three
directions. However, this is not easy to implement with an
analysis in the execution space (as with the UCM analysis) since
the EV’s must have the same units (e.g., joint angles in degrees
vs. foot position in meters) and a new model has to be built
up for each direction (Latash et al., 2007; Müller and Sternad,
2009). In contrast to the UCM approach, the TNC approach
allows for the combination of EV’s with different units, since the
analysis is performed in the result space (Müller and Sternad,
2009). Whereas UCM analysis is applicable to a single data set,
TNC analysis can only reveal changes in movement variability
between two states (Müller and Sternad, 2003, 2004). However,
this is suitable for looking at differences between a fatigued and a
non-fatigued state.

In this study, data from Möhler et al. (2019) were re-
analyzed using the TNC approach to gain a deeper insight
into changes in motor coordination due to running induced
fatigue. Effects of fatigue on running mechanics were shown to
be dependent on the type of fatigue, as Fischer et al. (2015)
found clear effects of a high intensity short-time fatigue protocol
on spatiotemporal parameters and Vernillo et al. (2016) found
no effects of an extreme ultra-marathon on the spatiotemporal
parameters observed. In our study, we analyze the effects of an
anaerobic run to exhaustion. The purpose was to investigate
if and how runners adjust their CoM trajectory due to high
intensity anaerobic fatigue (∼4min at ∼19 km/h) and how this
fatigue affects the variability of the CoM trajectory. Additionally,
we wanted to compare our results to the ones obtained with the
UCM approach in our earlier study on the same dataset (Möhler
et al., 2019). Therefore, we calculated the TNC approach for two
PV’s: PVlab as the CoM with respect to a fixed point in order
to compare our results to the ones obtained with the UCM and
PVfoot as the CoM with respect to the right foot in order to
choose a PV which potentially better suited to functionally study
running. So, we obtained two vectors which were described in
dependence of the joint angles as EV. The CV of the length of
these vectors was observed as a measure of variability of the CoM
trajectory. Our hypotheses for the two PV were: (1) According to

our previous study (Möhler et al., 2019), the TNC analysis would
reveal no effects of fatigue when looking at PVlab in 3D. (2) Based
on previous biomechanical studies which found effects of fatigue
on different joint angles (Winter et al., 2017) as well as increases
in variability with fatigue on spatio-temporal parameters and
their variability (García-Pinillos et al., 2020) the TNC analysis
looking at PVfoot would show changes in CoM trajectory as well
as increases in variability with fatigue.

METHODS

Used Dataset
A description of the study design is given in the following section.
Further details can be found in Möhler et al. (2019). The sample
consisted of 13 healthy young experienced male runners (age:
23.5 ± 3.6 years, BMI: 20.6 ± 1.7 kg/m², 7.2 ± 3.2 years of
running training, 10 km record 32:59 ± 01:19min). Inclusion
criteria were an active membership in a running club for at least 2
years, a 10 km record below 35min, a minimum training volume
of 50 km/week during the 8 weeks before the measurements.
Exclusion criteria were recent injuries or pain in the lower limbs.
A total of 22 anthropometric measures were taken manually
from each participant and 41 reflective markers were attached
to anatomical landmarks to perform an inverse kinematics
calculation using the Alaska Dynamicus full body model (Härtel
and Hermsdorf, 2006). One week prior to the biomechanical
measurement, participants came to the lab to perform a lactate
threshold test. Following the critical power concept (Monod and
Scherrer, 1965), their individual fatigue-speed was determined.
This speed was at 19.27 ± 0.72 km/h. On the day of the
measurement, participants performed a standardized treadmill
familiarization [6min of walking (Matsas et al., 2000), 6min
of running (Lavcanska et al., 2005)]. Afterwards, participants
ran on the treadmill at their individual fatigue speed until
voluntary exhaustion. Participants reached voluntary exhaustion
at this speed after 4:06 ± 0:52min. Their perceived fatigue was
reported as 19.6 ± 0.65 on the Borg Scale (Borg, 1982). For
each participant, a minimum of 20 consecutive step cycles were
collected at the beginning, 20 seconds after the fatigue speed was
reached (PRE state) and end of the run, when the participant
indicated exhaustion (POST state). Due to data issues, only 19
consecutive gait cycles per participant could be analyzed. Based
on marker data (heel and toe marker, Leitch et al., 2011), the
right stance phase was determined. Since the running mechanics
could change with the foot strike pattern (Lieberman et al., 2010)
we verified that foot strike patterns did not change from PRE
to POST (angle between longitudinal foot axis and ground PRE:
3.16◦, POST: 3.76◦, p = 0.164). Data were cut to the right stance
phase and time-normalized to 100 time points using a cubic
spline interpolation. The time-normalized stance phase was then
further divided into absorption phase (1–50%) and propulsion
phase (51–100%) (Cavanagh and Lafortune, 1980; da Rosa et al.,
2019). These data serve as input for the following TNC analysis.

TNC Analysis
In order to perform a TNC analysis, one has to define EV and
a PV and a forward model linking the EV with the PV. The
joint angles were defined as EV. The PV is supposed to be
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a variable which is controlled in a way that its value remains
constant over several trials (in our case: strides). The steps and
choices necessary to perform a TNC analysis are described in the
following sections. We first describe our EV, PVlab, and PVfoot,
then our anthropometric model and finally the decomposition of
variability in T, N, and C.

PVLab

In accordance with our previous UCM analysis (Möhler et al.,
2019), we defined the CoM trajectory relative to a fixed point as
PVlab (rPVlab), respectively, the length of the vector (euclidean
norm) pointing from this fixed point to it [see Figure 1 and
Equation (2)]. The chosen coordinate axes were classified as:
pointing parallel to the treadmill belt (x-direction, anterior-
posterior), vertical (z-direction), or perpendicular to these two
axes (y-direction, medio-lateral). Therefore, x and z represent
physically meaningful directions (running direction, gravity).

The coefficient of variation (CV) was calculated as a measure
for stride-to-stride variability. Thus, the degree to which the PV
is kept constant over the 19 cycles could be quantified. CVs were
calculated for the 3D length of the vector and on the projections
in the individual directions (anterior-posterior, medio-lateral and
vertical direction).

PVFoot

We defined the CoM trajectory relative to the right foot as PVfoot

(rPVfoot), more precisely the length of the vector pointing from
the right foot to the CoM [see Figure 1 and Equation (3)]. The
chosen coordinate axes were classified as: pointing parallel to
the treadmill belt (x-direction, anterior-posterior), vertical (z-
direction) or perpendicular to these two axes (y-direction,medio-
lateral). The length of the vector pointing from the right foot to
the CoM trajectory was then calculated (euclidean norm).

CV’s of PVfoot were calculated in the same manner as
for PVlab.

3D Anthropometric Model
To perform a TNC analysis, a forward model is required which
links the PV (CoM trajectory) with the EV’s (joint angles). We
used the same subject-specific 3D forward model as used for our
previous UCM analysis (Möhler et al., 2019) consisting of 17
segments and 50 degrees of freedom (47 segmental angles and 3
hip rotations). The 50 degrees of freedom of the anthropometric
model were defined as EV’s. The model is based on the Hanavan
model (Hanavan, 1964) and was modified by including a neck
and a hip segment. The shapes of the segments were defined
using 36 subject-specific anthropometric measurements, thereof
21 measured manually and 15 determined through the marker
data. By assuming a constant density distribution (Ackland et al.,
1988), the segment’s masses could be determined via volume
integration. The whole-body CoM (rCoM , see Figure 1) was
calculated as a weighted sum:

rCoM =
1

∑N
i=1 Vi

∗

N∑

i=1

riVi (1)

With N as the number of segments; Vi as the volume of segment
i; ri as the vector of the center of gravity of segment i relative to

the pelvis. rCoM is the vector from the origin to the CoM. In the
case of PVlab, the PV matches this vector:

rPV_lab = rCoM (2)

Since rCoM is defined in 3D, PVlab has 3 degrees of freedom (three
coordinates). In the case of PVfoot, the vector from the origin to
the pelvis (rPelvis) is added and the one to the right foot (rRFoot)
is subtracted:

rPV_foot = rCoM + rPelvis − rRFoot =

1
∑N

i=1 Vi

∗

N∑

i=1

riVi + rPelvis − rRFoot (3)

Since rCoM , rPelvis, and rRFoot are defined in 3D, PVfoot has 3
degrees of freedom (three coordinates).

Decomposition of Variability in T, N, and C
Within the TNC approach, changes in PV variability are assigned
to changes in one of three components: Tolerance, Noise
or Covariation. Tolerance (T) involves changes in the mean
configuration of the EV’s so it could be seen as a measure for
sensitivity; Noise (N) involves changes in the dispersion of the
EV’s, so how changes in the scattering of the EV’s influence
the PV; Covariation (C) involves changes in compensatory
mechanisms among the EV’s so whether the EV’s co-vary in a
manner that variability of the PV is diminished (or not) (Müller
and Sternad, 2004). A TNC analysis is performed at one discrete
point in time. Thus, we time-normalized our stance phases
and assumed, that over several repetitions, the same posture is
specified at a specific percentage of the gait cycle (Scholz and
Schöner, 1999). A separate TNC analysis was performed at each
time point of the time-normalized stance phase. Afterwards, the
means for the absorption and propulsion phase were calculated.

Using the TNC approach, changes in variability of the PV
between the two states can be separated into changes due to T,
N, and C. To calculate the contributions of these components,
five datasets (D1 – D5) are needed (Müller and Sternad, 2004).
The CV as a measure of variability is determined for each of
the datasets. By comparing the variability calculated with the
different datasets, one can attribute changes in PV-variability to
one of the three components. All of these datasets consist of the
values for our EV’s for all subjects, all cycles and all time points:

- D1: measured EV’s in the first (PRE) state.
- D2: Data from D1 but permuted over repetitions so that all

possible covariance is eliminated (Müller and Sternad, 2003).
These data are on the position of D1 in the EV space and
have the same dispersion as D1 but no covariation. We used
1,000 permutations.

- D3: Data from D2 but moved to the position of D5 in the EV
space (the mean values from D1 are subtracted and the mean
values from D5 are added). These data are on the position
of D5 in the EV space but with the dispersion of D1 and
without covariation.

- D4: Data from D5 but permuted over repetitions so that
all possible covariance is eliminated. These data are on the
position in the EV space of D5 and have the same dispersion
as D5 but without covariation.
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FIGURE 1 | Drawing illustrating the calculation of the two PV’s [see equations (2) and (3)]. To the left side, the definition of PVlab as the CoM relative to the origin. To the

right side the definition of PVfoot. The right leg is shown in gray with the midpoint of the malleolus markers (right foot) in orange and the midpoint of the pelvis in green.

- D5: measured EV’s in the second (POST) state.

For each of these five datasets the CV as a measure of variability
is calculated using our forward model [see Equations (1)–(3)].
When comparing the errors obtained with the five datasets,
changes in variability of the PV from the PRE state to the POST
state can be analyzed with respect to T, N, and C. By comparing
the PV-variability for D1 with the PV-variability for D5, one can
see if the variability of the PV changed between the PRE and the
POST state. However, one cannot yet state by which component
(T, N, or C) this change is caused. It would even be possible
that we have changes in the components without observing them
on the PV level, because one component causes an increase and
another a decrease in PV variability. To determine the changes
due to T one has to subtract the PV-variability for D2 from
the PV-variability for D3. Since the two data sets have the same
dispersion and no covariation, the mean value of the EV’s (thus
the position in EV space) is the only difference. If changes
due to T are observed, the positions in EV space between the
PRE and the POST state show difference in error-tolerance so
in sensitivity. To determine whether the scattering of the EV
cause changes in variability of the PV, the PV-variability for D3
is subtracted from the PV-variability for D4. Since D3 and D4
have no covariation and the same mean value (both are on the
POST-position in EV space), the scattering of the EV’s is the only
difference. So, if changes due to N are observed, the scattering of
the EV’s between the PRE and the POST state leads to changes in
PV-variability. To calculate changes due to changes in covariation
among EV’s due to fatigue, one has to calculate the differences
in PV-variability between D1 and D2 as well as D5 and D4.
The only difference between D1 and D2 as well as D5 and D4
is that the data in D4 and D2 were randomized to delete all
covariation. So, if changes due to C are observed, changes in
covariation among the EV’s lead to changes in PV-variability. A
positive value for a component signifies that variability increased
from state one to state two due to this factor, a negative value that
it decreased.

Statistics
The independent variable is fatigue (PRE vs. POST). The
dependent variables are the 3D-length of PVlab and PVfoot and
the lengths of the projections in the three coordinate axes.
Further dependent variables are the CV’s of these lengths and
the components T, N, C (in %). We calculated a mean value
for each dependent variable for the absorption and propulsion
phase separately. For the lengths and their CV’s we calculated
dependent t-tests (between PRE and POST). For T, N, and C we
calculated one-sample t-tests to detect deviations from zero, since
these values are a measure for the changes from PRE to POST.
Cohen’s d was used to indicate effect size for the t-tests. A small
effect size was d < 0.5, a medium effect size was between 0.5 and
0.8 and a large effect size was d > 0.8 (Cohen, 1992). P < 0.05
were considered statistically significant.

RESULTS

The results are shown separately for the two PV’s. First, we
show the results for PVlab (CoM relative to the lab coordinate
system), then we show the results for PVfoot (CoM relative to the
right foot).

PVLab
Concerning PVlab and its CV, there were no significant effects
of fatigue in 3D (see Figure 2 and Table 1). Concerning
T, N, and C, only component N showed significant effects
of fatigue. An increase in variability due to N with a
medium effect size was seen in the absorption phase,
although not reaching statistical significance (p = 0.096,
d = 0.501).

In the anterior-posterior direction, there were no significant
effects of fatigue.

In the medio-lateral direction, the CV increased with fatigue
in the propulsion phase (p = 0.012, d = 0.822). Component N
showed an increase in variability with a medium effect size in
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FIGURE 2 | Length of the 3D-vector for PVlab in the PRE (magenta) and POST (green) state (left plot) and the CV of this length (right plot). The lines represent means

and the shaded areas represent standard deviations.

TABLE 1 | Variability of the dependent variables for PVlab are shown here for PRE and POST (mean ± standard deviation).

Absorption Propulsion

Non-fatigued Fatigued p d Non-fatigued Fatigued p d

3D Length [m] 0.047 ± 0.015 0.046 ± 0.015 0.748 0.091 0.045 ± 0.013 0.044 ± 0.012 0.459 0.212

CV [%] 3.606 ± 0.909 4.147 ± 1.587 0.215 0.363 3.765 ± 0.994 4.000 ± 1.402 0.584 0.156

T [%] 0.003 ± 0.014 0.553 0.169 0.004 ± 0.014 0.388 0.249

N [%] 0.013 ± 0.025 0.096 0.501 0.007 ± 0.033 0.471 0.206

C [%] 0.525 ± 1.411 0.222 0.357 0.224 ± 1.417 0.594 0.152

Anterior-posterior Length [m] 0.033 ± 0.015 0.033 ± 0.015 0.673 0.120 0.035 ± 0.013 0.035 ±0.013 0.987 0.004

CV [%] 4.668 ± 0.886 5.091 ± 1.970 0.368 0.259 4.289 ± 0.969 4.666 ± 1.555 0.358 0.265

T [%] 0.002 ± 0.018 0.695 0.111 0.001 ± 0.014 0.753 0.089

N [%] 0.008 ± 0.029 0.391 0.247 0.011 ± 0.030 0.234 0.347

C [%] 0.413 ± 1.546 0.373 0.257 0.365 ± 1.339 0.363 0.262

Medio-lateral Length [m] 0.022 ± 0.010 0.022 ± 0.009 0.796 0.073 0.010 ± 0.004 0.011 ± 0.005 0.131 0.450

CV [%] 4.563 ± 1.145 4.796 ± 1.347 0.396 0.244 4.296 ± 0.712 5.292 ± 1.242 0.012 0.822

T [%] 0.003 ± 0.013 0.474 0.205 0.001 ± 0.012 0.736 0.096

N [%] 0.013 ± 0.021 0.051 0.602 0.025 ± 0.040 0.051 0.602

C [%] 0.218 ± 0.896 0.417 0.233 0.970 ± 1.135 0.012 0.821

Vertical Length [m] 0.019 ± 0.011 0.018 ± 0.010 0.179 0.395 0.023 ± 0.013 0.021 ± 0.011 0.092 0.507

CV [%] 2.696 ± 0.462 3.143 ± 1.288 0.195 0.381 2.872 ± 0.755 3.257 ± 1.668 0.322 0.287

T [%] 0.004 ± 0.009 0.130 0.450 0.005 ± 0.011 0.129 0.452

N [%] 0.014 ± 0.026 0.095 0.502 0.011 ± 0.030 0.219 0.360

C [%] 0.430 ± 1.104 0.203 0.374 0.369 ± 1.264 0.332 0.280

Moderate or strong effect sizes and significant p-values are highlighted in bold. There is only one value for T, N, and C, since they describe the change from PRE to POST. A negative

value signifies a decrease in variability, positive values an increase. CV represents the coefficient of variation and T, N, C, the components tolerance, noise, and covariation.

both phases, although not reaching statistical significance (both p
= 0.051, d = 0.602). Component C showed a significant increase
in variability during propulsion phase with a high effect size (p=
0.012, d = 0.821).

In the vertical direction, PVlab decreased with fatigue with
a medium effect size during propulsion phase, although not
reaching statistical significance (p = 0.092, d = 0.507). There
were no significant effects on the CV of PVlab. Only factor N
showed an increase with a medium effect size during absorption,
although not reaching statistical significance (p = 0.095, d
= 0.502).

Summarizing these results, the only significant effects of
fatigue on PVlab are a decrease in vertical direction which
does not reach statistical significance. Hypothesis (1) can thus
be accepted.

PVFoot
Concerning PVfoot, there was a significant decrease in the
absorption phase (p= 0.035, d= 0.658) and a significant increase
in the propulsion phase (p = 0.045, d = 0.621), both with
a medium effect size. The CV of PVfoot increased during the
absorption phase (p = 0.027, d = 0.696) with a medium effect
size (see Figure 3 and Table 2). Concerning T, N, and C, only
component T showed significant effects of fatigue. A decrease
in variability due to T was seen in the absorption phase (p <

0.001, d = 1.488) and in the propulsion phase (p = 0.028, d
= 0.693). The component N showed an increase in variability
during absorption with a medium effect size without reaching
statistical significance (p= 0.057, d = 0.583).

In the anterior-posterior direction, there was an increase in
PVfoot in the propulsion phase (p < 0.001, d = 1.621). The CV
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FIGURE 3 | Length of the 3D-vector for PVfoot in the PRE (magenta) and POST (green) state (left plot) and the CV of this length (right plot). The lines represent means

and the shaded areas represent standard deviations.

TABLE 2 | The values of the dependent variables for PVfoot are shown here for PRE and POST and for absorption and propulsion (mean ± standard deviation).

Absorption Propulsion

PRE POST p d PRE POST p d

3D Length [m] 0.849 ± 0.038 0.846 ± 0.040 0.035 0.658 0.905 ± 0.039 0.908 ± 0.040 0.045 0.621

CV [%] 0.451 ± 0.105 0.514 ± 0.109 0.027 0.696 0.363 ± 0.055 0.376 ± 0.096 0.618 0.142

T [%] −0.003 ± 0.002 <0.001 1.488 −0.001 ± 0.002 0.028 0.693

N [%] 0.058 ± 0.096 0.057 0.583 0.026 ± 0.065 0.190 0.386

C [%] 0.007 ± 0.061 0.688 0.114 −0.012 ± 0.062 0.517 0.185

Anterior-posterior Length [m] 0.116 ± 0.010 0.118 ± 0.010 0.148 0.429 0.427 ± 0.031 0.440 ± 0.031 <0.001 1.621

CV [%] 1.672 ± 0.673 1.476 ± 0.491 0.120 0.464 1.023 ± 0.234 0.959 ± 0.320 0.597 0.150

T [%] −0.004 ± 0.003 <0.001 1.285 −0.004 ± 0.003 <0.001 1.236

N [%] −0.193 ± 0.452 0.165 0.410 −0.034 ± 0.375 0.761 0.086

C [%] −0.027 ± 0.068 0.196 0.379 −0.026 ± 0.098 0.382 0.252

Medio-lateral Length [m] 0.015 ±0.010 0.013 ± 0.009 0.599 0.150 0.015 ± 0.008 0.016 ± 0.011 0.684 0.116

CV [%] 0.891 ± 0.222 0.851 ± 0.294 0.574 0.160 0.826 ± 0.179 0.794 ± 0.149 0.575 0.160

T [%] 0.013 ± 0.044 0.314 0.292 0.043 ± 0.183 0.517 0.185

N [%] −0.036 ± 0.237 0.608 0.146 0.015 ± 0.229 0.823 0.064

C [%] −0.017 ± 0.067 0.403 0.241 −0.040 ± 0.067 0.061 0.574

Vertical Length [m] 0.838 ± 0.037 0.834 ± 0.039 0.041 0.634 0.793 ± 0.035 0.789 ± 0.037 0.009 0.865

CV [%] 0.376 ± 0.103 0.474 ± 0.094 0.004 0.994 0.459 ± 0.099 0.535 ± 0.154 0.095 0.503

T [%] −0.002 ± 0.223 0.002 1.127 −0.002 ± 0.001 0.001 1.152

N [%] 0.093 ± 0.104 0.009 0.861 0.065 ± 0.141 0.139 0.440

C [%] 0.006 ± 0.062 0.734 0.096 0.013 ± 0.047 0.356 0.266

Moderate or strong effect sizes and significant p-values are highlighted in bold. There is only one value for T, N, and C, since they describe the changes from PRE to POST. A negative

value signifies a decrease in variability, positive values an increase. CV represents the coefficient of variation and T, N, C the components tolerance, noise, and covariation.

of PVfoot was not affected by fatigue. Component T showed a
decrease in variability during the absorption phase (p < 0.001,
d = 1.285) and propulsion phase (p < 0.001, d = 1.236).

In the medio-lateral direction, there were no significant effects
of fatigue on PVfoot or its CV. Component C showed a decrease
in variability during propulsion with a medium effect size but
without reaching statistical significance (p= 0.061, d = 0.574).

In the vertical direction, PVfoot decreased during both
absorption (p = 0.041, d = 0.634) and propulsion (p =

0.009, d = 0.865). The CV increased during absorption
phase (p = 0.004, d = 0.994). In the propulsion phase,
there was also an increase with a medium effect size but
without reaching statistical significance (p = 0.095, d = 0.503).
Significant changes were observed in components T in both
phases (abs.: p = 0.002, d = 1.127; prop.: p = 0.001, d
= 1.152) and N during absorption phase (p = 0.009, d
= 0.861).

Since PVfoot was affected by fatigue in 3D and in anterior-
posterior and in vertical direction, hypothesis (2) could
be accepted.

DISCUSSION

The purpose of this study was to investigate if and how
runners adjust their coordination as reaction to fatigue when
running at constant speed and how this fatigue affects the
variability of the CoM. Additionally, we wanted to compare
the results of the TNC analysis with results obtained with
the UCM approach in an earlier study (Möhler et al., 2019).
Therefore, we performed a TNC analysis with two different
PV’s: PVlab is the global CoM relative to the origin. This PV
was chosen to be able to compare our results to the ones
obtained with the UCM. PVfoot is the CoM relative to the right
foot. This PV was chosen since we think that is functionally
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more relevant, since it describes the relation between the foot
and the CoM which is crucial for the forward propulsion
during running.

To be able to combine the position of the foot and the joint
angles in our analysis, we chose the TNC approach, since this
approach is performed in the results space and allows for the
combination of EV’s of different units. Our hypotheses were
confirmed, since we found no effects of fatigue for PVlab in 3D,
but there were effects of fatigue for PVfoot both in 3D and in
the projections.

In the following, we will discuss the findings of the
TNC analysis for PVlab and PVfoot and then comment on
some methodological consideration concerning the comparison
between the UCM and the TNC approach. Afterwards, we
will address the limitations of our study and comment on its
contributions to the field.

Fatigue Effects on CoM Trajectory and Its
Variability
We analyzed the effects of fatigue on the CoM trajectory and
its variability using two different PV’s: PVlab, where the position
of the CoM is described relative to a lab coordinate system and
PVfoot, where the CoM is described relative to the right foot.

Concerning PVlab, the only changes with fatigue visible in
3D were a non-significant increase in variability due to the
component N with a medium effects size. There were no effects
in anterior-posterior direction. In the medio-lateral direction,
the stride-to-stride variability of the CoM trajectory increased
during propulsion phase, due to increases in variability caused
by the components N and C. In the POST state, the CoM was
lower during propulsion phase than during the PRE state. These
results show that relative to a fixed point, runners lowered their
CoM slightly in the POST state and showed more stride-to-
stride variability in the medio-lateral direction due to a less
error-tolerant joint configuration and more variability in the
joint angles.

Concerning PVfoot, the results show that in 3D, the distance
between the right foot and the CoM decreased during absorption
and increased during propulsion phase. The decrease in distance
can be explained by a lower CoM (decrease in vertical direction).
The increase was due to an increase in anterior-posterior
direction. The stride-to-stride variability of the CoM trajectory
increased during absorption phase, caused by more variability
in the vertical direction, which was caused by an increase in
component N. This means that changes in the dispersion of the
joint angles caused this increase. Component T caused a decrease
in variability in both absorption and propulsion phase in the
anterior-posterior and vertical direction as well as in 3D. This
means that runners had a less error-tolerant joint configuration,
especially in the sagittal plane. The effects of this component
however were considerably smaller than the ones of N and C, so
the effects of T might have been hidden and are thus not visible
as a decreased CoM variability.

At first sight, the changes in CoM trajectory in this study are
contradicting the results of Girard et al. (2013), who found that
runners kept their CoM on the same height. However, it must

be noted that runners were able to adapt their running speed in
the study by Girard et al. (2013), which they could not in the
present study. So apparently, runners choose a different strategy
when running at a constant speed. Stride-to-stride variability
of the CoM trajectory increased with fatigue. A high variability
can indicate changes in running style, which potentially increase
energy consumption caused by deviation from the individual’s
optimal running style (Williams and Cavanagh, 1987; Moore,
2016). Thus, runners were probably less economical in the POST
state. The changes in the vertical direction might be explained
by reductions in leg stiffness which are commonly observed in
a POST state (Dutto and Smith, 2002; Rabita et al., 2011, 2013;
Girard et al., 2013). Reductions in leg stiffness have also been
linked to a lower running economy (Dalleau et al., 1998). A
decreased stiffness could also explain the reduced distance from
the right foot to the CoM during absorption phase, since runners
would have a more compliant leg at touchdown, so the CoM was
lowered (decreases in length in the vertical direction). Since the
speed was fixed, runners had to push longer in order to keep up,
which explains the increased distance in the propulsion phase
visible in the anterior-posterior direction.

We find more changes with fatigue when analyzing PVfoot

than when analyzing PVlab, so changes with fatigue are more
pronounced in the CoM trajectory relative to the right foot than
in the CoM trajectory relative to a fixed point. This might be
either caused by changes in foot position or in the position
of the pelvis or both. Hoenig et al. (2019) found increases in
local dynamic stability of the pelvis with fatigue, so one might
assume that it was especially the foot motion which changed with
fatigue. In the analysis using PVlab, an increased variability in
medio-lateral direction was detected which is not visible when
analyzing PVfoot. So, it is only visible with respect to a fixed
reference. This could mean that runners move medio-laterally on
the treadmill. Since we focussed on stride-to-stride variability, we
cannot comment on effects of fatigue on the vertical oscillation
or the medio-lateral movement of the CoM throughout the
gait cycle.

Methodological
Considerations—References to the UCM
Results
The TNC analysis with PVlab as PV was performed to be able
to compare the results obtained here with those obtained using
an UCM analysis (Möhler et al., 2019). The results corroborated
those obtained with the UCM analysis, as we found no effects on
the PVlab in 3D. The only effect we found for T, N, or C was an
increase in variability with a medium effect size due to N in the
absorption phase which did not reach statistical significance (p
= 0.096, d = 0.501). The analysis of stride-to-stride variability
with respect to PVfoot would not be possible within the UCM,
since we would have to combine the different units of the foot
and pelvis location in meters with the joint angles in degrees or
radians. This is not feasible within the UCM approach (Latash
et al., 2007). When calculating the Jacobian, which is the core
of the UCM analysis, the position of the foot or pelvis would
disappear when performing the partial derivatives since they
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are not expressed in dependence on any EVs (e.g., a constant
term without any dependency). The CoM trajectory within the
UCM approach is not suitable to describe its movement along
its trajectory in a global coordinate system because it is rather
a parameter representing fluctuation of the CoM around an
arbitrary point in the coordinate system. Therefore, one should
calculate the CoM trajectory of interest separately when a UCM
analysis is performed.

With the TNC approach used in this study, the combination
of different units within the EV’s does not pose a problem since
the analysis is performed in the result space (Müller and Sternad,
2009). Although the possibility to analyze variability on the level
of the whole human body is a big strength of these approaches,
analyzing sub-systems can also lead to deeper insights. Within
the TNC approach, the analysis of the projections in the three
dimensions is possible since it is performed in the result space
(Müller and Sternad, 2009).Within the UCM approach a separate
model for each dimension would have to be built up.

There are some other differences between the two approaches.
When performing anUCManalysis one should select a set of EV’s
that show no task-independent covariation (Latash et al., 2007).
Covariance inherent to the system will be detected by the UCM
as parallel variance, although it might only be an artifact of the
musculoskeletal system and might not arise from motor control
processes. To determine the Jacobian necessary for an UCM
analysis, the forward model has to be linearized. This means that
only differentiable forward models can be implemented (Müller
and Sternad, 2009). Whether this linearization is feasible could
be studied by comparing the results of the linearized model with
the full forward model (Scholz and Schöner, 1999). However, the
influence of the linearization is rarely examined. The orthogonal
variance is determined based on this linearization (Latash et al.,
2007), but orthogonality is only given in a Euclidean space
and it is hard to determine whether this assumption is valid.
Performing an UCM analysis without having examined whether
these requirements are met does not mean that the analysis will
lead to wrong or unusable results, although the influence of
violating these assumptions is hard to evaluate. While an UCM
analysis tests a hypothesis concerning the degree of control or
stability of a certain PV (Latash et al., 2007), a TNC analysis
only quantifies the influence of components T, N, and C on the
variability of the result. Hypotheses about control have to be
subsequently analyzed. Also, variability not affecting the PV (in
the UCM context: parallel variability) is not detected within the
TNC approach, since it is not captured by T, N, or C (Schöner
and Scholz, 2007). Therefore, the two approaches are not in
conflict, but are instead complementary since both look at a
given problem from different perspectives. The UCM analysis
can be performed on data from a single measurement. The TNC
analysis was developed in the context of motor learning and
always shows a development from one state to another, so it
cannot be performed on single measurements.

Some parallels can be drawn between the results obtained with
the two approaches. Changes in component N in a TNC analysis
can be seen in an UCM analysis as changes in the orthogonal
variance. Changes in component C could be seen as changes
in the repartition of variance on the parallel and orthogonal

components and so in the UCM ratio. Verrel (2011) showed that,
in 1D, the measure for covariation is even equivalent between the
two approaches. Changes in component T are not detectable in
the UCM since the forward model is linearized around the mean
configuration, which has no effect on UCM results.

Limitations
To capture consecutive gait cycles, this study was performed on
a treadmill. There are a number of studies showing differences
between treadmill running and overground running (Fellin et al.,
2012). Given the time of treadmill familiarization (Matsas et al.,
2000; Lavcanska et al., 2005), it can be assumed that movement
patterns were at least stable and differences from overground
running were minimal (Riley et al., 2008). However, the constant
speed of the treadmill is expected to result in less variability in the
movement execution.

So far, the TNC approach, as well as the UCM approach have
been mainly used to analyze postures at one specific moment in
time. Here we apply these approach to a whole-body continuous
movement (comparable to Hamacher et al., 2019; Yamagata et al.,
2019). In order to do so, we had to time-normalize our data,
although we acknowledge the fact that this might mask certain
variability in timing over the stance phase.

Even if we find statistically significant and thus systematic
effect with fatigue on the CoM trajectory, one has to critically
question the practical significance of the findings. The observed
effects in this study have to be considered as small (differences in
distance of± 3mm, differences in CV < 1%). However, since we
study trained runners we cannot expect huge changes. Also, since
runners had to run at a high, fixed speed (19.27 ± 0.72 km/h),
maintaining the speed has not allowed any major deviations. Due
to the limitation to male runners and the relatively small sample
size, our findings are not directly generalizable or transferable to
other samples such as recreational athletes or female runners.

Since the TNC and other related variability analyses are always
coordinate dependent (Schöner and Scholz, 2007; Sternad et al.,
2010), we have to emphasize that our results are only valid for
the chosen coordinates. We analyzed the trajectory of the CoM
with respect to two different coordinate systems during the stance
phase and this analysis was performed in the coordinate space
spanned by our EV’s—the joint angles. The results for an analysis
performed in a different coordinate frame might differ. We chose
the joint angles as EV’s since they are a possible control variable
duringmotor control, in agreement with other studies (Papi et al.,
2015; Hamacher et al., 2019; Yamagata et al., 2019).

Conclusion and Outlook
For the first time, the TNC analysis was used in the context of
running as well as in combination with an 3D full body model.
The results obtained with this approach were compared with
results obtained with the UCM approach on the same dataset and
their differences and similarities were outlined.

Concerning PVlab we found that runners increased their
stride-to-stride variability in medio-lateral direction by 1%.
Looking at PVfoot we found that runners lowered their CoM
by 4mm and increased their stride-to-stride variability in the
absorption phase in both 3D and in the vertical direction. The
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lowering of the CoM might be explained by a reduced leg
stiffness. Apparently, runners have to lower their CoM in order
to maintain a fixed running speed throughout a fatiguing run.

Both the UCM and the TNC approach were developed and
are mainly applied in well-controlled labmovements with limited
degrees of freedom, in contrast to our application to a complex
whole body movement. Even though this is a necessary, results
from these experiments are not always transferable to whole-
body sports movements. In this study, we show that this transfer
is feasible. Even though we only find minor effects in our study,
these methods are promising approaches to gain further insights
into the stride-to-stride variability in running.
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