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1 Introduction

A graph consists of objects, called nodes, that are connected by edges. These connections
may have a certain strength or a direction. Graphs can be used in a lot of contexts
where objects have relations to each other [Fon+11]. A common example throughout this
thesis are social networks, where the nodes represent humans that are, e.g., connected
by friendships. Other examples are scientists as nodes that are connected by an edge if
they co-authored a paper, or the World Wide Web, where nodes are websites and edges
represent links between them. Graphs are also used in biology, e.g., to model proteins as
nodes and interactions between them as edges.

Given a large graph, we might wonder how it is structured. While for small graphs,
a visualization might give important insights, this becomes increasingly difficult with
the size of the graph. Frequently, graphs do not have edges distributed uniformly at
random, but there are groups of nodes that are internally densely connected with few
connections to other nodes. Such groups are commonly called communities or clusters.
Detecting communities, a common task in network analysis, helps us understand the
overall structure of graphs but also provides us with sets of nodes we should look at
together. In a protein interaction network, a community might be a group of proteins
with similar function while in a social network it might be a group of friends.

Community detection is a well researched topic [Sch07; For10; AP14; Har+14; FH16;
HKW16; Cha+17; Cop+19]. While there is no universally accepted definition of a good
community, it is commonly accepted that communities should be internally densely and
externally sparsely connected. There have been a lot of measures proposed to formalize
this fuzzy concept [Cha+17]. We consider two formalizations for disjoint communities
following this principle: the famous modularity [NG04] and the more recently proposed
map equation [RAB09]. As modularity optimization is NP-hard [Bra+08], heuristics
such as the well-known Louvain algorithm [Blo+08] are used in practice. Similarly, also
for the map equation we are only aware of heuristics [RAB09; BH15; Bae+17; ZY18;
Fun19; FA19]. Most of these heuristics are based on the idea of moving nodes between
communities to improve the quality measure, combined with hierarchical contractions
that combine several nodes into a single node and thus allow moving nodes together.

A different concept is to consider an ideal model for communities like a disjoint union
of complete graphs, also called cliques. We are then looking for such a graph that is close
to a given graph in the sense that we only need to remove and insert few edges. This is
called cluster editing [BB13]. In biology, such models are used to detect communities for
example in protein interaction graphs where the strength of interaction between proteins
gives natural costs for edge insertions and deletions [Böc+09; Wit+11].

All of these approaches have in common that they partition a graph into disjoint
communities such that every node belongs to exactly one community. While this model is
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quite well-understood, it cannot model real-world scenarios where nodes belong to more
than a single community. For example in a social network, a person might be part of a
group of friends at work, a group of friends from school, a group of friends at a sport club
and also a close family circle [ABL10; ML12]. Therefore, a lot of models and algorithms
for overlapping communities have been proposed. For overlapping communities, there is a
much stronger focus on the quality of individual communities as it is more challenging to
come up with good global quality measures that can be optimized efficiently [XKS13; AP14;
FH16]. As these scenarios are a lot more complex, and we cannot expect communities
to be clearly separated, such algorithms usually work only in very specific conditions or
need a lot of running time [Buz+14; Gel19].

Many real-world networks evolve over time, for example friendships in a social network
change over time, new users join a social network and others leave it. Further, we
can also define graphs based on temporal features like a social network where an edge
exists only if two people have interacted in a certain time frame. When detecting
communities on such graphs, a natural request is that we do not want communities to
change dramatically from one time step to another unless there was a dramatic change in
the network structure [HKW16; CR19]. This means that community detection algorithms
for evolving networks should take the community structure of previous time steps into
account – not just to save running time, but also to produce better results.

An additional challenge is the ever-increasing amount of data that is available today.
This makes it necessary to consider scenarios where the whole graph does not fit into the
RAM of a single computer anymore. Scaling the computation across a cluster of compute
servers is a natural way to handle such massive graphs. Another one is to use so-called
external memory, nowadays typically SSDs, to store data and to use access patterns that
suit them. Further, we might also simply discard parts of the graph [SPR11] and hope we
still have enough left to accurately detect communities. We might also not be interested
in communities of the whole graph but only communities containing a certain node or a
group of nodes. Here, we can use local algorithms that avoid visiting the whole graph.

An important part of the design of a community detection algorithm is to evaluate
how well it actually works. Due to the lack of a commonly agreed on definition what
constitutes a good community, this is a difficult problem in itself. In most graphs derived
from real-world networks, we either do not know what communities we are looking for or
if they can even be detected [Bad+14; FH16]. As a remedy, synthetic benchmark graph
generators have been designed. They provide a graph and a community structure that we
can expect to be detectable due to the way the graph is generated. At the same time, such
benchmark graphs try to construct graphs that have properties such as a skewed degree
distribution typically found in real-world networks. LFR benchmark graphs [LFR08;
LF09a] are the most widely used benchmark graphs for community detection [FH16;
Emm+16]. They support disjoint and overlapping communities as well as optionally
weighted and/or directed graphs. The more recently proposed CKB benchmark [Chy+14]
considers only overlapping communities, with a skewed distribution of the number of
communities per node.
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1.1 Our Contribution

The first part of this thesis deals with benchmarking community detection algorithms.
We give an overview of existing approaches and provide two new graph generators. The
remaining parts then deal with different models of communities – disjoint density-based
communities, editing, and local communities. For each of these models, we introduce
new algorithms that improve the state-of-the-art in terms of quality and/or in terms of
scalability.

The first part starts with an overview of existing benchmark graph generators for
community detection as well as networks that are frequently used as benchmark instances.
We then present two novel graph generators. In Chapter 3, we present the first external
memory graph generator that implements the LFR benchmark graph model and is able
to generate graphs larger than the RAM of a single compute server. It outperforms
the original implementation of the LFR benchmark already for graphs still fitting into
RAM while producing graphs that closely follow the original model. In Chapter 4, we
present our second graph generator that deals with dynamically changing communities
in a dynamic graph model based on the CKB model. We show that our generator is
able to create graphs that have stable properties over time while featuring a significantly
changing community structure with smooth changes.

In the second part, we explore two approaches to make existing disjoint community
detection algorithms scalable. In Chapter 6, we present a distributed community detection
algorithm that can optimize modularity and map equation. It is based on the Thrill
framework [Bin+16] and the idea of moving several nodes at once between communities.
We show that it outperforms the state-of-the-art distributed algorithm for optimizing
map equation in terms of the quality of the found community structure while being faster
and needing less memory. Chapter 7 explores how removing edges according to different
rankings affects the performance of clustering algorithms. We show that while there are
methods that very effectively select intra-cluster edges in LFR benchmark graphs, they
lead to vastly different communities on real-world graphs. On the other hand, random
sampling seems to be a promising technique that, up to certain rates, keeps the community
structure mostly intact.

In the third part, we propose scalable algorithms for the problem of editing a given
graph to a quasi-threshold graph, a model proposed for detecting communities in social
networks [NG13]. In Chapter 9, we present a scalable algorithm that optimizes this
problem heuristically. We show that our algorithm scales well to graphs with hundreds of
millions of edges. In order to examine its quality, in Chapter 10, we also consider solving
the problem exactly using a combinatorial branch and bound algorithm and an integer
linear program – albeit on much smaller graphs. Our branch and bound algorithm is also
able to efficiently enumerate all solutions, allowing an analysis of all found solutions – for
some graphs, there are thousands that differ significantly. We show that our heuristic
algorithm is frequently exact or close to a best solution. Further, our branch and bound
algorithm is able to exploit parallelism more efficiently than the commercial Gurobi ILP
solver, making it faster than the ILP even though it enumerates all solutions.
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The last part deals with detecting local communities around a given seed node without
exploring the whole graph. In Chapter 11, we conduct an extensive experimental study
and show that starting from the largest clique in the neighborhood of the seed node
significantly improves results on synthetic as well as real-world networks.

For all our algorithms, we also publish implementations. Links to them are provided in
the respective chapters. We implemented many of our algorithms in NetworKit [SSM16].
Some of them are already included in NetworKit, for others we provide extended versions
of NetworKit that we intend to contribute to NetworKit for future releases. NetworKit
combines efficient graph algorithms implemented in C++ with a Python interface. This
allows the interactive analysis of networks and makes it easy to write scripts that implement
experimental workflows. We use this to analyze also the results of algorithms that were
not implemented in NetworKit like our external memory LFR generator. For some of
these evaluations, we also contributed new algorithms to NetworKit, e.g., to analyze the
difference between two graphs for our work on exact editing (Chapter 10).

The remainder of this introduction introduces the notation and important concepts
used in the remainder of the thesis.

1.2 Preliminaries

In this section we introduce the notation as well as important concepts that we use
throughout this thesis. The notation is mostly the same as the one we used in the papers
the individual chapters are based on. This section is based on the corresponding section
in our papers on external memory graph generation [Ham+18b] and on local community
detection [HRW17]. The former is joint work with Ulrich Meyer, Manuel Penschuck,
Hung Tran and Dorothea Wagner, while the latter is joint work with Eike Röhrs and
Dorothea Wagner.

We define [k] := {1, . . . , k} for k ∈ N>0. The notation [xi]
b
i=a denotes an ordered

sequence [xa, xa+1, . . . , xb].

Graphs. A graph G is a tuple G = (V,E) of n := |V | sequentially numbered nodes
V = {v1, . . . , vn} and m := |E| edges. Unless stated differently, we assume that graphs
are undirected. To obtain a unique representation of an undirected edge {u, v} ∈ E as
a tuple, we sometimes use ordered edges [vi, vj ] ∈ E implying i ≤ j. The edge is still
undirected, the ordering is just used algorithmically but does not carry any meaning. An
edge {u, v} is incident to a node vi, if vi ∈ {u, v}. Two nodes vi, vj are adjacent if they
are connected by an edge, i.e., {vi, vj} ∈ E. In general, we assume that our input graphs
are simple, i.e., without self-loops and multi-edges. In some algorithms though, we deal
with graphs with self-loops and multi-edges in intermediate steps.

In some cases, we also consider weighted graphs G = (V,E,w) with weights w : E → R>0.
We then treat unweighted graphs as weighted graphs with w(vi, vj) = 1 for every edge
{vi, vj} ∈ E.

The neighbors N(vi) = {vj |{vi, vj} ∈ E} of a node vi are the nodes that are adjacent
to it. For a set of nodes S ⊆ V , we denote by N(S) the union of all neighborhoods of the
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nodes in S without S, i.e., N(S) := ∪u∈SN(u) \ S.
The degree deg(vi) := |N(vi)| of a node vi is its number of neighbors. Let ∆ denote

the maximum degree over all nodes in V . For weighted graphs, the weighted degree
degw(vi) =

∑︁
vj∈N(vi)

w({vi, vj}) is the sum of the edge weights of all edges incident to u.
For (weighted) degrees, we count self-loops twice. D = [ di ]

n
i=1 is a degree sequence of

graph G iff ∀vi ∈ V : deg(vi) = di.

Communities. A community or cluster1 C ⊆ V is a node subset of size nC := |C|.
A clustering C is a set of clusters. A clustering is disjoint if each node vi ∈ V is part
of exactly one cluster. A disjoint clustering is sometimes also called a partition of the
nodes while a possibly overlapping clustering is frequently called cover. The shell S(C)
is a synonym for the neighbors of the community C, i.e., S(C) = N(C). The boundary
B(C) of a community C are the nodes in C that have neighbors in the shell S(C), i.e.,
B(C) = {vi ∈ C |N(vi) ∩ S(C) ̸= ∅}.

Cut, Volume. The volume vol(S) of a node set S is the sum of their degrees. The
weighted volume volw(S) of a node set S is analogously the sum of their weighted degrees.
We define the weighted cut of two disjoint node sets S, T ⊆ V , S ∩T = ∅ as cutw(S, T ) :=∑︁

u∈S,v∈T w({u, v}). As a simplification, we write cutw(v, S) := cutw({v}, S) for the
weighted cut between a node and a node set S and cutw(S) := cutw(S, V \ S) for the cut
between S and the rest of the graph.

Clique. A clique is a set of nodes that induce a complete subgraph in G. In other words,
A ⊆ V is a clique, if and only if ∀u ∈ A,∀v ∈ A \ {u} : {u, v} ∈ E. Then, a maximal
clique Q is a clique that can not be enlarged by adding a node. A clique is called a
triangle if it consists of exactly three nodes.

Randomization and Distributions. Pld ([a, b), γ) denotes an integer Powerlaw Distribution
with exponent −γ ∈ R for γ ≥ 1 and values from the interval [a, b); let X be an integer ran-
dom variable drawn from Pld ([a, b), γ) then P[X=k] ∝ k−γ (proportional to) if a ≤ k < b
and P[X=k] = 0 otherwise. For X = [xi ]

n
i=1, we define the mean ⟨X⟩ :=∑︁n

i=1 xi/n and
the second moment ⟨X2⟩ :=∑︁n

i=1 x
2
i /n of the sequence X. A statement depending on

some x > 0 is said to hold with high probability if it is satisfied with probability at least
1− 1/xc for some constant c ≥ 1.

1.3 Common Measures

In this section, we introduce common measures for properties of graphs and in particular
communities. We primarily mention those that are used in several parts of this thesis,
but also some additional measures in Section 1.3.5.

1In this thesis, we use both terms interchangeably.
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1.3.1 Average Local Clustering Coefficient

The local clustering coefficient of a node is the density of its neighbors, i.e., how many of
its neighbors are connected by an edge divided by the possible number of edges [Kai08;
New10]. This just considers the graph and not a particular community structure. The
average local clustering coefficient is the average of this score among all nodes of the graph.
Every edge that connects two neighbors of a node spans a triangle, thus algorithms for
listing triangles can be used to compute the clustering coefficient efficiently [OB14]. If
the average local clustering coefficient is higher than we expect in a random graph with
the same amount of edges, we can assume that edges are not uniformly distributed but
that there are denser groups. While this is not a measure of a community structure, it
can certainly indicate that we can expect communities. A sufficiently large community
can also be internally dense without having a high local clustering coefficient, thus the
inverse is not necessarily true. In many graphs from applications like social networks, we
expect that communities have many triangles and thus there should be no communities
without triangles. In Chapter 11, we show how measures based on very similar ideas can
be used to detect communities around a seed.

1.3.2 Conductance

The conductance is a measure that formalizes the fuzzy concept of an internally densely
and externally sparsely connected community. It is defined as the cut divided by the
volume of the community or the remainder of the graph:

conductance(C) =
cutw(C)

min(volw(C), volw(V \ C))
.

A low conductance thus means that a community is well-separated, i.e., only few of
its edges leave it. This does not necessarily mean that the community is well-connected
internally. For example, consider a graph consisting of several connected components.
While every connected component has a conductance of zero, groups of connected compo-
nents have a conductance of zero, too. Further, the community consisting of the whole
graph always has a conductance of zero. As the conductance measures only the quality of
a single community, measures like the average conductance of all communities have been
proposed to measure the quality of a whole clustering [GKW14].

1.3.3 Modularity

A simple measure for a clustering is the coverage, i.e., the fraction of edges that are inside
a community. On its own, this measure is not useful as an optimization criterion, as the
coverage is maximal when all edges are inside a single community consisting all nodes of
the graph. Newman and Girvan propose to subtract the expected coverage in a random
graph with the same node degrees from the actual coverage [NG04]. This measure is
called modularity and the basis of many community detection algorithms. Using our
terminology, it can be defined as follows:
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Q(C) :=
∑︂
C∈C

volw(C)− cutw(C)

volw(V )
−
∑︂
C∈C

volw(C)2

volw(V )2

Modularity suffers from a so-called resolution limit [FB07]. This means that in some
cases, modularity scores can be improved by merging small but clearly distinct communities.
The size of the merged communities depends on the size of the graph, i.e., on smaller
graphs, smaller communities will be found. An effect of this is that community detection
algorithms optimizing modularity tend to detect communities that are of relatively uniform
size. A resolution parameter has been introduced that allows to control the approximate
size of the detected communities [RB06]. While this allows finding smaller (or larger)
communities, both cannot be found at the same time [Kum+07].

Finding a clustering with maximum modularity is NP-hard [Bra+08]. Algorithms used
in practice are thus heuristics such as the famous Louvain algorithm [Blo+08] that we
describe in Section 1.4.1. In Chapter 6, we present a distributed algorithm for optimizing
modularity.

1.3.4 Map Equation

The map equation [RAB09] is the quality measure optimized by the Infomap algo-
rithm [RAB09]. It is based on the idea that a random walk on a graph, that chooses
the next node uniformly at random among the neighbors of the current node, tends to
stay in communities. Instead of actually simulating random walks, the map equation
measures the expected code word length of the description of such a random walk using
a two-level code. There is a code word for each community and there are separate
dictionaries of words for each community that contain a code word for every node inside
the community as well as an exit code word. The description thus starts with a community
code word, then continues with code words of that community until the exit code word
is encountered, which is followed by another community code word and so on. A good
community structure should lead to shorter code word lengths as random walks are more
likely to stay inside communities. Thus, lower scores of the map equation indicate better
clusterings. While we use this two-level formulation for undirected graphs, the map
equation allows for very natural extensions to hierarchical communities using multi-level
codes and also for directed graphs. The expected code word length for two-level codes on
undirected graphs can be expressed in the following formula. To simplify its definition,
let plogp(x) := x log x.

L(C) :=plogp

(︄∑︂
C∈C

cutw(C)

volw(V )

)︄
− 2

∑︂
C∈C

plogp

(︃
cutw(C)

volw(V )

)︃
+
∑︂
C∈C

plogp

(︃
cutw(C) + volw(C)

volw(V )

)︃
−
∑︂
v∈V

plogp

(︃
degw(v)

volw(V )

)︃
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The last term of the map equation is independent of the actual clustering and can
thus be omitted for optimization. The map equation has a resolution limit, too [KR15].
However, in practice it is much less pronounced than for modularity.

We are not aware of any results regarding the complexity of the optimization of the map
equation. The heuristic Infomap algorithm [RAB09] has been proposed for optimizing
the map equation, it is similar to the Louvain algorithm described in Section 1.4.1. In
Chapter 6, we also present a distributed algorithm for optimizing the map equation.

1.3.5 Additional Quality Measures

Surprise [AMM05; AM11] measures how surprising, i.e., unlikely, it is that a random graph
has at least as many intra-cluster edges as observed. Finding a clustering with optimum
surprise is NP-hard [FKW14]. To allow for fast heuristic algorithms, an approximation
has been suggested [TAD15]. While good results on synthetic and real-world graphs have
been reported [AM11; TAD15], a recent study [Xia+18] suggests that there might be
problems with splitting communities with heterogeneous degrees and detecting too many
communities. In a master thesis I supervised [Wie19], we also observed much smaller
communities compared to communities found by optimizing map equation or modularity.

Reichardt and Bornholdt [RB06] not only generalize modularity to include a resolution
parameter, but also suggest using a simple random Erdős-Rényi graph [Gil59; ER59] as
null model.

The constant Potts model (CPM) [TDN11] is similar to such generalizations of mod-
ularity but does not have a resolution limit. Instead, it has an explicit parameter that
determines the resolution of the found communities independently of the provided graph.
When choosing this parameter correctly, its performance on synthetic benchmarks is
excellent [TDN11].

Significance has been introduced [TKD13] as a way of determining this resolution
parameter but can also be used as a quality measure on its own. It is based on a similar
idea as Surprise, but instead of considering the probability of a fixed partition containing
that many edges, it considers the probability of finding a partition with that many edges
in a random graph.

Generative models consider the likelihood of the given graph considering a certain
model of communities, in particular stochastic block models. Each block represents a
community and the probability of an edge {u, v} depends on the blocks of u and v, i.e.,
for each pair of blocks there is an edge probability. While early models [SN97] do not
consider the degrees of the nodes, models with a correction for node degrees show much
better results [KN11]. Also overlapping models have been proposed [Pei15] that even
allow the comparison of the fit of different models by comparing the minimum description
length.
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1.4 Community Detection Algorithms

Already a survey in 2010 [For10] listed over 450 references, and since then many more
algorithms have been published. Therefore, it is impossible to give a comprehensive
overview of the field as part of this thesis. Instead, we highlight a few algorithms that
have been shown to perform well in benchmarks and introduce their algorithmic principles
in the following sections. In the individual chapters of this thesis, we introduce related
work specifically for the different scenarios, i.e., for distributed algorithms in Chapter 6,
for editing-based algorithms in Chapter 8 and for local community detection algorithms
in Chapter 11.

1.4.1 Louvain

One of the most popular community detection algorithms is the so-called Louvain algo-
rithm [Blo+08], named after the university where its authors were back then. It is based
on two main components: local moving and contraction, which are applied alternately.
The algorithm starts by assigning each node to its own community. Then, it iterates over
the nodes of the graph in a random order and for each node u, it checks for each of its
neighbors v how much the modularity would increase or decrease when moving u into v’s
community. If an improvement is possible, u is moved into the neighbor’s community that
gives the maximum improvement. This process is repeated in rounds until in a round no
node has been moved or a stopping criterion is met. Typical stopping criteria include
limiting the number of rounds or requiring a minimum modularity improvement. After
this local moving phase, the graph is contracted such that each community becomes a
node in the contracted graph. To ensure that the modularity is the same after the con-
traction as before the contraction, edges inside a community are represented as a self-loop.
The weight of the self-loop is the sum of the edge weights in the contracted subgraph.
Resulting multi-edges between communities are reduced to single edges by summing up
their weights. On this contracted graph, the local moving phase is repeated. Local moving
and contraction phase are repeated until after a local moving phase each node is still in
its own community. In a final uncontraction step, the community assignments of each
contracted node is prolonged to the original nodes.

Many variations of this basic algorithm have been proposed. A straightforward extension
is refinement [RN11]. For refinement, local moving is executed again to improve the
community structure after every uncontraction level. The Leiden algorithm [TWE19]
additionally more carefully selects which nodes shall be contracted together and uses a
strategy where only certain nodes are active to accelerate local moving.

The Louvain algorithm has been adapted for shared-memory parallel as well as dis-
tributed scenarios [Que+15; Gho+18a]. NetworKit contains a parallel version of the
Louvain method called PLM, optionally with additional refinement (PLMR) [SM16]. The
implementation in NetworKit also allows disabling the parallelism and is then equivalent
to the original Louvain algorithm.

The Infomap algorithm that has been proposed for optimizing the map equation [RAB09]
is also based on the Louvain algorithm with additional steps for identifying sub-clusters
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before contraction and additional refinement steps.

1.4.2 Label Propagation

The basic idea of label propagation is similar to local moving but instead of optimizing
a particular measure, each node simply joins the community most of its neighbors are
in. Initially, each node is in its own community. Ties are broken uniformly at random.
Thus, the first steps are purely random until the first communities start to form. Label
propagation is simple and fast but the quality of the found communities depends a lot on
the properties of the graph. In particular in dense graph, it can easily happen that a single
community emerges that contains all or most nodes. To compensate for this problem, the
growth of a community can be dampened by reducing its weight every time it is adopted
by a new node or by setting the number of neighbors in relation to the community’s
size [ŠB11]. Label propagation has also been adapted for overlapping communities by
keeping several communities per node. SLPA [XSL11] is such an adaptation. While some
benchmarks [XKS13] show that it performs well, other comparisons [Buz+14] cannot
confirm this – the most likely explanation is the different parametrization of the used
benchmarks. The distributed EgoLP algorithm is another example for overlapping label
propagation [Buz+14]. It has 14 parameters, the authors propose two different parameter
sets for synthetic benchmarks with three and six overlapping communities per node,
again confirming the high sensitivity of label propagation to graph and parameter choices.
Implementations that use external memory exist, too [ASS15].

1.4.3 Greedy Clique Expansion (GCE)

Greedy Clique Expansion (GCE) [Lee+10] starts by detecting all maximal cliques of the
graph. Each of them is used as the seed of a community that is greedily expanded by
adding nodes that minimize a measure similar to the conductance of the community. The
authors find that there are both many cliques that have large overlaps and expanded
communities that are the same or very similar. Thus, a major part of GCE is filtering
such duplicates.

1.4.4 Order Statistics Local Optimization Method (OSLOM)

OSLOM, Order Statistics Local Optimization Method, is an overlapping community
detection algorithm [Lan+11]. It uses a measure of statistical significance to evaluate
single communities. For a community C, it measures if a prefix of a list of candidates
has significantly more connections to C than expected by chance in a random null model.
Nodes already part of C are also repeatedly re-evaluated according to this criterion. For
each community, OSLOM both considers adding neighboring nodes and removing existing
nodes in a cleaning-up procedure. A community is significant if it is non-empty more
than half of the times the cleaning-up procedure is applied. OSLOM detects communities
by repeatedly expanding single nodes into communities. The procedure stops, if it detects
communities similar to existing communities again and again. OSLOM also checks if
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communities contain significant sub-communities or if merging multiple communities gives
significant communities. Thus, OSLOM is also able to detect hierarchical communities.
The authors further propose extensions to weighted and directed graphs. Finally, OSLOM
can use an existing community structure as starting point of its search, thus allowing the
algorithm to be used for dynamic graphs.

1.4.5 MOSES

In contrast to the previously discussed overlapping community detection algorithms,
MOSES [MH10] defines a quality measure for overlapping communities that is then
optimized. This quality measure is based on a stochastic block model for overlapping
communities, the algorithm optimizes the likelihood of the graph given that model.
MOSES uses a combination of expanding single edges into communities, moving nodes
between communities and deleting single communities. All of these steps greedily optimize
the quality measure.
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Benchmark Graphs
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2 Introduction to Benchmarking
Community Detection Algorithms

When developing or choosing a community detection algorithm, there are usually two
questions: how fast is it, and how good are its results. Measuring running times in a
reproducible way is not trivial as they might depend on a lot of factors, but given a
certain compute system and input instance, it is quite straightforward. On the other hand,
measuring the quality of the results is much less straightforward, even given a certain
input graph. Depending on the use case, one might want to have smaller or larger, or
more or less uniform community sizes, to name just a few parameters. Frequently, graphs
from applications are also not available due to data protection or corporate interests.
Graphs from applications where we know what communities we want to find are even
rarer, and even for those that are frequently used, it is often not clear if those communities
can actually be discovered from the graph structure alone [PLC17].

To make comparing community detection algorithms easier and less arbitrary (due to
the choice of input graph), synthetic benchmarks for community detection have been
introduced [GN02; LFR08]. Due to the structure of the benchmark graph, we expect
that good community detection algorithms will be able to detect a certain known ground
truth community structure. Over the time, several benchmarks have been proposed, in
the following we will introduce some of them. The most popular one of them is certainly
the LFR benchmark [LFR08; LF09a], which we also mainly use in this thesis and for
which we propose a scalable external memory implementation in Chapter 3. By choosing
parameters accordingly, benchmark graphs can for example show that certain community
detection algorithms have problems detecting small and large communities at the same
time.

Unfortunately, synthetic benchmark graphs also have their own set of problems. This
starts with the problem of parameter choice. If, for example, a node has only one edge to
nodes of its own community, we cannot reasonably expect community detection algorithms
to recover this community. Nevertheless, such configurations of the LFR benchmark with
an average degree of ten and nodes that are part of up to eight communities are used to
conclude that “all of the algorithms do not yet achieve satisfying performance” for those
graphs where half of the nodes are part of more than two communities [XKS13]. Apart
from the obvious problem of choosing suitable parameters, the realism of benchmark
graphs can also be questioned. Many models use graphs that are completely random
apart from the modeled communities, thus featuring a very regular structure. As we will
also see in this thesis in Chapter 6 and 7 on distributed clustering and sparsification,
many algorithms behave completely differently on real-world and synthetic benchmark
graphs. Therefore, while synthetic benchmark graphs provide a good way to examine
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the quality of a community detection algorithm, they cannot replace an evaluation on
graphs from an actual application. It might even be that certain community detection
algorithms work only on benchmark graphs or only on certain application graphs as they
exploit specific properties of these graphs. For this reason, we also include graphs from
applications into our evaluations.

Evaluating detected communities using ground truth communities requires comparing
them. Given two sets of communities, we want to know how well they match, ideally
as a simple score in the range [0, 1], where 1 means they are identical. Even for disjoint
communities, it is not clear when the score should reach zero and how to penalize e.g.
merging two communities compared to moving single nodes between communities. For
overlapping communities, there are even more degrees of freedom as community detection
algorithms can also detect additional communities not present in the ground truth, up to
the point of detecting every possible set of nodes as community, which includes all ground
truth communities but is certainly not a useful community detection algorithm [PSZ10;
FH16; Jeb+18].

In the following sections, we introduce synthetic benchmark graph generators as well
as a set of graphs derived from applications that are used throughout this thesis. Further,
we discuss measures for comparing communities.

2.1 Synthetic Benchmark Graphs

One of the simplest graph models is Gilbert’s G(n, p)-model of a graph with n nodes
where every edge exists with probability p [Gil59]. The G(n,m) model of a random graph
with n nodes and m uniformly distributed edges is closely related [ER59] as G(n,m)
is equivalent to G(n, p) when drawing m from a binomial distribution with probability
p and

(︁
n
2

)︁
trials for unweighted, simple graphs (for graphs with self-loops or directed

graphs, the number of trials needs to be adjusted). Both models are commonly known as
Erdős-Rényi graphs. While Erdős-Rényi graphs themselves are not particularly interesting
as benchmark graphs for community detection, apart from serving as baseline for graphs
where no communities should be found, they are the building block of the stochastic
block model. Its simplest form is the planted partition model, where nodes are split into
equally-sized groups. Two nodes inside the same group are connected with probability
p while two nodes that belong to different groups are connected with some probability
r < p [CK01]. This can be generalized to an arbitrary assignment of nodes to blocks
and a matrix of connection probabilities for each combination of two blocks [SN97]. A
popular version of this planted partition model is the benchmark proposed by Girvan
and Newman [GN02]. It consists of 128 nodes with expected degree 16 that are divided
into four groups of 32 nodes each. As graphs with non-uniform community sizes and
node degrees are much more challenging for community detection than such uniform
communities, the LFR benchmark has been proposed to provide such a benchmark with
community sizes and node degrees following power law distributions [LFR08; LF09a].
Variants of it also provide directed and/or weighted edges and possibly overlapping
communities [LF09a]. Today, the LFR benchmark is widely used for the evaluation of
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community detection algorithms [FH16; Emm+16]. We describe the LFR benchmark in
more detail in Section 2.1.1.

For overlapping communities, the typical parametrization of the LFR benchmark uses a
quite simple model, though: a parameter determines the number of nodes that belong to
more than one community, and another parameter determines the number of communities
each of these nodes is part of. Studies on networks with communities defined by metadata
show, however, that the number of communities per node rather follows a power law
distributed instead of being uniform [YL12a; YL14]. They model each community as an
Erdős-Rényi random graph and show that this AGM model [YL12a; YL14] that is fitted
to a given graph can capture many properties of the given graph like clustering coefficients.
The CKB generator [Chy+14] is based on the AGM model, but instead of fitting the
model to a given graph, it describes a random graph model where community sizes as well
as the number of communities per node follow power law distributions. Communities are
generated as Erdős-Rényi random graphs with decreasing density for larger communities
as also observed with the AGM model [YL14]. In Section 2.1.2, we describe the CKB
benchmark in more detail.

Recently, the distributed A-BTER benchmark has been proposed [Slo+19] that we
discuss in Section 2.1.3 which has some similarities with LFR, but is definitely not the
same model. In Section 2.1.4, we discuss the nPSO model [MC18] that sounds interesting
but has not received much attention until now.

2.1.1 LFR

This description of the LFR benchmark is based on our description of the LFR bench-
mark in our work on local community detection [HRW17] and our survey on network
generation [Pen+20]. The first is joint work with Eike Röhrs and Dorothea Wagner while
the second is joint work with Manuel Penschuck, Ulrik Brandes, Sebastian Lamm, Ulrich
Meyer,Ilya Safro, Peter Sanders and Christian Schulz.

The LFR benchmark has been first introduced for unweighted, undirected graphs [LFR08]
and later extended to directed and weighted graphs with (possibly) overlapping communi-
ties [LF09a]. The node degrees are drawn from a power law distribution with user-supplied
parameters; community sizes are drawn from an independent power law distribution. The
parameter µt determines the fraction of neighbors of every node u that are not part of
u’s communities. The remainder of a node’s degree, its internal degree, is divided evenly
among all communities it belongs to. For weighted graphs, the parameter µw determines
the fraction of the weighted degree that is distributed among neighbors of u that are not
part of u’s community while the remainder is evenly divided among all communities u
belongs to. Hence, µt is referred to as the topological mixing parameter and µw as the
weight mixing parameter. If µt = µw, the edge weight is on average 1.0 for intra- and
inter-community edges. In the case of unweighted graphs, we will frequently just use µ to
refer to µt Nodes are assigned to communities at random such that each node’s internal
degree is smaller than the size of the community as otherwise not enough neighbors can be
found. For overlapping communities, Om specifies the number of communities every node
is part of. For each community, LFR generates a random graph with the given internal

27
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degrees. It analogously samples the global inter-community graph with the remaining
degrees. In an additional step, it ensures that no edges of the global graph are within a
community and that no edge is part of multiple communities. In Chapter 3 we propose
an algorithm to generate graphs following the LFR benchmark model larger than the
RAM of a single machine using external memory in the form of SSDs.

2.1.2 CKB

The CKB benchmark graphs are inspired by the AGM model [YL12a]. In the AGM
model, a community is a G(n, p) graph, i.e., a graph of n nodes where every edge exists
with probability p [Gil59]. The authors show [YL12a] that overlapping communities of
this type may explain many properties observed in real-world networks when the number
of communities the nodes are part of follows a power law distribution. In the CKB
generator [Chy+14], the authors explicitly generate such a community structure. They
draw community sizes as well as the number of communities per node from user-supplied
power law distributions. The density of the communities decreases with increasing size
of the communities. A global epsilon community adds additional noise to the graph.
The authors implemented the CKB benchmark as a distributed algorithm using Apache
Spark [Zah+16]. In Chapter 4, we propose a dynamic version of the CKB model.

2.1.3 A-BTER

This description of A-BTER has been taken from our survey on network generation [Pen+20]
that is joint work with Manuel Penschuck, Ulrik Brandes, Sebastian Lamm, Ulrich Meyer,
Ilya Safro, Peter Sanders and Christian Schulz.

A-BTER [Slo+19] (Adapted BTER) uses a specially configured version of BTER [Kol+14]
to generate benchmark graphs for community detection similar to the LFR benchmark.
At the same time, A-BTER replicates the degree and clustering coefficient distribution
of a given graph similarly to BTER. Using a heuristic scaling mechanism, A-BTER
slightly adapts these distributions to match a prescribed average and maximum degree
and clustering coefficient on a possibly larger graph. A-BTER takes a mixing parameter
that, like in the LFR model, denotes the fraction of inter-cluster edges. Using a linear
program, A-BTER further adjusts the degree and clustering coefficient distributions such
that the resulting graph matches the mixing parameter while keeping the adjustments
minimal. The assignment to affinity blocks, and the edge generation closely follows to
BTER model. Using the parallel edge-skipping technique [Ala+16], the actual intra- and
inter-community edges are generated efficiently in a parallel, distributed implementation.
The implementation is based on MPI and OpenMP. On 512 compute nodes where each
node has 128GB RAM and two marvel ThunderX2 ARM processors with 28 cores per
processor, A-BTER generates a graph with 925 billion edges and 4.6 billion nodes in
76 seconds. While the resulting graphs do not perfectly match the original LFR model,
they show that community detection algorithms show similar behavior. Further, they show
that both the degree and clustering coefficient distributions and the mixing parameter
are as desired.
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2.1.4 nPSO

The nonuniform popularity-similarity-optimization (nPSO) model [MC18] distributes
points across the hyperbolic plane according to a mixture of Gaussians. Each node is
connected to its k closest neighbors, neighbors are selected with decreasing probability.
The authors report running times of a minute for 1000 nodes, indicating that the current
implementation is not very scalable. The authors present some experiments showing
that the Louvain algorithm (see Section 1.4.1) is capable of detecting the communities at
least with some configurations. Further experiments would be necessary to determine
its suitability as a benchmark. Different models of hyperbolic random graphs have been
shown to model many features observed in real-world networks [Kri+10]. Thus, the
nPSO model might be an interesting candidate for a benchmark that possibly not only
features a community structure but also more realistic, non-trivial structures within and
between communities that deviate from simpler random models like the LFR or the CKB
benchmark.

2.2 Benchmark Instances

One of the most famous benchmark instances is the Karate graph of Zachary [Zac77],
a small social network (34 nodes, 78 edges) of the people at a Karate club that split
into two. Other famous benchmark instances include the “lesmis”, the dolphins and the
football network. The nodes of the “lesmis” network are the characters of the novel
“Les Misérables” by Victor Hugo, two nodes are connected if they appear in a chapter
together [Knu93]. The dolphins network is a network of a bottlenose dolphin community
living off Doubtful Sound, a fjord in New Zealand, where two nodes are connected if two
dolphins spent significant time together [Lus+04]. The football network contains football
clubs and their matches in one season [GN02]. All of them are rather small, the football
network is the largest with 115 nodes and 613 edges. Thus, they are not suitable for the
evaluation of scalable community detection algorithms. We use these small graphs only
for the evaluation of our quasi-threshold editing algorithms in Chapter 9 and 10, as we
compare to results published for them in [NG13]. Here, we also include the less commonly
used “grass_web” network that models the food chain of grassland species [DHC95] as it
has also been included in [NG13].

In the remaining parts, we use web graphs, a set of larger social networks from the
SNAP collection and the Facebook 100 data set. We introduce them in the following
sections.

2.2.1 Web Graphs

As part of the 10th DIMACS implementation challenge on graph partitioning and graph
clustering [Bad+13], a larger benchmark set has been published [Bad+14]. Apart from
the aforementioned small instances and many other networks, it also contains a set of
larger web graphs [Bol+04; Bol+11; BV04]. Each node corresponds to a URL that has
been discovered during a web crawl that has been restricted to a certain top-level domain
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that is indicated in the name of the graph. Edges represent links between the web pages
at these URLs. For none of these graphs, any reference structure is known. While the
URL of each node is available, we are not aware that this data is commonly used to
evaluate community detection algorithms. The largest web graph that has been included
in the 10th DIMACS challenge is the uk-2007-05 graph with about 100 million nodes
and 3 billion edges. This makes them interesting for our work on scalable community
detection. For our scalable editing heuristic in Chapter 9, we use four of these web graphs
with up to 260 million edges while for our distributed community detection algorithm in
Chapter 6, we also use the largest graph uk-2007-05.

2.2.2 SNAP

Another source of frequently used benchmark instances in community detection is the
SNAP collection [LK14]. In particular, it contains a set of networks with reference
community structure [YL12b]. We use the five undirected networks LiveJournal, Friendster,
Orkut, Youtube, DBLP and Amazon. LiveJournal, Friendster, Orkut and Youtube are
social networks where user can declare friendships which are represented as edges. Each
of them also has groups users can join. Those are the reference communities. The DBLP
network is a co-authorship network, i.e., each node represents an author and two nodes
are connected if they published a paper together. Here, the reference communities are
publication venues, i.e., each conference or journal forms a community. In the Amazon
network, nodes are products and edges are between products that have been frequently
purchased together. The reference communities are the product categories that are
provided by Amazon. For all networks, reference communities consisting of multiple
connected components have been split into their connected components and reference
communities with less than 3 nodes have been removed. While it is claimed that those
communities are “ground-truth communities”, most of these communities cannot be
recovered from the structure of the networks [HDF14; Har+14; FH16]. Therefore, we do
not compare to these reference communities in our experiments.

2.2.3 Facebook 100

This introduction has been adapted from our paper on local community detection [HRW17]
that is joint work with Eike Röhrs and Dorothea Wagner.

The Facebook 100 data set was first published by Traud et al. [TMP12]. It consists of 100
graphs, which are snapshots from September 2005. Each of these graphs describes the social
network of Facebook at a university or college and is restricted to that university/college.
The graph of a university or college consists of the persons who work, study, or studied
there. Most of the nodes represent students. Unweighted edges between persons (nodes)
exist, if they are friends on Facebook. Further, the nodes have attributes, like graduation
year, dormitory, major and high school. While the smallest graph has just 769 nodes
and 16 thousand edges, the largest graphs have up to 41 thousand nodes and almost
1.6 million edges. It has been shown that at least for some of the graphs there are
correlations between edges and the attributes dormitory and graduation year [TMP12].
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Visualizations [NOB15] also suggest that these attributes are represented in the structure
of some of the networks. The Facebook networks are therefore frequently used in testing
and comparing algorithms on real world data by looking at the correlations with their
attributes [Lee+10; LC13; SMM14]. While it is clear that both certainly play a role in
the organization of students, they are also clearly not the only factors. In our experiments
on local community detection in Chapter 11, we also use this dormitory structure as
a comparison while in our experiments on sparsification in Chapter 7, we only use the
network structure. As also our experiments show, for a few networks we can approximately
recover this structure while for others this is not the case.

2.3 Comparing Communities

To compare communities, we use three measures: the popular normalized mutual infor-
mation, the adjusted rand index and the F1 score. In the following we introduce these
three measures. For an overview of other proposed measures we refer to surveys [WW07;
Cha+17].

2.3.1 Normalized Mutual Information

Normalized mutual information (NMI) is the most frequently used comparison measure.
The mutual information MI(C,D) between two clusterings C, D is:

MI(C,D) :=
∑︂
C∈C

∑︂
D∈D

|C ∩D|
n

log
n · |C ∩D|
|C||D|

For NMI, this mutual information is normalized by the entropy H of C and D. The
entropy of a clustering C is

H(C) = −
∑︂
C∈C

|C|
n

log
|C|
n

The NMI can then be defined as:

NMI(C,D) := MI(C,D)
0.5 · (H(C) +H(D))

Note that there are several possibilities for the normalization, in particular instead of
the average also the maximum of the two entropy values can be used [Kva87]. A Problem
of NMI is that random clusterings with a high number of clusters can get non-zero scores,
even above 0.5, when comparing to the ground truth [VEB09; AP15].

For overlapping communities, several generalizations of NMI have been proposed [LFK09;
MGH11; VR12]. The first of them has been shown to have strange behavior, e.g., if one
compared clustering consists of a single cluster that perfectly corresponds to a cluster
in the other clustering, the score will be 0.5 [MGH11]. In this thesis, we use the one
proposed by Esquivel and Rosvall [VR12], but only to compare clusterings found on
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instances generated by several implementations of the LFR benchmark, not to actually
evaluate community detection algorithms.

2.3.2 Adjusted Rand Index

The similarity between two clusterings C and D can also be defined by comparing node
pairs. Let a be the number of pairs of nodes that are in both clusterings together in
a cluster. Similarly, let b be the number of pairs of nodes that are in both clusterings
separated. The remaining node pairs are in one clustering separated and in the other
together, let the number of these pairs be c. Then the rand measure R is defined as

R =
a+ b

a+ b+ c
=

a+ b

n(n− 1)/2

As the rand index is not zero for two random clusterings, an adjustment for chance has
been proposed [HA85]. The adjusted rand index is the normalized difference of the rand
index and its expected value on a clusterings that are drawn randomly with the same
number of clusters and elements in each cluster as C and D. It is defined as follows:

ARI :=

∑︁
C∈C

∑︁
D∈D

(︁|C∩D|
2

)︁
− t3

0.5(t1 + t2)− t3

where t1 =
∑︁

C∈C
(︁|C|

2

)︁
, t2 =

∑︁
D∈D

(︁|D|
2

)︁
and t3 = t1t2/

(︁
n
2

)︁
[WW07].

Note that while the ARI is zero in expectation for random clusterings, it can also be
negative. The maximum value of 1 indicates that both clusterings are identical.

2.3.3 F1 Score

When comparing just a single found community to a single ground truth community, we
are basically evaluating a binary classifier. The F1 score, the harmonic mean of precision
and recall, is a frequently used measure of such a classifier’s accuracy. Given a found
community C and a ground truth community D, the precision is:

precision(C,D) :=
|C ∩D|
|C|

while the recall is:

recall(C,D) :=
|C ∩D|
|D|

The F1 score is then

F1(C,D) := 2 · precision(C,D) · recall(C,D)

precision(C,D) + recall(C,D)

If we compare a found community to a (possibly overlapping) set of ground truth
communities, we compare it to the best-matching ground truth community, i.e., given a
found community C and a set of ground truth communities D, we define:
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F1(C,D) := max
D∈D

F1(C,D)

This can be extended to a set of found communities by using the weighted average:

Fw(C,D) =
1∑︁

C∈C |C|
∑︂
C∈C
|C|F1(C,D)

This score only tells us if every found community has a well-matching ground truth
community but not if every ground truth community also has a well-matching found
community. To measure both, we use the average weighted F1 score, which is the average
of Fw(CG, CD) and Fw(CD, CG). A similar score has been used in previous work [YL12a],
but they used the unweighted average. We instead use the weighted average to give larger
communities, which are typically underrepresented due to the power law distributions
used in benchmark generators, a larger influence on the score. This is similar to [LA99],
though they only considered one direction and not the average of both.
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3 I/O-Efficient Generation of Massive
Graphs Following the LFR Benchmark

This chapter is based on joint work with Ulrich Meyer, Manuel Penschuck, Hung Tran and
Dorothea Wagner [Ham+18b]. Parts of it have been published as [Ham+17]. Compared
to the publication, this chapter has been slightly adapted to reference parts of this
thesis where appropriate and we added a discussion of follow-up work on Curveball
trades [Car+18] to the outlook. We thank the anonymous reviewers for their insightful
comments and recommendations and Hannes Seiwert and Mark Ortmann for valuable
discussions on EM-HH .

We present EM-LFR, the first external memory algorithm able to generate massive
complex networks following the LFR benchmark. Its most expensive component is the
generation of random graphs with prescribed degree sequences which can be divided into
two steps: the graphs are first materialized deterministically using the Havel-Hakimi
algorithm, and then randomized. Our main contributions are EM-HH and EM-ES, two
I/O-efficient external memory algorithms for these two steps. We also propose EM-
CM/ES, an alternative sampling scheme using the Configuration Model and rewiring steps
to obtain a random simple graph. In an experimental evaluation we demonstrate their
performance; our implementation is able to handle graphs with more than 37 billion edges
on a single machine, is competitive with a massively parallel distributed algorithm, and is
faster than a state-of-the-art internal memory implementation even on instances fitting in
main memory. EM-LFR’s implementation is capable of generating large graph instances
orders of magnitude faster than the original implementation. We give evidence that both
implementations yield graphs with matching properties by applying clustering algorithms
to generated instances. Similarly, we analyze the evolution of graph properties as EM-ES
is executed on networks obtained with EM-CM/ES and find that the alternative approach
can accelerate the sampling process.

3.1 Introduction

With the emergence of massive networks that cannot be handled in the main memory
of a single computer, new clustering schemes have been proposed for advanced models
of computation [Buz+14; ZY16]. Since such algorithms typically use hierarchical input
representations, quality results of small benchmarks may not be generalizable to larger
instances [Emm+16; Ham+18a], see also Chapter 6. Often though, the quality is only
evaluated on small benchmark graphs as currently available graph clustering benchmark
generators are unable to generate the necessary graphs [BH15; Buz+14]. Instead, com-
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putationally inexpensive random graph models such as RMAT are used [Que+13] to
generate huge graphs. Using those models, it is however not possible to evaluate whether
the clustering algorithm is actually able to detect communities on such a large graph as
there is no ground truth community structure to compare against. Filling this gap, we
propose a generator in the external memory (EM) model following the LFR benchmark
in order to produce clustering benchmark graph instances exceeding main memory. We
implement the variants of the LFR benchmark for unweighted, undirected graphs with
either overlapping or non-overlapping communities. Our proposed graph benchmark
generator has already been used to evaluate the clustering quality of distributed clustering
algorithms on graphs with up to 512 million nodes and 76.6 billion edges [Ham+18a], see
also Chapter 6.

The distributed CKB benchmark [Chy+14] is a step into a similar direction, however, it
considers only overlapping clusters and uses a different model of communities. In contrast,
our approach is a direct realization of the established LFR benchmark and supports both
disjoint and overlapping clusters.

3.1.1 Random Graphs from a prescribed Degree Sequence

The LFR benchmark uses the fixed degree sequence model (FDSM), also known as edge
switching Markov chain algorithm (e.g. [Mil+03]), to obtain a random graph following a
previously computed degree sequence. In preliminary studies, we identified this task as
the main issue when transferring the LFR benchmark into an EM setting; both in terms
of algorithmic complexity and runtime.

FDSM consists of two steps, namely (i) generating a deterministic graph from a
prescribed degree sequence and (ii) randomizing this graph using random edge switches.
For each edge switch, two edges are chosen uniformly at random and two of the endpoints
are swapped if the resulting graph is still simple (cf. section 3.6). Each edge switch
can be seen as a transition in a Markov chain. This Markov chain is irreducible [EH80],
symmetric and aperiodic [GMZ03] and therefore converges to the uniform distribution. It
also has been shown to converge in polynomial time if the maximum degree is not too
large compared to the number of edges [GS18]. However, the current analytical bounds
of the mixing time are impractically high even for small graphs.

Experimental results on the occurrence of certain motifs in networks [Mil+03] suggest
that 100m steps should be more than enough where m is the number of edges. Further
results for random connected graphs [GMZ03] suggest that the average and maximum
path length and link load converge between 2m and 8m swaps. More recently, further
theoretical arguments and experiments showed that 10m to 30m steps are enough [RPS15].

A faster way to realize a given degree sequence is the Configuration Model which allows
multi-edges and self-loops. In the Erased Configuration Model these illegal edges are
deleted. Doing so, however, alters the graph properties and does not properly realize the
skewed degree distributions required for LFR [SHZ15]. In this context the question arises
whether edge switches starting from the Configuration Model can be used to uniformly
sample simple graphs at random.
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3.2 Preliminaries and Notation

3.1.2 Our Contribution

We introduce EM-LFR1, the first I/O-efficient LFR variant, and study the FDSM in
the external memory model. After defining our notation, we summarize the original
LFR benchmark in section 3.3. As illustrated in Figure 3.3, EM-LFR consists of several
algorithmic building blocks which we discuss in sections 3.4 to 3.8. Here, the focus lies on
FDSM consisting of (i) generating a deterministic graph from a prescribed degree sequence
(cf. EM-HH, section 3.5) and (ii) randomizing this graph using random edge switches
(cf. EM-ES, section 3.6). For EM-HH , we describe a streaming algorithm whose internal
data structure only has an I/O complexity linear in the number of different degrees
if a monotonous degree sequence is provided. To execute a number of edge switches
proportional to the number m of edges, EM-ES triggers O(sort(m)) I/Os. For EM-LFR,
the I/O complexity is the same as it is dominated by the edge randomization step. In
section 3.7, we additionally describe EM-CM/ES, an alternative to FDSM. It generates
uniform random non-simple graphs using the Configuration Model in O(sort(m)) I/Os
and then obtains a simple graph by applying edge rewiring steps.

We conclude with an experimental evaluation of our algorithms and demonstrate that
our EM version of the FDSM is faster than an existing state-of-the-art implementation
even for instances still fitting into RAM. It scales well to large networks, as we demonstrate
by handling a graph with 37 billion edges on a desktop computer, and almost an order
of magnitude more efficient than an existing distributed parallel algorithm. Further,
we compare EM-LFR to the original LFR implementation and show that EM-LFR is
significantly faster while producing equivalent networks in terms of community detection
algorithm performance and graph properties. A LFR benchmark graph with more than
1× 1010 edges can be generated in 17 h on a single server with 64GB RAM and 3 SSDs.
We also investigate the mixing time of EM-ES and EM-CM/ES and give evidence that
our alternative sampling scheme quickly yields uniform samples and that the number of
swaps suggested by the original LFR implementation can be kept for EM-LFR.

3.2 Preliminaries and Notation

In this section, we briefly introduce the notation we use, and give an introduction to the
external memory model as well as Time-Forward Processing, a crucial design-principle
used in EM-ES.

3.2.1 Notation

We use the notation defined in Section 1.2. Unless stated differently, our EM algorithms
represent a graph G = (V,E) as a sequence containing for every ordered edge [u, v] ∈ E
only the entry (u, v).

Also refer to Table 3.1 which contains a summary of commonly used definitions.
1The implementation is freely available at https://massive-graphs.org/extmem-lfr. Amongst others,

it contains encapsulated implementations of EM-ES and EM-CM/ES which can be easily reused for
novel application.
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v2
x0+x1
x2=1

v3
x1+x2
x3=2

v4
x2+x3
x4=3

v5
x3+x4
x5=5

v6
x4+x5
x6=8

v7
x5+x6
x7=13

// Send base cases of x0 = 0 and x1 = 1 to v2
PQ.push(<key=2, value=0>, <key=2, value=1>)
for i ← 2, ..., n: // calculation of vi in G

sum ← 0
// will always fetch exactly two elements
while (PQ.min.key == i): sum += PQ.remove_min().value
// report value and send message to successors
print(xi = sum); PQ.push(<key=i+1, sum>, <key=i+2, sum>)

Figure 3.1: Left: Dependency graph of the Fibonacci sequence (ignoring base case).
Right: Time Forward Processing to compute sequence.

3.2.2 External-Memory Model

In contrast to classic models of computation, such as the unit-cost RAM, modern computers
contain deep memory hierarchies ranging from fast registers, caches and main memory to
solid state drives (SSDs) and hard disks. Algorithms unaware of these properties may face
performance penalties of several orders of magnitude. We use the commonly accepted
external memory (EM) model by Aggarwal and Vitter [AV88] to reason about the influence
of data locality in memory hierarchies. The model features two memory types with fast
internal memory (IM) which may hold up to M data items, and a slow disk of unbounded
size. The input and output of an algorithm are stored in EM while computation is only
possible on values in IM. The measure of an algorithm’s performance is the number of
I/Os required. Each I/O transfers a block of B consecutive items between memory levels.
Reading or writing n contiguous items from or to disk requires scan(n) = Θ(n/B) I/Os.
Sorting n contiguous items uses sort(n) = Θ((n/B) · logM/B(n/B)) I/Os. For realistic
values of n, B and M , scan(n) < sort(n) ≪ n. Sorting complexity often constitutes a
lower bound for intuitively non-trivial tasks [AV88; MSS03].

3.2.3 TFP: Time Forward Processing

Time Forward Processing (TFP) is a generic technique to manage data dependencies of
external memory algorithms [MZ03]. Consider an algorithm computing values x1, . . . , xn in
which the calculation of xi requires previously computed values. One typically models these
dependencies using a directed acyclic graph G=(V,E). Every node vi ∈ V corresponds
to the computation of xi, and an edge (vi, vj) ∈ E indicates that the value xi is necessary
to compute xj . As an example consider the Fibonacci sequence x0 = 0, x1 = 1, xi =
xi−1+xi−2 ∀i ≥ 2 in which each node vi with i ≥ 2 depends on exactly its two predecessors
(cf to Figure 3.1). In this case, a linear scan for increasing i solves the dependencies.

In general, an algorithm needs to traverse G according to some topological order ≺T of
nodes V and also has to ensure that each vj can access values from all vi with (vi, vj) ∈ E.
The TFP technique achieves this as follows: as soon as xi has been calculated, messages of
form ⟨vj , xi⟩ are sent to all successors (vi, vj) ∈ E. These messages are kept in a minimum
priority queue sorting the items by their recipients according to ≺T . By definition, the
algorithm only starts the computation vi once all predecessors vj ≺T vi are completed.
Since these predecessors already removed their messages from the PQ, items addressed to

38



3.3 The LFR Benchmark

Symbol Description
[k] [k] := {1, . . . , k} for k ∈ N+ (section 1.2)
[u, v] Undirected edge with implication u ≤ v (section 1.2)
⟨X⟩ The mean ⟨X⟩ :=∑︁n

i=1 xi/n

⟨X2⟩ The second moment ⟨X2⟩ :=∑︁n
i=1 x

2
i /n

B Number of items in a block transferred between IM and EM
(section 3.2.2)

dmin, dmax Min/max degree of nodes in LFR benchmark (section 3.3)
din
v din

v = (1−µ)·dv, intra-community degree of node v (section 3.3)
D D = (d1, . . . , dn) with di ≤ di+1∀i. Degree sequence of a graph

(section 3.5)
D(D) D(D) =

⃓⃓
{di : 1 ≤ i ≤ n}

⃓⃓
where D = (d1, . . . , dn), degree

support (section 3.5)
n Number of vertices in a graph (section 1.2)
m Number of edges in a graph (section 1.2)
µ Mixing parameter in LFR benchmark, i.e. ratio of neighbors

that shall be in other communities (section 3.3)
M Number of items fitting into internal memory (section 3.2.2)
Pld ([a, b), γ) Powerlaw distribution with exponent −γ on the interval [a, b)

(section 1.2)
smin, smax Min/max size of communities in LFR benchmark (section 3.3)
scan(n) scan(n) = Θ(n/B) I/Os, scan complexity (section 3.2.2)
sort(n) sort(n) = Θ((n/B) · logM/B(n/B)) I/Os, sort complexity (sec-

tion 3.2.2)

Table 3.1: Definitions used in this chapter.

vi (if any) are currently the smallest elements in the data structure and can be dequeued.
Using a suited EM PQ [Arg95; San00], TFP incurs O(sort(k)) I/Os, where k is the
number of messages sent.

3.3 The LFR Benchmark

In this section we introduce the general approach for generating LFR benchmark graphs,
outline important algorithmic challenges, and address each of them by proposing a suited
EM algorithm in the following chapters (refer to Figure 3.3 for an overview).

As introduced in Section 2.1.1, the LFR benchmark [LFR08] describes a generator
for random graphs featuring node degrees and community sizes both following powerlaw
distributions. The produced networks also contain a planted community structure against
which the performance of detection algorithms is measured. A revised version [LF09a]
additionally introduces weighted and directed graphs with overlapping communities
and changes the sampling algorithm even for the original settings. We consider the
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Parameter Meaning
n Number of nodes to be produced
Pld ([dmin, dmax), γ) Degree distribution of nodes, typically γ = 2
0≤O≤n, ν≥1 O random nodes belong to ν communities; remainder has one member-

ship
Pld ([smin, smax), β) Size distribution of communities, typically β=1
0 < µ < 1 Mixing parameter: fraction of neighbors of every node u that shall not

share a community with u

Table 3.2: Parameters of overlapping LFR. The typical values follow suggestions by
[LF09a].

Sample intra- and inter-
community edges

Degrees, community sizes
and memberships

Remove (rewire)
illegal edges

Intra-community edge Inter-community edge Community

Figure 3.2: Left: Sample node degrees and community sizes from two powerlaw distribu-
tions. The mixing parameter µ determines the fraction of the inter-community
edges. Then, assign each node to sufficiently large communities. Center:
Sample intra-community graphs and inter-community edges independently.
This may lead to illegal intra-community edges in the global graph as shown
here in bold. Right: Lastly, remove illegal inter-community edges respective
to the global graph.

modern generator, which is also used in the author’s implementation, and focus on the
most common variants for unweighted, undirected graphs and optionally overlapping
communities. All its parameters are listed in Table 3.2 and are fully supported by
EM-LFR.

LFR starts by randomly sampling the degrees D = [ di ]
n
i=1 of all nodes, the numbers

[ νi ]
n
i=1 of clusters they are members in, and community sizes S = [ sξ ]

C
ξ=1 such that∑︁C

ξ=1 sξ =
∑︁n

i=1 νi according to the supplied parameters. During this process the number
of communities C follows endogenously and is bounded by C=O(n) even if nodes are
members in ν=O(1) communities.2

Depending on the mixing parameter 0 < µ < 1, every node vi ∈ V is incident to
dext
i = µ · di inter-community edges and din

i = (1−µ) · di edges within its communities.
In the case of overlapping communities, the internal degree is evenly split among all

2Under the realistic assumption that the maximal community size grows with smax = Ω(nϵ) for some
ϵ > 0, the bound improves to C=o(n) with high probability due to the powerlaw distributed community
sizes.
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Figure 3.3: The EM-LFR pipeline: After randomly sampling the node degrees and com-
munity sizes, nodes are assigned into suited communities by EM-CA (sec-
tion 3.4). The global (inter-community) graph and each community graph is
then generated independently by first materializing biased graphs using EM-
HH (section 3.5) followed by a randomization using EM-ES or EM-CM/ES
(sections 3.6 and 3.7). The global graph may contain edges between nodes of
the same community which would decrease the mixing µ and are hence rewired
using EM-GER (section 3.8.1). Similarly, two overlapping communities can
have identical edges which are rewired by EM-CER (section 3.8.2).
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3 I/O-Efficient Generation of Massive Graphs Following the LFR Benchmark

communities the node is part of. Both the computation of din
i and the division din

i /νi
into several communities use non-deterministic rounding to avoid biases. LFR assigns
every node vi to either exactly νi = 1 or νi = ν communities at random such that the
requested community sizes and number of communities per node are realized. It further
ensures, that the desired internal degree din

i /νi is strictly smaller than the size sξ of its
community ξ.

As illustrated in Figure 3.2, the LFR benchmark then generates the inter-community
graph using FDSM on the degree sequence [ dext

i ]ni=1. In order not to violate the mixing
parameter µ, rewiring steps are applied to the global inter-community graph to replace
edges between two nodes sharing a community. Analogously, an intra-community graph
is sampled for each community. In the overlapping case, rewiring steps may be necessary
to remove edges that exist in multiple communities and would result in duplicate edges
in the final graph.

3.4 EM-CA: Community Assignment

In the LFR benchmark, every node belongs to one (non-overlapping) or more (overlapping)
communities. EM-CA finds such a random assignment subject to the two constraints
that all communities get as many nodes as previously determined (see Figure 3.3) and
that for a node vi all its assigned communities have enough other members to satisfy the
node’s intra-community degree din

i /νi.
For the sake of simplicity, we first restrict ourselves to the non-overlapping case, in which

every node belongs to exactly one community. Consider a sequence of community sizes
S = [ sξ ]

C
ξ=1 with n =

∑︁C
ξ=1 sξ and a sequence of intra-community degrees D = [ din

i ]ni=1.
Let S and D be non-decreasing and positive. The task is to find a random surjective
assignment χ : V→[C] with:

(R1) Every community ξ is assigned sξ nodes as requested, with sξ :=
⃓⃓
{v | v ∈ V ∧

χ(v)=ξ}
⃓⃓
.

(R2) Every node v ∈ V becomes member of a sufficiently large community χ(v) with
sχ(v) > din

v .

Observe that χ can be interpreted as a bipartite graph where the partition classes are
given by the communities [C] and nodes [ vi ]

n
i=1 respectively, and each edge corresponds

to an assignment.

3.4.1 A simple, iterative, but not yet complete algorithm

To ease the description of the algorithm, let us also ignore (R2) for now and discuss the
changes needed in section 3.4.2. Then the assignment graph can be sampled in the spirit
of the Configuration Model (cf. section 3.7). To do so, we draw a permutation π of nodes
uniformly at random and assign nodes [ vπ(i) ]

xξ+sξ
i=xξ+1 to community ξ where xξ :=

∑︁ξ−1
i=1 si

is the number of slots required for communities with indices smaller than ξ.
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3.4 EM-CA: Community Assignment

To ease later modifications, we prefer an equivalent iterative formulation: while there
exists a yet unassigned node u, draw a community X with probability proportional to the
number of its remaining free slots (i.e. P[X=ξ] ∝ sξ). Assign node u to X, reduce the
community’s probability mass by decreasing sX ← sX − 1 and repeat. By construction,
the first scheme is unbiased and the equivalence of both approaches follows as a special
case of Lemma 3.1 (see below).

We implement the random selection process efficiently based on a binary tree where
each community corresponds to a leaf with a weight equal to the number of free slots
in the community. Inner nodes store the total weight of their left subtree. In order
to draw a community, we sample an integer Y ∈ [0,WC) uniformly at random where
WC :=

∑︁C
ξ=1 sξ is the tree’s total weight. Following the tree according to Y yields the

leaf corresponding to community X. An I/O-efficient data structure [MP16] based on lazy
evaluation for such dynamic probability distributions enables a fully external algorithm
with O(n/B · logM/B(C/B)) = O(sort(n)) I/Os. However, if C < M , we can store the
tree in IM, allowing a semi-external algorithm which only needs to scan through D,
triggering O(scan(n)) I/Os.

3.4.2 Enforcing constraint on community size (R2)

To enforce (R2), we additionally ensure that all nodes are assigned to a sufficiently large
community such that they find enough neighbors to connect to. We exploit that S and
D are non-decreasing and define pv := max{ξ | sξ > din

v } as the index of the smallest
community node v may be assigned to. Since [ pv ]v is therefore monotonic itself, it can
be computed online with O(1) additional IM and O(scan(n)) I/Os in the fully external
setting by scanning through S and D in parallel. In order to restrict the random sampling
to the communities {1, . . . , pv}, we reduce the aforementioned random interval to [0,Wv)
where the partial sum Wv :=

∑︁pv−1
ξ=1 sξ is available while computing pv. We generalize

the notation of uniformity to assignments subject to (R2) as follows:

Lemma 3.1. Given S = [ sξ ]
C
ξ=1 and D, let u, v ∈ V be two nodes with the same

constraints pu = pv and let c be an arbitrary community. Further, let χ be an assignment
generated by EM-CA. Then, P[χ(u)=c] = P[χ(v)=c].

Proof. Without loss of generality, assume that pu = p1, i.e. u is one of the nodes with
the tightest constraints. If this is not the case, we just execute EM-CA until we reach a
node u′ which has the same constraints as u does (i.e. pu′ = pu), and apply the Lemma
inductively. This is legal since EM-CA streams through D in a single pass and is oblivious
to any future values. In case c > p1, neither u nor v can become a member of c. Therefore,
P[χ(u)=c] = P[χ(v)=c] = 0 and the claim follows trivially.

Now consider the case c ≤ p1. Let s
(i)
c be the number of free slots in community c at

the beginning of round i ≥ 1 and W (i) =
∑︁C

j=1 s
(i)
j their sum at that time. By definition,

EM-CA assigns node u to community c with probability P[χ(u)=c] = s
(u)
c /W (u). Further,

the algorithm has to update the number of free slots. Thus, initially we have s
(1)
c = sc
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3 I/O-Efficient Generation of Massive Graphs Following the LFR Benchmark

and for iteration 1 < i ≤ n it holds that

s(i)c =

{︄
s
(i−1)
c − 1 if vi−1 was assigned to c

s
(i−1)
c otherwise

.

The number of free slots is reduced by one in each step W (i) = W (1)−i+1 =
(︂∑︁C

j=1 Sj

)︂
−

i+ 1.

The claim follows by transitivity if we show P[χ(u)=c] = s
(u)
c /W (u) = s

(1)
c /W (1). For

u = 1 it holds by definition. Now, consider the induction step for u>1:

P[χ(u)=c] =
s
(u)
c

W (u)
= P[χ(u−1)=c]

s
(u−1)
c − 1

W (u)
+ P[χ(u−1)̸=c]

s
(u−1)
c

W (u)

=
s
(u−1)
c

W (u−1)

s
(u−1)
c − 1

W (u)
+

(︄
1− s

(u−1)
c

W (u−1)

)︄
s
(u−1)
c

W (u)
=

s
(u−1)
c ·W (u−1) − s

(u−1)
c

W (u−1) ·W (u)

=
s
(u−1)
c (W (u−1) − 1)

W (u−1) · (W (u−1) − 1)
=

s
(u−1)
c

W (u−1)

Ind. Hyp.
=

s
(1)
c

W (1)

3.4.3 Assignment with overlapping communities

In the overlapping case, the weight of S increases to account for nodes with multiple
memberships. There is further an additional input sequence [ νi ]

n
i=1 corresponding to the

number of memberships node vi shall have, each of which has din
i /νi intra-community

neighbors. We then sample not only one community per node vi, but νi different ones.
Since the number of memberships νv ≪ M is small, a duplication check during the

repeated sampling is easy in the semi-external case and does not change the I/O complexity.
However, it is possible that near the end of the execution there are less free communities
than memberships requested. We address this issue by switching to an offline strategy
for the last Θ(M) assignments and keep them in IM. As ν = O(1), there are Ω(ν)
communities with free slots for the last Θ(M) vertices and a legal assignment exists
with high probability. The offline strategy proceeds as before until it is unable to find ν
different communities for a node. In that case, it randomly picks earlier assignments until
swapping the communities is possible.

In the fully external setting, the I/O complexity grows linearly in the number of samples
taken and is thus bounded by O(ν sort(n)). However, the community memberships are
obtained lazily and out-of-order which may assign a node several times to the same
community. This corresponds to a multi-edge in the bipartite assignment graph. It can
be removed using the rewiring technique detailed in section 3.7.2.

3.5 EM-HH: Deterministic Edges from a Degree Sequence

In this section, we address the issue of generating a graph from prescribed degrees and
introduce an EM-variant of the well-known Havel-Hakimi scheme. It takes a positive
non-decreasing degree sequence D = [ di ]

n
i=1 and, if possible, outputs a graph GD realizing
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Figure 3.4: Materialization of the degree sequence Dk = (1, 1, 2, 2, . . . , k, k) with
D(Dk) = k = Θ(n) which maximizes EM-HH ’s memory consumption asymp-
totically. A node’s label corresponds to its degree.

these degrees.3 EM-LFR uses this algorithm (cf. Figure 3.3) to first obtain a legal but
biased graph following D and then randomizes GD in a subsequent step.

A sequence D is called graphical if a matching simple graph GD exists. Havel and
Hakimi independently gave inductive characterizations of graphical sequences which
directly lead to a graph generator [Hav55; Hak62]: given D, connect the first node v1
with degree d1 (minimal among all nodes) to d1-many high-degree vertices by emitting
edges { {v1, vn−i} | 0≤i<d1 }. Then obtain an updated sequence D′ by removing d1 from
D and decrementing the remaining degree of every new neighbor { vn−i | 0≤i<d1 }.4
Subsequently, remove zero-entries and sort D′ while keeping track of the original positions
to be able to output the correct node indices. Finally, recurse until no more positive
entries remain. After every iteration, the size of D is reduced by at least one resulting in
O(n) rounds.

For an implementation, it is non-trivial to keep the sequence ordered after decrementing
the neighbors’ degrees. Internal memory solutions typically employ priority queues
optimized for integer keys, such as bucket-lists [SSM16; VL16]. This approach incurs
Θ(sort(n+m)) I/Os using a naïve EM PQ since every edge triggers an update to the
pending degree of at least one endpoint.

We hence propose the Havel-Hakimi variant EM-HH which, for virtually all realistic
powerlaw degree distributions, avoids accesses to disk besides writing the result. The
algorithm emits a stream of edges in lexicographical order which can be fed to any
single-pass streaming algorithm without a round-trip to disk. Thus, we consider only
internal I/Os and emphasize that storing the output – if necessary by the application
– requires O(m) time and O(scan(m)) I/Os where m is the number of edges produced.
Additionally, EM-HH may be used to test in time O(n) whether a degree sequence D is
graphical or to drop problematic edges yielding a graphical sequence (cf. section 3.7).
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3.5.1 Data structure

Instead of maintaining the degree of every node in D individually, EM-HH compacts
nodes with equal degrees into a group, yielding D(D) :=

⃓⃓
{di : 1≤i≤n}

⃓⃓
groups. Since D

is monotonic, such nodes have consecutive ids and the compaction can be performed in a
streaming fashion.5 The sequence is then stored as a doubly linked list L = [gj ]1≤j≤D(D)

where group gj = (bj , nj , δj) encodes that the nj nodes [ vbj+i ]
nj−1
i=0 have degree δj . At

the beginning of every iteration of EM-HH , L satisfies the following invariants which
guarantee a compact representation:

(I1) The groups contain strictly increasing degrees, i.e. δj < δj+1 ∀1 ≤ j < |L|

(I2) There are no gaps in the node ids, i.e. bj + nj = bj+1 ∀1 ≤ j < |L|

These invariants allow us to bound the memory footprint in two steps: first observe
that a list L of size D(D) describes a graph with at least

∑︁D(D)
i=1 i/2 edges due to (I1).

Thus, materializing an arbitrary L of the main memory size |L| = Θ(M) emits Ω(M2)
edges. With as little as 2GB RAM, this amounts to an edge list exceeding 1PB in size.6

Therefore, even in the worst case the whole data structure can be kept in IM for all
practical scenarios. On top of this, a probabilistic argument applies: While there exist
graphs with D(D) = Θ(n) as illustrated in Fig 3.4, Lemma 3.2 gives a sub-linear bound
on D(D) if D is sampled from a powerlaw distribution.

Lemma 3.2. Let D be a degree sequence with n nodes sampled from Pld ([1, n), γ). Then,
the number of unique degrees D(D) =

⃓⃓
{di : 1 ≤ i ≤ n}

⃓⃓
is bounded by O(n1/γ) with high

probability.

Proof. Consider random variables (X1, . . . , Xn) sampled i.i.d. from Pld ([1, n), γ) as an
unordered degree sequence. Fix an index 1≤j≤n. Due to the powerlaw distribution,
Xj is likely to have a small degree. Even if all degrees 1, . . . , n1/γ were realized, their
occurrences would be covered by the claim. Thus, it suffices to bound the number of
realized degrees larger than n1/γ .

We first show that their total probability mass is small. Then we can argue that D(D)

3EM-LFR directly generates a monotonic degree sequence by first sampling a monotonic uniform sequence
[BS80; Vit87] and then applying the inverse sampling technique (carrying over the monotonicity) for a
powerlaw distribution. Thus, no additional sorting steps are necessary for the inter-community graph.

4This variant is due to [Hak62]; in [Hav55], the node of maximal degree is picked and connected.
5While direct sampling of the group’s multinomial distribution is not beneficial in LFR, it may be used

to omit the compaction phase for other applications.
6A single item of L can be naïvely represented by its three values and two pointers, i.e. a total of
5·8 = 40 bytes per item (assuming 64 bit integers and pointers). Just 2GB of IM suffice for storing
5× 107 items, which result in at least 6.25× 1014 edges, i.e. storing just two bytes per edge would
require more than one Petabyte. Observe that standard tricks, such as exploiting the redundancy due
to (I2), allow to reduce the memory footprint of L.
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is asymptotically unaffected by their rare occurrences:

P[Xj>n1/γ ] =

n−1∑︂
i=n1/γ+1

P[Xj=i] =

∑︁n−1
i=n1/γ+1

i−γ∑︁n−1
i=1 i−γ

(i)
=

∑︁n−1
i=n1/γ+1

i−γ

ζ(γ)−∑︁∞i=n i
−γ

(ii)

≤
∫︁ n−1
n1/γ x−γ dx

ζ(γ)−
∫︁∞
n x−γ dx

=

1
1−γ

[︁
(n−1)1−γ − n1/γ/n

]︁
ζ(γ) + 1

1−γn
1−γ

=
n1/γ/n− (n− 1)1−γ

(γ − 1)ζ(γ)− n1−γ = O(n1/γ/n),

where (i) ζ(γ) =
∑︁∞

i=1 i
−γ is the Riemann zeta function which satisfies ζ(γ) ≥ 1 for all

γ ∈ R, γ ≥ 1. In step (ii), we exploit the series’ monotonicity to bound it in between the
two integrals

∫︁ b+1
a x−γ dx ≤∑︁b

i=a i
−γ ≤

∫︁ b
a−1 x

−γ dx.
In order to bound the number of occurrences, define Boolean indicator variables

Yi with Yi = 1 iff Xi>n1/γ and observe that they model Bernoulli trials Yi ∈ B(p)
with p = O(n1/γ/n). Thus, the expected number of high degrees is E[

∑︁n
i=1 Yi] =∑︁n

i=1 P[Xi>n1/γ ] = O(n1/γ). Chernoff’s inequality gives an exponentially decreasing
bound on the tail distribution of the sum which thus holds with high probability.

Remark. Experiments in section 3.10.2 indicate that the hidden constants in Lemma 3.2
are small for realistic γ.

Corollary 3.3. With high probability graphs with m = O(M2γ) following a powerlaw
degree distribution are processed without I/O.

Proof. Due to Lemma 3.2 the number of unique degrees D(D) is bounded by O(n1/γ)
with high probability. Consequently, a list of size D(D) filling the whole IM supports
n = O(Mγ) many nodes and thus m = O(M2γ) many edges with high probability.

3.5.2 Algorithm

EM-HH works in n rounds, where every iteration corresponds to a recursion step of the
original formulation. Each time it extracts node vb1 with the smallest available id and
with minimal degree δ1. The extraction is achieved by incrementing the lowest node
id (b′1 ← b1+1) of group g1 and decreasing its size (n′1 ← n1−1). If the group becomes
empty (n′1 = 0), it is removed from L at the end of the iteration; Figure 3.5 illustrates
this situation in step 2. We now connect node vb1 to δ1 nodes from the end of L. Let gj
be the group of smallest index to which vb1 connects to.
Then there are two cases:

(C1) If node vb1 connects to all nodes in gj , we directly emit the edges
{︁
[vb1 , x] |n−δ1 <

x ≤ n
}︁

and decrement the degrees of all groups gj , . . . , g|L| accordingly. Since degree
δj−1 remains unchanged, it may now match the decremented δj . This violation
of (I1) is resolved by merging both groups. Due to (I2), the union of gj−1 and
gj contains consecutive ids and it suffices to grow nj−1 ← nj−1+nj and to delete
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Figure 3.5: Top: EM-HH on D = (1, 1, 2, 2, 3, 3). Values of L and D in row i correspond
to the state at the beginning of the i-th iteration. Groups are visualized
directly after extraction of the head node. The number next to an edge-to
symbol indicates the new degree. After these updates, splitting and merging
takes place. For instance, in the initial round the first node v1 is extracted
from g1 and connected to the first node v5 of the last group. Hence group
g3 of nodes with degree 3 is split, into node v5 with now deg(v5) = 2 and v6
remaining at deg(v6) = 3. Since group g2 of nodes {v3, v4} has also degree 2 it
is merged with the new group of v5. Bottom: Consider two adjacent groups
gi, gj with degrees d−1 and d. A split of gi (left) or gj (right) directly triggers
a merge, so the number of groups remains the same.
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3.5 EM-HH: Deterministic Edges from a Degree Sequence

group gj (see Figure 3.5 step 2 in which the degree of g3 is reduced to d3 = 2
triggering a merge with g2).

(C2) If vb1 connects only to a number a < nj of nodes in group gj , we split gj into two
groups g′j and g′′j containing nodes [ vbj+i ]

a−1
i=0 and [ vbj+i ]

nj

i=a respectively. We then
connect node u to all a nodes in the first fragment g′j and hence need to decrease
its degree. Thus, a merge analogous to (C1) may be required if degree δj−1 matches
the decreased degree of group g′j (see Figure 3.5 step 1 in which group g3 is split
into two fragments with degrees d3′ = 2 and d3 = 3 respectively, triggering a merge
between group g2 and fragment g3′). Afterwards, the degrees of groups gj+1, . . . , g|L|
are decreased wholly as in (C1).

If the requested degree δ1 cannot be met (i.e., δ1 >
∑︁|L|

k=1 nk), the input is not
graphical [Hak62]. However, a sufficiently large random powerlaw degree sequence
contains at most very few nodes that cannot be materialized as requested since the vast
majority of nodes have low degrees. Thus, we do not explicitly ensure that the sampled
degree sequence is graphical and rather correct the negligible inconsistencies later on by
ignoring the unsatisfiable requests.

3.5.3 Improving the I/O-complexity

In EM-HH ’s current formulation, it requires O(m) time which is already optimal in case
edges have to be emitted. Testing whether D is graphical however is sub-optimal. We thus
introduce a simple optimization, which also yields optimality for these tests, improves
constant factors and gives I/O-optimal accesses.

Observe that only groups in the vicinity of gj can be split or merged; we call these the
active frontier. In contrast, the so-called stable groups gj+1, . . . , gD(D) keep their relative
degree differences as the pending degrees of all their nodes are decremented by one in
each iteration. Further, they will become neighbors to all subsequently extracted nodes
until group gj+1 eventually becomes an active merge candidate. Thus, we do not have to
update the degrees of stable groups in every round, but rather maintain a single global
iteration counter I and count how many iterations a group remained stable: when a group
gk becomes stable in iteration I0, we annotate it with I0 by adding δk ← δk+I0. If gk has
to be activated again in iteration I > I0, its updated degree follows as δk ← δk−I. The
degree δk remains positive since (I1) enforces a timely activation.

Lemma 3.4. The optimized variant of EM-HH requires O(scan(D(D))) I/Os if L is
stored in an external memory list.

Proof. An external-memory list requires O(scan(k)) I/Os to execute any sequence of k
sequential read, insertion, and deletion requests to adjacent positions (i.e. if no seeking
is necessary) [Pag03]. We will argue that EM-HH scans L roughly twice, starting
simultaneously from the front and back.

Every iteration starts by extracting a node of minimal degree. Doing so corresponds
to accessing and eventually deleting the list’s first element gi. If the list’s head block is
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a b

c d

a b

c d

a b

c d

1

2
fst(σ1) snd(σ1) fst(σ2)snd(σ2)

input σ1 = σ(⟨1, 2⟩, false) σ2 = σ(⟨1, 2⟩, true)
illegal (creates multi-edge)

Figure 3.6: Any exchange of exactly one node between two edges in an undirected graph
(left) yields one of two isomorphic results (middle and right). We encode a
swap with the two edge ids (i.e. their rank in EL) and a direction flag selecting
one of the two possible swaps. In the example, the swap σ1 (middle) is illegal,
as it introduces the edge {a, c} which already exists.

cached, we only incur an I/O after deleting Θ(B) head groups, yielding O(scan(D(D)))
I/Os during the whole execution. The same is true for accesses to the back of the list:
the minimal degree increases monotonically during the algorithm’s execution until the
extracted node has to be connected to all remaining vertices. In a graphical sequence, this
implies that only one group remains and we can ignore the simple base case asymptotically.
Neglecting splitting and merging, the distance between the list’s head and the active
frontier decreases monotonically triggering O(scan(D(D))) I/Os.

Merging. As described before, it may be necessary to reactivate stable groups, i.e. to
reload the group behind the active frontier (towards L’s end). Thus, we not only keep
the block F containing the frontier cached, but also block G behind it. It does not incur
additional I/O, since we are scanning backwards through L and already read G before
F . The reactivation of stable groups hence only incurs an I/O when the whole block G
is consumed and deleted. Since this does not happen before Ω(B) merges take place,
reactivations may trigger O(scan(D(D))) I/Os in total.

Splitting. Splitting does not influence EM-HH ’s asymptotic I/O complexity: Only
an active group of degree d can be split yielding two fragments of degrees d−1 and d
respectively. A second split of one of these fragments does not increase the number of
groups since two of the three involved fragments have to be merged (cf. Figure 3.5). As a
result splitting can at most double L’s size.

3.6 EM-ES: I/O-efficient Edge Switching

EM-ES implements an external memory edge switching algorithm to randomize networks.
Following LFR’s original usage of FDSM, EM-ES is crucial in EM-LFR to randomize the
inter-community graph as well as all communities independently (cf. Figure 3.3), and
additionally functions as a building block to rewire illegal edges (cf sections 3.7 and 3.8).
As discussed in section 3.10.6, the algorithm also has applications as a standalone tool in
network analysis.

EM-ES applies a sequence S = [σs ]
k
s=1 of edge swaps σs to a simple graph G = (V,E),

50



3.6 EM-ES: I/O-efficient Edge Switching

where the parameter k is typically chosen as k ∈ [1m, 100m]. The graph is represented
by a lexicographically ordered edge list EL = [ ei ]

m
i=1 which contains for every ordered

edge [u, v] ∈ E (i.e. u < v) only the entry (u, v) and omits (v, u). We encode a swap
σ(⟨a, b⟩, d) as a three-tuple with a direction bit d and the two indices a, b of the edges
ea, eb ∈ EL that are supposed to be swapped. As illustrated in Figure 3.6, a swap simply
exchanges one of the two incident nodes of each edge where d selects which one. More
formally, we denote the two resulting edges as fst(σ(⟨a, b⟩, d)) and snd(σ(⟨a, b⟩, d)) with

fst(σ(⟨a, b⟩, d)) :=
{︄
{α1, β1} if d = false

{α1, β2} if d = true

snd(σ(⟨a, b⟩, d)) :=
{︄
{α2, β2} if d = false

{α2, β1} if d = true
,

where [α1, α2] = ea and [β1, β2] = eb are the edges at ranks a and b in the edge list EL.
In unambiguous cases, we shorten the expressions to fst(σ) and snd(σ) respectively. The
swap’s constituents a and b are typically drawn independently and uniformly at random.
Thus, the sequence can contain illegal swaps that would introduce either multi-edges or
self-loops. Such illegal swaps are simply skipped. In order to do so, the following tasks
have to be addressed for each σ(⟨a, b⟩, d):

(T1) Gather the nodes incident to edges ea and eb.

(T2) Compute fst(σ) and snd(σ) and skip if a self-loop arises.

(T3) Verify that the graph remains simple, i.e. skip if edge fst(σ) or snd(σ) already exist
in EL.

(T4) Update the graph representation EL.

If the whole graph fits in IM, a hash set per node storing all neighbors can be used for
adjacency queries and updates in expected constant time (e.g., VL-ES [VL16]). Then,
(T3) and (T4) can be executed for each swap in expected time O(1). However, in the EM
model this approach incurs Ω(1) I/Os per swap with high probability for a graph with
m ≥ cM and any constant c > 1.

We address this issue by processing the sequence of swaps S batchwise in chunks of
size r = Θ(m) which we call runs. As illustrated in Figure 3.7, EM-ES executes several
phases for each run. While they roughly correspond to the four tasks outlined above,
the algorithm is more involved as it has to explicitly track data dependencies between
swaps within a batch. There are two types: A source edge dependency occurs if (at least)
two swaps share the same edge id as source. In this case, successfully executing the first
swap will replace the edge by another one. This update has to be communicated to all
later swaps involving this edge id. Target edge dependencies exist because swaps must
not introduce multi-edges. Therefore, each swap has to assert that none of its new edges
(target edges) are already present in the graph. For this reason, EM-ES has to inform a
swap about the creation or deletion of target edges that occurred earlier in the run.
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Figure 3.7: Data flow during an EM-ES run. Communication between phases is imple-
mented via EM sorters, self-loops use a PQ-based TFP. Brackets within a
phase represent the type of elements that are iterated over. If multiple input
streams are used, they are joined with this key. Independent swaps as in
section 3.6.1 require only communication via sorters as shown on the upper
half.

3.6.1 EM-ES for Independent Swaps

For simplicity’s sake, we first assume that all swaps are independent, i.e. that there are
neither source edge nor target edge dependencies in a run. Section 3.6.2 contains the
algorithmic modifications necessary to account for dependencies.

The design of EM-ES is driven by the intuition that there are three types of cross-
referenced data, namely (i) the sequence of swaps ranked in the order they were issued,
(ii) edges addressed by their indices (e.g., to load and store their incident nodes) and (iii)
edges referenced by their constituents (in order to query their existence). To resolve these
unstructured references, the algorithm is decomposed into several phases and iterates
in each phase over one of these data types in order. There is no pipelining, so a new
phase only starts processing when the previous is completed. Similarly to Time-Forward
Processing (cf. section 3.2.3), phases communicate by sending messages addressed to the
key of the receiving phase. The messages are pushed into a sorter7 to later be processed
in the order dictated by the data source of the receiving end. EM-ES uses the following
phases:

Request nodes and load nodes

The goal of these two phases is to load the constituents of the edges referenced by the
run’s swaps. We iterate over the sequence S of swaps. For the s-th swap σ(⟨a, b⟩, d),
we push two messages edge_req(a, s, 0) and edge_req(b, s, 1) into the sorter EdgeReq. A

7The term sorter refers to a container with two modes of operation: in the first phase, items are
pushed into the write-only sorter in an arbitrary order by some algorithm. After an explicit switch,
the filled data structure becomes read-only and the elements are provided as a lexicographically
non-decreasing stream which can be rewound at any time. While a sorter is functionally equivalent to
filling, sorting and reading back an EM vector, the restricted access model reduces constant factors in
the implementation’s runtime and I/O-complexity [BDS09].
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3.6 EM-ES: I/O-efficient Edge Switching

message’s third entry encodes whether the request is issued for the first or second edge of
a swap. This information only becomes relevant when we allow dependencies. EM-ES
then scans in parallel through the edge list EL and the requests EdgeReq, which are now
sorted by edge ids. If there is a request edge_req(i, s, p) for an edge ei = [u, v], the edge’s
node pair is sent to the requesting swap by pushing a message edge_msg(s, p, (u, v)) into
the sorter EdgeMsg.

Additionally, for every edge we push a bit into the sequence InvalidEdge, which is
asserted iff an edge received a request. These edges are considered invalid and will be
deleted when updating the graph in section 3.6.1. Since both phases produce only a
constant amount of data per input element, we obtain an I/O complexity of O(sort(r) +
scan(m)).

Simulate swaps and load existence

The two phases gather all information required to decide whether a swap is legal. EM-ES
scans through the sequence S of swaps and EdgeMsg in parallel: For the s-th swap
σ(⟨a, b⟩, d), there are exactly two messages edge_msg(s, 0, ea) and edge_msg(s, 1, eb) in
EdgeMsg. This information suffices to compute the switched edges fst(σ) and snd(σ), but
not to test for multi-edges.

It remains to check whether the switched edges already exist; we push the existence
requests exist_req(fst(σ), s) and exist_req(snd(σ), s) into the sorter ExistReq. Ob-
serve that for request nodes we use the node pairs rather than edge ids, which are not
well defined here. Afterwards, a parallel scan through the edge list EL and ExistReq is
performed to answer the requests. Only if an edge e requested by swap id s is found, the
message exist_msg(s, e) is pushed into the sorter ExistMsg. Both phases hence incur a
total of O(sort(r) + scan(m)) I/Os.

Perform swaps

We rewind the EdgeMsg sorter and jointly scan through the sequence of swaps S and the
sorters EdgeMsg and ExistMsg. As described in the simulation phase, EM-ES computes
the switched edges fst(σ) and snd(σ) from the original state ea and eb. The swap is
considered illegal if a switched edge is a self-loop or if an existence info is received via
ExistMsg. If σ is legal we push the switched edges fst(σ) and snd(σ) into the sorter
EdgeUpdates, otherwise we propagate the unaltered source edges ea and eb. This phase
requires O(sort(r)) I/Os.

Update edge list

The new edge list E′L is obtained by merging the original lexicographic increasing list
EL and the sorted updated edges EdgeUpdates, triggering O(scan(m)) I/Os. During this
process, we skip all edges in EL that are flagged invalid in the bit stream InvalidEdge.
The result is a sorted new E′L with |E′L| = m edges that can be fed into the next run.
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3.6.2 Inter-Swap Dependencies

In this section, we introduce the modifications necessary due to dependencies between
swaps within a run. In its final version, EM-ES produces the same result as a sequential
processing of S.

Source edge dependencies are detected during the load nodes phase since multiple
requests for the same edge id arrive. We record these dependencies as an explicit
dependency chain along which intermediate updates can be propagated. Target edge
dependencies surface in the load existence phase since multiple existence requests and
notifications arrive for the same edge. Again, an explicit dependency chain is computed.
During the perform swaps phase, EM-ES forwards the source edge states and existence
updates to successor swaps using information from both dependency chains.

Target edge dependencies

Consider the case where a swap σs1(⟨a, b⟩, d) changes the state of edges ea and eb to
fst(σ1) and snd(σ1) respectively. Later, a second swap σ2 inquires about the existence of
either of the four edges which has obviously changed compared to the initial state. We
extend the simulation phase to track such edge modifications and not only push messages
exist_req(fst(σ1), s1) and exist_req(snd(σ1), s1) into sorter EdgeReq, but also report
that the original edges may change (during simulation phase it is unknown whether the
swap has to be skipped). This is implemented by pushing the messages exist_req(ea, s1,
may_change) and exist_req(eb, s1, may_change) into the same sorter.

In case of dependencies, multiple messages are received for the same edge e during the
load existence phase. If so, only the request of the first swap involved is answered as
before. Also, every swap σs1 is informed about its direct successor σs2 (if any) by pushing
the message exist_succ(s1, e, s2) into the sorter ExistSucc, yielding the aforementioned
dependency chain. As an optimization, may_change requests at the end of a chain are
discarded since no recipient exists.

During the perform swaps phase, EM-ES executes the same steps as described earlier.
The swap may receive a successor for every edge it sent an existence request to, and
informs each successor about the state of the appropriate edge after the swap is processed.

Source edge dependencies

Consider two swaps σs1(⟨a1, b1⟩, d1) and σs2(⟨a2, b2⟩, d2) with s1<s2 which share a source
edge id, i.e. {a1, b1} ∩ {a2, b2} is non-empty. This dependency is detected during the load
nodes phase since requests edge_req(ei, s1, p1) and edge_req(ei, s2, p2) arrive for edge id
ei. In this case, we answer only the request of s1 and build a dependency chain as before
using messages id_succ(s1, p1, s2, p2) pushed into the sorter IdSucc.

During the simulation phase, EM-ES cannot yet decide whether a swap is legal. Thus,
s1 sends for every conflicting edge its original state as well as the updated state to the
p2-th slot of s2 using a PQ. If a swap receives multiple edge states per slot, it simulates
the swap for all possible combinations.
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During the perform swaps phase, EM-ES operates as described in the independent
case: it computes the swapped edges and determines whether the swap has to be skipped.
If a successor exists, the new state is not pushed into the EdgeUpdates sorter but rather
forwarded to the successor in a TFP fashion. This way, every invalidated edge id receives
exactly one update in EdgeUpdates and the merging remains correct.

3.6.3 Complexity

Due to source edge dependencies, EM-ES’s complexity increases with the number of
swaps that share the same edge id. This number is low in case r = O(m): let Xi

be a random variable expressing the number of swaps that reference edge ei. Since
every swap constitutes two independent Bernoulli trials towards ei, the indicator Xi is
binomially distributed with p = 1/m, yielding an expected chain length of 2r/m. Also,
for r = m/2 swaps, max1≤i≤n(Xi) = O(ln(m)/ ln ln(m)) holds with high probability
based on a balls-into-bins argument [MR95]. Thus, we can bound the largest number of
edge states simulated with high probability by O(polylog(m)), assuming non-overlapping
dependency chains. Further, observe that Xi converges towards an independent Poisson
distribution for large m. Then the expected state space per edge is O(1). The experiments
in section 3.10.3 suggest that this bound also holds for overlapping dependency chains.

In order to keep the dependency chains short, EM-ES splits the sequence of swaps S
into runs of equal size. Our experimental results show that a run size of r = m/8 is a
suitable choice. For every run, the algorithm executes the six phases as described before.
Each time the graph is updated, the mapping between an edge and its id may change.
The switching probabilities, however, remain unaltered due to the initial assumption of
uniformly distributed swaps. Thus, EM-ES triggers O(k/m sort(m)) I/Os in total with
high probability.

3.7 EM-CM/ES: Sampling of random graphs from prescribed
degree sequence

In this section, we propose an alternative approach to generate a graph from a prescribed
degree sequence. In contrast to EM-HH which generates a highly biased but simple graph,
we use the Configuration Model to sample a random but in general non-simple graph.
Thus, the resulting graph may contain self-loops and multi-edges which we then rewire
to obtain a simple graph. As experimental data suggests (cf. section 3.7.2), this still
results in a biased realization of the degree sequence requiring additional edge switching
randomization steps.

3.7.1 Configuration Model

Let D = [ di ]
n
i=1 be a degree sequence with n nodes. The Configuration Model builds a

multiset of node ids which can be thought of as half-edges (or stubs). It produces a total
of di half-edges labeled vi for each node vi. The algorithm then chooses two half-edges
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Degree sequence D = (1, 1, 2, 2, 2, 4)

[1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6, 6]

[6, 6, 4, 5, 4, 5, 6, 1, 3, 2, 3, 6]
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1. Input
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4. Paired stubs forming edges

Figure 3.8: A Configuration Model run on degree sequence D = (1, 1, 2, 2, 2, 4).

uniformly at random and creates an edge according to their labels. It repeats the last
step with the remaining half-edges until all are paired. A naïve implementation of this
algorithm requires with high probability Ω(m) I/Os if m ≥ cM and any constant c > 1.
It is therefore impractical in the fully external setting.

We rather materialize the multiset as a sequence in which each node appears di times
similar to the approach of [KWZ15]. Subsequently, the sequence is shuffled to obtain
a random permutation with O(sort(m)) I/Os by sorting the sequence according to a
uniform variate drawn for each half-edge8. Finally, we scan over the shuffled sequence
and match pairs of adjacent half-edges into edges.

As illustrated in Figure 3.8, the Configuration Model gives rise to self-loops and multi-
edges which then need to be rewired, cf. section 3.7.2. Consequently, the rewiring process
depends on the number of introduced illegal edges. In the following lemma, we bound
their number from above.

Lemma 3.5. Let D be drawn from Pld ([a, b), 2). The expected number of self-loops and
multi-edges are bound by

E[#self-loops] ≤ 1

2

(︃
b− a+ 1

ln(b+ 1)− ln(a)

)︃
and E[#multi-edges] ≤ 1

2

(︃
b− a+ 1

ln(b+ 1)− ln(a)

)︃2

.

Proof. [AHH19] and [New10] derive the expectation values for an arbitrary degree sequence
D in terms of its mean ⟨D⟩ and second moment ⟨D2⟩. In the limit of n→∞, the authors
show

E[#self-loops(D)] =
⟨D2⟩ − ⟨D⟩
2(⟨D⟩ − 1/n)

−→ ⟨D
2⟩ − ⟨D⟩
2⟨D⟩ (3.1)

E[#multi-edges(D)] ≤ 1

2

(︃
(⟨D2⟩ − ⟨D⟩)2

(D − 1/n)(D − 3/n)

)︃
−→ 1

2

(︃⟨D2⟩ − ⟨D⟩
⟨D⟩

)︃2

. (3.2)

We now bound ⟨D⟩ and ⟨D2⟩ in the case that D is drawn from the powerlaw distribution
Pld ([a, b), γ). Since each entry in D is independently drawn, it suffices to bound the
expected value and the second moment of the underlying distribution. Then, they are given
by ⟨D⟩ = (

∑︁b
i=a i

−γ+1)/CD and ⟨D2⟩ = (
∑︁b

i=a i
−γ+2)/CD where CD =

∑︁b
i=a i

−γ . Both

8If M >
√
mB(1 + o(1)) +O(B) this can be improved to O(scan(m)) I/Os [San98] which does however

not affect the total complexity of our pipeline.
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numerators are sandwiched between the two integrals
∫︁ b+1
a xq dx ≤∑︁b

i=a i
q ≤

∫︁ b
a−1 x

q dx
where q = −γ+1 or q = −γ+2 respectively. In the case of γ = 2, the second moment
hence simplified to ⟨D2⟩ = (

∑︁b
i=a 1)/CD = (b−a+1)/CD. Applying this identity and the

lower bound (
∫︁ b+1
a x−1 dx)/CD ≤ ⟨D⟩ to Eqs. 3.1 and 3.2, directly yields the claim.

3.7.2 Edge rewiring for non-simple graphs

Graphs generated using the Configuration Model may contain multi-edges and self-loops.
In order to obtain a simple graph we need to detect these illegal edges and rewire them.
After sorting the edge list lexicographically, illegal edges can be detected in a single scan.
For each self-loop we issue a swap with a randomly selected partner edge. Similarly,
for each group of parallel edges, we generate swaps with random partner edges for all
but one multi-edge. Subsequently, we execute the provisioned swaps using a variant of
EM-ES (see below). The process is repeated until all illegal edges have been removed. To
accelerate the endgame, we double the number of swaps for each remaining illegal edge in
every iteration.

Since EM-ES is employed to remove parallel edges based on targeted swaps, it needs
to process non-simple graphs. Analogous to the initial formulation, we forbid swaps
that introduce multi-edges even if they would reduce the multiplicity of another edge (cf.
[Zha13]). Nevertheless, EM-ES requires slight modifications for non-simple graphs.

Consider the case where the existence of a multi-edge is inquired several times. Since EL

is sorted, the initial edge multiplicities can be counted while scanning EL during the load
existence phase. In order to correctly process the dependency chain, we have to forward
the (possibly updated) multiplicity information to successor swaps. We annotate the
existence tokens exist_msg(s, e,#(e)) with these counters where #(e) is the multiplicity
of edge e.

More precisely, during the perform swaps phase, swap σ1 = σ(⟨a, b⟩, d) is informed
(among others) of multiplicities of edges ea, eb, fst(σ1) and snd(σ1) by incoming existence
messages. If σ1 is legal, we send requested edges and multiplicities of the swapped state
to any successor σ2 of σ1 provided in ExistSucc. Otherwise, we forward the edges and
multiplicities of the unchanged initial state. As an optimization, edges which have been
removed (i.e. have multiplicity zero) are omitted.

3.8 EM-GER/EM-CER: Merging and repairing the intra- and
inter-community graphs

As illustrated in Figure 3.3, LFR samples the inter-community graph and all intra-
community graphs independently. As a result, they may exhibit minor inconsistencies
which EM-LFR resolves in accordance with the original version by applying additional
rewiring steps which are discussed in this section.
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3.8.1 EM-GER: Global Edge Rewiring

The global graph is materialized without taking the community structure into account. As
illustrated in Figure 3.2 (center), it therefore can contain edges between nodes that share
a community. Those edges have to be removed as they decrease the mixing parameter
µ. We rewire these edges by performing an edge swap for each forbidden edge with
a randomly selected partner. Since it is unlikely that such a random swap introduces
another illegal edge (if sufficiently many communities exist), this probabilistic approach
effectively removes forbidden edges. We apply this idea iteratively and perform multiple
rounds until no forbidden edges remain.

To detect illegal edges, EM-GER considers the community assignment’s output which
is a lexicographically ordered sequence χ of (v, ξ)-pairs containing the community ξ for
each node v. For nodes that join multiple communities several such pairs exist. Based on
this, we annotate every edge with the communities of both incident vertices by scanning
through the edge list twice: once sorted by source nodes and once by target nodes. For
each forbidden edge, a swap is generated by drawing a random partner edge id and a
swap direction. Subsequently, all swaps are executed using EM-ES which now also emits
the set of edges involved. It suffices to restrict the scan for illegal edges to this set since
all edges not contained are legal by construction.

Complexity. Each round requires O(sort(m)) I/Os for selecting the edges and
executing the swaps. The number of rounds is usually small but depends on the community
size distribution: the probability that a randomly placed edge lies within a community
increases with the size of the community.

3.8.2 EM-CER: Community Edge Rewiring

In the case of overlapping communities, the same edge can be generated as part of multiple
communities. We iteratively apply semi-random swaps to remove those parallel edges
similarly to sections 3.7.2 and 3.8. The selection of random partners is however more
involved for EM-CER as it has to ensure that all swaps take place between two edges of
the same community. This way, the rewired edges keep the same memberships as their
sources and the community sizes do not change. The rewiring itself is easy to achieve by
considering all communities independently.

Unfortunately, EM-CER needs to process all communities conjointly to detect forbidden
edges: we augment each edge [ui, vi] with its community id ci and concatenate these lists
into one annotated graph possibly containing multi-edges. During a scan through the
lexicographically sorted and annotated edge list [ (ui, vi, ci) ]i, parallel edges are easily
found as they appear next to each other. We select all but one from each group for
rewiring. Each partner is selected by a uniform edge id eb addressing the eb-th edge of the
community at hand. In a fully external setting, it suffices to sort the selected candidates,
their partners and the edge list by community to gather all information required to invoke
EM-ES.

EM-CER avoids the expensive step of sorting all edges if we can store O(1) items
per illegal edge in IM (which is almost certainly the case since there are typically few
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illegal edges). It then sorts the edge ids of partners for every community independently
and keeps pointers to the smallest requested partner edge id of each community. While
scanning through the concatenated edge list, we count for each community the number
of edges seen so far. When the counter matches the smallest requested id of the current
edge’s community, we load the edge and advance the pointer to the next request.

Complexity. The fully external rewiring requires O(sort(m)) I/Os for the initial step
and each following round. The semi-external variant triggers only O(scan(m)) I/Os per
round. The number of rounds is usually small and the overall runtime spent on this step
is insignificant. Nevertheless, the described scheme is a Las Vegas algorithm and there
exist (unlikely) instances on which it will fail.9 To mitigate this issue, we allow a small
fraction of edges (e.g., 10−3) to be removed if we detect a slow convergence. To speed
up the endgame, we also draw additional swaps uniformly at random from communities
which contain a multi-edge.

3.9 Implementation

We implemented the proposed algorithms in C++ based on the STXXL library [DKS08],
providing implementations of EM data structures, a parallel EM sorter, and an EM
priority queue. Among others, we applied the following optimizations for EM-ES:

• Most message types contain both a swap id and a flag indicating which of the swap’s
edges is targeted. We encode both of them in a single integer by using all but the
least significant bit for the swap id and store the flag in there. This significantly
reduces the memory volume and yields a simpler comparison operator since the
standard integer comparison already ensures the correct lexicographic order.

• Instead of storing and reading the sequence of swaps several times, we exploit the
implementation’s pipeline structure and directly issue edge id requests for every
arriving swap. Since this is the only time edge ids are read from a swap, only the
remaining direction flag is stored in an efficient EM vector, which uses one bit per
flag and supports I/O-efficient writing and reading. Both steps can be overlapped
with an ongoing EM-ES run.

• Instead of storing each edge in the sorted external edge list as a pair of nodes, we
only store each source node once and then list all targets of that node. This still
supports sequential scan and merge operations which are the only operations we
need. This almost halves the I/O volume of scanning or updating the edge list.

• During the execution of several runs we can delay the updating of the edge list and
combine it with the load nodes phase of the next run. This reduces the number of
scans per additional run from three to two.

9Consider a node which is a member of two communities in which it is connected to all other nodes. If
only one of its neighbors also appears in both communities, the multi-edge cannot be rewired.
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• We use asynchronous stream adapters for tasks such as streaming from sorters or the
generation of random numbers. These adapters run in parallel in the background
to preprocess and buffer portions of the stream in advance and hand them over to
the main thread.

Besides parallel sorting and asynchronous pipeline stages, the current EM-LFR im-
plementation facilitates parallelism during the generation and randomization of intra-
community graphs which can be computed without any synchronization. While the
algorithms themselves are sequential, this pipelining and parallelization of independent
tasks within EM-LFR leads to a consistent utilization of available threads in our test
system (cf. section 3.10).

3.10 Experimental Results

3.10.1 Notation and Setup

The number of repetitions per data point (with different random seeds) is denoted with S.
Errorbars correspond to the unbiased estimation of the standard deviation. For LFR we
perform experiments based on two different scenarios:

lin The maximal degrees and community sizes scale linearly as a function of n. For
a particular n and ν the parameters are chosen as: µ ∈ {0.2, 0.4, 0.6}, dmin=10ν,
dmax=nν/20, γ=2, smin=20, smax=n/10, β=1, O=n.

const We keep the community sizes and the degrees constant and consider only non-
overlapping communities. The parameters are chosen as: dmin=50, dmax=10 000,
γ=2, smin=50, smax=12 000, β=1, O=n.

Real-world networks have been shown to have increasing average degrees as they become
larger [LKF05]. Increasing the maximum degree as in our first setting lin increases the
average degree. Having a maximum community size of n/10 means, however, that a
significant proportion of the nodes belongs to huge communities which are not very tightly
knit due to the large number of nodes of low degree. While a more limited growth is
probably more realistic, the exact parameters depend on the network model.

Our second parameter set const shows an example of much smaller maximum degrees
and community sizes. We chose the parameters such that they approximate the degree
distribution of the Facebook network in May 2011 when it consisted of 721 million active
users as reported in [Uga+11]. The same study however found that strict powerlaw models
are unable to accurately mimic Facebook’s degree distribution. Further, the authors show
that the degree distribution of the U.S. users (removing connections to non-U.S. users) is
very similar to the one of the Facebook users of the whole world, supporting our use of
just one parameter set for different graph sizes.

The minimum degree of the Facebook network is 1, but such small degrees are sig-
nificantly less prevalent than a power law degree sequence would suggest, which is why
we chose a value of 50. Our maximum degree of 10 000 is larger than the one reported
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Figure 3.9: Left: Number of distinct elements in n samples (i.e. node degrees in a degree
sequence) taken from Pld ([1, n), γ); cf. section 3.10.2. Right: Overhead
induced by tracing inter-swap dependencies. Fraction of swaps as function of
the number of edge configurations they receive during the simulation phase
(cf. section 3.10.3).

for Facebook (5000 which is an arbitrarily enforced limit by Facebook). The expected
average degree of this degree sequence is 264, which is slightly higher than the reported
190 (world) or 214 (U.S. only). Our parameters are chosen such that the median degree
is approximately 99 matching the worldwide Facebook network. Similar to the first
parameter set, we chose the maximum community size slightly larger than the maximum
degree.

3.10.2 EM-HH’s state size

In Lemma 3.2, we bound EM-HH ’s internal memory consumption by showing that a
sequence of n numbers randomly sampled from Pld ([1, n), γ) contains only O(n1/γ)
distinct values with high probability.

In order to support Lemma 3.2 and to estimate the hidden constants, samples of varying
size between 103 and 108 are taken from distributions with exponents γ ∈ {1, 2, 3}. Each
time, the number of unique elements is computed and averaged over S = 9 runs with
identical configurations but different random seeds. The results illustrated in Figure 3.9
support the predictions with small constants and negligible deviations. For the commonly
used exponent 2, we find 1.38

√
n distinct elements in a sequence of length n.

3.10.3 Inter-Swap Dependencies

Whenever multiple swaps target the same edge, EM-ES simulates all possible states
to be able to retrieve conflicting edges. In section 3.6.3, we argue that the number of
dependencies and the state size remains manageable if the sequence of swaps is split into
sufficiently short runs. We found that for m edges and k swaps, 8k/m runs minimize the
runtime for large instances of lin. As indicated in Figure 3.9, in this setting 78.7% of
swaps receive the two requested edge configurations with no additional overhead during
the simulation phase. Less than 0.4% consider more than four additional states (i.e.
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more than six messages in total). Similarly, 78.6% of existence requests remain without
dependencies.

3.10.4 Test systems

Runtime measurements were conducted on the following systems:

SysA inexpensive compute server : Intel Xeon E5-2630 v3 (8 cores/16 threads, 2.40GHz),
64GB RAM, 3× Samsung 850 PRO SATA SSD (1 TB).

SysB commodity hardware: Intel Core i7 CPU 970 (6 cores/12 threads, 3.2GHz), 12GB
RAM, 1× Samsung 850 PRO SATA SSD (1 TB).

Since edge switching scales linearly in the number of swaps (in case of EM-ES in the
number of runs), some of the measurements beyond 3 h runtime are extrapolated from
the progress until then. We verified that errors stay within the indicated margin using
reference measurements without extrapolation.

3.10.5 Performance of EM-HH

Our implementation of EM-HH produces 180± 5 million edges per second on SysA up to
at least 2× 1010 edges. Here, we include the computation of the input degree sequence,
EM-HH ’s compaction step, as well as the writing of the output to external memory.

3.10.6 Performance of EM-ES

Figure 3.10 presents the runtime required on SysB to process k = 10m swaps in an
input graph with m edges and for the average degrees d̄ ∈ {100, 1000}. For reference, we
include the performance of the existing internal memory edge swap algorithm VL-ES
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based on the authors’ implementation [VL16].10 VL-ES slows down by a factor of 25 if
the data structure exceeds the available internal memory by less than 10%. We observe
an analogous behavior on machines with larger RAM. EM-ES is faster than VL-ES for
all instances with m > 2.5× 108 edges; those graphs still fit into main memory.

FDSM has applications beyond synthetic graphs, and is for instance used on real data
to assess the statistical significance of observations [SHZ15]. In that spirit, we execute
EM-ES on an undirected version of the crawled ClueWeb12 graph’s core [The13] which
we obtain by deleting all nodes corresponding to uncrawled URLs.11 Performing k = m
swaps on this graph with n ≈ 9.8× 108 nodes and m ≈ 3.7× 1010 edges is feasible in less
than 19.1 h on SysB.

Bhuiyan et al. propose a distributed edge switching algorithm and evaluate it on a
compute cluster with 64 nodes each equipped with two Intel Xeon E5-2670 2.60GHz 8-core
processors and 64GB RAM [Bhu+14]. The authors report to perform k = 1.15× 1011

swaps on a graph with m = 1010 generated in a preferential attachment process in less
than 3 h. We generate a preferential attachment graph using an EM generator [MP16]
matching the aforementioned properties and carried out edge swaps using EM-ES on SysA.
We observe a slow down of only 8.3 on a machine with 1/128 the number of comparable
cores and 1/64 of internal memory.

3.10.7 Performance of EM-CM/ES and qualitative comparison with EM-ES

In section 3.7, we describe an alternative graph sampling method. Instead of seeding
EM-ES with a highly biased graph using EM-HH , we employ the Configuration Model
to generate a non-simple random graph and then obtain a simple graph using several
EM-ES runs in a Las-Vegas fashion.

Since EM-ES scans through the edge list in each iteration, runs with very few swaps are
inefficient. For this reason, we start the subsequent Markov chain to further randomize
the graph early: First identify all multi-edges and self-loops and generate swaps with
random partners. In a second step, we then introduce additional random swaps until the
run contains at least m/10 operations.12

For an experimental comparison between EM-ES and EM-CM/ES, we consider the
runtime until both yield a sufficiently uniform random sample. Of course, the uniformity
is hard to quantify; similarly to related studies (cf. section 3.1.1), we estimate the
mixing times of both approaches as follows. Starting from a common seed graph G(0),
we generate an ensemble {G(k)

1 , . . . , G
(k)
S } of S ≫ 1 instances by applying independent

random sequences of k ≫ m swaps each. During this process, we regularly export

10Here we report only on the edge swapping process excluding any precomputation. To achieve compara-
bility, we removed connectivity tests, fixed memory management issues, and adopted the number of
swaps. Further, we extended counters for edge ids and accumulated degrees to 64 bit integers in order
to support experiments with more than 230 edges.

11We consider such vertices atypically simple as they have degree 1 and account for ≈84% of nodes in
the original graph.

12We chose this number as it yields execution times similar to the m/8-setting of EM-ES on simple
graphs.
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Figure 3.11: Left: Number of triangles on const with n = 1× 105 and µ = 1.0. Right:
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snapshots G
(jm)
i of the intermediate instances j ∈ [k/m] of graph Gi. For EM-CM/ES,

we start from the same seed graph, apply the algorithm and then carry out k swaps as
described above.

For each snapshot, we compute several metrics, such as the average local clustering
coefficient (ACC), the number of triangles, and degree assortativity.13 We then investigate
how the distribution of these measures evolves within the ensemble as we carry out
an increasing number of swaps. We omit results for ACC since they are less sensitive
compared to the other measures (see section 3.10.8).

As illustrated in Figure 3.11 and Appendix 3.13, all proxy measures converge within
5m swaps with a very small variance. No statistically significant change can be observed
compared to a Markov chain with 30m operations (which was only computed for a subset
of each ensemble due to its computational cost). EM-HH generates biased instances with
special properties, such as a high number of triangles and correlated node degrees, while
the features of EM-CM/ES’s output nearly match the converged ensemble. This suggests
that the number of swaps to obtain a sufficiently uniform sample can be reduced for
EM-CM/ES.

Due to computational costs, the study was carried out on multiple machines executing
several tasks in parallel. Hence, absolute running times are not meaningful, and we rather
measure the computational costs in units of time required to carry out 1m swaps by the
same process. This accounts for the offset of EM-CM/ES’s first data point.

The number of rounds required to obtain a simple graph depends on the degree
distribution. For const with n = 1× 105 and µ = 1, a fraction of 5.1% of the edges

13In preliminary experiments, we also included spectral properties (such as extremal eigenvalues of the
adjacency/laplacian matrix) and the closeness centrality of fixed nodes. As these measurement are
more expensive to compute and yield qualitatively similar results, we decided not to include them in
the larger trials.
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Figure 3.12: Number of swaps per edge after which ensembles of graphs with the following
parameters converge: const, 1× 105 ≤ n ≤ 1× 107 and µ = 0.4 (left) and
µ = 0.6 (right). Due to computational costs, the ensemble size is reduced
from S > 100 to S > 10 for large graphs.

produced by the Configuration Model are illegal. EM-ES requires 18± 2 rewiring runs
in case a single swap is used per round to rewire an illegal edge. In the default mode
of operation, 5.0± 0.0 rounds suffice as the number of rewiring swaps per illegal edge
is doubled in each round. For larger graphs with n = 1× 107, only 0.07% of edges are
illegal and need 2.25± 0.40 rewiring runs.

3.10.8 Convergence of EM-ES

In a similar spirit to the previous section, we indirectly investigate the Markov chain’s
mixing time as a function of the number of nodes n. To do so, we generate ensembles
as before with 1× 105 ≤ n ≤ 1× 107 and compute the same graph metrics. For each
group and measure, we then search for the first snapshot p in which the measure’s mean
is within an interval of half the standard deviation of the final values and subsequently
remains there for at least three phases. We then interpret p as a proxy for the mixing
time. As depicted in Figure 3.12, no measure shows a systematic increase over the two
orders of magnitude considered. It hence seems plausible not to increase the number of
swaps performed by EM-LFR compared to the original implementation.

3.10.9 Performance of EM-LFR

Figure 3.10 reports the runtime of the original LFR implementation and EM-LFR as
a function of the number of nodes n and ν = 1. EM-LFR is faster for graphs with
n ≥ 2.5× 104 nodes which feature approximately 5× 105 edges and are well in the
IM domain. Further, the implementation is capable of producing graphs with more
than 1× 1010 edges in 17 h.14 Using the same time budget, the original implementation
generates graphs more than two orders of magnitude smaller.
14Roughly 1.5 h are spent in the end-game of the Global Rewiring (at that point less than one edge out of

106 is invalid). In this situation, an algorithm using random I/Os may yield a speed-up. Alternatively,
we could simply discard the insignificant fraction of remaining invalid edges.
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3.10.10 Qualitative Comparison of EM-LFR

When designing EM-LFR, we closely followed the LFR benchmark such that we can
expect it to produce graphs following the same distribution as the original LFR generator.
To confirm this experimentally, we generated graphs with identical parameters using the
original LFR implementation and EM-LFR. For disjoint clusters we also compare it with
the implementation of NetworKit [SSM16].

For disjoint clusters, we evaluate the results of the Infomap [RAB09] and the Lou-
vain [Blo+08] algorithm, see Section 1.4.1 for an introduction to both. We chose them as
the Louvain algorithm as well as Infomap were found to achieve high quality results on
LFR benchmark graphs while being fast [LF09b]. In particular the Louvain method is
also among the most frequently used community detection algorithms [FH16; Emm+16].

For overlapping clusters, we evaluate the results of OSLOM [Lan+11], as OSLOM is
one of the best-performing algorithms for overlapping community detection [Buz+14;
FH16], see Section 1.4.4 for an introduction of OSLOM.

We compare the clusterings of the algorithms to the ground truth clusterings using the
adjusted rand measure [HA85] for disjoint clusters (see also Section 2.3.2) and NMI [VR12]
for both disjoint and overlapping clusters (see also Section 2.3.1).

Further, we examine the average local clustering coefficient. It measures the fraction
of closed triangles and thus shows the presence of locally denser areas as expected in

66



3.10 Experimental Results

0

0.2

0.4

0.6

0.8

1

103 104 105A
vg

.
Lo

ca
lC

lu
st

er
in

g
C

oe
ff.

Number n of nodes

Mixing: µ = 0.6

Orig
NetworKit

EM

Figure 3.15: Average local clustering coefficient at µ = 0.6 with disjoint clusters.

communities [Kai08], see also Section 1.3.1. We report these measures for graphs ranging
from 103 to 106 nodes and present a selection of results in Figures 3.13 and 3.14 and 3.15;
all of them can be found in Section 3.12 at the end of this chapter. There are only small
differences within the range of random noise between the graphs generated by EM-LFR
and the other two implementations. Note that due to the computational costs above
105 edges, there is only one sample for the original implementation which explains the
outliers in Figure 3.13.

Similar to the results in [Emm+16], we also observe that the performance of clustering
algorithms drops significantly as the graph’s size grows. For Louvain, this is partially due
to the resolution limit that prevents the detection of small communities in huge graphs.
Due to the different power law exponents, the average community size grows much faster
than the average degree as the size of the graphs is increased. Therefore, in particular the
larger clusters become sparser and thus more difficult to detect with increasing graph size.
On the other hand, small clusters become easier to detect as the graph size grows because
outgoing edges are distributed among more nodes and are thus easier to distinguish from
intra-cluster edges. This might explain why the performance of OSLOM first improves
as the graph size grows. Apart from that, currently used heuristics might also just be
unsuited for large graphs with nodes of very different degrees. Results on LFR graphs
with one million nodes in [Ham+18a], see also Chapter 6, show that both Louvain and
Infomap are unable to detect the ground truth on LFR graphs with higher values of µ
even though the ground truth has a better modularity or map equation score than the
found clustering. Such behavior clearly demonstrates the necessity of EM-LFR for being
able to study this phenomenon on even larger graphs and develop algorithms that are
able to handle such instances.

The quality of the community assignments used by LFR and EM-LFR is assessed in
terms of the modularity QG(C) scores [NG04] (see also Section 1.3.3) achieved by the
generated graph G and ground truth C. In general QG(C) takes values in [−1, 1], but
for large n and bounded community sizes, the modularity of a LFR graph approaches
Q → 1−µ as the coverage corresponds to 1−µ while the expected coverage approaches
0. For each configuration n ∈ {103, . . . , 106} and µ ∈ {0.2, 0.4, 0.6}, we generate S ≥ 10
networks for each generator and compute their mean modularity score. In all cases, the
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relative differences between the two generators is below 10−2 and for small µ typically
another order of magnitude smaller.

3.11 Outlook and Conclusion

We propose the first I/O-efficient graph generator for the LFR benchmark and the FDSM,
which is the most challenging step involved that dominates the running time: EM-HH
materializes a graph based on a prescribed degree distribution without I/O for virtually
all realistic parameters. Including the generation of a powerlaw degree sequence and the
writing of the output to disk, our implementation generates 1.8× 108 edges per second
for graphs exceeding main memory. EM-ES randomizes graphs with m edges based on k
edge switches using O(k/m · sort(m)) I/Os for k = Ω(m).

We demonstrate that EM-ES is faster than the internal memory implementation [VL16]
even for large instances still fitting in main memory and scales well beyond the limited
main memory. Compared to the distributed approach by [Bhu+14] on a cluster with
128 CPUs, EM-ES exhibits a slow-down of only 8.3 on one CPU and hence poses a
viable and cost-efficient alternative. Our EM-LFR implementation is orders of magnitude
faster than the original LFR implementation for large instances and scales well to graphs
exceeding main memory while the generated graphs are equivalent. Graphs with more
than 1× 1010 edges can be generated in 17 h. We further give evidence that commonly
accepted parameters to derive the length of the edge switching Markov chain remain valid
for graph sizes approaching the external memory domain and that EM-CM/ES can be
used to accelerate the process.

Curveball trades [CBS18] are an alternative to edge switching for randomizing the
edges of a graph while maintaining the degree sequence. In each trade, the non-common
neighbors of two randomly selected nodes are shuffled while keeping the degrees of the
involved nodes. In a follow-up work to this research, we developed a parallel, external
memory implementation of Curveball trades [Car+18]. As the main authors of this paper
are Corrie Jacobien Carstens, Manuel Penschuck and Hung Tran, we only give a short
summary here. As we show, power law degree distributions are challenging for Curveball
as the randomization of high-degree nodes is limited when they are paired with low-degree
nodes. We introduce global trades for undirected graph where every node participates
in exactly one trade. Our experiments indicate that two global trades yield a roughly
similar randomization as m edge-swaps. Over EM-ES, we achieve speedups of 5 to 14
depending on the parameter choice. To compensate for the slower convergence, the actual
speedups might be half of that. Still, this should further speed up the generation of LFR
benchmark graphs using external memory.

EM-LFR provides the basis for the development and evaluation of clustering algorithms
for graphs that exceed main memory such as our distributed algorithms for optimizing
modularity and map equation [Ham+18a] that we introduce in the next part of this thesis.
There, we show that the behavior of algorithms on large graphs is not necessarily the
same as on small graphs even when cluster sizes do not change, which demonstrates the
necessity of such evaluations. Comparison measures such as NMI or the adjusted rand
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3.11 Outlook and Conclusion

index typically do not consider the graph structure, therefore they can usually still be
computed in internal memory even for graphs that exceed main memory. However, for
graphs where even the number of nodes exceeds the size of the internal memory, there is
the need to develop memory-efficient algorithms also for comparing clusterings.
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Comparison of the original LFR implementation, the NetworKit implementation and
our EM solution for values of 103 ≤ n ≤ 106, µ∈{0.2, 0.4, 0.6}, γ=2, β=1 dmin=10,
dmax=n/20, smin=10, smax=n/20. Clustering is performed using Infomap and Louvain
and compared to the ground-truth emitted by the generator using AdjustedRandMeasure
(AR) and Normalized Mutual Information (NMI); S ≥ 8. Due to the computational costs,
graphs with n ≥ 105 have a reduced multiplicity. In case of the original implementation
it may be based on a single run which accounts for the few outliers.
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Comparison of the original LFR implementation and our EM solution for values values
of 103 ≤ n ≤ 106, µ∈{0.2, 0.4, 0.6}, ν∈{2, 3, 4}, O = n, γ=2, β=1 dmin=10, dmax=n/20,
smin=10ν, smax=ν · n/20. Clustering is performed using OSLOM and compared to the
ground-truth emitted by the generator using a generalized Normalized Mutual Information
(NMI); S ≥ 5.
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Triangle count and degree assortativity of a graph ensemble obtained by applying
random swaps/the Configuration Model to a common seed graph. Refer to section 3.10.7
for experimental details.
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4 Benchmark Generator for Dynamic
Overlapping Communities in Networks

This chapter is based on joint work with Neha Sengupta and Dorothea Wagner [SHW17].
While the model of the graph and the dynamic events have only been slightly changed
compared to the publication, there have been significant changes to the algorithms used
for realizing the graph. For this, large parts of the description of the algorithm as well as
the experimental results have been rewritten and are based on a new implementation and
therefore also new experiments.

We describe a dynamic graph generator with overlapping communities that is capable
of simulating community scale events while at the same time maintaining crucial graph
properties. Such a benchmark generator is useful to measure and compare the respon-
siveness and efficiency of dynamic community detection algorithms. Since the generator
allows the user to tune multiple parameters, it can also be used to test the robustness
of a community detection algorithm across a spectrum of inputs. In an experimental
evaluation, we demonstrate the generator’s performance and show that graph properties
are indeed maintained over time. Further, we show that standard community detection
algorithms are able to find the generated community structure.

To the best of our knowledge, this is the first time that all of the above have been
combined into one benchmark generator, and this work constitutes an important building
block for the development of efficient and reliable dynamic, overlapping community
detection algorithms.

4.1 Introduction

A large portion of the existing literature on community detection overlooks at least one of
two key aspects of a multitude of real world graphs, (a) their dynamic nature, i.e. edges
and nodes keep getting added and deleted and (b) the often observed highly overlapping
and complex structure of such networks [GDC10; YL14].

Recently proposed approaches have identified the above problems and provide solutions
for detecting overlapping communities in temporal graphs [Dua+12; Ngu+11; CKU13;
AP14]. However, it is difficult to empirically evaluate and compare these methods due to
the lack of a realistic and fast benchmark network data generator or real-world data sets
with reliably labeled, dynamic ground truth communities. As also discussed in Chapter 2,
real-world data sets might provide important insights, but most of the time such data
is either unavailable e.g. for privacy reasons, or does not contain reliable ground truth
data to compare the found communities against. Benchmark graph generators allow
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4 Benchmark Generator for Dynamic Overlapping Communities in Networks

to evaluate the behavior of community detection algorithms on graphs with different,
predefined properties and thus test the robustness of the algorithm against a well-defined
set of ground truth communities.

The requirements of a benchmark graph generator in such a scenario are diverse.
Existing generators for static benchmark graphs such as LFR [LFR08] and CKB [Chy+14]
replicate properties of real-world networks like that node degrees and community sizes
follow power law distributions. CKB additionally ensures that the number of communities
a node belongs to follows a power law distribution and has a positive correlation with
the node degrees. Our goal is to extend the CKB model with a dynamic component that
simulates changes in the community structure while maintaining these graph properties.

It is commonly agreed on [PBV07; BKT07; APU09; GDC10], that the evolution of
communities can be characterized by the fundamental events birth, death, merge, split,
expansion and contraction. The challenge is that such community scale events also
affect the properties of the graph. For example when a new community appears, many
edges need to be added to the nodes of the community which might distort the degree
distribution. An analogous problem comes up when communities cease to exist, two
communities merge into a single community or one community splits into two individual
communities [GDC10]. Moreover, since nodes leave or join communities, it also has the
potential to affect the community size distribution. Further, we want to allow fine-grained
control over the rapidity with which events take place in the generated graph as most
communities in a real-world setting evolve gradually over time [Bac+06]. A community
detection algorithm must thus be able to follow smaller changes in order to detect large-
scale changes in the community structure. This can be used to evaluate the sensitivity of
different community detection algorithms. It has been shown that all of these events can
also be observed in real-world networks [GDC10]. Therefore, any dynamic community
detection algorithm that is supposed to work on non-trivial real-world graphs needs to be
able to detect at least these basic events.

4.1.1 Our Contribution

In this work we extend the CKB benchmark graph generator for overlapping community
structures to generate communities that are evolving over time. Our generator simulates
community events like birth, merge, split, death, expansion, and contraction which result
in node and edge insertions and deletions that gradually change the graph. A set of
parameters allows controlling various properties of the graph as well as the speed of the
dynamic process. In our model, at every time step, a configurable number of community
events is triggered that is proportional to the number of communities. However, our
generator can also be easily adapted to follow a different pattern of events.

We show using empirical analysis that the graph generator is fast and produces
graphs that actually maintain the properties of the CKB model over time, i.e., the node
degrees, the number of communities per node and the community sizes follow power
law distributions. Further, we show that we achieve a realistic average local clustering
coefficient over time. Also, we show using standard, existing community detection
algorithms that our generator produces graphs whose link structure reflects its ground
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truth community assignment over time and that it is capable of differentiating between
different community detection algorithms. A preliminary version of this work has been
published as [SHW17]. Compared to this publication, we replaced the algorithms to
realize the high-level community event sequence as actual graph changes. The consequence
of this is that we can better preserve the properties of the benchmark graphs over time.
We also changed the way community events are triggered, allowing multiple events to
start at the same time. In particular for large graphs, this allows for much faster changes
to the overall community structure.

Section 4.2 describes the prior work. Section 4.3 describes the algorithm in detail and
Section 4.4 presents the experimental evaluation of the generation.

4.2 Related Work

For evolving networks, there is no widely used model available and those available are
limited to non-overlapping communities. It is widely agreed on [PBV07; BKT07; APU09;
GDC10] though, that the evolution of dynamic communities can be characterized by the
following fundamental events: birth, death, merging, splitting, expansion, and contraction.
In [GDC10], they describe an algorithm for tracking the evolution of a given community in a
dynamic graph. For the empirical evaluation, they generate synthetic LFR graphs [LF09a]
along with embedded community events of each of the above types that are applied in
rapid changes of the graph. In [TB11], a different model is used for the evaluation of
a dynamic community detection algorithm where nodes are initially randomly assigned
to a set of k communities and some nodes change their membership in each time step.
Based on the planted partition model, [Gör+12] describes an algorithm for generating
a dynamic graph with non-overlapping clusters that also features the above-mentioned
event types, they are slowly applied using random changes over several time steps. In
a more recent work, [Gra+15] introduces another benchmark model again based on the
planted partition model but only considering grow-shrink and merge-split operations.
They propose three benchmarks that feature either one or both of the operations.

4.3 Algorithm

Our dynamic graph generator generates a series of simple, unweighted graphs G0, . . . , GT

with overlapping, evolving ground truth communities C0, . . . , CT over T + 1 discrete time
steps. Each graph Gt = (Vt, Et) consists of nt := |Vt| nodes and mt := |Et| edges. The
first graph G0 with reference communities C0 is directly generated according to the model
of the CKB generator [Chy+14] with parameters as summarized in the first part of
Table 4.1. In each of the T discrete time steps we maintain its properties:

The number of overlapping communities a node is part of follows a power law dis-
tribution Pld ([x1, x2), β1). Community sizes also follow a power law distribution
Pld ([nmin, nmax), β2). Every community is modeled as a G(n, p) graph, i.e., a graph
where every edge has the same probability of existence [Gil59]. The edge probability is
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C1

C2

C1

C2

C1

C2

C

t− 1 t t+ 1 . . . t+ teffect

Figure 4.1: Merge of communities C1, C2 into C by growing their overlap.

α/|C|γ and thus decreasing with increasing community size. To add noise to the graph, a
so-called epsilon community containing all nodes with edge probability ϵ is added.

In the first part of Table 4.1, we list these parameters along with their recommended
values. Except for the value of nmin, the recommendations are the same as in [Chy+14].
As community sizes follow a power law distribution, the value of nmin is the size of many
communities. In [Chy+14], nmin = 2 is proposed. This would lead to a large number of
communities of two or three nodes that should be detected by a community detection
algorithm. Communities of size two are indistinguishable from other edges but also three
nodes can hardly be called a community in most contexts. In our paper [SHW17], we
propose nmin = min(n0/100, 20), which leads to less than n0/10 communities with the
recommended parameters for larger graphs. As with these parameters a node can be
part of up to n0/10 communities, this made it impossible to realize the node-community
assignment. While our inexact assignment proposed in [SHW17] simply assigns fewer
communities to these nodes, our new assignment algorithm described in Section 4.3.4
tries harder to fulfill these requirements in every time step and thus caused slow-downs
in practice. Therefore, we instead propose nmin = 6. This is a compromise between not
too small communities and a large enough number of communities. In expectation, this
leads to more than n0/10 communities and we found that in practice the node-community
assignment is exactly realizable in most cases.

Initially, in time step 0, such a graph with n0 nodes is generated (see Section 4.3.1). In
each time step t ∈ [1, . . . , T ], community events may be triggered. Each community event
is spread over teffect time steps. In each time step, a community may only be part of a
single community event.

We consider four types of community events – birth, death, merge, and split. Other
events considered in the literature such as community expansion and contraction are
combined with them as described below. Nevertheless, it is straightforward to add these as
separate community events in our model. In a community birth event, a new community of
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C1

C2

C1

C2

C1

C2

C

t− 1 t t+ 1 . . . t+ teffect

Figure 4.2: Split of a community C into C1, C2 by duplicating C and then reducing their
overlap.

size nmin is created, that then grows to a size drawn from the community size distribution
over teffect time steps. Similarly, in a community death event, the community first shrinks
to size nmin over teffect time steps, before it disappears. In a community merge event, two
randomly chosen communities C1, C2 grow their overlap into a new community C over
teffect time steps by adding nodes in C1 \ C2 to C2 and vice versa. Figure 4.1 illustrates
this. To avoid changing the community size distribution, we draw a new size for C from
the community size distribution and either gradually remove non-overlapping nodes to
shrink the final size or add additional new nodes after the overlap reaches the union of
both communities. In a community split event, a randomly chosen community C is split
into two communities C1, C2. We start C1 and C2 as exact copies of C and then gradually
decrease their overlap, such that in the end both keep disjoint fractions of the nodes of C.
Again, we draw new sizes for C1 and C2. To achieve the desired size, we either remove
nodes from both C1 and C2 to further shrink them, or we add additional nodes to them
to increase their size. Figure 4.2 illustrates the process of splitting a community.

In every time step, we collect all communities that want new members and then assign
nodes to them in a assignment step. If communities want more members than there
are nodes that want to be part of additional communities, nodes may be assigned to
more communities than originally desired. If nodes want to be part of more additional
communities than communities want members, we try to reduce such over-assignments by
removing nodes that are part of too many communities from some of their communities.

In addition to the community events, in each time step, node events happen, where
individual nodes are added to or removed from the graph. When a node is removed, it
leaves all its communities and those communities get new members in the assignment
step. New nodes simply participate in the assignment step to join communities.

The number of community and node events is proportional to the number of communities
and nodes. The number of community events is drawn from a binomial distribution with

79



4 Benchmark Generator for Dynamic Overlapping Communities in Networks

|Ct| trials and probability pc. Similarly, the number of nodes events is drawn from a
binomial distribution with |nt| trials and probability pn. This ensures that with more
nodes and thus also more communities, every node and community will be part of an event
after a similar number of time steps. We try to balance events that destroy (death and
merge) and create communities (birth and split) and nodes to avoid significant changes
in the size of the graph and to avoid imbalances between the sum of the community
sizes and the sum of the number of communities nodes want to be part of. Let x be the
ratio between desired and actual sum of community sizes/number of nodes. Then we set
the probability of events that create communities/nodes to x/(1 + x). The individual
community events in each category (death vs. merge, birth vs. split) are equally likely.

Every time a node joins or leaves a community, we trigger edge events. Each community
has an edge probability according to its size. When a node u joins a community C, edges
from u to other nodes in C are created according to this probability. When a node u leaves
a community C, edges incident to u in C are removed again. The probability is adjusted
when the desired size of a community changes due to a community event. To adjust the
actual edge density, we draw a desired number of edges from the binomial distribution of
the number of edges in the G(n, p) model of the community and remove or add edges
uniformly at random accordingly. An edge {u, v} may exist in several communities. It
exists in Gt, if it exists in at least one community in Ct or the global epsilon community.

To smoothen community changes, edges that are created from a node u that joins a
community C at time step t are already created at time step t−x, where x is drawn from
a geometric distribution with probability λ. Similarly, edges of a node u that leaves C at
time step t still exist until time step t+x, where x is drawn from a geometric distribution
with probability λ. We recommend setting λ to a relatively high value like 0.8 to ensure
that most edges are created or removed at time t where u joins or leaves C as otherwise
community detection algorithms might detect u as part of C even though it is not yet or
no longer part of the ground truth community C.

To create further noise and avoid that all edge changes are due to changes in the
community structure, random edge perturbations happen in every time step with proba-
bility pe. More precisely, at every time step in every community C, the number of edge
perturbations is drawn from a binomial distribution with |C| trials and probability pe.
Instead of simply removing and inserting that number of edges, we additionally draw a
new desired number of edges from the binomial distribution of the number of edges and
bias edge perturbations towards reaching that number. Thus, as an additional challenge
for community detection algorithms, the actual density of a community might change
over time.

The parameters for the dynamic events with their recommended parameters are sum-
marized in the second part of Table 4.1.

The output of our algorithm is a stream of node, edge and community assignment events
for each time step. From these events, a full graph Gt and ground truth communities Ct
can be obtained for every time step t ∈ [0, . . . , T ].
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Param. Meaning Recomm. Value

n0 Number of nodes in G0 -
xmin Minimum node membership 1
xmax Maximum node membership n0/10
β1 Community Membership Exponent 2.5
nmin Minimum size of community 6
nmax Maximum size of community n0/10
β2 Community Size Exponent 2.5
α Intra Community Edge Prob. = α

nγ 2
γ Intra Community Edge Prob. = α

nγ 0.5

ϵ Inter Community Edge Probability 2n−10

T Number of time steps -
pc Community Event Probability 10−2

pn Node Event Probability 10−3

pe Edge perturbation probability 10−2

λ Community event sharpness 0.8
teffect Time steps for community events to take effect 10

Table 4.1: Parameters used in the Graph Generator

4.3.1 Initialization

Our initialization step resembles the distributed algorithm for the CKB generator described
in [Chy+14]. As we only consider a sequential setting, we simplified some of the steps.

First, node-community memberships and community sizes are drawn. As we draw
node-community memberships, we also directly add the nodes to the epsilon community.
Then nodes are assigned to communities in the node-community bigraph, see Section 4.3.4
how realize this graph. Whenever we add a node to a community, the corresponding
edges are generated as described in Section 4.3.5.

4.3.2 Community Events

In the following, we describe for each of the four community events – birth, death, merge
and split – how it is implemented. In this section, we only deal with node-community
memberships and changes of the desired size. Edges are always implicitly generated as
explained in Section 4.3.5. Further, instead of directly adding new nodes to a community,
we only increase its desired size. In the community assignment phase that is described in
Section 4.3.4, nodes are assigned to communities such that their desired sizes are met.

Community Birth

To spawn a new community C at time t, we first draw its desired final size nC from
Pld ([nmin, nmax), β2). At time t, C starts with nmin desired nodes. Then, in each of the
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following time steps t+ t′, t′ ∈ [0, teffect) an expansion phase follows where the desired
size is increased by ⌈︃

nC − |Ct+t′−1|
teffect − t′

⌉︃
.

The birth event ends when the desired size reaches nC nodes, which happens at the
latest at time step t+ teffect − 1.

Community Death

Symmetrical to the expansion phase after the birth event, the community death event
is preceded by a contraction phase, where nodes gradually leave the community until
only a core of the community remains. In a death event starting at time step t, in each
time step t + t′, t′ ∈ [0, teffect − 1), we sample nodes uniformly at random to leave the
community. The number of nodes to remove is⌈︃ |Ct+t′−1| − nmin

teffect − t′ − 1

⌉︃
.

If the community size is equal to nmin, which is the case at the latest at time t+teffect−1,
we remove all nodes and the community dies.

Community Split

A community split events starts by creating a duplicate of the input community C such
that we have now two identical communities C1, C2. Note that this duplicate also inherits
an exact copy of the edges of C, i.e., there is no change in the graph due to this duplication.
Further, we draw desired final sizes nC1 , nC2 . Recall that over the course of the split
event the nodes of C shall be divided among C1 and C2, i.e., their overlap is gradually
removed. For this, we initially determine lists of nodes R1, R2 to remove from C1 and
C2 over the course of the teffect time steps. If nC1 + nC2 < |C|, we first randomly select
|C|−nC1−nC2 nodes, add them to R1 and R2 and then assign the remaining nodes to C1

and C2 by adding all other nodes to R2 and R1. Otherwise, we assign fractions of nodes
proportional to nC1/(nC1 + nC2) and nC2/(nC1 + nC2) of C to R2 and R1, respectively.
We round randomly by drawing a value r ∈ [0, 1) and rounding up if the fractional part
is larger than r.

Similar to community birth and death events, in each time step, we now both gradually
remove nodes from the list of nodes to be removed and simultaneously increase the desired
size to finally reach nC1 and nC2 nodes, respectively, after teffect time steps. In time step
t+ t′, we first remove ⌈︃ |Ri|

teffect − t′

⌉︃
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nodes of Ri from each community Ci, i ∈ {1, 2} and set Ri := Ri ∩ Ci. Then, we
increase the desired size of Ci to

max

{︃
|Ci|+

⌈︃
nCi + |Ri| − |Ci|

teffect − t′

⌉︃
, nmin

}︃
for i ∈ {1, 2}.
Note that while C1 and C2 might be completely disjoint after the split event, this is

not necessarily the case as nodes that were previously part of C might be re-added to C1

or C2 to achieve the desired size during the node-community assignment.

Community Merge

The merge event follows a process that is almost the reverse of the process of the split
event. We gradually increase the overlap between two communities C1, C2 until they
merge into a new community C. For this, the nodes of C1 start joining C2 while the nodes
of C2 join C1. Recall that C has a new size nC that might be larger or smaller than the
union of C1 and C2. If the resulting community shall be smaller, we remove some of the
nodes of C1 and C2 that are not yet in the overlap. Further, if the merged community
has not yet the target size nC , we gradually increase or decrease its size to nC .

The merge event first calculates the overlap between C1 and C2 and creates list of nodes
A1 := C2 \C1, A2 := C1 \C2 of nodes that shall be added to the respective communities.
At each time step t+ t′, t′ ∈ [0, teffect), we add

a := max

{︃
0,

⌈︃
nC − |C1 ∩ C2|

teffect − t′

⌉︃}︃
nodes to the overlap and remove

r := max

{︃
0,

⌈︃ |C1 ∪ C2| − nC

teffect − t′

⌉︃}︃
nodes from the non-overlapping part.

We first remove min{r, |A1 ∪A2|} nodes from the non-overlapping parts of C1 and C2

and A1 and A2. If A1 ∪A2 = ∅, the merge finished, i.e., C1 = C2 and we simply remove
C2. If we have removed less than r nodes so far, we are now after the merge and remove
the remaining nodes from C1.

If we are after the merge and a > 0, we simply increase the desired size of C1 by a, but
at least to nmin. If C2 still exists but either |C1| + |A1| ≤ nmin or a ≥ |A1| + |A2|, we
increase the desired size of C1 to |C1|+a, but at least nmin, add all nodes in A1 to C1 and
perform the merge by removing C2. Otherwise, we select a1 and a2 nodes from A1 and
A2 to add to C1 and C2, respectively. We choose a1 and a2 such that both communities
reach at least nmin nodes. If we still selected less than a nodes, we select the remaining
nodes proportional to the sizes of A1 and A2, respectively. We then increase the desired
sizes of C1 and C2 by a1 and a2 and add the corresponding nodes from A1 and A2 to
them.
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4.3.3 Node Events

In every time step, we possibly add or remove one or several nodes. Removed nodes
immediately leave all communities they are part of. While in most cases they are simply
replaced by another node during the node-community assignment phase, there are a few
special cases if the community is part of a community event. For community birth events,
nothing changes, the community continues to grow, and we simply assign more nodes
during the node-community assignment phase. For community death events, we do not
replace removed nodes. This means that the community shrinks faster. For community
split events, we also do not immediately replace removed nodes, instead, we remove them
from the corresponding set Ri and, if necessary, let the community grow more to replace
them. Community merge events are similar, there we also remove the node from the
corresponding set Ai and possibly let the community grow more after the merge has been
completed.

4.3.4 Node-Community Assignment

After all active community events have been processed and all node events happened, we
ensure that every community has as many members as desired. For this, we build the
node-community bigraph, a bipartite graph between the nodes Vt and the communities in
Ct. An edge between a node u ∈ Vt and a community C ∈ Ct indicates, that we freshly
assign u to C in time step t. We build this assignment in several steps. The first step
is to reduce over-assignments if there are any and we can possibly replace over-assigned
nodes by other nodes. If necessary, we sample additional nodes or exclude nodes from
the assignment to match the number of nodes wanted by communities. To assign the
nodes, we first compute a greedy assignment of nodes to communities. Then, we shuffle
those assignments. The node-community assignment ends by actually adding all freshly
assigned nodes to their communities.

First, we calculate the sum sV of the additional communities nodes want to be in and
the sum sC of the additional members all communities want. If sV > sC , we try to remove
some nodes from communities to be able to assign more nodes to communities. For this,
we keep track of over-assigned nodes, i.e., nodes that are part of more communities than
they want to be part of. We iterate over these nodes in a random order. For each node
u, we select communities uniformly at random and remove u from them until u is only
part of its desired number of communities or sv = sC . Note that this only increases sC
but not sV , as we are only reducing over-assignments. To not to disturb the creation or
removal of overlap in community split and merge events, we exclude all communities that
are currently part of a split event or a merge event before the merge happened. If sV is
still larger than sC , we select a uniform sample of nodes that will get fewer communities
than originally wanted. To avoid that a node has no community, we first select every
node that has no community to get one community and only afterwards consider other
nodes or getting more than one community.

In the opposite case, if sV < sC , we sample sC − sV additional nodes that will be
assigned to communities. For this, we draw uniformly at random from all nodes weighted
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by their desired number of communities. We do not consider how many communities a
node already has or shall get, nodes may be sampled several times.

Assigning nodes to communities means generating a random bipartite graph from a
prescribed degree sequence. The algorithms are similar to those for the fixed degree
sequence model described in Section 3.1.1. For the greedy assignment, we use a bipartite
variant of the Havel-Hakimi algorithm similar to the one described by Kleitman and
Wang [KW73] that is based on the Gale-Ryser theorem [Gal57; Rys57]. Note that these
algorithms originally assume that we are creating all edges from scratch. Apart from the
initial assignment, this is not true. The problem of finding additional edges that satisfy
certain additional degrees is the same as finding a subgraph with given degree sequence, a
so-called f -factor, in the complement graph. This problem can be solved in time O(n3) in
general graphs [Ans85]. For bipartite graphs, this can be simplified to solving a maximum
flow problem. We found that in practice for our suggested parameters, our slightly
adapted Havel-Hakimi algorithm (see below) usually still produces a valid assignment,
and if not, only few assignments are missing that we fulfill by sampling additional nodes.
Therefore, we did not implement the exact assignment based on f -factors that might
easily dominate the running time.

We start the greedy assignment by sorting all selected nodes by the number of missing
memberships and all communities that want new members by the number of missing
members using bucket sort. We iterate over the selected nodes, starting with those that
have the highest number of missing memberships. For each node, we iterate over all
communities that want new members starting with the ones that still want most members.
Whenever we find a community the node is not yet part of, we add an edge to the
node-community bigraph until the node is part of as many communities as desired or we
tried all communities. We store communities in a bucket priority queue that we update as
nodes are assigned to communities. For the initial assignment, we could use the technique
explained in Section 3.5 to avoid changing the order of elements in the priority queue,
but for the later steps this is not possible anymore as we possibly cannot add a node to a
community. If we cannot find enough communities for a node, we simply continue with
the next node. After finishing this initial assignment for all nodes, we sample additional
nodes and assign them directly to the communities that still need members. If we initially
excluded nodes due to sV > sC , we first try them in a random order. If there are no
(more) such nodes, we sample from all nodes as for the over-assignment. This sampling
continues until all communities have enough members.

For the shuffling of the assignment we use edge switching [KTV99]. For each switch,
we randomly select two node-community assignments. If we selected two different nodes
and two different communities, we swap their nodes if none of the nodes is already part
of the other community or shall be assigned to it. We perform ten times the number of
assignments switching attempts as results on simple graphs with given degree sequence
suggests that this is enough [RPS15]. Note that this does not necessarily yield a random
assignment apart from the initial assignment step. Consider the two node-community
assignments shown in Figure 4.3. While both are valid results for the same input, there
is no switch possible and thus no way for our switching algorithm to get from one to
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u1 u2 u3

C1 C2 C3

u1 u2 u3

C1 C2 C3

Figure 4.3: Example for two different node-community assignments with existing fixed
assignments (dashed) such that there are no two assignments that can be
switched to get from one to the other.

the other. As many nodes are just part of a single community and there are many small
communities, we expect such problems to be rare in practice.

4.3.5 Edges

In the CKB model, and thus also in our generator, every edge belongs to one or more
communities. In this section, we describe how edges within a community are generated,
without caring about possible duplicates. In the following section we describe how we
generate a stream of global edge events from them.

The methodology described for the distributed CKB generator [Chy+14] for generating
the edges within a community involves drawing the number of edges per node to insert
from a binomial distribution with success probability pc =

α
nc

γ where nc is the size of the
community C, and thereafter using the configuration model. We use the Batagelj Brandes
model [BB05] to more efficiently generate an Erdős-Renyi graph for each community.
Every time we add a node to a community, we use this model to generate edges to existing
nodes according to the current edge probability in the community. When a node is
removed, its edges are removed, too.

Changing Edge Probabilities. Whenever the desired size of a community is changed,
we also adjust its edge probability. To adjust the actual density of the community to the
new edge probability, we first draw a new number of edges from a binomial distribution
with the maximum number of edges trials and success probability equal to the new edge
probability. We then add or remove random edges to reach the sampled number of edges.
I.e., we simulate the G(n, p) model using the G(n,m) model. To remove edges, we simply
perform a selection uniformly at random of the existing edges. To add edges, we sample
random node pairs until we have found enough node pairs that did not exist yet. To
ensure that we find a suitable node pair after a constant number of samples in expectation,
we also store non-edges explicitly if after adding edges more than 75% of the node pairs
exists. We stop storing them once the number of edges after removing edges decreases
below 25% of the edges. This ensures that before we iterate over all node pairs, at least
half of them have been added or removed. If non-edges are stored, we instead sample
from them to add edges.
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Edge Perturbations. At every time step, each community perturbs its edges with
probability pe. We draw the number of edges to perturb p from a binomial distribution
with the current number of edges trials and probability pe. In order to create even more
noise, we do not simply replace pe edges by new edges, but instead also sample a new
number of edges as described above, just without changing the edge probability. Let x be
the current number of edges and y be the new number of edges. If y ≥ x, we add p edges
and, if p > y− x, we remove p− y+ x different edges. Otherwise, we remove p edges and,
if p > x− y, we add p− x+ y different edges. This is only possible if the number of edges
to add is at most the number of missing edges in the community, as otherwise we cannot
add enough new edges that are different from the edges to remove. If the number of edges
to add is z edges larger than the number of missing edges, we add and remove z edges less.
We first select a random sample of edges to remove using Fisher-Yates shuffle [FY48] on
the edges of the community until we have shuffled enough edges. Then we add the desired
number of edges and only afterwards remove our selected sample to ensure that we do
not re-add an already removed edge. The sampling for adding edges works as described
above and is thus linear in the number of added and removed edges in expectation.

Epsilon Community Every node is added to the epsilon community and its edges are
created as described above. The only difference is that the edge probability is fixed and
not tied to its size. Edge perturbations are also realized in the exactly same way as
described above.

4.3.6 Event Stream Generation

Every time a node is added to or removed from the graph, a node joins or leaves a
community or an edge is added or removed from a community, we generate an event for
our global event stream. We first collect these events in buckets per time step and event
type. Further, we store for every node its birth time. Note that we never revive nodes,
every time a node is born we assign a fresh node id. While most events are generated in
order, this is not true for edge events. As described before, when a node joins or leaves a
community, depending on parameter λ, the edges that are added to or removed from the
graph may already exist earlier and longer. For this, we simply add those events to an
earlier or later time bucket.

As the last step, our generator creates the final event stream in a sweep over these
collected events. This has several purposes. First, due to our smooth community changes,
it might happen that we generated an event for adding an edge {u, v} before u and v are
born. When we encounter such an event, we move that event to the time step when both
nodes exist. Also, when a node dies, we ensure that we immediately remove all incident
edges. For this, during our sweep, we keep track of the incident edges of every node.
Due to community overlaps also with the epsilon community, edges might be created
and removed multiple times. During our sweep, we keep a counter for every edge of how
many communities it is part of. For our final event stream, we only generate a birth
event if the edge did not exist before in any community and a death event if it no longer
part of any community. It may happen that a node is removed from and re-added to
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the same community within a time step, e.g., during a split event or while reducing
over-assignments. For the final event stream, we only generate a community event if the
membership of a node changes from before the time step to after the time step.

4.3.7 Time Complexity

Almost all operations in our generator need constant time in expectation per internally
generated event. To achieve this, we use hash maps or hash sets in many places. The
only exceptions are the node-community assignment step and the edge perturbations.
For the node-community assignment step, running time linear in the number of all
node-community assignments can be necessary due to much more nodes wanting to be
part of communities than communities wanting nodes from which we need to sample or
over-assignments that we try to reduce but cannot reduce due to all communities being
part of community split or merge events. For edge perturbations, we draw the desired
number of perturbations for each community, which might be zero and thus not generate
any events. By using clever sampling techniques and keeping track of more information, it
might be possible to reduce this complexity. In practice for our recommended parameters,
we found that neither the node-community assignment step nor the edge perturbations
are dominated by this overhead, though. The relation between internal events and the
final event stream depends on many parameters, e.g., how dense communities are and
their overlaps, as we remove duplicate edges. For the proposed parameters, the majority
of the nodes is only part of a single community and thus overlaps are minimal. Let a
be the maximum number of node-community assignments and b the number of internal
events. Then the expected running time is in O(a · T + b).

4.4 Experiments

We present the results of several experiments conducted with our dynamic graph generator.
The empirical evaluation of the generator has been done along three main categories.

1. Running Time: We measure the efficiency of the generator itself in constructing
graphs with increasing graph size and event probability. The goal of these experi-
ments is to illustrate that the generator scales well when generating large, dense, or
highly dynamic graphs.

2. Graph Properties: As the dynamic graph evolves over time due to the edges and
nodes changed by the generator, properties of the graph are measured at different
time steps. This category of experiments is targeted at showing that the generator
is capable of maintaining graph properties while generating community scale events.

3. Community Detection Algorithm: Finally, we use existing community detection
algorithms, to detect communities on the generated datasets. We show using these
experiments that the link structure of the generated dynamic graph follows the
ground truth as the graph evolves.
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Our primary contribution is that we add dynamic events to an existing static graph
generator for overlapping communities. The goal of our experiments is, therefore, to
show that generating community events on the initial graph (G0), generated by the static
generator, does not adversely affect the graph properties that G0 exhibits. The static
graph model used for generating G0 in this work, CKB, has been shown to resemble real
world graphs in terms of graph properties in [Chy+14]. We show that, in spite of the
dynamic events generated on the original static graph, the same graph properties are
followed and the link structure indicated by the community assignment is maintained.
This implies that the dynamic generator model we propose, is able to generate a graph
with evolving overlapping communities, realistic graph properties, and community events
at each time step – forming a suitable input to a dynamic community detection algorithm.

4.4.1 Setup

We implemented the generator in C++ in NetworKit [SSM16], the code is available
at https://github.com/michitux/networkit/tree/ckbdynamic. In many places, we
use hash maps to efficiently store nodes, edges or communities. For this, we use an
implementation of robin hood hashing1 [Cel86]. Our experiments were conducted on a
system with two 8-Core Intel Xeon(tm) Skylake SP Gold 6144 processors and 196 GB
2666MHz DDR4 RAM. Our implementation is single-threaded, we thus restricted our
experiments to use just a single CPU core. The parameters experimented with include
n0, the starting number of nodes in the graph, pc, the probability of a community event
occurring, α, which affects the intra cluster edge density, and ϵ, which affects the density
of inter-community or global edges. Other parameters are set to their values in Table 4.1.

4.4.2 Running Time

Figure 4.4 plots the time our generator needs both as absolute running time and as
running time per produced event for 1000 time steps. Apart from the varied parameter,
all parameters are set to the recommended values in Table 4.1. For each value, we run the
generator with ten different seeds. We plot those ten runs with slightly varying x-value
to separate measurements.

Figure 4.4a shows the time taken for varying number of nodes in the starting graph.
As the number of nodes increases, the running time increases slightly more than linearly.
This is because with n0, also the maximum community size and the maximum number
of memberships per node increases. Larger communities contain more edges and more
memberships per node lead to more communities in general. Both lead to higher average
degrees and the latter also leads to more community events per node, which explains the
more than linear increase in running time. If we consider the running time per event,
instead, the running time increases only slightly till 90k nodes and remains essentially
constant for larger graphs. A possible explanation for this slightly increasing running time
per event is the fact that while memory accesses are constant in theory, cache hierarchies

1https://github.com/martinus/robin-hood-hashing
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(a) Varying starting number of nodes
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(b) Varying intra cluster edge density
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(c) Varying community event probability

Figure 4.4: Time taken to generate 1000 time steps, both as absolute running time and
normalized by the number of events. We apply a slight jitter on the x-axis to
separate measurements.
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lead to increasing memory access times for larger data structures. These results show
that a graph with 120k nodes and 1000 time steps can be computed in around 80 seconds.

Figure 4.4b shows the individual running times for varying values of α and 100k nodes.
Here we can see that the running time is increasing slightly less than linearly and the
running time per event is even decreasing with increasing density. There are several
explanations for this. With increasing density, each change in the node-community
assignment produces more events, and also edge perturbations increase linearly. However,
with larger densities also more and more of the small communities become cliques. Our
smallest communities of size 6 are cliques starting with α = 3, communities with 100
nodes are also cliques at α = 10. Once a community is a clique, its density cannot increase
further with increasing α and also no more edge perturbations can happen. This explains
part of the less than linear increase in running time. The other explanation is that there
is a certain overhead like the node-community assignment or drawing the number of edge
perturbations per community that is independent of the density. Tests on individual
parameter choices show that neither of those dominates the running time, but still their
relative weight decreases with increasing edge density.

Figure 4.4c shows the time taken for varying probabilities of community events and
100k nodes. Note that every event needs up to 10 time steps and half of the events also
concern two communities. Thus, an event probability above 5% is likely to cause all
communities to be part of an event. The increase in running time is again roughly linear
in the event probability, as we can expect that for event probabilities above 1%, the
majority of the events in the final event stream are triggered by community events. The
running time per event is almost constant. The slight variations might be explained by the
randomness of the generator. For small event probabilities slightly higher running times
can also be explained by the parts of the generator that are independent of community
events and by the fact that the node-community assignment has certain steps that are
independent of the number of nodes to be assigned.

4.4.3 Graph Properties

In this section, we examine the node degrees, community sizes and node-community
memberships for a dynamic graph with 10k nodes and the other parameters chosen
according to the values in Table 4.1. All results in this section are from the same run of
the generator, thus graphs can be compared across different plots.

In Figures 4.5, 4.6, and 4.7 we plot the degree, community size and node membership
distribution at time 0, 500 and 1000. The community sizes in Figure 4.6 clearly follow
power law distributions at every time step. There is some variation, which might also be
explained by events that are currently in progress, but overall the distributions are very
similar. The degree distribution in Figure 4.5 shows clear differences between the time
steps and is also not a pure power law distribution. As node degrees are not explicitly
drawn, this is also not expected. Still, also already shown for the CKB generator [Chy+14],
the tail follows a power law distribution. There are some effects visible though that ask for
further explanation, in particular the many nodes having a degree between 50 and 100 at
T = 0 and T = 1000. The explanation for this is that in particular at T = 1000, there are
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Figure 4.7: Node Membership Distribution

two huge communities of almost a thousand nodes as visible in Figure 4.6. The average
degree in a community of a thousand nodes is 63, which explains the peaks. At time step
500, there are no such huge communities and thus no such peaks. The node-community
membership distribution in Figure 4.7 shows almost identical power law distributions for
T = 0 and T = 500. At T = 1000, we see a slightly shifted distribution – there are fewer
nodes with a single community, but more nodes with more than one community. This
is because of the over-sampling due to communities wanting more members than nodes
wanting communities. As we can see, the over-sampling is quite uniform and still yields a
power law distribution.

Note that a community event probability of 1% as used in these experiments means
that the probability of a community to not to be part of any community event is already
below 1% after 500 time steps and below 10−5 after 1000 time steps. Therefore, after
1000 time steps, we can safely assume that almost all communities are the result of a
community event. Further, the node event probability of 0.1% means that also a large
part of the nodes will have been replaced. This shows that our community and node
event model are able to produce highly dynamic graphs while preserving distributions
of key characteristics. In the following we also consider different properties of the graph
over time.

In Figure 4.8 we show how the total number of memberships as well as the number
of nodes with 0 (orphans), 1 and 2 communities varies over time. There are no orphans
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Figure 4.8: Community memberships over time

at any point of time, showing that our approach to prioritize nodes that are not part of
any community during the node-community assignment is successful. On the other hand,
with the node-community assignment proposed in [SHW17], we saw up to 10% orphan
nodes over time. There are significant changes over time, but all values frequently return
to the original values. If there are fewer memberships overall, more nodes are just part
of a single community and slightly fewer nodes are part of two communities. If there
are more memberships overall, the number of nodes that are part of a single community
drops and the number of nodes being part of two communities increases, as expected.
As the number of memberships decreases again, those numbers quickly recover to their
original values as our algorithm reduces over-assignments.

In Figure 4.9, we show the development of the community sizes as well as the total
number of communities (right y-axis) over time. As expected, the minimum community
size stays stable at 6 nodes. The maximum community size varies significantly, as we could
already expect from Figure 4.6. This is due to the large range of community sizes and
the relative high exponent of the power law distribution of 2.5. The median community
size is at 9, the average is at around 15 and varies over time. The number of communities
is varying a lot. This is most likely due to our adjusted event probabilities depending
on the number of memberships. As the average community size decreases, we trigger
more events that create communities to compensate for the loss of memberships as it can
be seen during the first 100 time steps in Figure 4.8. Only around T = 250 the number
of communities stabilizes, which is around the time when the number of memberships
reaches the initial number of memberships again. Without these stabilizing measures, the
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Figure 4.9: Community sizes over time

numbers would be varying much more.
In Figure 4.10, we report the clustering coefficient over time. Compared to the clustering

coefficient of around 0.18 reported in [SHW17], the clustering coefficient is higher at
around 0.28 as our minimum community size is smaller and it shows a lot more variance as
our graph is much more dynamic. A clustering coefficient of 0.28 has also been observed
on the LiveJournal social network graph for example [LK14].

4.4.4 Community Detection Algorithm

In this section, we compare how well community detection algorithms can detect the
ground truth communities. For this comparison, we use the average weighted F1 score as
introduced in Section 2.3.3.

The most fitting algorithms to evaluate would be the ones that find overlapping
communities in a dynamic graph. Unfortunately, we were unable to find implementations
of fast enough dynamic overlapping community detection algorithms that are able to
detect the communities in our benchmark graphs. In preliminary experiments using the
earlier version of our generator [SHW17], we tried a dynamic version of OSLOM [Lan+11]
but found that it did not work as intended, producing communities of decreasing quality
over time, potentially due to not searching for new candidate communities. In further
preliminary experiments, we also tried AFOCS [Ngu+11], but it was only able to process
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Figure 4.10: Clustering coefficient over time

50 time steps of a graph with 5 thousand nodes within 12 hours and the found communities
had average weighted F1 scores of less than 0.1, i.e., it failed to identify the ground truth
community structure.

Instead, we evaluate our dynamic generator using the static algorithms MOSES [MH10]
and OSLOM [Lan+11], see Section 1.4.5 and 1.4.4 for introductions, as both were shown
to have a good performance on the CKB benchmark [Buz+14]. From the stream of events
of our generator, we generate snapshots of the graph and the ground truth community
structure every 100 time steps. The static community detection algorithms are then
run for each individual graph snapshot and the average weighted F1 score for each of
these snapshots is measured independently. As both community detection algorithms are
randomized, we run them ten times with different random seeds.

Figure 4.11 shows the performance of the selected algorithms with time and varying
values of α and ϵ = 2. As the value of α increases, the intra-community edge probabilities
increase, implying that communities are more easily distinguishable. Our experiments
confirm the excellent performance of OSLOM, the average F1 scores are between 0.55 for
α = 1, almost 0.8 for α = 2 and almost 0.9 for α = 4. MOSES performs even better for
α = 1 and α = 2, but for α = 4, the performance is worse and on similar levels as for
α = 1. Over the time series, the performance of the algorithms varies, which is expected
as the number of memberships and also community sizes varies. However, one cannot see
any clear trend and similar scores are repeating, indicating that we can indeed maintain
the community structure over time.

Figure 4.12 shows the performance of the selected algorithms with varying values of ϵ
and α = 2. It is surprising to see that even extreme values of ϵ = 100 have only a very
slight effect on the performance of MOSES. On the other hand, OSLOM performs worse
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Figure 4.11: Performance of OSLOM and MOSES with varying α and ϵ = 2.
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Figure 4.12: Performance of OSLOM and MOSES with varying ϵ and α = 2.
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Figure 4.13: Community memberships and sizes for the ground truth and the detected
communities for the default parameters of α = 2 and ϵ = 2.

with increasing ϵ as expected. The average weighted F1 score decreases from about 0.8
for ϵ = 1 to 0.7 for ϵ = 100.

To further examine the results of the community detection algorithms, we plot (binned)
histograms of the distributions of community memberships and community sizes of both
ground truth and detected communities for select values of α and ϵ. As bins, we chose
powers of two, i.e., each bin contains all values from the interval [2i, 2i+1) for some
i ∈ N. This allows a direct comparison for each range of community sizes or number of
memberships how many communities/nodes should exist and how many were detected.
We start with our default configuration of α = 2 and ϵ = 2. In Figure 4.13 we see
that OSLOM fails to detect nodes that are part of 16 or more communities and thus
is unable to identify highly-overlapping nodes. MOSES, on the other hand, is not far
off concerning the number of communities per node. For some nodes, though, it does
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Figure 4.14: Community memberships and sizes for the ground truth and the detected
communities for α = 4 and ϵ = 2.

not identify any community. Note that in the configuration we used, OSLOM assigns at
least one community to every node, otherwise we might see similar effects for OSLOM,
too. Concerning the community sizes, in particular OSLOM also detects fewer small
communities than there are small communities in the ground truth. MOSES also identifies
some communities that are too large, possibly merging several communities into one.
Overall, those results confirm the average weighted F1 scores we saw before where MOSES
performs slightly better than OSLOM.

Next, we look at α = 4 and ϵ = 2 in Figure 4.14 to identify possible reasons why
OSLOM performs better here but MOSES performs worse. Concerning the number of
memberships per node, the distributions for MOSES match almost perfectly now, but
there are still a couple too few nodes with a high number of memberships. Also, OSLOM
is better, it identified about 10 nodes that belong to more than 16 communities. For
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Figure 4.15: Community memberships and sizes for the ground truth and the detected
communities for α = 2 and ϵ = 100.

OSLOM, the distribution of community sizes also matches quite well, though overall
there seem to be fewer communities of every size and a few communities smaller than
any ground truth community. This also reflects the good F1 scores of almost 0.9. For
MOSES, we see that for all ranges of community sizes above 32 nodes, it detects more
communities than the ground truth has. On the other hand, for smaller community sizes,
it detects fewer communities than both OSLOM and the ground truth. This suggests
that for high values of α, MOSES merges communities even though, as the results for
OSLOM show, the communities are actually easier to detect.

As a last example, we look at α = 2 and ϵ = 100 in Figure 4.15, i.e., a configuration
with extreme background noise. In this configuration, the average weighted F1 score of
MOSES is still at 0.8, while the one of OSLOM is at 0.7. Looking at the distribution
of memberships, we can see that for more than 10% of the nodes, MOSES was unable
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to identify any community. Looking at the distribution of community sizes, we see in
particular much fewer small communities. This suggests that small communities whose
nodes have a low internal degree basically vanish in the background noise. On the
other hand, both algorithms detect more large communities than the ground truth has,
suggesting that they might either merge several communities together due to the additional
edges in the epsilon community or that it adds unrelated nodes that are connected by
edges in the epsilon community to these communities.

All in all, we can conclude that small community sizes pose a significant problem even
though we have already increased their minimum size compared to the suggested value
of 2 by the original authors of the CKB benchmark [Chy+14]. In particular in small
communities with lower values of α, while the average number of edges of a node to its
own community might be appropriate, it is quite likely that in some communities there
are nodes that have just one or even no edges to their own community. In the LFR model
due to the specified minimum degree and fixed mixing parameter, this is not possible.
Future research should investigate if such a minimum internal degree might be beneficial
for the CKB model, too. Similarly, external degrees might need to be limited, too, to
avoid large deviations from the average. To realize this, different models for the graphs
that define communities would need to be considered, most likely using the fixed degree
sequence model (FDSM, see Section 3.1.1) similar to the LFR benchmark. This would
certainly slow down the generation of graphs and make dynamic events more difficult to
realize.

4.5 Conclusion

We have introduced the first benchmark graph generator for dynamic overlapping com-
munity detection algorithms. The node degrees, the community sizes, and the number
of communities per node all follow power law distributions as commonly observed in
real-world networks. Compared to our first version of it [SHW17], we made the generator
more flexible and the generated graphs more dynamic while ensuring that the properties
of the graphs are better preserved over time. In the experimental evaluation, we show
that these properties and a realistic local clustering coefficient are not only present in the
initial graph but also maintained over time. Further, we demonstrate that our generator
is capable of generating graphs with 100,000 nodes and 1000 time steps in about a minute.
Our generator is therefore the ideal starting point for an extensive evaluation of existing
and novel dynamic community detection algorithms. Further, we show that the existing
community detection algorithms MOSES and OSLOM are capable of finding a community
structure similar to the ground truth structure. As we show, several parameters allow
adjusting how challenging it is. In a detailed analysis, we show that while MOSES tends
to detect too large communities, OSLOM has problems with nodes belonging to many
communities. An obvious direction for future work is therefore the development of novel
algorithms for detecting overlapping communities in dynamic networks. Our detailed
analysis of the detected communities suggests that there might be some communities
that are not well-connected due to the randomness of the CKB model. A more detailed
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analysis of such communities and potentially modifying the model to ensure minimum
degrees in communities should thus be considered for future work.
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Disjoint Density-Based
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5 Introduction to Disjoint Community
Detection

The task of disjoint community detection is to divide the input graph G into a disjoint
union of communities. In this part, we consider in particular communities that follow
the traditional definition of being internally dense and externally sparsely connected.
As already discussed in Section 4.1 in the previous chapter, this completely ignores the
highly overlapping structure that is observed, e.g., in social networks [YL14] with dense
overlaps between communities. Nevertheless, there are several reasons why we consider
disjoint, density-based communities an important subject of research. First of all, in some
cases overlapping communities might be a better model for a network, but they are too
complex for the task. Consider for example the task of understanding huge networks
through visualization. Disjoint communities can be visualized by coloring nodes, making
it easy to understand which parts of the network belong together. While approaches for
visualizing overlapping sets [SAA09; Meu+13] and also overlapping communities [Pei15]
exist, they are hardly as easy to grasp as a disjoint structure. In these cases, if there is a
disjoint structure that somehow reasonable models the network, we definitely want to
be able to detect it. Second, in some cases we might explicitly want a disjoint structure
even though it might be a bad model for the network. Consider the related problem
of partitioning a graph into k blocks of roughly equal size while minimizing the cut
between the blocks [BS11]. A successful heuristic is based on first contracting nodes
together (similar to the contraction step in the Louvain algorithm, see Section 1.4.1),
finding an initial partition on the contracted graph and then refining this initial partition
while unpacking the contraction. It has been shown that a disjoint community structure
can help the partitioning algorithm with better decisions which nodes not to contract
together [MSS14; HS17]. Here, an overlapping community structure would not help
as the final partition is non-overlapping, too. Finally, disjoint community detection
can be used as a building block for overlapping community detection. For example the
Ego-Splitting framework [ELL17] uses a disjoint community detection algorithm to first
split the neighborhood of every node into disjoint communities, then creates a copy of
each node for each of these communities – so-called personas – and then again detects
disjoint communities in an expanded graph of these personas. Thus, scalable disjoint
community detection algorithms directly lead to scalable overlapping community detection
algorithms.

In this part, we present two very different directions of research towards scalable disjoint
community detection. In Chapter 6, we present a community detection algorithm that
distributes the data and the computation across a cluster of compute nodes. We show that
this algorithm is not only scalable, but that also the quality of the results is sometimes

107



5 Introduction to Disjoint Community Detection

higher than with sequential algorithms. In Chapter 7, we compare different approaches for
edge filtering with respect to the goal of obtaining a smaller graph that still yields similar
disjoint communities. We show that while some approaches are good at identifying edges
inside communities, the filtered graphs yield different communities. Filtering random
edges better maintains the structure, on the tested graphs we can remove 40 to 60% of the
edges and still obtain similar communities. While our distributed community detection
algorithm yields the more scalable approach, being able to detect communities on a twice
as large graph without needing more RAM or a compute cluster might make a difference
in practice, too. Further, studying different ways to determine the importance of an
edge is interesting not only for filtering, but also for prioritizing edges. In Chapter 11
on local community detection, we show that prioritizing certain edges helps to expand a
community around a seed node.
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6 Distributed Graph Clustering using
Modularity and Map Equation

This chapter is based on joint work with Ben Strasser, Dorothea Wagner and Tim
Zeitz [Ham+18a]. Compared to the publication, we re-added some parts that were
omitted due to space constraints and reference parts of this thesis where appropriate.
Further, we added more recent related work and a comparison to it based on published
results.

When dealing with data that does not fit into the RAM of a single machine, a natural
approach is to instead distribute the data across a compute cluster. We therefore study
distributed extensions of established single machine clustering algorithms. In this chapter,
we present two versions of a simple distributed graph clustering algorithms. They compute
a disjoint clustering by optimizing the quality measures modularity [NG04] and map
equation [RAB09], respectively. The algorithms for the two measures, DSLM-Mod and
DSLM-Map, differ only slightly. Adapting them for similar quality measures is straight-
forward. They are based on Thrill [Bin+16], a distributed big data processing framework
that implements an extended MapReduce [DG08] model. We conduct an extensive
experimental study on real-world graphs and on synthetic benchmark graphs with up
to 68 billion edges. Our algorithms are fast while detecting clusterings similar to those
detected by other sequential, parallel and distributed clustering algorithms. Compared to
the distributed GossipMap [BH15] algorithm, DSLM-Map needs less memory, is up to an
order of magnitude faster and achieves better quality.

6.1 Related Work

Existing distributed approaches follow one of two approaches.
The first is to partition the graph into a subgraph per machine. Each subgraph is

then clustered independently on one machine. Then, all nodes of each cluster are merged
summing up weights of parallel edges. The resulting coarser graph is clustered on a
single machine. This assumes the coarsened graph fits in the memory of a single machine.
In [ZY16], for the partitioning, the input node ID range is chunked into equally sized
parts. This can work well, but is problematic if input node IDs do not reflect the graph
structure. In [Wic+14], the input graph is partitioned using the non-distributed, parallel
graph partitioning algorithm ParMETIS [KK98]. While this is independent of node IDs,
it requires that the graph fits into the memory of one machine for the partitioning.

The second approach consists of distributing the clustering algorithm itself. Using
MPI, [Que+15] have introduced a distributed extension of the Louvain algorithm [Blo+08].
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Similarly, [Lin+16] have presented an algorithm that uses the GraphX framework. Another
algorithm named GossipMap is presented in [BH15] which uses the GraphLab framework.
InfoFlow [Fun19] is based on Apache Spark. Our algorithms also use this second approach.

In later works [Gho+18b; ZY18; FA19], a combination of both approaches has been pro-
posed: while the graph is partitioned, information about neighboring nodes is exchanged
from time to time. Therefore, the quality still depends on the partition, but possibly not
that heavily.

While many of these related algorithms heuristically optimize modularity, GossipMap,
InfoFlow and the last two approaches [Fun19; ZY18; FA19] optimize the map equa-
tion. Other community detection formalizations have been considered. For example,
EgoLP [Buz+14] is a distributed algorithm to find overlapping clusters.

6.2 Our Contribution

We propose two distributed graph clustering algorithms, DSLM-Mod and DSLM-Map,
that optimize modularity and map equation, respectively. Our algorithms are the first
graph clustering algorithms based on Thrill [Bin+16], a distributed big data processing
framework written in C++ that implements an extended MapReduce [DG08] model. Our
algorithms are easy to extend for optimizing different density-based quality measures.
To evaluate the clustering quality, we compare against ground truth communities on
synthetic LFR [LFR08] graph clustering benchmark graphs with up to 68 billion edges.
Even for these graphs, 32 hosts of a compute cluster are enough. Our results show
that our algorithms scale well and DSLM-Map is better at recovering the ground truth
than the sequential Infomap algorithm [RAB09]. On real-world graphs, our algorithms
perform similarly to non-distributed baseline algorithms in terms of the quality of the
detected clusterings and stability between different runs. We evaluate both similarities
and quality scores, as for quality scores small changes can result in vastly different
clusterings [GMC10].

Similar to most related work, we make implicit assumptions on the structure of the
graph. We assume that all edges incident to nodes in a single cluster fit into the memory
of a single compute node. In practice, this is only a limitation when a graph has huge
clusters. In many scenarios like social networks or web graphs, this is no limitation as
cluster sizes are not that huge. Our algorithms can be modified to avoid these restrictions,
but this would increase running times.

Outline. In the following we introduce our notation and present the quality measures
we optimize. We also give a brief introduction to Thrill. In Section 6.4, we present
our algorithms. In Section 6.5 we present our experimental results. We conclude in
Section 6.6.

6.3 Preliminaries

We use the notation introduced in Section 1.2. While all our input graphs are unweighted,
intermediate steps of our algorithms use weighted graphs. Therefore, we treat all graphs
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as weighted. In the context of this chapter, a clustering C is a disjoint set of clusters such
that every node is part of exactly one cluster.

6.3.1 Thrill

Thrill [Bin+16] is a distributed C++ big data processing framework. It can distribute the
program execution over multiple machines and threads within a machine. Each thread is
called worker. Every worker executes the same program.

If there is not enough main memory available, Thrill can use local storage such as an
SSD as external memory to store parts of the processed data. This makes it possible to
work with datasets larger than the combined main memory of all hosts.

Data is maintained in distributed immutable arrays (DIA). Distributed Thrill operations
are applied to the DIAs. For example, Thrill contains a sort operation, whose input is a
DIA and whose output is a new sorted DIA. Similarly, the zip operation combines two
DIAs of the same length into one DIA where each element is a pair of the two original
elements.

Thrill also supports DIAs with elements of non-uniform size, as long as each element
fits into the memory of a worker. This allows elements to be arrays.

Apart from zip and sort, we use the following operations: The map operation applies a
function to each element of a DIA. The return values are the elements of the new DIA.
Flatmap is similar, but the function may emit 0, 1, or more elements. This is similar to
the map operation in the original MapReduce model [DG08].

A DIA can be aggregated by a key component. All elements with the same key
are combined and put into an array. This is similar to the reduce operation in the
original MapReduce model [DG08]. An aggregation is much more efficient if the keys are
consecutive integers. In that case, the result is also automatically sorted by the keys. We
use this optimized variant for all aggregations that are based on node IDs.

6.4 Algorithm

The basis of our algorithm is the Louvain algorithm [Blo+08], a fast algorithm for
modularity optimization that delivers high-quality results. The original Infomap algorithm
proposed for optimizing the map equation [RAB09] is based on the same scheme, but
introduces additional steps to improve the quality. For an introduction to modularity and
map equation and formal definitions of both, we refer to Section 1.3.3 and 1.3.4. While
we have introduced the Louvain algorithm already in Section 1.4.1, we repeat it here to
establish the notation that we use in the following sections to describe our distributed
algorithm.

Initially, every node is in its own cluster. This is called a singleton clustering.
In the local moving phase, the Louvain algorithm works in rounds. In each round, it

iterates in a random order over all nodes v. For every node v, it considers v’s current
cluster and all clusters C such that there is an edge from v to a node of C. For all these
clusters, the difference in quality score ∆v,C if v was to be moved into C is computed. If
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an improvement is possible, v is moved into a cluster with maximal ∆v,C , resolving ties
uniformly at random. The local moving phase stops when no node is moved in a round
or a maximum number of rounds is reached.

After the local moving phase, the contraction phase starts. All nodes inside a cluster
are merged into a single node. The weights of all edges from a cluster C to D are summed
up and added as an edge from the node representing C to the node representing D. All
edge weights within a cluster are summed up and added as a loop edge. The contraction
does not change the quality score. On the contracted graph, the algorithm is applied
recursively. It terminates when the contraction phase is entered and the clustering is still
the singleton clustering.

6.4.1 Calculation of Scores

To evaluate if a node v shall be moved from its cluster C to a cluster D, we need to
know the difference in the quality measure ∆v,D. For the calculation of ∆v,D, let C−

denote the cluster C without node v and C+ the cluster C with node v. Both modularity
and map equation allow computing ∆v,D using just information about C and D and, for
map equation, how cutw(C) changes. The latter can also be obtained easily if we know
the value before the move. This suffices as most terms in the modularity and the map
equation formula are just sums over all clusters. When moving a node, only the parts for
the affected clusters C and D change. Thus, all other terms cancel out when calculating
the difference. Only the first term in the map equation is different as it is a sum of all
cut values. However, this sum can be quickly updated, too. For modularity, we obtain
the following formula:

∆Qv,D := 2 ·
(︃
cutw(v,D

−)− cutw(v, C
−)

volw(V )
− degw(v)

volw(V )
· volw(D

−)− volw(C
−)

volw(V )

)︃
Since the absolute difference is not required to select the best cluster for a given

node, this formula can be simplified further. Specifically, if the set of possible clusters is
guaranteed to contain the current cluster, we can drop all parts in the formula referring
to the current cluster C. This will allow optimizations later on.

For the map equation, this formula contains more terms. Due to the logarithms fewer
terms cancel out:

∆Lv,D := plogp

(︃
cutw(C) + cutw(v, C

−)− cutw(v,D
−)

volw(V )

)︃
− plogp

(︃
cutw(C)
volw(V )

)︃
− 2 plogp

(︃
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−)

volw(V )

)︃
+ plogp
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−) + volw(C
−)
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(︃
cutw(C

+)

volw(V )

)︃
− plogp

(︃
cutw(C

+) + volw(C
+)

volw(V )
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cutw(D
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For obtaining the updated volume and cut values of C and D, we only need to know
the previous cut and volume values of C and D, the degree of v and the cut of v with
C− and D−. The latter can easily be obtained by iterating over the neighbors of v. In
the sequential algorithms, the cut and volume of each cluster as well as the global cut are
cached and updated after every move.

6.4.2 Distributed Synchronous Local Moving (DSLM)

In local moving, the i-th move depends on the clustering after the first i− 1 moves are
executed. This data dependency makes the parallelization difficult. We therefore split a
round into sub-rounds. Every node picks a random sub-round in which it is active. In the
i-th sub-round, all active nodes are moved synchronously and in parallel with respect to
the clustering after the (i− 1)-th sub-round. For the first sub-round, this is with respect
to the initial clustering. We call this scheme synchronous local moving. For our distributed
synchronous local moving, a global hash function h maps a tuple of a node ID v, the
number of completed rounds and a global seed onto the sub-round rv in which v is active.
Figure 6.1 illustrates the data flow of our algorithm.

We represent a graph and its clustering as two DIAs. They have length n and are stored
sorted by their first item, the node ID v. The graph DIA stores triples (v, ⟨ui⟩, ⟨wi⟩),
where ⟨ui⟩ and ⟨wi⟩ are equally-sized arrays. For every i, there is an edge v, ui with
weight wi. We store every edge twice such that it is accessible from both incident nodes.
The clustering DIA of pairs (v, C) stores for every node v its cluster ID C.

In DSLM, a sub-round is composed of a bidding and a compare step. In the bidding
step, the clusters place bids for active nodes. In the compare step, every active node
compares its bids and becomes part of the cluster with the best bid.

To allow a node v to compute the change in modularity or map equation when joining
the neighboring cluster C, each bid contains: (a) volume volw(C \ v), (b) cut weight
cutw(v, C \ v) between C \ v and v, and (c) cut weight cutw(C) between C and the
remaining graph.

The bidding step starts by zipping the clustering DIA and graph DIA and aggregating
this zipped DIA by cluster ID. The result is a DIA with one large element per cluster C.
Each element contains all nodes in the cluster C and the neighborhoods of these nodes.
This allows us to compute the measures (a), (b), and (c) using a non-distributed algorithm
inside a worker. Using a flatmap operation, our algorithm emits for every cluster C bids
for all active nodes inside C and adjacent to C. It can determine which nodes are active
as the hash function h is globally known. The generated bid DIA consists of quintuples
(C, v, volw(C \ v), cutw(v, C \ v), cutw(C \ v)). Each quintuple is a bid of cluster C for
active node v.

The compare step aggregates the bid DIA by node v. After the aggregation, the result
is zipped with the graph DIA to obtain the nodes’ degree and loop edge weight. In a
map operation, we use this information to compute for every active node the best bid
and return the according cluster. We retrieve the old cluster ID for non-active nodes by
zipping with the original clustering DIA. This yields the updated clustering DIA, which
is the input of the next sub-round.
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Figure 6.1: DSLM data flow

Implementation Details and Optimizations. If modularity is optimized, our
algorithm can be improved in two ways. First, we can omit cutw(C \ v) as it is only
needed for the map equation. Second, as mentioned above, we can compare bids without
knowing the current cluster. This allows us to use a pairwise reduction instead of one
that first waits for all elements. As we still need the node’s degree, each worker stores
the degree of the nodes that are reduced on that worker in a plain array. This is possible
because we know on which worker each node will end up.

6.4.3 Distributed Contraction and Unpacking

The contraction is performed in three steps: (a) obtain consecutive cluster IDs, (b) replace
all node IDs by the cluster IDs, and (c) combine multi-edges.

We first zip the graph and clustering DIAs and aggregate them by cluster ID. To get
consecutive cluster IDs, we replace them with the element positions. From the result,
which contains tuples (C, ⟨vi, ⟨uj⟩, ⟨wj⟩⟩), we derive two DIAs.

The first DIA is a new clustering DIA with consecutive cluster IDs. To obtain it, we
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first drop the neighborhood information. We store this intermediate DIA (C, ⟨vi⟩) for the
unpacking phase. Then, we expand it into pairs (vi, C) of node and cluster ID using a
flatmap operation and sort by node IDs.

The second DIA is the contracted graph DIA. To obtain it, we first emit a triple
(Cu, v, w) for every node v that is a neighbor of a node in Cu in a flatmap operation. The
weight w is the sum of all edge weights from nodes in Cu to v. We aggregate this DIA
by v, zip it with the new clustering DIA and replace v by v’s cluster ID Cv. We then
aggregate by Cv to obtain pairs (Cv, ⟨Cu,i, wi⟩) containing the neighboring clusters Cu,i

for every Cv. Finally, we sum up the weights wi for the same neighboring cluster for every
cluster Cv in a map operation.

To unpack the clustering calculated in a level, we zip the clustering DIA (v, Cv) with
the intermediate clustering DIA (v, ⟨vi⟩) of a cluster v and its nodes ⟨vi⟩ from the previous
contraction phase. A flatmap operation assigns the cluster ID Cv of the contracted node
to all original nodes u ∈ ⟨vi⟩, resulting in a clustering DIA (u,Cu). After sorting it by
node, it is returned to the next level.

6.5 Experiments

In this section, we present an experimental evaluation of our algorithm DSLM1. The
source code of our implementation is publicly available on GitHub2. We first describe
our experimental setup. Then, we present weak scaling experiments to evaluate the
running time, compare the quality on LFR benchmark graphs [LFR08] and evaluate the
performance on established real-world benchmark data.

All running time experiments were performed on a compute cluster. Each compute node
has two 14-core Intel Xeon E5-2660 v4 processors (Broadwell) with a default frequency of
2 GHz, 128 GiB RAM and 480 GiB SSD. They are connected by an InfiniBand 4X FDR
Interconnect. We use the TCP back-end of Thrill due to problems with the combination
of multithreading and OpenMPI. We use Thrill’s default parameters, except for the block
size, which determines the size of data packages sent between the hosts. Preliminary
experiments found that a block size of 128 KiB instead of the default 2 MiB yields the
best results.

For our algorithms, we use four sub-rounds as suggested in a preliminary study [Zei17].
Using fewer results in problems with the convergence. Using more does not significantly
improve quality but increases running time. In each local moving phase, we perform
at most eight rounds. All experiments were performed with 16 threads per host. More
threads do not improve the running times much further. Preliminary experiments indicate
that the performance is RAM bound.

Apart from DSLM-Mod and DSLM-Map that optimize modularity and map equation,
we also evaluate a variant DSLM-Mod w/o Cont. that stops after the first local moving

1This section only covers parts of our experiments. Under https://github.com/kit-algo/
distributed_clustering_thrill_evaluation you can find additional analyses, links to our raw
data and information on how to explore our data on your own.

2https://github.com/kit-algo/distributed_clustering_thrill
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6 Distributed Graph Clustering using Modularity and Map Equation

phase. This significantly decreases the running time and surprisingly also improves the
quality on synthetic instances. We evaluate this behavior in more detail in Section 6.5.2.

For modularity, we compare against our own implementation of the sequential Louvain
algorithm [Blo+08] and the shared-memory parallel PLM [SM16]. For map equation,
we compare against the sequential Infomap [RAB09], the shared-memory parallel Re-
laxMap [Bae+17] and the distributed GossipMap [BH15] implementations.

In a preprocessing step, we remove degree zero nodes, make the ID space consecutive
and randomize the node order. This ensures that our algorithms are independent of input
order and improves load balancing.

All experiments were repeated 10 times with different random seeds. We report averaged
results and standard deviation where possible as error bars.

To compare clusterings, either with ground truth communities or with a clustering
calculated using a different algorithm, we use the adjusted rand index (ARI) [HA85], see
Section 2.3.2 for an introduction.

During the experiments, the meltdown and spectre vulnerabilities became public and
performance impacting patches were applied to the machines. Rerunning some experiments
showed a slowdown of up to 1.6 for runs with 32 hosts but no significant slowdown for runs
with a single host. We did not have the resources to rerun all experiments. Also, we expect
the performance of the machines to change further in the future. Patches with less impact
(Retpoline) are available but have not been rolled out yet. More vulnerabilities have been
discovered in the meantime and it is unclear if fixes for them will have further performance
implications3. At the point of initial patch distribution, most distributed algorithm runs
were already done. About half of the GossipMap runs on the real world graphs were
performed afterwards and are excluded from the running time reports. All runs for
non-distributed algorithms were performed with patches applied, as their performance
should not have been affected significantly.

Synthetic Instance Generation. Our synthetic test data is generated using the estab-
lished LFR benchmark generation scheme [LFR08] that we have described in Section 2.1.1.
To generate graphs of up to 512 million nodes and 67.6 billion (undirected) edges in a
reasonable time, we use the external memory LFR generator implementation [Ham+18b]
described in Chapter 3.

We set a minimum degree of 50 and a maximum degree of 10 000 with a power law
exponent of 2. This leads to an average degree of approximately 264. For the communities,
we set 50 as minimum and 12 000 as maximum size with a power law exponent of 1.
This corresponds to the const parameter set in Section 3.10. As explained there, these
settings are inspired by the degree distribution of the Facebook network in May 2011 with
721 million active users [Uga+11]. Unless otherwise noted, we set the mixing parameter µ
to 0.4. This means that in contrast to previous experiments on the behavior of clustering
algorithms on larger LFR benchmark instances [Emm+16], our cluster sizes are not scaled
as we increase the graph size and the diameter of the clusters remains small. This avoids
the field of view limit experienced in previous work [Emm+16].

3https://securityaffairs.co/wordpress/72158/hacking/spectre-ng-vulnerabilities.html
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Figure 6.2: Weak scaling: running time of our distributed algorithms and ARI with ground
truth. The DSLM-Mod w/o Cont. ARI line is hidden by the DSLM-Map line.

6.5.1 Weak Scaling

For the weak scaling experiments, we use LFR graphs with 16, 32, 64, 128, 256 and 512
million nodes. We cluster them on 1, 2, 4, 8, 16, and 32 hosts respectively. The left part
of Figure 6.2 shows the running time of our algorithms. Our algorithms utilize almost
the entire available RAM. GossipMap is less memory-efficient and was unable to cluster
the graphs in these configurations and crashed.

With a linear time algorithm and perfect scaling, we would expect that the running
time remains constant as we increase graph size and the number of nodes. For the variant
of DSLM-Mod w/o Cont., the running time actually does not increase much. The running
time of the full DSLM-Mod and DSLM-Map algorithms increases approximately linearly
though as the number of hosts is scaled exponentially. The reason for this is that LFR
graphs get very dense during contraction and thus in particular larger graphs still have a
significant amount of edges after the contraction. Also, DSLM-Map is approximately a
factor of two slower than DSLM-Mod. This is expected as the optimizations described at
the end of Section 6.4.2 are not applicable to DSLM-Map.

6.5.2 Quality

First, we evaluate the quality of the clusterings obtained in the weak scaling experiment.
The right part of Figure 6.2 depicts the similarities of the clusterings found by our
algorithms and the ground truth. From the plot, we observe that DSLM-Map finds a
clustering very close to the ground truth. DSLM-Mod w/o Cont. achieves similar results.
Unfortunately, DSLM-Mod fails to find a clustering similar to the ground truth on the
larger instances. This shows that after the contraction, clusters are merged that should
not be merged. To verify if the worse results of DSLM-Mod are due to the resolution
limit, we started a sequential Louvain algorithm on a graph where we contracted the
ground truth. This algorithm indeed merges clusters, showing that the resolution limit
is relevant here. However, the thereby detected clusters are much more similar to the
ground truth than those detected by DSLM-Mod and even the ground truth alone has
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Figure 6.3: Adjusted rand index with ground truth for µ ∈ [0.1, 0.9].

higher modularity scores than those found by DSLM-Mod.
We also use smaller LFR graphs with 1M nodes and varying mixing parameter to

compare the quality of the communities found by all compared algorithms. Figure 6.3
shows the adjusted rand index of the detected clusterings with the ground truth. DSLM-
Mod w/o Cont. and DSLM-Map outperform all other algorithms by a significant margin.
On average, DSLM-Mod still outperforms the other modularity-optimizing algorithms.
For all values of µ, the ground truth has a higher modularity score than the clustering
found by the modularity-optimizing algorithms. Merging clusters of the ground truth
again improves the modularity score but leads to clusterings that still have an ARI of
above 0.99 for µ < 0.9. With the algorithms optimizing map equation, the situation is
similar. For µ < 0.8, the ground truth, which DSLM-Map consistently finds, has a better
map equation score than the clusterings found by all other algorithms. For µ ≥ 0.8, a
singleton clustering yields a better map equation score than the ground truth clustering.
GossipMap finds neither good map equation scores nor the ground truth for µ > 0.4.

Overall, for these LFR benchmark graphs, DSLM seems to be superior to sequential
local moving. Examining sequential local moving algorithms, we noticed that high-degree
nodes attract many nodes in the first local moving round. After a few nodes join their
cluster, many others follow. In contrast to that, with DLSM, 25% of the nodes can join
the cluster of another node before any cluster sizes come into play. Apparently, this avoids
such accumulation effects.

6.5.3 Real-World Graphs

To assess whether our results on LFR benchmark graphs are also true for real-world
graphs, we performed experiments on a set of different real-world graphs. From the
Stanford Large Network Dataset Collection [LK14], we include three social networks
(com-LiveJournal, com-Orkut and com-Friendster), see Section 2.2.2 for an introduction.
From the 10th DIMACS Implementation challenge [Bad+14], we include two web graphs
where nodes represent URLs and edges links between them (uk-2002 and uk-2007-05, see
also Section 2.2.1).
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Table 6.1: Average running time in seconds of the algorithms on the real-world graphs.
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LiveJournal 4M 34M 8 99 25 31 14 1329 163 372 49
Orkut 3M 117M 8 170 53 47 34 2405 415 700 84
uk-2002 18M 261M 8 572 142 46 22 6656 240 682 52
Friendster 66M 1806M 16 6002 1755 1047 742 oom oom 13743 1161
uk-2007-05 105M 3302M 16 7993 2520 151 106 oom oom 4211 214

We clustered these graphs both with the sequential baseline algorithms and our dis-
tributed algorithms. Table 6.1 depicts the sizes of the graphs, the number of hosts
we used for the distributed algorithms and the running times in seconds. RelaxMap
and GossipMap use the directed version of the map equation that includes a PageRank
approximation as preprocessing step. To allow for a fair comparison, we only report the
running time of the actual clustering step after this preprocessing. As three GossipMap
runs on uk-2007-05 crashed, there are less samples. Unfortunately, both the original
Infomap implementation and RelaxMap were not able to cluster all instances. On the
two largest graphs, 128 GB of RAM were not enough memory (oom).

With 8 or 16 hosts, our distributed algorithms are almost always faster than the
sequential and shared-memory parallel algorithms. Note that due to the randomized node
order, PLM is slower in our experiments than reported in [SM16]. DSLM-Map with 8
hosts is more than a factor of 5, for uk-2002 even a factor of 20 faster than RelaxMap and
also a factor of 10 faster than GossipMap. DSLM-Mod is faster than DSLM-Map, but
the difference is less pronounced than in the weak scaling experiments. This shows the
advantage of our algorithmic scheme in combination with the efficient Thrill framework.

Table 6.2 shows the average modularity and map equation scores obtained by the
algorithms. We observe that PLM on average finds the best modularity scores with a
minor exception on uk-2002 where Louvain finds better values. DSLM-Mod performs
slightly worse, DSLM-Mod w/o Cont. significantly worse. This shows that DSLM-Mod
w/o Cont., which performed really well on the LFR benchmark graphs, is unsuited for
real-world graphs.

The best map equation scores are found by the Infomap algorithm where it finished the
computation. Since RelaxMap and GossipMap use the directed map equation, we also
include the directed Infomap algorithm to evaluate if using the directed map equations
leads to different results. Surprisingly, in some cases Infomap optimizing the directed
map equation finds better clusterings with respect to the undirected map equation than
the undirected Infomap, though the differences are very small. On the two smallest
graphs, RelaxMap finds better clusterings than the distributed algorithms. On uk-2002,
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Table 6.2: Average modularity/undirected map equation scores obtained by the respective
algorithms.
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LiveJournal 0.752 0.752 0.749 0.591 9.899 9.900 9.943 9.963 9.981
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Table 6.3: Average similarities in terms of ARI with best clustering found according to
the respective quality score. Underlined entries indicate the algorithm which
found the clustering with the best score.
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LiveJournal 0.571 0.639 0.600 0.179 0.976 0.973 0.376 0.784 0.769
Orkut 0.632 0.625 0.659 0.220 0.919 0.925 0.807 0.491 0.819
uk-2002 0.730 0.724 0.674 0.047 0.986 0.985 0.928 0.698 0.970
Friendster 0.640 0.623 0.569 0.361 oom oom oom 0.013 0.748
uk-2007-05 0.873 0.877 0.816 0.279 oom oom oom 0.132 0.986

RelaxMap is outperformed by DSLM-Map. DSLM-Map finds better clusterings than
GossipMap on all graphs except for LiveJournal, on the two largest graphs by a significant
margin. On no graph, DSLM-Map has a map equation score more than 0.1 worse than
the best algorithm. Since modularity and map equation feature counterintuitive behavior
like the resolution limit, quality scores on their own can be misleading. We therefore also
compare the obtained clusterings in terms of ARI.

Among all runs of all algorithms that optimize the same quality measure, we determine
for each graph the detected clustering with best score. For each graph and quality measure,
we use this best clustering as baseline to which we compare all other detected clusterings
that were detected optimizing the same quality measure. Table 6.3 shows the average
similarity in terms of adjusted rand index and highlights which algorithm detected the
used baseline clustering. In most cases, this is the sequential baseline.

For modularity, this is in contrast to the results from Table 6.2 where on average, PLM
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outperforms Louvain for most graphs. Only on Friendster and uk-2002, the modularity-
optimizing algorithm that found the best clustering also has the highest average quality
scores. We observe that the modularity-optimizing algorithms do not consistently find
the same clustering. Clusterings may vary vastly depending on the random seed. Further,
on social networks the adjusted rand indices are smaller than on web graphs. This is
probably due to web graphs having a more pronounced community structure. DSLM-Mod
produces clusterings that are less similar, but still much more similar than DSLM-Mod
w/o Cont., which produces vastly different clusterings. This confirms our observation
from Table 6.2. Omitting the contraction significantly decreases the quality of clusterings
on real world graphs.

Infomap is in general much more stable than Louvain with an adjusted rand index close
to 1. DSLM-Map produces very similar clusterings on uk-2002. On the LiveJournal and
Orkut graphs, the clusterings are slightly less similar. Quite interestingly, the parallel
RelaxMap and the distributed GossipMap algorithms produce significantly different
clusterings in particular for the two social networks. As the results of the directed
Infomap algorithm show, this is not due to optimizing the directed map equation. We
conclude that RelaxMap and GossipMap indeed fail to find similar clusterings reliably.

Comparison to Recent Approaches. In this section, we provide a short compari-
son to some approaches that were developed at the same time as or after our algo-
rithms [Ham+18a] based on data published by the respective papers.

For modularity, we compare DSLM-Mod to Vite [Gho+18b; Gho+18a]. They publish
results for three graphs we also consider – uk-2007-05, Friendster and Orkut. On similar
numbers of processors, their approach is roughly 2-3 times faster than DSLM-Mod. Their
modularity scores are better for Friendster and Orkut, but worse for uk-2007-05.

We are aware of three more recent approaches [Fun19; FA19; ZY18] that optimize the
map equation. InfoFlow [Fun19] is based on a simple agglomerative clustering scheme
were clusters are merged repeatedly. Experiments for InfoFlow were only executed on a
single desktop computer, thus no performance comparison is possible. No quality results
for any of the graphs we included were published. For the graphs where they report the
map equation score, the score for InfoFlow is frequently more than 0.3 and sometimes
more than 0.5 higher (i.e., worse) than their sequential implementation. The approach by
Zeng and Yu [ZY18] reports no map equation scores as numbers, but plots show that their
scores are slightly worse than the sequentially achieved scores. Concerning the running
time, the scalability of their approach seems good while the running time is comparable
or higher than for our approach. Faysal and Arifuzzaman [FA19] do not report results on
any of the graphs we use. They report differences in map equation score compared to
InfoMap of 0.03 up to 0.39 depending on the graph while achieving speedups of up to only
3.31 with up to 256 processors. For the Youtube social network, they report execution
times above 100 seconds even with 256 processors. We also included this network in
preliminary experiments and got running times of about 15 seconds using just two hosts,
i.e., at least five times less cores.

These results suggest that Vite [Gho+18b; Gho+18a] and the approach by Zeng and
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Yu [ZY18] are the best more recent competitors that should be compared to our approach
in future work. As both use a simple partitioning of the nodes based on node ids, an
important question is also what influence randomized node ids have on their approach.

6.6 Conclusion

We have introduced two distributed graph clustering algorithms, DSLM-Mod and DSLM-
Map, that optimize modularity and map equation, respectively. They are based on the
Thrill framework. In an extensive experimental evaluation, we have shown that on LFR
benchmark graphs, DSLM-Map achieves excellent results, even better than the sequential
Infomap algorithm. For DSLM-Mod, we also evaluate a variant without contraction
which has great performance on LFR benchmark graphs. The full DSLM-Mod algorithm
with contraction fails to recover the ground truth on LFR benchmark graphs – similar
to the sequential Louvain algorithm – but significantly outperforms the variant without
contraction on real-world graphs. On real-world graphs, both distributed algorithms find
clusterings only slightly different than the sequential algorithms. Compared to GossipMap,
the state-of-the-art distributed algorithm for optimizing map equation, DSLM-Map is up
to an order of magnitude faster while detecting clusterings that have similar or better
map equation scores and are more similar to the clustering with the best map equation
score.

In the first local moving phase, synchronous local moving seems to be superior to
sequential local moving. Further research is needed to see if this is a phenomenon
particular to the LFR graphs we studied or if synchronous local moving could be a way
to avoid local maxima when optimizing such quality functions. After the contraction,
more careful local moving strategies should be developed though to avoid the problems
we see in particular on LFR graphs. Therefore, further research on different local moving
strategies seems to be a promising direction.
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7 Structure-Preserving Sparsification
Methods for Social Networks

This chapter is based on joint work with Gerd Lindner, Henning Meyerhenke, Chris-
tian L. Staudt and Dorothea Wagner [Ham+16]. Parts of this chapter have been published
in preliminary form in [Lin+15]. Compared to the publication [Ham+16], parts of the
results not related to community detection have been removed and we extended the
discussion of sparsification with respect to community detection. Further, we added a
small proof concerning the running time of our parallel triangle listing algorithm.

Sparsification reduces the size of networks while preserving structural and statistical
properties of interest. Various sparsifying algorithms have been proposed in different
contexts. In [Lin+15; Ham+16], we contribute the first systematic conceptual and
experimental comparison of edge sparsification methods on a diverse set of network
properties. In this chapter, we focus on properties concerning communities. Our goal is to
identify methods that allow us to remove a significant amount of edges while preserving
the community structure such that community detection algorithms can still detect it.
This would allow us to make community detection algorithms more scalable by running
them on a subset of the edges. A requirement for this is of course that the sparsification
method itself is scalable, an aspect we also examine in this chapter.

Sparsification methods can be understood as methods for rating edges by importance
and then filtering globally or locally by these scores. We show that applying a local
filtering technique improves the preservation of all kinds of properties. In addition, we
propose a new sparsification method (Local Degree) which preserves edges leading to
local hub nodes. All methods are evaluated on a set of social networks from Facebook,
Google+, Twitter and LiveJournal with respect to network properties including diameter,
connected components and community structure. In order to assess the preservation
of the community structure, we also include experiments on synthetically generated
networks with ground truth communities. Experiments with our implementations of
the sparsification methods show that many network properties can be preserved down
to about 20% of the original set of edges for sparse graphs with a reasonable density.
The experimental results allow us to differentiate the behavior of different methods and
show which method is suitable with respect to which property. While our Local Degree
method is best for preserving connectivity and short distances, other newly introduced
local variants are best for preserving the community structure. While some methods
manage to keep intra-community edges in synthetic benchmark graphs, they lead to very
different communities on the social networks. There, simple random edge sampling better
preserves the community structure.
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7.1 Introduction

Most real-world complex networks, including social networks, are already sparse in the
sense that for n nodes the edge count m is asymptotically in O(n). Nonetheless, typical
densities lead to a computationally challenging number of edges. Here, we pursue the goal
of further sparsifying such networks by retaining just a fraction of edges (sometimes called
a “backbone” of the network). In an experimental evaluation, we examine how this affects
the community structure of the network as well as properties related to communities like
the average clustering coefficient or connected components.

Sparsification can be applied as an acceleration technique: By disregarding a large
fraction of edges that are unimportant for the task, running times of network analysis
algorithms like community detection algorithms can be reduced. We can also think of
sparsification as lossy compression. Large networks can be strongly reduced in size if we
are only interested in certain structural aspects that are preserved by the sparsification
method.

Other applications include information visualization: Even moderately sized networks
turn into “hairballs” when drawn with standard techniques, as the amount of edges is
visually overwhelming. In contrast, showing only a fraction of edges can reveal network
structures to the human eye if these edges are selected appropriately [NOB15].

From a network science perspective, sparsification can yield valuable insights into the
importance of relationships and the participating nodes: Given that a sparsification
method tends to preserve a certain property, the method can be used to rank or classify
edges, discriminating between essential and redundant edges.

The core idea of the research presented here is that not all edges are equally important
with respect to properties of a network: For example, a relatively small fraction of long-
range edges typically act as shortcuts and are responsible for the small-world phenomenon
in complex networks. The importance of edges can be quantified, leading to edge scores,
often also referred to as edge centrality values. In general, we subsume under these terms
any measure that quantifies the importance of an edge depending on its position within
the network structure. Sparsification can then be broken down into the stages of (i) edge
scoring and (ii) filtering the edges using a global score threshold.

Despite the similar terminology, our work is only weakly related to a line of research in
theoretical computer science where graph sparsification is understood as the reduction
of a dense graph (Θ(n2) edges) to a sparse (O(n) edges) or nearly-sparse graph while
provably preserving properties such as spectral properties (e. g. [Bat+13]). The networks
of our interest are already sparse in this sense. With the goal of reducing network data
size while keeping important properties, our research is related to a body of work that
considers sampling from networks (on which [ANK13] provides an extensive overview).
Sampling is concerned with the design of algorithms that select edges and/or nodes from
a network. Here, node and edge sampling methods must be distinguished: For node
sampling, nodes and edges from the original network are discarded, while edge sampling
preserves all nodes and reduces the number of edges only. The literature on node sampling
is extensive, while pure edge sampling and filtering techniques have not been considered
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as often. A seminal paper [LF06] concludes that node sampling techniques are preferable,
but considers few edge sampling techniques. The study presented in [Ebb+08] looks at
how well a sample of 5%-20% of the original network preserves certain properties, and is
mainly focused on node sampling through graph exploration. It concludes that random
walk-based node sampling works best on complex networks, but does so on the basis of
experiments on synthetic graphs only and compares only with very simple edge sampling
methods.

Only edge sampling techniques are directly comparable to our edge scoring and filtering
methods. In this work, we restrict ourselves to reducing the edge set, while keeping all
nodes of the original graph. Preserving the nodes allows us to infer properties of each
node of the original graph. This is important because in network analysis, the unit of
analysis is often the individual node, e. g. when a score for each user in an online social
network scenario shall be computed. With respect to the goal of accelerating the analysis,
many relevant graph algorithms scale with m so reducing m is more relevant. Also,
for community detection, with node sparsification we need a second step to infer the
communities of the excluded nodes. In contrast, edge sparsification allows us to directly
assign all nodes to communities.

Another related approach is the Multiscale Backbone [SBV09], which is applicable on
weighted graphs only and is therefore not included in our study. Instead of applying a
global edge weight cutoff for edge filtering, which hides important structures at different
scales, this approach aims at preserving them at all scales.

A recent1 study [JS16] with a design similar to ours focuses in detail on algebraic
distance for edge rating (see Section 7.3.6).

7.1.1 Contribution

We contribute the first systematic conceptual and experimental comparison of existing
and novel edge scoring and filtering methods on a diverse set of network properties.
Descriptions and literature references for the related methods which we reimplemented are
given in Section 7.2, for some of them we include descriptions of how we parallelized them.
In Section 7.2 we also introduce our Local Degree sparsification method and Edge Forest
Fire, an adaptation of the existing node sparsification technique to edges. Furthermore,
we propose a local filtering step that has been introduced by [SPR11] for one specific
sparsification technique as a generally applicable and beneficial post-processing step for
preserving the connectivity of the network and most properties we consider.

Our results illuminate which methods are suitable with respect to which properties of
a network. We show that our Local Degree method is best for preserving connectivity
and short distances which results in a good preservation of the diameter of the network.
In [Ham+16], we show that it also preserves some centrality measures and the behavior
of epidemic spreading. Depending on the network, our Local Degree method can also
preserve clustering coefficients. Concerning the preservation of the community structure,
we show that some of the newly introduced variants with local filtering are best for

1“Recent” as of the publication of our papers [Lin+15; Ham+16].
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preserving the community structure while the variants without local filtering do not
preserve the community structure in our experiments.

Furthermore, we have published efficient parallelized implementations and a framework
for such methods as part of the NetworKit open-source tool suite [SSM16]. While our
study covers various approaches from the literature, it is by no means exhaustive due to
the vast amount of potential sparsification techniques. With future methods in mind, we
hope to contribute a framework for their implementation and evaluation.

7.2 Edge Sparsification

All edge sparsification methods we consider can be split up into two stages: (i) the
calculation of a score for each of the edges in the input graph (where the score is high if
the edge is important) and (ii) subsequent filtering according to such an edge score. In
this section we define this framework of scoring and filtering edges more formally. Using
this framework we introduce Local Filtering as an optionally applicable step. We conclude
this section by addressing some limits of edge sparsification.

Formally, we define an edge (centrality) score as follows:

Definition 7.1 (Edge Centrality Scores). Given a simple, undirected graph G = (V,E), an
edge (centrality) score is a function cG : E → A which assigns to each edge e = {u, v} ∈ E
an attribute value x ∈ A of (at least) ordinal scale of measurement. The assigned value
depends on the position of the edge within the network G as defined by a set of edges
E′ ⊆ E. In the following we call such a value an edge score, write c(e) where the graph is
implied from the context, and assume that A = R+.

7.2.1 Global and Local Filtering

The simplest way to filter by such an edge score is to apply a global threshold and keep all
edges whose score is equal to or above the threshold. For the comparison of the different
sparsification methods we need to be able to filter the network such that all methods
keep an equal percentage of the edges of the network. As the methods produce scores
with different ranges of values and different distributions of these values we cannot simply
define a threshold that is the same for all methods. Also using a different threshold per
method does not solve the problem as it is possible that many edges have the same score
and thus there is no threshold that leads to the desired ratio of kept edges. Therefore, we
define global filtering not as applying a given threshold but as filtering the edges such
that only a given ratio of the edges remains:

Definition 7.2 (Global Filtering). Given a graph G = (V,E) and an edge score c : E →
R+, a global filtering step by ratio r ∈ [0, 1] reduces the edges in the sparsified graph
G′ = (V,E′) to ⌊r · |E|⌋ edges with the highest values of c(e), i. e. E′ ⊆ E, |E′| = ⌊r · |E|⌋
and c(e′) ≥ c(e) ∀e′ ∈ E′ ∀e ∈ E \ E′.

For an implementation of global filtering, it is enough to sort all edges by the edge
score in descending order and keep the first ⌊r · |E|⌋ edges. In order to make sure that
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(a) Quadrilateral Simmelian Backbone (b) With UMST (c) With local filtering

Figure 7.1: Drawing of the Jazz musicians collaboration network according to a variant
of the Quadrilateral Simmelian Backbone with 15% of the edges (in black)

in the case of edges with equal score a given order in the graph does not influence our
results, we sort edges that have an equal score in a random order by using a random edge
score as tiebreaker in comparisons.

A problem with global filtering as described above is that methods that are based
on local measures like the number of quadrangles an edge is part of tend to assign
different scores in different parts of the network as e. g. some parts of the network are
much denser than other parts. Sparsification techniques like (Quadrilateral) Simmelian
Backbones [NOB14; NOB15] use different kinds of normalizations of quadrangles (see
below for details) in order to compensate for such differences. Unfortunately, these
normalizations still do not fully compensate for these differences. In Figure 7.1a we
visualize the Jazz network [GD03] with 15% kept edges as an example. As one can see in
the figure, many nodes are isolated or split into small components, the original structure
of the network (shown with gray edges) is not preserved.

Simmelian Backbones have been introduced for visualizing networks that are otherwise
hard to layout. For layouts, it is important to keep the connectivity of the network as
otherwise nodes cannot be positioned relative to their neighbors. In order to preserve
the connectivity, [NOB15] keep the union of all maximum spanning trees (UMST) in
addition to the original edges. In Figure 7.1b we show the result when we keep the UMST.
While the network is obviously connected, much of the local structure is lost in the areas
between the dense parts – which is not surprising as we only added the union of some
trees.

[SPR11] face a similar problem as with their sparsification technique based on Jaccard
Similarity (see below for details) they want to preserve the community structure. They
propose a different solution: Each node u keeps the top ⌊deg(u)α⌋ edges incident to u,
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ranked according to their similarity where deg(u) is the degree of u and α ∈ [0, 1]. An
edge is kept when it is ranked high enough by one of the nodes that are incident to it.
This procedure ensures that at least one incident edge of each node is retained and thus
prevents completely isolated nodes.

In order to define this filtering step formally, we first introduce a formal definition of
the rank of node v in the neighborhood of node u:

Definition 7.3 (Neighborhood Rank). Given a graph G = (V,E) and an edge score
c : E → R+, the neighborhood-rank rc(u, v) is the position of v in the sorted list of
neighbors of u, i. e. rc(u, v) := |{x ∈ N(u) : c({u, x}) < c({u, v})}|+ 1.

Note that when two edges that are incident to u have the same edge score they also
have the same rank. Again, we want to be able to keep an exact ratio of edges. In order to
achieve this we transform this local rank into a score that can be used for global filtering.

Definition 7.4 (Local Filtering Score). Given a graph G = (V,E) and an edge score
c : E → R+, the directed local filtering score lc : V × V → [0, 1]

lc(u, v) :=

{︄
1, if deg(u) = 1

1− log(rc(u, v))/ log(deg(u)), otherwise

Then lc({u, v}) := max(l(u, v), l(v, u)) is the local filtering score that belongs to c.

Lemma 7.5. Filtering locally according to an edge score c with parameter α is equivalent
to keeping all edges with lc({u, v}) ≥ 1− α.

Proof. An edge {u, v} is kept by local filtering iff rc(u, v) ≤ deg(u)α or rc(v, u) ≤ deg(v)α,
as the top deg(u)α (or deg(v)α) edges are kept. If deg(u) = 1, the only edge that is
incident to u is always kept as 1α = 1. For deg(u) > 1, it holds that

rc(u, v) ≤ deg(u)α

⇔ log(rc(u, v)) ≤ log(deg(u)) · α

⇔ log(rc(u, v))

log(deg(u))
≤ α

⇔ 1− log(rc(u, v))

log(deg(u))⏞ ⏟⏟ ⏞
=lc(u,v)

≥ 1− α

This shows the claim, as lc({u, v}) is exactly defined as the maximum of lc(u, v) and
lc(v, u), which means that global filtering by lc({u, v}) will keep the edge iff one of the
directions would have been kept by local filtering.

In Algorithm 7.1 we show the parallel algorithm that we use to transform edge scores
for local filtering. We iterate over all nodes in parallel, sort the neighbors, determine the
rank for each neighbor and assign its score. As the two scores of an edge are possibly
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Input: Graph G = (V,E), edge score s : E → R
Output: Edge score l : E → [0, 1]

1 l(u, v)← 0 ∀{u, v} ∈ E;
2 foreach u ∈ V do in parallel
3 r ← 0; // rank
4 s← 1; // number of equal scores in a row
5 o← −∞; // old score
6 foreach v ∈ N(u) sorted by s(u, v) in descending order do
7 if s(u, v) ̸= o then
8 r ← r + s;
9 s← 1;

10 else
11 s← s+ 1;

12 if deg(u) > 1 then
13 e← 1− log(r)/ log(deg(u));
14 else
15 e← 1;

16 l(u, v)← atomic max of l(u, v) and e;

Algorithm 7.1: Transformation of global edge scores into edge scores that are
equivalent to local filtering

calculated at the same time, we use an atomic maximum for assigning the final score.
The total time complexity is O(m · log(dmax)), where dmax denotes the maximum degree
in G, as every list of neighbors needs to be sorted.

In Figure 7.1c we show the Jazz network, sparsified again to 15% of the edges with the
Quadrilateral Simmelian Backbone method using local filtering. With the local filtering
step, the network is almost fully connected and local structures are maintained, too.
Additionally, as already Satuluri et al. observed when they applied local filtering to their
Jaccard Similarity, the edges are much more evenly distributed among the different parts
of the network. This means that we can still see the local structure of the network in
many parts of the network and do not only maintain very dense but disconnected parts.
An explanation for this is that a node u has at least degree deg(u)α in the sparsified
graphs which means high-degree nodes loose more incident edges than low-degree nodes
but high-degree nodes still keep more neighbors than low-degree nodes. Therefore, some
properties are kept but still the differences are smoothened in order to ensure that we
retain structure in every part of the network. In our evaluation we confirm that many
properties of the considered networks are indeed better preserved when the local filtering
step is added. Furthermore, we show that the local filtering step leads to an almost perfect
preservation of the connected components on all considered networks even though this is
not inherent in the method. This suggests that local filtering is superior to preserving a
UMST as not only connectivity but also local structures are preserved.
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As one of our contributions we therefore propose to apply this local filtering step to
all sparsification methods and not only to Jaccard Similarity, where the local filtering
step has been introduced. In our evaluation we do not further consider the alternative of
preserving a UMST as preliminary experiments have shown that adding a UMST has no
significant advantage over the local filtering step in terms of the preservation of network
properties. With local filtering, our sparsification pipeline consists of the following stages:
(i) calculation of an edge score, (ii) conversion of the edge score into a local edge score and
(iii) global filtering. In the evaluation, we prefix the abbreviations of the local variants
with “L”.

7.2.2 Limits of Edge Sparsification

While we show in our work that edge sparsification can be successfully applied to many
social networks, we also want to mention the limits of these sparsification approaches.

Let us consider a network that has two times as many edges as nodes, i. e. the average
degree is four. If we remove 50% of the edges and the network is still connected, we
have a tree with one additional edge. This means that almost all triangles, which are
characteristic for a social network, are destroyed. Also, a possibly existing community
structure that is defined by being particularly dense compared to the rest of the network
cannot be maintained in a tree as every community is either a tree or disconnected and it
is therefore not possible to discriminate between different connected communities based
on density. Therefore, one cannot expect to maintain the properties of the network when
the number of edges is equal to (or even less than) the number of nodes.

Some of the sparsification methods we present rely on particular structures that are
present in many real-world social networks. For our novel method, local degree, we exploit
the presence of meaningful hubs that have a relatively high degree. Other methods assume
the presence of triangles or quadrangles that describe the community structure of the
network. While it is possible that networks do not have these structures, these structures
are fundamental characteristics of social networks. Therefore, in the context of social
networks relying on these structures is no limitation.

In terms of the memory usage some of the sparsification methods we present need
additional memory, but at maximum a separate copy of the graph including edge ids
and edge scores. Some of them also use additional memory per thread in the parallel
computation, but then only one bit per node, the neighborhood of one node or a queue of
in the worst case all nodes. Therefore, memory usage can be a limitation if the considered
graph is almost as large as the available memory – but then also the memory needed
for storing the edge scores itself might not be available. It is possible to adapt some of
these algorithms to use only a limited amount of internal memory and external memory
like a HDD or an SSD instead. For example for triangle counting, a building block of
some of the sparsification methods we consider, efficient external memory algorithms exist
[HTC14]. Developing sparsification algorithms for external memory or also distributed
settings is therefore an interesting topic for future work in order to further push the limits
of sparsification in terms of computational resources and scale them to graphs that do
not fit into the RAM of a single computer anymore.
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Table 7.1: Summary of the methods and the novel local variants we introduce
Method Novel Novel local variant

Random Edge ◦ •
Jaccard Similarity ◦ ◦
Simmelian Backbones ◦ •
Edge Forest Fire • •
Algebraic Distance ◦ •
Local Degree • ◦

7.3 Sparsification Methods

In this section we describe the sparsification methods that we use in this work. We
describe the existing sparsification methods random edge filtering, Jaccard Similarity,
Simmelian Backbones and Algebraic Distances. Further we introduce Edge Forest Fire
and Local Degree as novel sparsification methods. For all methods where this had not
been proposed before we propose to use local filtering as post-processing step. We also
present parallel implementations for all methods, though some of them are only partial
parallelizations. As most parallelizations are straightforward, we cannot exclude that
they have already been used in other implementations. The details are described in the
following sections while Table 7.1 gives an overview of all considered methods.

7.3.1 Random Edge (RE)

When studying different sparsification algorithms, the performance of random edge
selection is an important baseline. As we shall see, it also performs surprisingly well. The
method selects edges uniformly at random from the original set such that the desired
sparsification ratio is obtained. This is equivalent to scoring edges with values chosen
uniformly at random. Naturally, this needs time linear in the number of edges and
calculating the edge scores can be trivially parallelized. Further, if we know the ratio of
edges to keep, random edge selection can also be performed in a streaming fashion while
reading a graph. Thus, random edge sampling already scales to graphs that do not fit
into the RAM of a single computer anymore.

7.3.2 Triangles

Especially in social networks, triangles play an important role because the presence of a
triangle indicates a certain quality of the relationship between the three involved nodes.
The sociological theory of Simmel [SW50] states that “triads (sets of three actors) are
fundamentally different from dyads (sets of two actors) by way of introducing mediating
effects.” In a friendship network, it is likely for two actors with a high number of common
friends to be friends as well. Filtering globally by triangle counts tends to destroy local
structures, but several of the following sparsification methods are based on the triangles
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edge score T (u, v) that denotes for an edge {u, v} the number of triangles it belongs to.
The time needed for counting the number of all triangles is O(m · a) [OB14], where a is
the graph’s arboricity [CN85].

Parallelization. We use a novel parallelized variant of the algorithm introduced by
[OB14]. This variant is different from the parallel variant introduced in [ST15] as they
need additional overhead in the form of sorting operations or atomic operations for storing
local counters which we avoid. Algorithm 7.2 contains the pseudo-code for our algorithm.
The algorithm needs a node ordering. While N(u) denotes all neighbors of u, N+(u)
denotes the neighbors of the node that are higher in the ordering. With a smallest-first
ordering that is obtained by iteratively removing nodes of minimum degree, |N+(u)| is
bounded by 2a − 1 [ZN99], which directly gives the running time of O(m · a). Simply
ordering the nodes by degree is actually faster in practice though as noticed by [OB14].
Therefore, we use such a simple degree ordering. For this, we can still show the running
time of O(m · a). Lin, Soulignac and Szwarcfiter show [LSS12, Corollary 5] that

∑︂
v∈V

∑︂
w∈N(v)

h(w) ≤ 8 · a ·m

where h(w) is defined as the number of neighbors of w with a degree equal to or higher
than that of w. Thus, |N+(u)| ≤ h(u) and the total running time is O(m · a) as claimed
even for a simple degree ordering.

In contrast to [OB14] we count each triangle three times which does not increase the
asymptotic running time. In each iteration step of the outer loop we encounter each
triangle u is part of exactly once. Therefore, it is enough to count the triangle for the
edges that are incident to u and where u has the higher node id. This avoids multiple
accesses to the same edge by several threads, we therefore do not need any locks or atomic
operations. In the same way we could also update triangle counters per node e. g. for
computing clustering coefficients without additional work and without using locks or
atomic operations. Note that node markers are thread-local.

1 foreach u ∈ V do in parallel
2 Mark all v ∈ N(u);
3 foreach v ∈ N(u) do
4 foreach w ∈ N+(u) do
5 if w is marked then
6 Count triangle u, v, w;

7 Un-mark all v ∈ N(u);
Algorithm 7.2: Parallel triangle counting

132



7.3 Sparsification Methods

7.3.3 (Local) Jaccard Similarity (JS, LJS)

[SPR11] propose a local graph sparsification method with the intention of speedup and
quality improvement of community detection. They suggest reducing the edge set to
10-20% of the original graph and use the Jaccard measure to quantify the overlap between
node neighborhoods N(u), N(v) (i.e. the sets of nodes adjacent to u or v) and thereby
the (Jaccard) similarity of two given nodes:

JS(u, v) =
|N(u) ∩N(v)|
|N(u) ∪N(v)| =

T (u, v)

deg(u) + deg(v)− T (u, v)
,

The time needed for calculating the Jaccard Similarity is the time for counting all
triangles. The authors also propose a fast approximation which runs in time O(m).

For this Jaccard Similarity, [SPR11] propose the local filtering technique that we have
already explained above and that we denote by LJS. The time needed for calculating
this local edge score is the time for calculating the Jaccard Similarity and for sorting the
neighbors of all nodes, which can be done in O(m log(dmax)).

This sparsification technique has also been adapted for accelerating collective classifica-
tion, i. e. the task of inferring the labels of all nodes in a graph given a subset of labeled
nodes [SRD13].

Parallelization. With our parallel triangle counting variant and pre-calculated node
degrees, the edge scores for Jaccard Similarity can be calculated in parallel. We are not
aware of any prior work that calculated the Jaccard Similarity in parallel. As shown
in Algorithm 7.1 also the local filtering can be parallelized. As we will show in our
experimental evaluation the achieved running times with our parallel implementation are
very good and not far from random edge filtering.

7.3.4 Simmelian Backbones (TS, QLS)

The Simmelian Backbones introduced by [Nic+13] aim at discriminating between edges
that are placed within dense subgraphs and those between them. The original goal of these
methods was to produce readable layouts of networks. To achieve a “local assessment of the
level of actor neighborhoods” [Nic+13], the authors propose the following approach, which
we adapt to our concept of edge scores. Given an edge scoring method S and a node u,
they introduce the notion of a rank-ordered neighborhood as the list of adjacent neighbors
sorted by S(u, ·) in descending order. The original (Triadic) Simmelian Backbone uses
triangle counts T for S. The newer Quadrilateral Simmelian Backbone by [NOB15] uses
quadrilateral edge embeddedness, which they define as

Q(u, v) =
q(u, v)√︁
q(u) · q(v)

with q(u, v) being the number of quadrangles containing edge {u, v} and q(u) being the
sum of q(u, v) over all neighbors v of u. They argue that this modified version performs
even better at discriminating edges within and between dense subgraphs.
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On top of the rank-ordered neighborhood graph that is induced by the ranked neighbor-
hoods of all nodes, Nick et al. [Nic+13] introduce two filtering techniques, a parametric
one and a non-parametric one. Like [NOB15], we use only the non-parametric variant.
By TS, we denote the Triadic Simmelian Backbone and by QLS the Quadrilateral Sim-
melian Backbone. The non-parametric variant uses the Jaccard measure similar to Local
Similarity but, instead of considering the whole neighborhood, they use the maximum of
the Jaccard measure of the top-k neighborhoods for all possible values of k. While the
time needed for quadrangle counting is equal to the time for triangle counting [CN85], the
overlap and Jaccard measure calculation of prefixes needs time O(m · dmax) as it needs to
be separately calculated for all edges.

Parallelization. Our implementation of triangular Simmelian Backbones is fully
parallelized, we use our parallel triangle counting implementation, then we sort all
neighborhoods in parallel. Using this information we can compute the triangular Simmelian
Backbone scores in parallel for all edges. For the quadrilateral Simmelian Backbones, the
quadrangle counting step is sequential as we are not aware of an efficient, parallelized
quadrangle counting algorithm on edge level but the remaining part of the algorithm is
parallelized as in the case of triangular Simmelian Backbones.

7.3.5 Edge Forest Fire (EFF)

The original Forest Fire node sampling algorithm [LF06] is based on the idea that nodes
are “burned” during a fire that starts at a random node and may spread to the neighbors
of a burning node. Contrary to random walks a fire can spread to more than one neighbor
but already burned neighbors cannot be burned again by the same fire. Each fire thus
corresponds to a tree. The basic intuition is that nodes and edges that get visited by
more of these walks than others are more important. In order to filter edges instead of
nodes, we introduce a variant of the algorithm in which we use the frequency of visits of
each edge as a proxy for its relevance.

Algorithm 7.3 shows the details of the algorithm we use to compute the edge score.
The fire starts at a random node which is added to a queue. The fire always continues at
the next extracted node v from the queue and spreads to neighboring unburned nodes
until either all neighbors have been burned or a random probability we draw is above
a given burning probability threshold p. The number of burned neighbors thus follows
a geometric distribution with mean p/(1− p). When the queue is empty, we reset the
burned markers and start a new fire at a random node by adding it to the queue.

As the total length of all walks is hard to estimate in advance, we cannot give a tight
bound for the running time.

Parallelization. We use a very simple parallelization for our Edge Forest Fire algorithm.
We burn several fires in parallel with separate burn markers per thread and atomic updates
of the burn frequency. In order to avoid too frequent updates we update the global counter
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Input: targetBurnRatio ∈ R, p ∈ [0, 1)
1 edgesBurned ← 0;
2 while edgesBurned < m· targetBurnRatio do
3 Add random node to queue;
4 while queue not empty do
5 v ← node from queue;
6 while true do
7 q ← random element from[0, 1);
8 if q > p or v has no un-burned neighbors then
9 break;

10 x← random un-burned neighbor of v;
11 Mark x as burned;
12 Add x to queue;
13 Increase edgesBurned;
14 Increase burn counter of {v, x};

15 Reset burned markers;
Algorithm 7.3: Edge Forest Fire

for the number of edges burned only after a fire has stopped burning before we start the
next fire.

7.3.6 Algebraic Distance (AD)

Algebraic distance [CS11] (α) is a method for quantifying the structural distance of two
nodes u and v in graphs. Its essential property is that α(u, v) decreases with the number
of paths connecting u and v as well as with decreasing lengths of those paths. Algebraic
distance therefore measures the distance of nodes by taking into account more possible
paths than e. g. shortest-path distance and with wider in scope than e. g. the Jaccard
coefficient of two nodes’ immediate neighborhood. Nodes that are connected by many
short paths have a low algebraic distance. It follows that nodes within the same dense
subgraph of the network are close in terms of α. Algebraic distance can be described in
terms of random walks on graphs and, roughly speaking, α(u, v) is low if a random walk
starting at u has a high probability of reaching v after few steps. In a straightforward
way, algebraic distance can be used to quantify the “range” of edges, with short-range
edges (low α(u, v) for an edge {u, v}) connecting nodes within the same dense subgraph,
and long-range edges (high α(u, v) for an edge {u, v}) forming bridges between separate
regions of the graph. Hence, α restricted to the set of connected node pairs is an edge
score in our terms, and can be used to filter out long- or short-range edges. We use
1− α(u, v) as edge score in order to treat short-range edges as important.

α is computed by performing iterative local updates on d-dimensional “coordinates” of
a node. The coordinates are initialized with random values. Then, in each iteration, the
coordinates are set to some weighted average of the old coordinates and the average of
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Figure 7.2: Drawing of the Jazz musicians collaboration network and the Local Degree
sparsified version containing 15% of edges. Node size proportional to degree.

the old coordinates of all neighbors. The algebraic distance is then any distance between
the two coordinate vectors, we choose the ℓ2-norm. As described in [CS11], d can be set
to a small constant (e. g. 10) and the distances stabilize after tens of iterations of O(m)
running time each. We choose 20 systems and 20 iterations.

Parallelization. Updates of node coordinates can be easily executed in parallel for all
nodes as the new values only depend on the values of the previous round.

7.3.7 Local Degree (LD)

Inspired by the notion of hub nodes, i. e. nodes with locally relatively high degree, and
that of local sparsification, we propose the following new sparsification method: For each
node v ∈ V , we include the edges to the top ⌊deg(v)α⌋ neighbors, sorted by degree in
descending order. Similar to the local filtering step we explained above we use again 1−α
for the minimum parameter α such that an edge is still contained in the sparsified graph
as edge score. The goal of this approach is to keep those edges in the sparsified graph
that lead to nodes with high degree, i.e. the hubs that are crucial for a complex network’s
topology. The edges left after filtering form what can be considered a “hub backbone” of
the network. In Figure 7.2 we visualize the Jazz network [GD03] as an example.

As only the neighbors of each node need to be sorted, this can be done in O(m log(dmax)).
Using linear-time sorting it is even possible in O(m) time. We have decided against the
linear-time variant and instead parallelized the calculation:

Parallelization. The parallelization of the Local Degree score calculation is very similar
to the parallelization for local filtering. We can handle all nodes in parallel. For each
node we can independently sort the neighbors and assign the appropriate scores. Again
we need to use atomic maximum calculation in order to make sure that parallel updates
of edge scores are handled correctly.
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7.4 Implementation

For this study, we have created efficient C++ implementations of all considered sparsifi-
cation methods, and have accelerated them using OpenMP parallelization. All methods,
with exception of the inherently sequential quadrangle counting algorithms [CN85], have
been parallelized. We have implemented the algorithms in NetworKit [SSM16], they are
available as part of NetworKit at https://networkit.github.io.

Gephi [BHJ09] is a graph visualization tool which we use not only for visualization
purposes but also for interactive exploration of sparsified graphs. To achieve said inter-
activity, we implemented a client for the Gephi Streaming Plugin in NetworKit. It is
designed to stream graph objects from and to Gephi utilizing the JSON format. Using
our implementation in NetworKit, a few lines of Python code suffice to sparsify a graph,
calculate various network properties, and export it to Gephi for drawing. The approach
of separating sparsification into edge score calculation and filtering allows for a high level
of interactivity by exporting edge scores from NetworKit to Gephi and dynamic filtering
within Gephi.

For the drawings of the Simmelian Backbones we use visone2.

7.5 Experimental Study

Our experimental study consists of two parts. In the first part (Section 7.5.2) we compare
correlations between the calculated edge scores on a set of networks. In the second part
(Section 7.5.3) we compare how similar the sparsified networks are to the original network
by comparing certain properties of the networks.

7.5.1 Setup

Our experiments have been performed on a compute server with 4 physical Intel Core i7
cores at 3.4 GHz, 8 threads, and 32 GB of memory. For this explorative study, we use the
collection of 100 Facebook social friendship networks [TMP12] introduced in Section 2.2.3.
They have between 10k and 1.6 million edges, the number of nodes and edges for each
network is shown in Figure 7.3. Unless otherwise noted, we aggregate experimental results
over this set of networks. The common origin and the high structural similarity among
the networks allows us to get meaningful aggregated values.

For the experiments on the preservation of properties we also use the Twitter and
Google+ networks [ML12] and the LiveJournal (com-lj) network from [YL12b]. All of
them are friendship networks, the Twitter and Google+ networks consist of the combined
ego networks of 973 and 132 users, respectively. In Table 7.2 we provide the number of
nodes and edges as well as diameter and clustering coefficient averaged over all Facebook
networks and the individual values for the three other networks. Furthermore, we provide
the number of edges divided by the number of nodes, which indicates how much redundancy
there is in the network. As we already mentioned in Section 7.2.2, it is not realistic to

2http://visone.info
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Figure 7.3: Number of nodes and edges of the Facebook networks

expect that we can preserve the structure of the network (apart from the connectivity) if
too few edges remain. The networks we selected have a varying degree of redundancy, but
all of them are dense enough such that even if we remove 75% of the edges more than
twice as many edges as nodes remain. The characteristics of the Facebook networks are
relatively similar. We plot the distributions of m/n, the clustering coefficient, and the
diameter in Figure 7.4a, 7.4b and 7.4c.

For the evaluation of the preservation of the community structure we also use networks
with known ground truth communities. For this purpose we use the synthetic LFR
benchmark [LFR08], see Section 2.1.1 for an introduction.

It remains an open question to what extent results can be translated to other types
of complex networks, since according to experience the performance of network analysis
algorithms depends strongly on the network structure.

7.5.2 Correlations between Edge Scores

Among our sparsification methods, some are more similar to others in the sense that they
tend to preserve similar edges. Such similarities can be clarified by studying correlations
between edge scores. We calculate edge score correlations for the set of 100 Facebook
networks as follows: For each single network, edge scores are calculated with the various
scoring methods and Spearman’s rank correlation coefficient is applied. The coefficient is
then averaged over all networks and plotted in the correlation matrix (Figure 7.5). There
is one column for each method, and the column Mod represents edge scores that are 1
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Figure 7.4: Distribution of properties of the Facebook networks. The vertical ticks at the
bottom indicate the individual data points except for the diameter, where a
bar exists for all unique values.

Table 7.2: Number of nodes n, the number of edges m, m/n, the diameter D and the
average local clustering coefficient Cc of the used social networks (average
values for the Facebook networks)

n m m/n D Cc
Network

Facebook 12 083 469 845 38.4 7.8 0.25
com-lj 3 997 962 34 681 189 8.7 21 0.35
gplus 107 614 12 238 285 113.7 6 0.52
twitter 81 306 1 342 296 16.5 7 0.60

for intra-community edges and 0 for inter-community edges after running a modularity-
maximizing Louvain community detection algorithm [Blo+08], see Section 1.4.1 for an
introduction to the Louvain algorithm. Positive correlations with these scores indicate
that the respective rating method assigns high scores to edges within modularity-based
communities. The column Tri simply represents the number of triangles an edge is part
of. As some of the methods are normalizations of this score, this shows how similar the
ranking still is to the original score.

Interpretation of the results is challenging: The correlations we observe reflect intrinsic,
mathematical similarities of the rating algorithms on the one hand, but on the other
hand they are also caused by the structure of this specific set of social networks (e.g.,
it may be a characteristic of a given network that edges leading to high-degree nodes
are also embedded in many triangles). Nonetheless, we note the following observations:
There are several groups of methods. Simmelian Backbones, Jaccard Similarity and
Triangles are highly positively correlated which is not unexpected as they are all based on
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Figure 7.5: Edge score correlations (Spearman’s ρ, average over 100 Facebook networks)
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triangles or quadrangles and are intended to preserve dense subgraphs. Algebraic distance
is still positively correlated with these methods but not as strongly even though they
are also intended to prefer dense subgraphs. An explanation for this weaker correlation
is that while both prefer dense regions, the order of the individual edges is different.
All of the previously mentioned methods are also correlated with the modularity value,
algebraic distance with local filtering has the highest score among all of these methods.
Our experiments on the preservation of community structure (Section 7.5.3) confirm this
relationship. The correlation of the modularity value and these methods are similar to
the correlation between algebraic distance and the rest of the methods which shows again
that the lower correlation values are probably due to different orderings of the individual
edges.

Our new method Local Degree is slightly negatively correlated with all these methods
but still positively correlated with the Triangles. It is also slightly negatively correlated
with the modularity value, this is due to the method’s preference of inter-cluster edges
which is also confirmed by our experiments below. The newly introduced Edge Forest Fire
is also negatively correlated with Local Degree and even more negatively with Triangles.
As expected, random edge filtering is not correlated with any other method.

It is interesting to see that each method is also relatively strongly correlated with its
local variant, apart from random edge filtering (we use different random values as basis
of the local filtering process). Even the Edge Forest Fire method, which should also be
relatively random, has a positive correlation with its local variant. This shows that it
prefers a certain kind of edge and that this preference is kept when applying the local
filtering.

Among the variants of Simmelian Backbones and Jaccard Similarity also the local
variants are more correlated to other local variants than to other non-local variants
and also not as strongly correlated to triangles. This shows that the local filtering
indeed adds another level of normalization. Also, Jaccard Similarity seems to be more
correlated to Quadrilateral Simmelian Backbones than to the variant based on triangles
even though Jaccard Similarity is based on triangles itself. This is also interesting to
see, as Quadrilateral Simmelian Backbones are computationally more expensive than the
Jaccard Similarity.

7.5.3 Similarity in Network Properties

Quantifying the similarity between a network and its sparsified version is an intricate
problem. Ideally, a similarity measure should meet the following requirements:

1. Ignoring trivial differences: Consider, for example, the degree distribution: One
cannot expect the distribution to remain identical after edges get removed during
sparsification. It is clear, however, that the general shape of the distribution should
remain “similar” and that high-degree nodes should remain high-degree nodes in
order to consider the degrees as preserved.

2. Intuitive and Normalized : Similarity values from a closed domain like [0, 1] allow for
aggregation and comparability. A similarity value of 1 indicates that the property
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under consideration is fully preserved, whereas a value of 0 indicates that similarity
is entirely lost. In some cases we also used relative changes in the interval [−1, 1]
where 0 means unchanged as they provide a more detailed view at the changes.

3. Revealing Method Behavior : A good similarity measure will clearly expose different
behavior between sparsification methods.

4. Efficiently computable.

Following these requirements, we select measures that quantify relative changes for
global properties like diameter, size of the largest connected component and quality of a
community structure. Further, we analyse the deviation of the average local clustering
coefficient from the original value. In our papers [Lin+15; Ham+16], we further consider
the ranking of nodes with respect to node centrality scores. As it is not obvious how
differences in the ranking of nodes should affect the community structure, we exclude
them here.

In the following plots, the measures are shown on the y-axis for a given ratio of kept
edges (m′/m) on the x-axis (e.g., a ratio of 0.2 means that 20% of edges are still present).
For each value there are two rows of plots. The first contains averages over the 100
Facebook networks with error bars that indicate the standard deviation. The second row
contains the values at 20%, 50% and 80% remaining edges of the three other networks.
In each row, we show two plots: the left plot with the non-local methods and the right
plot with the methods that use local filtering.

Connected Components. All nodes in a connected component are reachable from
each other. A typical pattern in real-world complex networks is the emergence of a
giant connected component which contains most of the nodes and is usually accompanied
by some small components. As all of our networks have such a giant component that
comprises most nodes, we track its change by dividing the size of the largest component
in the sparsified network by the size of the largest component in the original network.
As shown in Figure 7.6, out of the non-local methods Edge Forest Fire best preserves
the connected components. Random edge deletion leads to a slow decrease in the size
of the largest component while Simmelian Backbones, Jaccard Similarity and algebraic
distance lead to a separation very quickly. Below 20% of retained edges, the size of the
largest component on the Facebook networks drops very quickly, here the networks seem
to be decomposed into multiple smaller parts. On the other networks, this drop occurs
at different ratios of kept edges which reflects their different densities and probably also
their different structures. Local Filtering is able to maintain the connectivity. On the
Facebook networks, all methods keep the largest component almost fully connected up to
20% of retained edges, only below that small differences are visible. The results on the
LiveJournal, Twitter and Google+ networks show that – as expected – with increasing
density it is easier to preserve the connectivity of the network. Our Local Degree method
best preserves the connected components of all networks, closely followed by the local
variant of random edge deletion and Edge Forest Fire.
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Figure 7.6: The size of the largest component in the sparsified network divided by the
size of the largest component in the original network.
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For community detection, splitting the graph into smaller connected components might
or might not be good. On the one hand, it could be easier to detect communities if they
are clearly separated, i.e., if different communities are also different connected components.
On the other hand, if a community is separated into several connected components, it
cannot be detected as a whole anymore. Examples as shown in Figure 7.1a suggest that
we get way too many connected components and thus most likely they split communities.
In the following experiments, we examine this in more detail.

Diameter. The diameter of a graph is the maximum length of a shortest path between
any two nodes [New10]. The diameter of social networks is often surprisingly small, this
is also known as the small world phenomenon [WS98]. In case of disconnected graphs,
we consider the largest diameter of all connected components. In order to observe how
the network diameter changes through sparsification, we plot the quotient of the original
network diameter and the resulting diameter, which yields legible results since in practice
the diameter is mostly increased during sparsification. We compute the exact diameters
using a variation of the ExactSumSweep algorithm [Bor+15] that we contributed to
NetworKit.

We motivate the Local Degree method with the idea that shortest paths commonly
run through hub nodes in social networks. Therefore, preserving edges leading to high-
degree nodes should preserve the small diameter. This is confirmed by our experiments
(Figure 7.7a). In contrast, methods that prefer edges within dense regions clearly do not
preserve the diameter. With Simmelian Backbones the diameter drops when only few
edges are left; this can be explained by the fact that Simmelian Backbones do not maintain
the connectivity and that at the end the graph is decomposed into multiple connected
components which have a smaller diameter. Algebraic distance is even more extreme in
this aspect. Local filtering leads to a slightly better preservation of the diameter when
applied to the other methods but algebraic distance remains the worst method in this
regard. Note that the LiveJournal network has a higher diameter than the other networks
(see Table 7.2); this might explain why the diameter is better preserved there.

With respect to communities, not preserving the diameter might actually be an ad-
vantage. In particular edges connecting otherwise disconnected regions to hub nodes are
likely edges between communities. Thus, it is good to see that local filtering does not
preserve too many of these edges.

Clustering Coefficient. Clustering coefficients are key figures for the amount of
transitivity in networks. The local clustering coefficient expresses how many of the
possible connections between neighbors of a node exist [New10], see Section 1.3.1 for an
introduction. Figure 7.7b shows the deviation of the average local clustering from the
value of the original network. Both for local and non-local methods we observe three
classes of methods on the Facebook networks: methods that clearly decrease the clustering
coefficient, methods that preserve the clustering coefficient and methods that increase it.

For both Random Edge and Edge Forest Fire, which are based on randomness, the
clustering coefficient drops almost linearly with decreasing sparsification ratio. This can
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(a) Original network diameter divided by network diameter
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(b) Deviation from original clustering coefficient

Figure 7.7: Preservation of global network properties
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also be observed on the other three networks. The additional local filtering step does not
significantly change this.

Simmelian Backbones and Jaccard Similarity keep mostly edges within dense regions,
which results in increasing clustering coefficients on all networks. Triadic Simmelian
Backbones show the weakest increase, on the Twitter network even a decrease of the
clustering coefficients. Note that with 0.52 and 0.6 the clustering coefficients are already
relatively high on the Google+ and Twitter networks, therefore the very small increase
is not surprising. Local filtering slightly weakens this effect on the Facebook networks,
on the other networks it is even reversed. Given the high clustering coefficients in the
original networks, this is not very surprising as we would need to retain very dense areas
while local filtering leads to a more balanced distribution of the edges.

From the previous results especially concerning the connected components one would
expect that algebraic distance also increases the clustering coefficients. Interestingly
though, filtering using algebraic distance leads to a slight increase of the clustering
coefficient on the Facebook networks, constant clustering coefficients on the LiveJournal
network and even slightly decreasing clustering coefficients on the Twitter and Google+
networks. With the additional local filtering step, algebraic distance almost preserves the
clustering coefficients on the Facebook networks while on the other networks it is slightly
decreased. Algebraic distance leads to random noise on the individual edge weights,
therefore they probably lead to a more random selection of edges that also destroys more
triangles than the selection of Simmelian Backbones and Jaccard Similarity. Our Local
Degree method best preserves the clustering coefficient on the Facebook networks, though
with some differences between the various networks in the dataset (note the error bars).
On the LiveJournal network it leads to a decrease of the clustering coefficient while on
the Twitter and Google+ networks it leads to a slight increase of the clustering coefficient.
This is probably due to the special structure of ego networks.

Increasing or constant local clustering coefficients indicate that dense local areas are
preserved. While this should be beneficial for community detection, it is not clear if this
might not focus too much on very local structures and ignore the broader scope of a
community.

Community Structure. For community detection, we use the implementation of the
Louvain method with refinement that is part of NetworKit [SM16], see Section 1.4.1 for
an introduction. It detects communities of reasonable quality while being fast enough for
the vast amount of networks that we get due to the different sparsification methods and
ratios of kept edges. In order to understand how the community structure of the networks
is maintained, we consider for each network a fixed community structure that has been
found by the Louvain method on the original network. We report two crucial properties
of this community structure for each level of sparsification. The first is the conductance,
as introduced in Section 1.3.2, it is a formalization of the fuzzy concept of internally dense
and externally sparse communities. Low conductance values indicate clearly separable
communities. We consider the average conductance of all communities. Second, we expect
that communities are connected. In order to measure this, we introduce the fraction of
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the nodes in a community that does not belong to the largest connected component of
the community as partition fragmentation. We report the average fragmentation of all
communities. Intuitively, this score tells us which fraction of a community on average
cannot be detected on the sparsified graph due to not being connected to the remaining
part.

We plot the relative inter-cluster conductance change in Figure 7.8a. A value of 0
means that the conductance stays the same, a value of −1 indicates that the conductance
became 0 (i.e. a decrease by 100%) and a value of 1 indicates that the conductance
has been doubled (i.e. an increase of 100%). We can again see that there are three
categories of algorithms: the first group consisting of random edge sampling preserves the
conductance values on most networks. The second group contains only Local Degree and
increases the conductance. Edge Forest Fire has no clear behavior. On the LiveJournal
network it increases the conductance, while on Twitter and Google+ it rather decreases
it. On the Facebook networks, Edge Forest Fire without local filtering preserves the
conductance values while with local filtering the conductance values are slightly increased.
The third group consisting of Jaccard Similarity, Simmelian Backbones and algebraic
distance strongly decreases the conductance. With the additional local filtering step
the decrease in conductance is not as strong but still very significant. The keeping of
inter-community edges of the Local Degree method, which also explains why it preserves
the connectivity so well, can be explained as follows: Consider a hub node x within a
community with neighbors that are for the most part also connected to a hub node y with
higher degree than x. Due to the way Local Degree scores edges, x will lose many of its
connections within the community and may be pulled into the community of a neighboring
high-degree node z that is not part of the original community of x. Jaccard Similarity,
Simmelian Backbones and algebraic distance on the other hand focus – by design – on
intra-community edges. Random edge sampling and Edge Forest Fire filter both types
of edges almost equally distributed which is not surprising given their random nature.
Depending on the network Edge Forest Fire shows different behavior, this indicates that
these networks have a different structure.

In Figure 7.8b it becomes obvious that only local filtering allows methods to keep the
intra-cluster connectivity up to very sparse graphs. On the Facebook networks, Simmelian
Backbones and Jaccard Similarity without local filtering are actually the worst in this
respect, they do not keep the connectivity even though they prefer intra-cluster edges as
we have seen before. On the other networks, algebraic distance is even more extreme in
this regard. Random edge sampling and Edge Forest Fire on the non-Facebook networks
are the only non-local method where a slow increase of the fragmentation can be observed,
all other methods lead to a steep increase of the fragmentation during the first 10% of
edges that are removed.

Given these observations, we expect that we should be able to find a community
structure on the sparsified graph that is very similar to our reference community structure
at least if we use Simmelian Backbones, Jaccard Similarity or algebraic distance with
local filtering. In Figure 7.9a we compare the community structure that is found by the
Louvain method on the sparsified network to the one found on the original network. For
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(a) Relative conductance change of a fixed partition
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(b) Average partition fragmentation

Figure 7.8: Preservation of community structure properties

148



7.5 Experimental Study

0.0 0.2 0.4 0.6 0.8 1.0
ratio of kept edges

0.0

0.2

0.4

0.6

0.8

1.0

Lo
uv

ai
n 

A
dj

us
te

d 
R

an
d

0.0 0.2 0.4 0.6 0.8 1.0
ratio of kept edges

0.0

0.2

0.4

0.6

0.8

1.0

Lo
uv

ai
n 

A
dj

us
te

d 
R

an
d

0.2 0.5 0.8

0.0

0.2

0.4

0.6

0.8

1.0

Lo
uv

ai
n 

A
dj

us
te

d 
R

an
d

com­lj

0.2 0.5 0.8
ratio of kept edges

twitter

0.2 0.5 0.8

gplus

0.2 0.5 0.8

0.0

0.2

0.4

0.6

0.8

1.0

Lo
uv

ai
n 

A
dj

us
te

d 
R

an
d

com­lj

0.2 0.5 0.8
ratio of kept edges

twitter

0.2 0.5 0.8

gplus

(a) Adjusted rand measure between partition into communities on the original
network and on the sparsified network

Figure 7.9: Preservation of community structure
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this comparison we use the adjusted rand index [HA85] as also introduced in Section 2.3.2.
Note that the frequently used normalized mutual information (NMI) measure reports
higher similarity values when more communities are detected (see e. g. [VEB09]). This
makes it unsuitable for comparing partitions on sparsified networks as we have to expect
many small communities when a lot of edges are removed. As [VEB09] also show in their
experiments, the adjusted rand index does not have this problem as it has an expected
value of 0 for random partitions.

As a first observation we need to note that even when all edges are still in the network
(at the right boundary of the plot for the Facebook networks), the community structure
found is already different. The Louvain method is randomized, therefore it is not
unlikely that every found community structure is different, as we already observed in
the experiments for our distributed community detection algorithms in Section 6.5.3.
The amount of difference between the community structures even without filtering edges
indicates that there is not a single, well-defined community structure in these graphs but
many different ones. Preliminary tests with the (slightly slower) Infomap community
detection algorithm [RAB09] which has an excellent performance on synthetic benchmark
graphs for community detection [LF09b] showed a very similar variance which indicates
that this is not due to a weakness of the Louvain algorithm. Filtering the edges such
that we can measure that the conductance of one of these many community structures
is decreased most probably does not just make this structure clearer but does also lead
the algorithm into finding different community structures. Therefore, most sparsification
methods lead to significantly different community structures. It is possible that some of
the sparsification methods, especially local variants of the Simmelian Backbones, Jaccard
Similarity and algebraic distance, simply reveal a different community structure. On the
contrary, if all edges are kept with the same probability, the almost same set of community
structures can still be found up to a certain ratio of kept edges. Removing less than 40%
of the edges at random using random edge sampling or Edge Forest Fire does not seem
to lead to significantly more differences than what we observe due to the randomness of
the Louvain method. Note that on the three other networks these results are hard to
interpret as they are from just a single run, but the general tendencies are similar. Local
methods keep the connectivity and are thus slightly better at preserving the community
structure.

In order to verify the hypothesis that some differences are due to different community
structures being found, we use synthetic networks with ground truth communities that
are unambiguous. For this purpose we use the popular LFR generator [LFR08], see
Section 2.1.1 for an introduction. As parameters, we choose the configuration with 1000
nodes and small communities from [LF09b]. This means our synthetic networks have
a power-law degree distribution with exponent −2, average degree 20 and maximum
degree 50. The communities have between 10 and 50 nodes, the community sizes also
follow a power-law distribution but with exponent −1. As mixing parameter µ we choose
0.5. This means that each node has as many neighbors in its own community as in all
other communities together. For smaller mixing parameters the differences between the
different techniques are less obvious, for larger mixing parameters we reach the limits
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where community detection algorithms are no longer able to identify the ground truth
communities. For the plots in Figure 7.10 we use ten different random networks with
the same configuration and report again the average and the standard deviation. As we
have known ground truth communities for these networks, we use these ground truth
communities instead of a community structure found by the Louvain algorithm for the
following comparisons.

For the inter-cluster conductance in Figure 7.10a the results are similar to the results
for the Facebook networks but much clearer. Random edge filtering almost perfectly
preserves the inter-cluster conductance both in the variant without and the one with local
filtering. Edge Forest Fire and Local Degree lead to a clear increase of the conductance,
again independent of the local filtering step. Compared to the Facebook networks this
increase for Edge Forest Fire is now much stronger and earlier in the sparsification process.
Simmelian Backbones, Jaccard Similarity and algebraic distance lead to a strong decrease
of the inter-cluster conductance. With 40% remaining edges, the conductance reaches
almost 0 for all of them. If a measure was able to perfectly distinguish between intra- and
inter-cluster edges, the inter-cluster conductance could reach 0 when the ratio of kept
edges reaches 50%. All methods are not far from that goal, but algebraic distance is the
best method in this regard. With a local filtering post-processing step, algebraic distance
is more similar to the other methods. For the other methods, only minor changes can be
observed. It is visible, though, that some inter-cluster edges seem to remain.

On the LFR networks the connectivity in the communities seems to be preserved
much better than on the Facebook networks, see Figure 7.10b. Up to 50% of removed
edges, none of the methods leads to any noticeable fragmentation. Only when more
edges are removed, the Simmelian Backbones, Jaccard Similarity and algebraic distance
seem to disconnect parts of the communities. With the additional local filtering step the
connectivity inside communities is almost perfectly preserved up to 15% remaining edges.
As the networks have an average degree of 20 we also cannot expect that connectivity is
preserved much further as with 10% remaining edges only a tree could be preserved.

In Figure 7.10c we compare the ground truth communities to the community structure
found by the Louvain algorithm (again with refinement). Without the sparsification step,
the Louvain algorithm is unable to detect the ground truth communities, this is most
likely due to the resolution limit of modularity [FB07]. On the generated networks with
clear ground truth communities, our intuition that random edge, local degree and edge
forest fire should not be able to preserve the community structure is verified. While
removing less than 20% of the edges leads to similar detection rates, the differences
increase as more and more edges are removed. Edge Forest Fire is worst at keeping
the community structure on LFR networks. On the contrary those methods that show
positive results for the preservation of the community structure actually lead to sparsified
networks where the Louvain algorithm is better able to find the community structure. As
we could expect from the partition fragmentation, without local filtering the adjusted
rand index decreases after 50% of the edges have been removed. With local filtering,
though, there is a range between 50% and 15% of remaining edges where the Louvain
algorithm can almost exactly recover the ground truth communities on the sparsified
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(a) Relative conductance change of the ground truth communities
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(b) Average partition fragmentation of the ground truth communities
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(c) Adjusted rand measure between ground truth communities and found
communities on the sparsified network

Figure 7.10: Preservation of the community structure on the generated LFR graphs
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network. This shows that sparsification can even increase the quality of communities
found by community detection algorithms. Algebraic distance with local filtering seems
to work best in this regard. During the first 50% of removed edges algebraic distance
shows a strange behavior, though – especially with local filtering the detection rate first
drops a bit. This is surprising as algebraic distance leads to the strongest decrease of
the inter-cluster conductance right at the beginning. A possible explanation is that the
Louvain algorithm merges especially small clusters. If other methods filter edges between
these small clusters first, this most probably helps the Louvain algorithm most.

With all these experiments we have seen that measuring the preservation of the
community structure is a challenging task especially when no ground truth communities
are known. Our results suggests that the social networks either do not contain a clear
community structure or that the Louvain algorithm is unable to identify this structure.
Random edge deletion and edge forest fire seem to preserve this uncertainty in the sense
that the Louvain algorithm still identifies relatively similar communities. Simmelian
Backbones, Jaccard Similarity and algebraic distance on the other hand are designed to
prefer intra-cluster edges which can also be seen in our experiments. On the sparsified
networks this has the effect that the Louvain algorithm detects communities that are
different from the communities it detects on the original network. On synthetic networks,
local filtering with these methods preserves and even enforces the community structure.
They are able to preserve the ground truth communities up to a ratio of kept edges of 0.15.
This suggests that Simmelian Backbones, Jaccard Similarity and algebraic distance with
local filtering indeed keep and enforce some community structure but that on networks
without clearly detectable community structure this is not necessarily the same structure
as the structure that is found by the Louvain algorithm.

7.5.4 Running Time

Measured running times are shown in Figure 7.11. Random Edge sparsification is clearly
the fastest method, closely followed by Local Degree. Jaccard Similarity is also not much
slower and scales also very well. Therefore, these methods are well suited for large-scale
networks in the range of millions to billions of edges. The efficiency of the Jaccard
Similarity method shows that our parallel triangle counting implementation is indeed
very scalable. The authors also proposed inexact Jaccard coefficient calculation [SPR11]
for a further speedup though given our numbers it can be doubted if – given an efficient
triangle counting algorithm – this is necessary or helpful at all. Algebraic distance is a bit
slower but scales very well nevertheless. Using fewer systems or iterations could further
speed-up algebraic distance if speed is an issue. Both Simmelian methods are significantly
slower than the other methods, but still efficient enough for the network sizes we consider.
The visible difference between quadrilateral and triangular Simmelian Backbones can be
explained by the difference between triangle and quadrangle counting, additionally we
did not parallelize the latter. While the time complexity in O-notation of Edge Forest
Fire is difficult to assess, it seems to be slightly faster than Simmelian Backbones.
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Figure 7.11: Running times of various edge scoring methods on the Facebook networks

154



7.6 Conclusion

7.6 Conclusion

Our experimental study on networks from Facebook, Twitter, Google+ and LiveJournal
as well as synthentically generated networks shows that several sparsification methods
are capable of preserving a set of relevant properties of social networks when up to 80%
of edges have been removed.

Random edge deletion performs surprisingly well and retains the community structure
on the studied social networks. We propose local filtering as a generally applicable and
computationally cheap post-processing step for edge sparsification methods that improves
the preservation of almost all properties as it leads to a more equal rate of filtering
across the network. Simmelian Backbones, Jaccard Similarity and algebraic distance
prefer intra-cluster edges and thus do not keep global structures but with the added
local filtering step they are able to enforce and retain a community structure as it was
already shown for Jaccard Similarity. However, the preserved community structure is not
necessarily the same as the one the Louvain algorithm finds. Our novel method Local
Degree, which is based on the notion that connections to hubs are highly important for the
network’s structure, in contrast preserves shortest paths and the overall connectivity of
the network. This can be seen at the almost perfectly preserved diameter. For preserving
the community structure, it is unsuitable though. Our adaptation of the Forest Fire
sampling algorithm to edge scoring depends strongly on the specific network’s structure
but seems not better than random edge sampling for preserving the community structure.

We hope that the conceptual framework of edge scoring and filtering as well as our
evaluation methods are steps towards a more unified perspective on a variety of related
methods that have been proposed in different contexts. Future developments can be easily
carried out within this framework and based on our implementations, which are available
as part of the open-source network analysis package NetworKit [SSM16].

Many real-world social networks are not static, but evolve over time. We are not aware
of any work that has adapted any of the presented methods for dynamic networks. An
interesting direction for future work would thus be to adapt and compare sparsification
methods for dynamic networks.

In terms of scalability and networks that do not fit into the main memory anymore, vari-
ants that work with external memory or in distributed settings could be developed. While
basic building blocks such as triangle counting exist [HTC14], the actual sparsification
algorithms would need to be adapted.

Regarding scalable community detection, random edge filtering offers an interesting
possibility. While reading a graph, edges could be filtered directly and thus only memory
for the sparsified graph would be required. As our study shows, 40 to 60% of the edges
suffice on the tested instances to detect similar communities. While this might not be a
huge reduction, being able to process a twice as large graph might make a difference in
practice.
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8 Introduction to Editing

Parts of this chapter are based on the introductions of our papers on quasi-threshold
editing [Bra+15b; Got+20b]. The first is joint work with Ulrik Brandes, Ben Strasser and
Dorothea Wagner while the second is joint work with Lars Gottesbüren, Philipp Schoch,
Ben Strasser, Dorothea Wagner and Sven Zühlsdorf. As they address two variants of the
same problem, this chapter introduces both Chapter 9 and 10 that are based on these
papers.

The intuitive definition of a community as being internally densely and externally
sparsely connected means that the best community would be a clique that is not connected
to any other node. A graph with the ideal community structure is thus a disjoint union
of cliques. If a graph is not a disjoint union of cliques, we can ask for a set of edge
insertion and deletion operations that transform a given graph into a disjoint union of
cliques. Finding such a set of editing operations of minium size is commonly called cluster
editing [BB13]. This can be extended to settings where we are given a cost for each
insertion and deletion operation. We then want to minimize the sum of the costs of the
needed operations to transform a given graph into a disjoint union of cliques. This is
useful for example if we assume that all edges between nodes insides a community should
exist, but due to measurement errors edges might not exist in our data. We can then
assign costs to express how certain we are that we correctly measured for example an
interaction between two proteins or that there was no interaction. In this thesis, we only
consider editing problems with uniform costs, an extension of our results to non-uniform
costs is part of our ongoing research.

Such an ideal model of a community where each node is connected to every other
node is not always realistic. Even in protein interaction networks, this is usually too
strict and instead a model with a core and some attached nodes is considered to be
more realistic [BHK15]. Nastos and Gao [NG13] consider the class of quasi-threshold
graphs as a model for social networks. Quasi-Threshold graphs, also known as trivially
perfect graphs, can be described as the graphs that are the transitive closure of a rooted
forest [Wol65], i.e., every branch from a leaf to the root becomes a clique as illustrated in
Figure 8.1a. This means that every connected subgraph has a node that is connected
to all other nodes. Such a forest can be seen as a skeleton of the graph. An inductive
characterization exists, too: single nodes are quasi-threshold graphs, disjoint unions of
quasi-threshold graphs are quasi-threshold graphs and adding a node to a quasi-threshold
graph that is connected to all other nodes yields a quasi-threshold graph [YCC96]. Nastos
and Gao also consider the quasi-threshold editing problem to transform a given graph
into a closest quasi-threshold graph using edge insertions and deletions. Figure 8.1b
shows an example. The connected components of these quasi-threshold graphs are then
considered as communities. Each community thus consists of a set overlapping cliques.
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(a) Quasi-threshold graph with thick skeleton,
grey root and dashed transitive closure.

(b) Edit example with solid input edges, dashed
inserted edges, a crossed deleted edge, a thick
skeleton with grey root.

Figure 8.1: Quasi-Threshold graph examples.

(a) A C4. (b) A P4.

b

c

d

a e

(c) A graph with node-induced C4.

d e f

a b c

(d) A {C4, P4}-free graph.

Figure 8.2: A C4, a P4 and examples for graphs that are (not) {C4, P4}-free.

Quasi-threshold graphs are also exactly the graphs where for every pair of connected nodes
u, v, the closed neighborhood of u, N(u) ∩ {u}, is a subset of the closed neighborhood of
v, N(v) ∩ {v}, or vice-versa. This naturally defines a hierarchy within each community
that might model a social hierarchy or a hierarchy in an organizational structure.

A graph H is an induced subgraph of a graph G if there exists an injective mapping π
from the nodes VH of H to the nodes of G such that for two nodes ui, uj ∈ VH , {ui, uj}
is an edge in H if and only if {π(ui), π(uj)} is an edge in G. If a graph does not contain a
forbidden subgraph H as an induced subgraph, it is called H-free. This can be extended
to a set of forbidden subgraphs F where a graph is F-free if it is H-free for all H ∈ F .
Let Pℓ be a path graph with ℓ nodes. Similarly, let Cℓ denote a cycle graph with ℓ nodes.
Figures 8.2a and 8.2b depict a C4 and a P4. The graph depicted in Figure 8.2c is not
{C4, P4}-free as the nodes (a, b, d, e) form an induced C4. In contrast, the graph depicted
in Figure 8.2d is {C4, P4}-free. The nodes (a, b, e, c) form a P4, however, as there is an
edge between a and e, the subgraph is not an induced subgraph.

Graphs that are the disjoint union of cliques are exactly the graphs that are P3-free.
Similarly, quasi-threshold graphs are exactly the {C4, P4}-free graphs [YCC96]. Different
generalizations like P4-free deletion [Jia+15] or P5-free editing [Boh15] have also been
considered for community detection.
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8.1 Related Work

For quasi-threshold graphs, linear-time algorithms have been proposed for the recognition
problem, i.e., if a given graph is a quasi-threshold graph [YCC96; Chu08]. Both construct
a skeleton forest if the graph is a quasi-threshold graph. Further, [Chu08] also finds a C4

or P4 if there is any and thus the graph is no quasi-threshold graph.
For many choices of F , F -free editing is NP-hard, in particular for F = {C4, P4} [NG13].

The F-free edge editing problem for a finite set of finite forbidden subgraphs F is fixed-
parameter tractable (FPT) in the number of edits k [Cai96]. The proof implies a simple
branch-and-bound algorithm that we introduce in Section 10.4. For quasi-threshold
graphs, it has a running time of O(6k · (n+m)). For the special case of {C4, P4}-free edge
deletion, where only edge deletion operations are allowed, optimized branching rules have
been proposed that reduce the running time of the trivial algorithm from O(4k · (n+m))
to O(2.42k · (n+m)) [Liu+15]. To the best of our knowledge, for {C4, P4}-free editing,
no improved branching rules have been proposed so far. Further, a polynomial kernel
of size O(k7) has been introduced for quasi-threshold graphs [DP17]. Unfortunately, as
we show in our experiments in Section 9.6, many social networks require more than m/4
edits. Further, we show lower bounds of up to millions of edits. Thus, we cannot hope
that exact algorithms that are superpolynomial in the number of edits will scale to these
graphs. The only heuristic quasi-threshold editing algorithm we are aware of has been
proposed by Nastos and Gao [NG13]. Its running time is at least quadratic in the number
of nodes and thus still unsuitable for graphs with millions of nodes.

The F-free editing problem also admits a simple formulation as integer liner program
(ILP). For cluster editing, a linear programming formulation with cutting planes that are
incrementally added (in batches of a few hundred constraints) has been proposed [GW89].
Later, exact algorithms based on integer linear programming as well as kernelization
and more efficient FPT algorithms have been considered [BBK11]. In [HH15], the
authors combine the FPT algorithm with kernelization as well as upper and lower bounds.
Editing to {P4}-free graphs has been considered in phylogenomics [Hel+15] using a simple
ILP-based approach.

In a bachelor thesis [Boh15], {P5}-free editing has been considered for community
detection. They apply lower bounds, data reduction rules and rules for disallowing certain
edits.

8.2 Our Contribution

In this thesis we primarily consider the quasi-threshold editing problem, though some of
our results can be generalized to other editing problems. Our goal is to make it possible
to determine whether quasi-threshold editing is a useful community detection algorithm.
In Chapter 9, we introduce quasi-threshold mover (QTM), a fast editing heuristic that is
close to linear in practice and allows evaluating quasi-threshold editing on large graphs.
In the following Chapter 10, we consider solving the quasi-threshold editing problem
exactly. The purpose of this is two-fold: First, for small graphs, it allows us to show that

161
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our heuristic QTM frequently computes exact solutions or is close to them. Second, the
branch-and-bound algorithm we consider also allows to list all solutions exactly once.
This allows to analyze the suitability of quasi-threshold editing for community detection
in more detail. In a first analysis, we show that even for small social networks there up
to several thousands of solutions that also yield different communities.
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9 Fast Quasi-Threshold Editing

This chapter is based on joint work with Ulrik Brandes, Ben Strasser and Dorothea Wag-
ner [Bra+15b]. We thank James Nastos for helpful discussions. Compared to the
publication, the introduction has been shortened, the appendix of the extended ver-
sion [Bra+15a] has been revised and integrated, and the lower bounds have been replaced
by an improved bound that we originally used in our work on exact editing in Chapter 10.

9.1 Introduction

Our contribution in this chapter are algorithms for the quasi-threshold editing problem
that are applicable to graphs with millions of nodes and edges. We present Quasi-
Threshold Mover (QTM), a scalable quasi-threshold editing algorithm. Given a graph it
computes a quasi-threshold graph which is close in terms of edit count, but not necessarily
closest as this problem is NP-hard. We provide an extensive experimental evaluation
on synthetic graphs as well as social network and web graphs. We further propose a
simplified certifying quasi-threshold recognition algorithm. QTM works in two phases: An
initial skeleton forest is constructed by a variant of our recognition algorithm, and then
refined by moving one node at a time to reduce the number of edits required. The running
time of the first phase is dominated by the time needed to count the number of triangles
per edge. The currently best triangle counting algorithms run in O(m · α(G)) [CN85;
OB14] time, where α(G) is the arboricity. These algorithms are efficient and scalable in
practice on the considered graphs. One round of the second phase needs O(n+m log∆)
time, where ∆ is the maximum degree. We show that four rounds are enough to achieve
good results.

9.1.1 Outline

This chapter is organized as follows: We begin by describing how we compute lower
bounds on the number of edits. We then describe the editing algorithm introduced by
Nastos and Gao. In Section 9.4, we introduce the simplified recognition algorithm and
the computation of the initial skeleton. The main algorithm is described in Section 9.5.
The remainder of the chapter is dedicated to the experimental evaluation.

9.1.2 Preliminaries

We use the notation introduced in Section 1.2. For a skeleton forest, we denote by p(u)
the parent of a node u and by Tu the subtree rooted at u.

163
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9.2 Lower Bounds

We propose to compute a simple lower bound. This allows us to show that many of
the graphs we consider actually require a large number of edits, meaning that exact
algorithms that are superpolynomial in k are infeasible. If the lower bound matches the
number of edits needed by the heuristic solution, this shows that the heuristic solution is
in fact exact. If the bound is close to the heuristic solution, we can at least be sure that
our heuristic solution is not far from optimal.

To edit a graph we must destroy all forbidden subgraphs H. For quasi-threshold editing
H is either a P4 or a C4. This leads to the following basic algorithm: Find forbidden
subgraph H, increase the lower bound, remove all nodes of H, repeat. This is correct as
at least one edit incident to H is necessary. If multiple edits are needed then accounting
only for one is a lower bound. We can optimize this algorithm by considering node pairs
instead of nodes. If we mark all node pairs of H and forbid further subgraphs from using
them, the algorithm is still correct as editing one node pair does not influence other node
pairs. Further, if H is a P4 of the form a− b− c− d, we do not need to mark a− d, as
editing a−d will only transform it into a C4 and thus one of the other node pairs must be
edited. Similarly, for a C4, we can omit one edge. Such lower bounds based on a packing
have already been used for cluster editing [HH15] and P5-free editing [Boh15]. This lower
bound corresponds to the basic bound that we describe in more detail in Section 10.4.3
in the following chapter on exact editing.
H can be found using the recognition algorithm. However, the resulting running time

of O(k(n+m)) does not scale to the large graphs. Instead, we use a listing algorithm
that lists all forbidden subgraphs. We iterate over all edges {u0, u1}. If {u0, u1} is not
marked yet, for ui, i ∈ {0, 1} we iterate over N(ui) until we find a neighbor vi such that
vi is not a neighbor of u1−i and neither {u0, vi} nor {u1, vi} is marked. If such a neighbor
exists for both u0 and u1, we found a new forbidden subgraph. We then mark the node
pairs {u0, u1}, {u0, v0}, {u0, v1}, {u1, v0} and {u1, v1}, increase our counter by one and
continue. We store the neighbors of every node as well as the marked node pairs in a
hash set to ensure that for each edge we only spend O(max{deg(u0), deg(u1)}) time in
expectation. The total running time is thus O(m ·∆) in expectation. To improve the
running time in practice, we iterate first over the neighbors of the lower-degree node of
the edge as we can stop if it has no suitable neighbor.

9.3 The Algorithm proposed by Nastos and Gao

Nastos and Gao [NG13] describe that in their greedy algorithm they test each possible
edge addition and deletion (i.e. all O(n2) possibilities) in order to choose the edit that
results in the largest improvement, i.e. the highest decrease of the number of induced P4

and C4. After executing this greedy heuristic they revert the last few edits and execute a
bounded search tree algorithm. If this results in a solution with fewer edits, they repeat
this last step until no improvement is possible anymore. We revert ten edits in each step.
As they do not provide any algorithmic details, we describe how we implemented the
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algorithm below.
The main question is how to select the next edit. As far as we know, it is an open

problem if it is possible to determine the edit that destroys most P4 and C4 in time o(n2).
Therefore, we use the obvious approach that was also implied by Nastos and Gao: execute
each possible edit and see how the number of P4 and C4 changes. The main ingredient is
thus a fast update algorithm for this counter.

As far as we are aware the fastest update algorithm for counting node-induced P4

and C4 subgraphs needs amortized time O(h2) for each update where h is the h-index
of the graph [Epp+12]. While the worst-case bound of the h-index is

√
m it has been

shown that many real-world social networks have a much lower h-index [ES09]. However,
this algorithm requires to store many counts for node pairs and triples, which makes it
practicability questionable.

Instead, we use a simple algorithm that requires only O(n) additional memory during
updates and needs to store only the counter between updates. In the worst case, it needs
O(m) time for an update. The main idea is to examine the neighborhood structure of
the edge to be deleted or inserted. We mark common and exclusive neighbors of the two
incident nodes and for each of these neighbors, we iterate over its neighbors. Based on
which of them are marked, we can determine how many P4 and C4 were destroyed or
created by editing the edge.

While we could execute this algorithm m times for the initialization, we instead use a
simpler algorithm that needs O(m2) time, too. For each edge {u, v}, we determine the
neighbors exclusive to one of them. The product of the sizes of the exclusive neighborhoods
gives us the number of P4 where {u, v} is the central edge plus the number of C4 {u, v}
is part of. As we count each C4 four times, we need to determine how many C4 there
are to correct for this. For this, we iterate over the neighbors of u and for each neighbor
un ∈ N(u), we iterate over the neighbors of un and count how many of them are marked
as exclusive neighbor of v. When the graph is a quasi-threshold graph, one of the two sets
of exclusive neighbors is always empty. This allows to skip iterating over the neighbors of
un, reducing the running time to O(m ·∆).

Overall, the running time is O(m2+k ·n2 ·m). The time needed for the initial counting
(first term) is dominated by the time needed for each edit (second term).

9.4 Linear Recognition and Initial Editing

The first linear time recognition algorithm for quasi-threshold graphs was proposed in
[YCC96]. In [Chu08], a linear time certifying recognition algorithm based on lexicographic
breadth first search was presented. However, as the authors note, sorted node partitions
and linked lists are needed, which incur large constant factors in the running time. We
simplify their algorithm to only require arrays but still provide negative and positive
certificates. Further, we only need to sort the nodes once to iterate over them by decreasing
degree. Our algorithm constructs the forest skeleton of a graph G. If it succeeds G is
a quasi-threshold graph and outputs for each node v a parent node p(v). If it fails it
outputs a forbidden subgraph H.

165



9 Fast Quasi-Threshold Editing

To simplify our algorithm we start by adding a super node r to G that is connected to
every node and obtain G′. G is a quasi-threshold graph if and only if G′ is one. As G′ is
connected, its skeleton is a tree. A core observation is that higher nodes in the tree must
have higher degrees, i.e., deg(v) ≤ deg(p(v)). We therefore know that r must be the root
of the tree. Initially, we set p(u) = r for every node u. We process all remaining nodes
ordered decreasingly by degree. Once a node is processed its position in the tree is fixed.
Denote by u the node that should be processed next. We iterate over all non-processed
neighbors v of u and check whether p(u) = p(v) holds and afterwards set p(v) to u. If
p(u) = p(v) never fails then G is a quasi-threshold graph as for every node x (except r)
we have that by construction the neighborhood of x is a subset of the one of p(x). If
p(u) ̸= p(v) holds at some point then a forbidden subgraph H exists. Either p(u) or p(v)
was processed first. Assume without loss of generality that it was p(v). We know that no
edge {v, p(u)} can exist because otherwise p(u) would have assigned itself as parent of
v when it was processed. Further, we know that p(u)’s degree can not be smaller than
u’s degree as p(u) was processed before u. As v is a neighbor of u we know that another
node x must exist that is a neighbor of p(u) but not of u, i.e., {u, x} does not exist.
The subgraph H induced by the 4-chain v − u− p(u)− x is thus a P4 or C4 depending
on whether the edge {v, x} exists. We have that u, v and p(u) are not r as p(v) was
processed before them and r was processed first. As x has been chosen such that {u, x}
does not exist but {u, r} exist x ̸= r. H therefore does not use r and is contained in G.

From Recognition to Editing. We modify the recognition algorithm to construct a
skeleton for arbitrary graphs. This skeleton induces a quasi-threshold graph Q. We want
to minimize Q’s distance to G. Note that all edits are performed implicitly, we do not
actually modify the input graph for efficiency reasons. The only difference between our
recognition and our editing algorithm is what happens when we process a node u that
has a non-processed neighbor v with p(u) ̸= p(v). The recognition algorithm constructs
a forbidden subgraph H, while the editing algorithm tries to resolve the problem. We
have three options for resolving the problem: we ignore the edge {u, v}, we set p(v) to
p(u), or we set p(u) to p(v). The last option differs from the first two as it affects all
neighbors of u. The first two options are the decision if we want to make v a child of u
even though p(u) ̸= p(v) or if we want to ignore this potential child. The first option
implies deleting {u, v}. The second option implies that all edges from v to its ancestors
are deleted and edges to u’s ancestors are inserted. Parts of these ancestors might be
shared and thus in fact not cause any edits. The third option means that all edges from
u to its ancestors are deleted and new edges to v’s ancestors are inserted. The same also
applies to all neighbors that u keeps, for all other neighbors the edge to the neighbor is
deleted. Again, parts of the ancestors might be shared and thus not cause any edits.

We start by determining a preliminary set of children by deciding for each non-processed
neighbor of u whether we want to keep or discard it. These preliminary children elect a
new parent by majority. We set p(u) to this new parent. Changing u’s parent can change
which neighbors are kept. We therefore reevaluate all the decisions and obtain a final set
of children for which we set u as parent. Then the algorithm simply continues with the
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Input: G = (V,E)
Output: Parent assignment p for each node

1 Sort V by degree in descending order using bucket sort;
2 p : V → V ∪ {∅}, u ↦→ ∅;
3 depth : V → N0, u ↦→ 0;
4 Count triangles t({u, v}) and calculate pc({u, v});
5 foreach u ∈ V do

// Process node u
6 N ← {v ∈ N(u) | v not processed and p(u) = p(v) or (pc({u, v}) ≤ pc({v, p(v)})

and depth(v) ≤ t({u, v}) + 1)};
7 pn ← the most frequent value of p(x) for x ∈ N ;
8 if pn ̸= p(u) then
9 p(u)← pn;

10 depth(u)← 0;
11 pc({u, pn})←∞;

12 foreach v ∈ N(u) that has not been processed do
13 if p(u) = p(v) or (pc({u, v}) < pc({v, p(v)}) and depth(v) < t({u, v}) + 1)

then
14 p(v)← u;
15 depth(v)← depth(v) + 1;

Algorithm 9.1: The Initialization Algorithm

next node.
What remains to describe is when our algorithm keeps a potential child. It does this

using two edge measures: The number of triangles t(e) in which an edge e participates
and a pseudo-C4-P4-counter pc(e), which is the sum of the number of C4 in which e
participates and the number of P4 in which e participates as central edge. Computing
pc(x, y) is easy given the number of triangles and the degrees of x and y as pc({x, y}) =
(deg(x)− 1− t({x, y})) · (deg(y)− 1− t({x, y})) holds. Having a high pc(e) makes it likely
that e should be deleted. We keep a potential child only if two conditions hold. The
first is based on triangles. We know by construction that both u and v have many edges
in G towards their current ancestors. Keeping v is thus only useful if u and v share a
large number of ancestors as otherwise the number of induced edits is too high. Each
common ancestor of u and v results in a triangle involving the edge {u, v} in Q. Many of
these triangles should also be contained in G. We therefore count the triangles of {u, v}
in G and check whether there are at least as many triangles as v has ancestors. The
other condition uses pc(e). The decision whether we keep v is in essence the question of
whether {u, v} or {v, p(v)} should be in Q. We only keep v if pc({u, v}) is not higher
than pc({v, p(v)}).

In Algorithm 9.1 we provide the full initialization heuristic as pseudo code. Note that
while for the parent calculation we use ≤ for comparisons we use < for the final selection
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b c

u

vm

x y

r

Figure 9.1: Moving vm example. The drawn edges are in the skeleton and directed towards
the root r. By moving vm, crossed edges are removed and thick blue edges
are inserted. The old parent node a becomes the parent of the old children b
and c. From the new parent node u, the child x is not adopted while y is.

of the neighbors to keep in order to not to wrongly assign too many neighbors to u.
The time complexity of this editing heuristic is dominated by the triangle counting

algorithm as the rest is linear.

9.5 The Quasi-Threshold Mover Algorithm

The Quasi-Threshold Mover (QTM) algorithm iteratively increases the quality of a
skeleton T using an algorithm based on local moving. Local moving is a technique that
is successfully employed in many heuristic community detection algorithms [Blo+08;
GKW14; RN11]. As in most algorithms based on this principle, our algorithm works in
rounds. In each round it iterates over all nodes vm in random order and tries to move vm.
In the context of community detection, a node is moved to a neighboring community such
that a certain objective function is increased. In our setting we want to minimize the
number of edits needed to transform the input graph G into the quasi-threshold graph Q
implicitly defined by T . We need to define the set of allowed moves for vm in our setting.
Moving vm consists of moving vm to a different position within T and is illustrated in
Figure 9.1. We need to choose a new parent u for vm. The new parent of vm’s old children
is vm’s old parent. Besides choosing the new parent u, we select a set of children of u
that are adopted by vm, i.e., their new parent becomes vm. Among all allowed moves for
vm we choose the move that reduces the number of edits as much as possible. Doing this
in sub-quadratic running time is difficult as vm might be moved anywhere in G. By only
considering the neighbors of vm in G and a constant number of nodes per neighbor in a
bottom-up scan in the skeleton, our algorithm has a running time in O(n+m log∆) per
round. While our algorithm is not guaranteed to be optimal as a whole we can prove that
for each node vm we choose a move that reduces the number of edits as much as possible.
Our experiments show that given the result of the initialization heuristic our moving
algorithm performs well in practice. They further show that in practice four rounds are
good enough which results in a near-linear total running time.
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9.5.1 Basic Idea

Our algorithm starts by isolating vm, i.e., removing all incident edges in Q. It then finds
a position at which vm should be inserted in T . If vm’s original position was optimal then
it will find this position again. For simplicity, we assume again that we have a virtual
root r that is connected to all nodes. Isolating vm thus means that we move vm below
the root r and do not adopt any children.

Choosing u as parent of vm requires Q to contain edges from all ancestors of u to vm.
Further if vm adopts a child c of u then Q must have an edge from every descendant of c
to vm. How good a move is depends on how many of these edges already exist in G and
how many edges incident to vm in G are not in Q. To simplify notation we will refer to
the nodes incident to vm in G as vm-neighbors.

We start by identifying which children a node should adopt. For this we define the
child closeness childclose(c) of c as the number of vm-neighbors in the subtree of c minus
the non-vm-neighbors. A node c is a close child if childclose(c) > 0. If vm chooses a node
u as new parent then it should adopt all close children of u, as each of them reduces the
number of required edits. A node can only be a close child if it is a neighbor of vm or if it
has a close child. Our algorithm starts by computing all close children and their closeness
using many short DFS searches in a bottom up fashion. Knowing which nodes are close
children, we can identify which nodes are good parents for vm. A potential parent must
have a close child or must be a neighbor of vm. Using the set of close children we can
easily derive a set of parent candidates and an optimal selection of adopted children for
every potential parent. We need to determine the candidate with the fewest edits. We do
this in a bottom-up fashion.

With the techniques described in the following, we can implement this algorithm in
O(n+m log∆) per round For every move, we insert O(dG(vm)) elements into a priority
queue and explore a limited part of the skeleton forest. The running time for this is
amortized O(dG(vm) log dG(vm)) per move. We analyze the running time complexity
using tokens. Initially only the vm-neighbors have tokens. The tokens are consumed by
the short DFS searches and the processing of parent nodes. The details of the analysis
are described in Section 9.5.5.

9.5.2 Close Children

To find all close children we start a DFS from every potential close child u that explores
u’s subtree. A node u is a close child if this DFS finds more vm-neighbors than non-
vm-neighbors. Unfortunately we can not fully run all these searches as this requires too
much running time. Therefore, a DFS is aborted if it finds more non-vm-neighbors than
vm-neighbors. For every aborted DFS, we store a pointer DFSnext that points to the
last node visited and allows to continue the DFS. To avoid exploring subtrees twice, a
DFS skips already explored subtrees using these pointers. By using a priority queue, we
ensure that nodes are explored in a bottom-up fashion and no DFS will be started in
an already explored subtree. We exploit that close children are vm-neighbors or have
themselves close children. Initially we fill the priority queue of potential close children
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Figure 9.2: Example of two states of the bottom-up search for determining childclose
visualized using the skeleton forest, each after processing the node marked in
red. Blue nodes are neighbors of vm, gray nodes have been visited by a DFS.
The values in the nodes denote the values of childclose. The dashed arrows
denote the pointers to the end of the DFS. The two blue nodes in the bottom
left have been processed first, both have a childclose of 1. The DFS starting
from the red node in the left figure does not descend into the left subtree but
directly continues with the right subtree. The DFS from the red node in the
right figure follows the dashed arrow from its child to resume its DFS and
then visits only one additional node before it stops again and records its state
with the second dashed arrow.

with the neighbors of vm and when a new close child is found we add its parent to the
queue. Figure 9.2 shows two examples for the nodes explored by these searches.

Let u denote the current node removed from the queue. We start a DFS from u and if
it explores the whole subtree then u is a close child. If not, it stops when childclose(u)
reaches −1 and then stores a pointer to the last-visited node. If the DFS of u starts by first
inspecting the wrong children then it can get stuck because it would see the vm-neighbors
too late. The DFS must thus first consider the close children of u as close children are
exactly the children whose subtrees contain more vm-neighbors than non-vm-neighbors.
To assure that u knows which children are close, every close child reports itself to its
parent. As all children of u have a greater depth than u, the priority queue ensures that
they are processed before the DFS of u starts.

Algorithm 9.2 shows this DFS as pseudo code. We start by initializing childclose(u) to
the sum of the close children, i.e., those that reported to u and mark u as processed. Then
we check if u is a vm-neighbor and update the score accordingly. We only actually start a
DFS if childclose(u) ≥ 0 as during this DFS the score can only decrease as only subtrees
of close children contain more neighbors than non-neighbors and we already considered
subtrees of close children. We only continue the DFS into nodes x that have not been
processed or whose childclose(x) < 0, as all other children are close and have thus already
been considered in the score of the parent node. For every visited node, we decrease the
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1 childclose(u)←
∑︁

over childclose of close u-children;
2 mark u as processed;
3 if u is vm-neighbor then
4 childclose(u)← childclose(u) + 1;
5 else
6 childclose(u)← childclose(u)− 1;

7 if childclose(u) ≥ 0 and u has children then // Start a DFS from u
8 x← first child of u;
9 while x ̸= u do

10 if x not processed or childclose(x) < 0 then
11 childclose(u)← childclose(u)− 1;
12 x← DFSnext(x);
13 if childclose(u) < 0 then
14 DFSnext(u)← x;
15 break;

16 x← next node in DFS order after x below u;
17 else

// skip subtree of x
18 x← next node in DFS order after the subtree of x below u;

Algorithm 9.2: The algorithm for determining childclose(u).

score of u by one. Every node x stores a DFSnext(x) pointer that initially points to itself
and is set to the last visited node when the DFS is aborted, thus indicating the next
node that should be visited by a DFS that reaches x. We follow the DFSnext-pointer to
potentially skip the part of the tree already explored from x and then continue with the
next node in DFS order, unless the score of u is now below 0, i.e., -1, in which case we
abort the DFS and set DFSnext(u) to x. This ensures that when another node encounters
u, it continues its DFS with x.

After moving vm, we reset all DFSnext pointers, all markers for processed nodes and all
childclose values. As only values of processed nodes are modified, it suffices to initialize
the values once and then only reset the values of processed nodes.

9.5.3 Potential Parents

Let Xw be the set of nodes consisting of w, the ancestors of w, the close children of w and
the descendants of the close children of w. Moving vm below w, i.e., choosing w as parent,
requires us to insert an edge from vm to every non-vm-neighbor in Xw. Likewise, not
including vm-neighbors in Xw requires us to delete an edge for each of them. We therefore
want Xw to maximize the number of vm-neighbors minus the number of non-vm-neighbors.
We compute this score recursively. For this, we restrict the graph to the subtree Tu of a
node u and first only consider potential parents and edits within that subgraph. If we
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1 foreach vm-neighbor u do
2 push u;

3 while queue not empty do
4 u← pop;
5 determine childclose(u) by DFS;
6 x← max over scoremax of reported u-children;
7 y ←∑︁

over childclose of close u-children;
8 if u is vm-neighbor then
9 scoremax(u)← max{x, y}+ 1;

10 else
11 scoremax(u)← max{x, y} − 1;

12 if childclose(u) > 0 or scoremax(u) > 0 then
13 report u to p(u);
14 push p(u);

15 Best vm-parent corresponds to scoremax(r);
Algorithm 9.3: Pseudo-Code for moving vm

later consider Ta for a node a that is an ancestor of u, each of these parents will incur the
same number of edits in Ta \ Tu. Thus, we can recursively first choose the best candidate
in Tu and then continue with the subtrees of parents of u until we reach Tr and obtain
the best candidate for the whole graph.

We denote by scoremax(u) the maximum number of vm-neighbors minus non-vm-
neighbors in Xw restricted to Tu over all potential parents w in Tu. We determine
in a bottom-up fashion all scoremax(u) that are greater than 0. The value in scoremax(r)
of the root r then yields the best choice for the whole graph as its “subtree” encompasses
the whole graph. As isolating vm, i.e., choosing r as parent and not adopting any children,
gives a score of 0, it suffices to consider nodes with scoremax(u) > 0 to determine the best
choice. If u itself is the best parent in Tu then the value of scoremax(u) is the sum over the
closenesses of all of u’s close children ±1. If the subtree Tc of a child c of u contains the
best parent then scoremax(u) = scoremax(c)± 1. The ±1 depends on whether u is a vm-
neighbor. Unfortunately, not only potential parents u have a scoremax(u) > 0. However,
we know that every node u with scoremax(u) > 0 is a vm-neighbor or has a child w with
scoremax(w) > 0. We can therefore process all scoremax values in a similar bottom-up
way using a tree-depth ordered priority queue as we used to compute childclose. As both
bottom-up procedures have the same structure we can interweave them as optimization
and use only a single queue. The algorithm is illustrated in Algorithm 9.3 in pseudo-code
form. Whenever we propagate scoremax to a parent node, we can also propagate which
node is the best parent.

After we determined the best parent, we need to determine which children should be
attached to vm. For this, we can simply visit all previously visited nodes (we can store
them) and for each node c of them determine if it is a close child of the best parent by
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9.5 The Quasi-Threshold Mover Algorithm

testing if childclose(c) > 0 and if the parent of c is the best parent.

9.5.4 Proof of Correctness

In this section, we prove that the algorithm presented in the previous sections is actually
correct, i.e., computes the correct parent and children to attach. We start by showing
that we process all close children and correctly set their scores.

Proposition 9.1. Either childclose(u) is the number of neighbors of vm in the subtree of
u minus the number of non-neighbors, or there are more non-neighbors than neighbors
in the subtree of u. In the latter case, if u has been processed by Algorithm 9.3, then
childclose(u) = −1 and DFSnext(u) points to a node in the subtree of u such that −1 is
the number of neighbors minus the number of non-neighbors of vm among all nodes in
DFS order between u and DFSnext(u), both included, as well as all nodes in subtrees of
close children of u that are in the DFS order after DFSnext(u).

Proof. First, we show that all nodes u with childclose(u) ≥ 0 are part of the queue
and thus processed by Algorithm 9.3. Only neighbors of vm and their ancestors can
have childclose(u) ≥ 0. All neighbors of vm are processed (line 2). For non-neighbors u,
childclose(u) ≥ 0 means that one of their children c is close, i.e. has childclose(c) > 0. As
in this case c inserts p(c) into the queue (line 14) also in this case u will be processed.
Therefore, when the algorithm terminates, all nodes u with childclose(u) ≥ 0 have been
processed.

To prove the claim it thus suffices to show that for a processed node u the value of
childclose(u) is correctly determined by Algorithm 9.2. We do this by structural induction.

We first show that the claim is true if no node below u has been processed. This means
that u is a neighbor of vm, as only neighbors of vm and parents of processed nodes are
inserted into the queue. Then u has no close children, thus initially childclose(u) = 1 after
line 4. If u is a leaf, we are finished and childclose(u) is correctly set to 1. Otherwise, we
start the DFS. We are always in the first case of the if-condition as no node below u has
been processed. For every node we visit in line 9, we decrease childclose(u) by 1 in line 11.
We only set the DFSnext pointer of a node that is processed in line 14, thus all DFSnext
pointers below u point to themselves, thus line 12 does nothing. If there is only one node
below u, our DFS terminates and childclose(u) is correctly set to 0. Otherwise, we stop
the DFS if childclose(u) < 0, i.e., as we always decrement by 1, if childclose(u) = −1 and
set DFSnext(u) to the currently considered node x. As there are only non-neighbors below
u, we correctly decremented the counter for all of them including x as claimed.

We now assume that the claim holds for all processed nodes below u. All nodes inserted
into the queue have a smaller depth than already processed nodes. Thus, as we showed
before, all nodes x below u with childclose(x) ≥ 0 have already been processed. In the
first lines of Algorithm 9.2, we already consider all scores of close children as well as u
itself. If now childclose(u) < 0, it must be −1 as we only subtracted 1 and close children
can only contribute positive values. We then correctly skip the DFS as only close children
contain more neighbors than non-neighbors, children that are not close can thus never
increase the score. The DFS pointer DFSnext(u) correctly remains at u as this score only
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considers nodes in the subtrees of close children and u itself. Now consider the case that
we start a DFS. Whenever we visit a node x, there are three possible cases:

1. Node x has been processed and childclose(x) ≥ 0. In this case, we know that its
score is correct by our induction hypothesis. Further, childclose(x) is either 0 and
does not contribute to the score or x is a close child and childclose(x) has already
been considered in the score of its parent, either by our induction hypothesis or
because of line 1. Therefore, these nodes are correctly skipped in line 18.

2. Node x has not been processed yet. This means x is a not a neighbor of vm
(otherwise it would have been processed). Thus, we correctly decrease childclose(u)
to account for this non-neighbor. Then we can continue the DFS.

3. Node x has been processed and childclose(x) < 0. In this case we know from the
induction hypothesis that childclose(x) = −1 and that this is exactly the number of
neighbors minus the number of non-neighbors of vm of all nodes in DFS order from
x up to DFSnext(x), including both, and all nodes in subtrees of children c of x with
childclose(c) > −1, which we ignore anyway in the DFS. We decrease childclose(u)
by 1 which correctly considers the nodes between x and DFSnext(x) in DFS order,
both included. Then we jump to DFSnext(x) and do not visit DFSnext(x) but the
next node in DFS order which is correct as DFSnext(x) has already been considered.

When the DFS ends, either we have visited and thus computed the correct score for all
descendants of u or the DFS ended with childclose(u) = −1 and we store the location of
the last visited node in DFSnext(u). In the latter case, all nodes up to this point have
been considered as we have outlined before. Therefore, the claim is now also true for
u.

In order to not to need to evaluate all nodes as potential parents we make use of the
following observation:

Proposition 9.2. Only nodes with close children and neighbors of vm need to be considered
as parents of vm.

Proof. We show this by contradiction. Assume that the best parent u has no close
children and is not a neighbor of vm. Thus attaching children of u to vm cannot decrease
the number of needed edits, so we can assume that no children will be attached. Then
choosing p(u) as parent of vm will save one edit as u is no neighbor of vm. This is a
contradiction to the assumption that u is the best parent.

So far we have only evaluated edits below nodes and identified all possible parents
which are also processed as we have established before. If we want to know for a potential
parent u how many edits we can save by moving some of its children to vm this is the sum
of childclose(c) for all close children of u. The part that is still missing is the evaluation of
the edits above a potential parent u.
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Theorem 9.3. Consider the subtree Tu of a node u. Then for the subgraph of Tu,
either scoremax(u) < 0 or u has been processed and scoremax(u) is correctly computed by
Algorithm 9.3.

Proof. First, we show that u is processed if scoremax(u) ≥ 0. There are two possibilities:
Either u is the best parent or we a node below u is the best parent. In the first case by
Proposition 9.2 either u is a neighbor of vm or u has a close child which means that u
is processed. In the second case, let b be the best parent in Tu, more precisely, b is a
node that has scoremax(u) vm-neighbors minus non-vm-neighbors in Xb restricted to Tu

and is closest to u, i.e., there is no ancestor of b in Tu that has the same score. Again,
by Proposition 9.2, we know that b is processed. Then the parent p(b) is processed and
scoremax(p(b)) ≥ scoremax(b) − 1 as p(b) has at most one non-vm-neighbor more than
b. This continues until we either reach u and we are done, or scoremax(a) = 0 for some
node on the path between b and u, a ̸= b and a ̸= u. However, then p(a) is at least as
good as a parent as b, as Xb contains as many vm-neighbors as non-vm-neighbors in Ta

as indicated by scoremax(a) = 0 and thus the score of p(a) is at least as good. This is a
contradiction to b being the best parent closest to u and thus shows that there is no node
with scoremax(a) = 0 on the path between b and u. This means all nodes between b and
u are processed.

The proof for the correctness of the calculation of scoremax is given by structural
induction on the processed nodes of the tree skeleton. We start with the initial step which
is a node u below which no node has been processed. This means u is a neighbor of vm.
Further, no nodes reported to u and u has no close children, thus x and y are 0. Thus,
scoremax(u) = 1 which is correct as u as sole neighbor of vm in u is the best parent and
saves one edit.

For the induction we can assume that the theorem holds for all processed children of
u. If u is a vm-neighbor or not has the same influence for all nodes we could choose in
Tu. Therefore, we do not need to reconsider any decisions that were made below u. The
only decision is thus whether u is the best parent or if the best parent in the subtree of a
child c of u is the best parent. In the first case, the sum of childclose of all close children
of u is the number of neighbors minus non-neighbors of vm we need to consider apart
from u. In the second case, the maximum over all scoremax(c) for all reported children c
of u gives us the number of neighbors minus non-neighbors apart from u. Thus, picking
the maximum of x and y in lines 9 and 11 is correct. In the second case we choose the
candidate of the child that had the maximum score. We then correctly add or subtract 1
from this score depending on whether u is a vm-neighbor or not, as this saves one edit or
requires an additional edit.

As Tr is the whole graph and r is processed as a neighbor of vm, the best solution of
the whole graph is available at r. Therefore, the QTM algorithm optimally solves the
problem of finding a new parent and a set of its children that shall be adopted.
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9.5.5 Proof of the Running Time

After showing the correctness of the algorithm, we will now show that the running time
is indeed O(m log(∆)) per iteration and amortized O(d log(d)) per node.

During the whole algorithm we maintain a depth value for each node that specifies the
depth in the forest at which the node is located. Whenever we move a node, we update
these depth values. This involves decreasing the depth values of all descendants of the
node in its original position and increasing the depth values of all descendants of the node
at the new position. Unfortunately it is not obvious that this is possible in the claimed
running time as a node vm might have more than O(deg(vm)) descendants.

Note that a node is adjacent to all its descendants and ancestors in the edited graph.
This means that every ancestor or descendant that is not adjacent to the node causes an
insert. Therefore, vm must be a neighbor of at least half of the ancestors and descendants
at the target position as otherwise choosing r as parent would have been better. This
means that updating the depth values at the destination is possible in O(d) time.

For the update of the values in the original position we need a different, more complicated
argument. First of all we assume that initially the total number of edits never exceeds
the number of edges as otherwise we could simply delete all edges and get fewer edits1.
For amortizing the number of needed edits of nodes that have more descendants and
ancestors than their degree we give each node tokens for all their neighbors in the edited
graph. As the number of edits is at most m the number of initially distributed tokens is
in O(m). Whenever we move a node vm, it generates tokens for all its new neighbors and
itself, i.e. in total at most 2 · deg(vm) tokens. Therefore, a node has always a token for
each of its ancestors and descendants and can use these tokens to account for updating
the depth of its previous descendants. In each round only O(m) tokens are generated,
therefore updating the depth values of a node is in amortized time O(d) per node and
O(m) per iteration.

Using the same argument we can also account for the time that is needed for updating
the pointers of each node to its parents and children and for counting the number of
initially needed or saved edits.

What we have shown so far means that once we know the best destination we can move
a node and update all depth values in time O(d) amortized over an iteration where all
nodes are moved.

The remaining claim is that we can determine the new parent and the new children in
time O(d log(d)) per node. More precisely we will show that only O(d) nodes are inserted
in the queue and we need amortized constant time for processing a node. A standard
max-heap that needs O(log(n)) time per operation can be used for the implementation of
the queue.

We maintain scores per node, in particular childclose, scoremax, DFSnext and a flag if a
node was processed. As we only set them for processed nodes, it suffices to initialize them
once and then reset them for processed nodes. Thus, they do not require any additional

1Our experiments show that this is not true when using the initialization heuristic and thus the running
time in practice might be higher in the first round when using the initialization heuristic.
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running time.
The basic idea of the main proof is that each neighbor of vm gets two tokens that it can

use to visit descendants or distribute to ancestors that can use those tokens themselves.
This is represented by the fact that we increase childclose(u) and scoremax(u) by 1 if u is
a neighbor of vm. All nodes that are processed are neighbors of vm or have a child c with
childclose(c) > 0 or scoremax(c) > 0. When we process a node u that is no vm-neighbor,
we consume tokens that are passed to u from close children and from children with
scoremax(c) > 0. At the end the rest of the tokens is passed to the parent.

First we consider Algorithm 9.3 and ignore the computation of childclose(u). For
all processed nodes u, childclose(u) ≤ scoremax(u). This is because in line 9 and 11,
scoremax(u) is set to the maximum of x and y plus/minus 1. However, y plus/minus 1
is also the initialization of childclose(u), and after this initialization, childclose(u) is only
decreased. Thus, the sum of scoremax(c) for all reported u-children is an upper bound for
y. Regardless if x > y or not, we can therefore always attribute the tokens in scoremax(u)
and the token consumed in line 11 to tokens that have been passed to u as tokens from
scoremax(c) for some children c of u.

Next, we consider the computation of childclose(u) in Algorithm 9.2. If u has no close
children and is not a vm neighbor, we do not start a DFS and attribute the constant
amount of work done in Algorithm 9.2 to the token consumed in Algorithm 9.3. If u is
no vm-neighbor, we consume a token for processing u in line 6. Apart from the DFS only
constant work is done per node, so consuming one token is enough for that.

For each visited node in the DFS only a constant amount of work is needed as traversing
the tree, i.e. we attribute possibly traversing a node multiple times to find the next node
to the first visit. Without keeping a stack this needs a tree structure where we can
determine the next child c′ after a child c of a node u in constant time. This can be
implemented by storing in node c the position of c in the array (or list) of children in
p(c). This also allows deleting entries in the children list in constant time (in an array
deletion can be implemented as swap with the last child).

Whenever we visit a node that has not been processed yet or that has childclose(x) < 0,
we consume one token of childclose(u). When this is not the case, i.e. childclose(x) > −1
and we thus skip x, x has been processed already and we account our visiting of x to the
processing of x. This is okay as we skip each node only once during a DFS: After the
DFS starting at u has finished, either childclose(u) > −1 and an upcoming DFS will not
descend into the subtree of u anymore or the DFS stopped in line 13 and thus DFSnext(u)
has been set to the last visited node (which is not a skipped node). In the latter case,
when we visit u in an upcoming DFS, this DFS will directly jump to DFSnext(u) after
visiting u and thus no skipped node of the DFS of u will be visited again.

Note that by decreasing childclose(u) to −1 we actually consume one more token than
we had. However, for this last step we only need a constant amount of work which can be
accounted for by the processing time of u.

This means that in total we only process O(d) nodes and do amortized constant work
per node as we have claimed.
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9.6 Experimental Evaluation

We evaluate our QTM algorithm on the small instances used by Nastos and Gao [NG13],
on larger synthetic graphs and large real-world social networks and web graphs. We
measured both the number of edits needed and the required running time. For each graph
we also report the lower bound b of necessary edits that we obtained using our lower
bound algorithm. We implemented the algorithms in C++ using NetworKit [SSM16],
our implementation is available online2. The implementation of the lower bound uses
robin hood hashing3 [Cel86]. All experiments were performed on an Intel Core i7-2600K
CPU with 32GB RAM. We ran all algorithms ten times with ten different random node
id permutations.

9.6.1 Comparison with Nastos and Gao’s Results

We compare QTM to the algorithm by Nastos and Gao on the five social networks they
already considered [NG13], namely karate [Zac77], grass_web [DHC95], lesmis [Knu93],
dolphins [Lus+04], and football [GN02] (see Section 2.2 for an introduction). Nastos
and Gao [NG13] did not report any running times. We therefore re-implemented their
algorithm as described in Section 9.3. Similar to their implementation we use a simple
exact bounded search tree (BST) algorithm for the last 10 edits. This bounded search tree
algorithm uses none of the optimizations described in Chapter 10. In Table 9.1 we report
the minimum and average number of edits over ten runs. Our implementation of their
algorithm never needs more edits than they reported4. For two of the graphs (dolphins
and lesmis) our implementation needs slightly fewer edits due to different tie-breaking
rules.

For all but one graph QTM is at least as good as the algorithm of Nastos and Gao in
terms of edits. QTM needs only one more edit than Nastos and Gao for the grass_web
graph. The QTM algorithm is much faster than their algorithm, it needs at most 2.5
milliseconds while the heuristic of Nastos and Gao needs up to 6 seconds without bounded
search tree and almost 17 seconds with bounded search tree. The number of iterations
necessary is at most 5. As the last round only checks whether we are finished four
iterations would be enough.

9.6.2 Large Graphs

We use a set of seven social networks and four web graphs to examine the scalability and
the quality of QTM. Our benchmark set consists of two Facebook graphs [TMP12] (see
also Section 2.2.3) and five SNAP graphs [LK14] as social networks (see also Section 2.2.2)
and four web graphs from the 10th DIMACS Implementation Challenge [Bad+13; Bol+04;
Bol+11; BV04] (see also Section 2.2.1).

2https://github.com/michitux/networkit/tree/upstream/qtm
3https://github.com/martinus/robin-hood-hashing
4Except on Karate, where they report 20 due to a typo. They also need 21 edits. [Nas15]
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Table 9.1: Comparison of QTM and [NG13]. We report n and m, the lower bound b, the
number of edits (as minimum, mean and standard deviation), the mean and
maximum of number of QTM iterations, and running times in ms.

Name n m b Algorithm Edits Iterations Time [ms]
min mean std mean max mean std

dolphins 62 159 46
QTM 72 74.1 1.1 2.7 4.0 0.6 0.1
NG w/ BST 73 74.7 0.9 - - 15 594.0 2 019.0
NG w/o BST 73 74.8 0.8 - - 301.3 4.0

football 115 613 146
QTM 251 254.3 2.7 3.5 4.0 2.5 0.4
NG w/ BST 255 255.0 0.0 - - 16 623.3 3 640.6
NG w/o BST 255 255.0 0.0 - - 6 234.6 37.7

grass
web 86 113 21

QTM 35 35.2 0.4 2.0 2.0 0.5 0.1
NG w/ BST 34 34.6 0.5 - - 13 020.0 3 909.8
NG w/o BST 38 38.0 0.0 - - 184.6 1.2

karate 34 78 17
QTM 21 21.2 0.4 2.0 2.0 0.4 0.1
NG w/ BST 21 21.0 0.0 - - 9 676.6 607.4
NG w/o BST 21 21.0 0.0 - - 28.1 0.3

lesmis 77 254 43
QTM 60 60.5 0.5 3.3 5.0 1.4 0.3
NG w/ BST 60 60.8 1.0 - - 16 919.1 3 487.7
NG w/o BST 60 77.1 32.4 - - 625.0 226.4

First, we consider the lower bounds in Table 9.2. Apart from the size of the graphs we
report the lower bound and the running time of the lower bound calculation. Both for
running times and the size of the bounds we report the average and maximum over ten
different node id permutations. The graphs are sorted by the number of edges m. The
running times clearly show that the running time does not only depend on m but also on
the degrees, i.e. graphs with a lower number of nodes but a comparable number of edges
have a higher running time. The average and the maximum do not differ significantly.

It is interesting to see that while for the social networks we are almost always close to
the maximum bound of m/3, for the web graphs the bounds are much smaller, frequently
less than m/10.

In Table 9.3, we evaluate two variants of QTM. The first is the standard variant which
starts with a non-trivial skeleton obtained by the heuristic described in Section 9.4. The
second variant starts with a trivial skeleton where every node is a root. We compare these
two variants to determine which part of our algorithm has which influence on the final
result. For the standard variant we report the number of edits needed before any node is
moved. With a trivial skeleton this number is meaningless and thus we report the number
of edits after one round. All other measures are straightforward and are explained in the
table’s caption.

Even though for some of the graphs the mover needs more than 20 iterations to
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Table 9.2: Size and running time of the lower bounds on our benchmark set of social
networks and web graphs.

Name n m Lower Bound Time [s]
mean max mean max

So
ci

al
N

et
w

or
ks

Caltech 769 16 656 5 323.3 5 362 0.0 0.0
amazon 334 863 925 872 228 062.3 228 231 0.4 0.4
dblp 317 080 1 049 866 230 119.3 230 354 0.5 0.5
Penn 41 554 1 362 229 449 398.5 449 570 2.9 2.9
youtube 1 134 890 2 987 624 883 955.4 886 687 16.5 18.3
lj 3 997 962 34 681 189 10 703 423.6 10 704 794 82.6 83.1
orkut 3 072 441 117 185 083 38 757 018.6 38 759 648 917.1 1150.0

W
eb

G
ra

ph
s cnr-2000 325 557 2 738 969 228 084.2 229 161 2.8 2.9

in-2004 1 382 908 13 591 473 817 068.3 818 550 20.4 21.2
eu-2005 862 664 16 138 468 2 281 512.0 2 285 855 52.6 55.1
uk-2002 18 520 486 261 787 258 18 633 980.6 18 641 948 409.0 437.7

terminate, the results do not change significantly compared to the results after round
4. In practice we can thus stop after 4 rounds without incurring a significant quality
penalty. It is interesting to see that for some of the social networks the initialization
algorithm produces a skeleton that induces more than m edits (e.g. in the case of the
“Penn” graph) but still the results are always slightly better than with a trivial initial
skeleton. This is even true when we do not abort moving after 4 rounds. For the web
graphs, the non-trivial initial skeleton does not seem to be useful for some graphs. It is
not only that the initial number of edits is much higher than the finally needed number
of edits, for two of the four web graphs also the number of edits needed in the end is
slightly higher than if a trivial initial skeleton was used.

While the QTM algorithm needs to edit between approximately 50 and 80% of the
edges of the social networks, the edits of the web graphs are only between 10 and 25%
of the edges. This suggests that quasi-threshold graphs might be a good model for web
graphs while for social networks they represent only a core of the graph that is hidden by
a lot of noise. For the web graphs, the heuristic never needs more than twice as many
edits as the lower bound indicates. As most of the bounds on the social networks are close
to the limit of m/3, it is not surprising that in particular on the larger graphs they are not
as close to the actually needed edits. While our bounds thus confirm that these graphs are
far from quasi-threshold graphs, there is still the possibility that quasi-threshold graphs
significantly closer than those found by QTM exist.

Concerning the running time one can clearly see that QTM is scalable and suitable for
large real-world networks.
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Table 9.3: Results for large real-world graphs. Number of nodes n and edges m, the
lower bound b and the number of edits are reported in thousands. Column “I”
indicates whether we start with a trivial skeleton or not. • indicates an initial
skeleton as described in Section 9.4 and ◦ indicates a trivial skeleton. Edits
and running time are reported for a maximum number of 0 (respectively 1 for
a trivial initial skeleton), 4 and ∞ iterations. For the latter, the number of
actually needed iterations is reported as “It”. Edits, iterations and running
time are the average over the ten runs.

Name n [K] b [K] I Edits [K] It Time [s]
m [K] 0/1 4 ∞ ∞ 0/1 4 ∞

So
ci

al
N

et
w

or
ks

Caltech 0.77 5.4 • 15.8 11.6 11.6 8.5 0.0 0.0 0.1
16.66 ◦ 12.6 11.7 11.6 9.4 0.0 0.0 0.1

amazon 335 228 • 495 392 392 7.2 0.3 5.5 9.3
926 ◦ 433 403 403 8.9 1.3 4.9 10.7

dblp 317 230 • 478 415 415 7.2 0.4 5.8 9.9
1 050 ◦ 444 424 423 9.0 1.4 5.2 11.5

Penn 41.6 450 • 1 499 1 129 1 127 14.4 0.6 4.2 13.5
1 362 ◦ 1 174 1 133 1 129 16.2 1.0 3.7 14.4

youtube 1 135 887 • 2 169 1 961 1 961 9.8 1.4 31.3 73.6
2 988 ◦ 2 007 1 983 1 983 10.0 7.1 28.9 72.7

lj 3 998 10 705 • 32 451 25 607 25 577 18.8 23.5 241.9 1 036.0
34 681 ◦ 26 794 25 803 25 749 19.9 58.3 225.9 1 101.3

orkut 3 072 38 760 • 133 086 103 426 103 278 24.2 115.2 866.4 4 601.3
117 185 ◦ 106 367 103 786 103 507 30.2 187.9 738.4 5 538.5

W
eb

G
ra

ph
s

cnr-2000 326 229 • 1 028 409 407 11.2 0.8 12.8 33.8
2 739 ◦ 502 410 409 10.7 3.2 11.8 30.8

in-2004 1 383 819 • 2 700 1 402 1 401 11.0 7.9 72.4 182.3
13 591 ◦ 1 909 1 392 1 389 13.5 16.6 65.0 217.6

eu-2005 863 2 286 • 7 613 3 917 3 906 13.7 6.9 90.7 287.7
16 139 ◦ 4 690 3 919 3 910 14.5 22.6 85.6 303.5

uk-2002 18 520 18 642 • 68 969 31 218 31 178 19.1 200.6 1 638.0 6 875.5
261 787 ◦ 42 193 31 092 31 042 22.3 399.8 1 609.6 8 651.8
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9.6.3 Synthetic Graphs

As we cannot show for our real-world networks that the edit distance that we get is close
to the optimum we generated synthetic graphs by generating quasi-threshold graphs and
applying random edits to these graphs.

We generate each connected component of the quasi-threshold graph as reachability
graph of a rooted tree. For generating a tree, we set v0 as the root node and each node
vi ∈ {v1, . . . , vn−1} chooses a parent in {v0, . . . , vi−1} uniformly at random.

Many real-world networks including social networks exhibit a community size distribu-
tion that is similar to a power law distribution [Lan+10]. Therefore, we use a power law
distribution Pld ([10, 0.2 · n), 1) for the community sizes. For this, we generate trees of
the respective sizes.

For k edits we insert 0.8 · k new edges and delete 0.2 · k old edges of the quasi-threshold
graph chosen uniformly at random. Thus, with these edits applied, the maximum editing
distance to the original graph is k. We use more insertions than deletions as preliminary
experiments on real-world networks showed that during editing a lot more edges are
deleted than inserted.

In Table 9.4, we show the results for the generated graphs. The first column shows the
number of random edits we performed. For all generated graphs, our QTM algorithm
finds a quasi-threshold graph that is at least as close as the original one. Omitting the
initialization gives much worse results for low numbers of edits and slightly worse results
for higher numbers of edits. The lower bound is close to the generated and found number
of edits for low numbers of edits, for very high numbers of edits it is close to its theoretical
maximum, m/3.

This shows that the initialization algorithm from Section 9.4 is necessary to achieve
good quality on graphs that need only few edits. As it seems to be beneficial for most
graphs and not very bad for the rest, we suggest using the initialization algorithm for all
graphs.

All in all this shows that the QTM algorithm finds edits that are reasonable but it
depends on a good initialization heuristic. An interesting direction for future work would
be to make QTM more robust in this regard by implementing strategies to escape such
local minima.

9.6.4 Case Study: Caltech

The main application of our work is community detection. While a thorough experimental
evaluation of its usefulness in this context is future work we want to give a promising
outlook. Figure 9.3 depicts the edited Caltech university Facebook network from [TMP12].
As described in Section 2.2.3, nodes are students and edges are friendships on Facebook.
We color the nodes by the dormitories of the students, black indicates that the dormitory
is not known. The picture shows that our algorithm succeeds at identifying some of this
structure. While some dormitories are clearly separated, in some cases nodes of several
dormitories are joined, indicating some kind of overlapping structure.
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Table 9.4: Results for the generated graphs
Rand n b I Edits It Time [s]
Ed. m 0/1 4 ∞ ∞ 0/1 4 ∞

20 100 20 • 34.4 20.0 20.0 2.4 0.0 0.0 0.0
269 ◦ 36.7 21.4 21.4 3.9 0.0 0.0 0.0

400 100 159 • 420.5 352.0 351.9 3.9 0.0 0.0 0.0
497 ◦ 372.0 363.5 363.5 3.9 0.0 0.0 0.0

20 1 000 19 • 38.0 19.0 19.0 2.0 0.0 0.0 0.0
4 030 ◦ 166.4 21.7 21.7 4.1 0.0 0.0 0.0

400 1 000 377 • 585.3 391.2 391.2 3.4 0.0 0.0 0.0
4 258 ◦ 594.4 393.6 393.6 4.4 0.0 0.0 0.0

8K 1 000 2 876 • 8 268 7 219 7 218.5 5.2 0.0 0.0 0.0
8 818 ◦ 7 647 7 511 7 490.6 8.3 0.0 0.0 0.0

20 10 000 20 • 47.8 20.0 20.0 2.0 0.0 0.1 0.1
66 081 ◦ 1 669 69.8 69.8 4.6 0.1 0.2 0.2

400 10 000 390 • 849.3 390.6 390.6 3.2 0.0 0.2 0.2
66 309 ◦ 2 143 440.7 440.7 4.8 0.1 0.2 0.2

8K 10 000 7 526 • 11 626 7 902 7 902 3.9 0.0 0.2 0.2
70 869 ◦ 10 184 7 912 7 911 5.1 0.1 0.2 0.3

160K 10 000 53 451 • 157 114 144 885 144 880 5.8 0.0 0.6 0.8
162 069 ◦ 150 227 148 206 147 892 9.7 0.1 0.5 1.2

20 100 000 20 • 64.3 20.0 20.0 2.0 0.2 1.7 1.7
833 565 ◦ 17 785 529.9 529.6 5.3 0.8 2.8 3.7

400 100 000 390 • 1 047 391.3 391.3 3.2 0.2 2.6 2.6
833 793 ◦ 18 319 900.0 899.4 5.5 0.8 2.9 3.9

8K 100 000 7 851 • 18 550 7 889 7 889 3.4 0.2 2.8 2.8
838 353 ◦ 26 144 8 381 8 381 5.4 0.8 2.8 3.8

160K 100 000 146 268 • 199 558 158 021 158 021 4.6 0.2 3.5 4.1
929 553 ◦ 193 071 158 031 158 025 6.1 1.0 3.3 4.9

3.2M 100 000 912 228 • 2 728 804 2 647 566 2 647 564 5.8 1.1 12.5 16.8
2 753 553 ◦ 2 655 538 2 654 738 2 654 736 5.7 3.0 11.9 16.9

20 1 000 000 20 • 68.9 20.0 20.0 2.2 3.6 32.5 32.3
10 648 647 ◦ 181 540 5 116 5 111 6.0 16.4 54.3 79.7

400 1 000 000 395 • 1 161 395.1 395.1 3.0 3.3 43.8 43.8
10 648 875 ◦ 182 248 5 523 5 518 6.1 15.9 52.9 78.8

8K 1 000 000 7 906 • 25 085 7 912 7 912 3.5 3.4 50.1 50.0
10 653 435 ◦ 189 504 13 006 13 001 6.0 16.6 53.4 78.0

160K 1 000 000 157 291 • 369 501 158 808 158 808 4.1 3.5 57.5 58.8
10 744 635 ◦ 346 462 163 337 163 330 6.4 17.4 54.8 84.5

3.2M 1 000 000 2 793 894 • 3 747 793 3 163 277 3 163 273 5.8 4.7 71.8 101.2
12 568 635 ◦ 3 820 935 3 164 175 3 163 848 7.5 26.2 78.2 134.7
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Figure 9.3: Edited Caltech network, nodes colored by dormitories. Black indicates that
the dormitory information has not been specified.
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9.7 Conclusion

We have introduced Quasi-Threshold Mover (QTM), the first heuristic algorithm to solve
the quasi-threshold editing problem in practice for large graphs. As a side result we have
presented a simple certifying linear-time algorithm for the quasi-threshold recognition
problem. A variant of our recognition algorithm is also used as initialization for the
QTM algorithm. In an extensive experimental study with large real world networks
we have shown that it scales very well in practice. We generated graphs by applying
random edits to quasi-threshold graphs. QTM succeeds on these random graphs and
often even finds other quasi-threshold graphs that are closer to the edited graph than the
original quasi-threshold graph. A surprising result is that web graphs are much closer
to quasi-threshold graphs than social networks, for which quasi-threshold graphs were
introduced as community detection method.

Our QTM algorithm can be adapted to consider edit costs per node pair. The actual
running time then depends on the actual costs and might be quadratic per round in
the worst case. It is the subject of future work to determine if the running time and
editing distance of this variant is reasonable in practice. Recently, for the class of P4-free
graphs, finding an inclusion minimal set of edits has been proposed as a fast alternative
to exact solutions [Cre20]. As their approach is conceptually similar to QTM, we are
investigating if a variant of QTM could be used for inclusion minimal quasi-threshold
editing. Further, our QTM algorithm might be adapted for the more restricted problem
of threshold editing which is NP-hard as well [Dra+15].

Concerning the running time, we are currently investigating if replacing the priority
queue by a bucket priority queue is possible to reduce the running time per round to
O(n+m). Keys in the priority queue are depths in the skeleton forest and might thus be
as high as n while we can only spend O(deg(vm)) time for moving node vm, which is why
we did not previously consider this option. However, it turns out that for a node vm, we
only need to consider neighbors up to a depth of 2 · deg(vm). This is because if we want
to keep a node u as neighbor, in the edited graph vm must be connected to all nodes
above u in the skeleton forest. If the depth of u is more than 2 · deg(vm), this incurs more
than deg(vm) edits as there are more than deg(vm) non-vm-neighbors above u and thus
the option to delete all edges to vm is better.
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10 Engineering Exact Quasi-Threshold
Editing

This chapter is based on joint work with Lars Gottesbüren, Philipp Schoch, Ben Strasser,
Dorothea Wagner and Sven Zühlsdorf [Got+20b; Got+20a]. We thank James Nastos and
Mark Ortmann for helpful discussions. Compared to the publication, we have shortened
the introduction.

10.1 Introduction

In this chapter we study algorithms to solve editing problems exactly. The distance
between two graphs G and H, with the same node set, is the minimum number of edge
insertions or deletions needed to transform G into H. Given a graph class C and a graph
G, the editing problem asks for a graph H ∈ C closest to G.

While the theoretical part of our study considers any F -free edge editing problem for a
finite set of subgraphs F , our experimental study considers {C4, P4}-free graphs. Our
goal is to improve the running time of exact {C4, P4}-free editing in practice in order to
make it feasible at least for small networks. This allows us to study exact solutions of the
community detection problem and to verify the quality of heuristics.

10.1.1 Our Contribution

In this chapter, we compare two different methods for solving F-free editing problems.
The first is a branch-and-bound FPT algorithm while the second is an ILP. For the FPT
algorithm, we propose a novel lower bound algorithm based on local search heuristics for
independent sets as well as an improved branching strategy. Additionally, we parallelize
our implementation. For the ILP, we engineer several variants of row generation. We
assess the running time improvements of the different optimizations for quasi-threshold
editing on a large benchmark set of 716 graphs that are connected components of a
protein similarity graph. This benchmark set has previously been used to evaluate cluster
editing algorithms [Rah+07; Böc+08]. On 75% of the instances, our improved bounds
and optimized branching choices yield speedups of one to three orders of magnitude for
the FPT algorithm. For the ILP that we solve using Gurobi [Gur20], we are only able to
achieve small speedups. With all optimizations, in the median, the FPT algorithm is twice
as fast as the ILP, even when enumerating all possible optimal solutions exactly once.
Compared with the parallel execution of Gurobi [Gur20], the FPT algorithm achieves
better speedups. Additionally, we evaluate an LP relaxation as lower bound. We prove
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that its bounds are at least as good as our local search bounds. In our experiments,
however, it is too slow to be competitive.

Further, we compare our exact solutions with heuristic solutions found by QTM [Bra+15b],
see Chapter 9. It turns out that many heuristic solutions are exact and all but one of
them are close to the exact solution. Additionally, we are able to solve four out of the five
social networks considered in [NG13], of which only one was solved previously [Nas15].
For those social networks, we provide a detailed analysis of the solution space. We show
that for none of them there is just a single solution. For one network, we show that
quasi-threshold editing gives over 2000 different community structures.

10.1.2 Outline

We start by introducing the preliminaries in Section 10.2. We describe the ILP formulation
and the optimizations we apply to it in Section 10.3. In Section 10.4, we then intro-
duce the branch-and-bound FPT algorithm including existing and novel optimizations.
In Section 10.5, we present our experimental setup and evaluation. We conclude in
Section 10.6.

10.2 Preliminaries

All graphs in this chapter are undirected, unweighted, and finite. Further, no graph
has self-loops or multi-edges. A graph G = (VG, EG) consists of n := |VG| nodes and
m := |EG| undirected edges. By EG, we denote the complement of the edges. In the
following, k denotes the maximum number of edits.

10.3 Integer Linear Programming

In this section, we describe an ILP formulation for F-free editing that is based on an
existing formulation for cluster editing [GW89]. Further, we introduce our optimizations
based on row generation and modified constraints to make the ILP practical for small
instances.

For every node pair u, v ∈
(︁
VG
2

)︁
we introduce a variable xuv ∈ {0, 1} which is 1 if the

node pair is an edge in the edited graph and 0 otherwise. We add constraints to ensure
that no forbidden subgraph H ∈ F can be induced in G via an injective node mapping π:

∀H ∈ F ,∀π : VH ↪→ VG :
∑︂

{u,v}∈EH

(1− xπ(u)π(v)) +
∑︂

{u,v}∈EH

xπ(u)π(v) ≥ 1 (10.1)

The objective minimizes the number of edits:

min
∑︂

{u,v}∈EG

(1− xuv) +
∑︂

{u,v}∈EG

xuv (10.2)
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10.3.1 Row Generation

Generating all of the above-mentioned constraints is infeasible, even for small instances.
Row generation (also called lazy constraints) aims to speed up ILP solvers by starting with
a small subset of the constraints and subsequently adding constraints that are violated in
intermediate solutions. We start with constraints for forbidden subgraphs in the input
graph. In our experiments, we consider two options to add constraints violated in an
intermediate solution: adding either all violated constraints or only one.

The ILP solver uses LP relaxations to prune its search. These can be strengthened
by adding constraints from Equation 10.1 that are violated by the LP relaxation. We
generate constraints in three steps. First, we consider each node pair {u, v} for which the
relaxation solution has a value different from the input graph. We edit it, then enumerate
the forbidden subgraph embeddings containing u and v, add the constraint that is most
violated (i.e., whose left side is furthest below 1) and then revert the edit. Ties are broken
uniformly at random. Second, we apply the same procedure to the best heuristic solution
found so far. Third, we round the LP solution, i.e., an edge exists iff the corresponding
variable is greater than 0.5. We then list forbidden subgraph embeddings in this rounded
solution and add the corresponding most violated constraint if there is any. The listing
skips forbidden subgraphs for which the corresponding constraint has already been added.

10.3.2 Optimizing Constraints for {C4, P4}-free Editing

If one forbidden subgraph can be transformed into another by a single edit, we can omit
a node pair from the constraint for this subgraph. This is similar to the optimization
described in Section 10.4.2. For a P4, this is the node pair consisting of the two degree-one
nodes. For a C4, we can omit any one of its four edges. We always consider all four
possibilities, and in the initial constraint generation as well as the basic row generation
variant we add all of them. With this optimization, the constraints for C4s and P4s are
identical.

We can also formulate a constraint for a C4 that explicitly models that two deletions
or one insertion are required:

∀(u1, u2, u3, u4) ∈ V 4
G : 0.5 ·

4∑︂
i=1

(1− xuiui+1) + xu1u3 + xu2u4 ≥ 1 (10.3)

10.4 The FPT Branch-and-Bound Algorithm

The FPT algorithm [Cai96] is a branch-and-bound algorithm. For a given maximum
number of edits k, it either reports that no solution exists or returns a set of k edits.
It works as follows: Find a forbidden subgraph H and branch on all possible edits in
H. As H is induced, only edits in H can destroy it and thus one of these edits must be
part of the solution. The algorithm is then recursively called for each branch with k − 1
remaining edits.
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Denote by p the maximum number of nodes in a forbidden subgraph. Finding H can be
done trivially in time O(np) by enumerating all subgraphs of the required size. For specific
sets of forbidden subgraphs, such as {C4, P4}, this can be improved to O(n+m) [Chu08;
Bra+15b], see also Section 9.4.

Every pair of nodes in H is a valid edit. The branching factor is therefore p · (p− 1)/2.
The depth of the recursion is bounded by the maximum number of edits k. The total
running time is therefore in O(p2k · np) for general families of forbidden subgraphs. For
quasi-threshold editing the running time is O(6k · (n +m)). This can be improved to
O(5k · (n+m)) by applying the optimization described in Section 10.4.2.

For finding the minimum number of edits kopt, the algorithm needs to be executed for
increasing values of k until a solution is returned. For a branching factor of 2 or larger,
the running time of all k < kopt together is at most the running time for kopt. Thus, the
total running time is dominated by the running time for kopt.

In the following, we describe several optimizations to reduce the number of explored
branches in practice. We describe existing techniques for avoiding redundant exploration
of branches (Section 10.4.1), for skipping certain branches (Section 10.4.2) as well as lower
bounds (Section 10.4.3). We introduce a novel local search lower bound (Section 10.4.4),
optimized branching choices (Section 10.4.5), early pruning of branches (Section 10.4.6)
and a simple parallelization (Section 10.4.7). In Appendix 10.7 we provide in-depth
implementation details.

10.4.1 Avoiding Redundancy

Damaschke [Dam08] proposes to block node pairs to list every solution exactly once.
When spawning a search tree node x through editing a node pair, it is neither useful to
undo that edit in the sub-search-tree rooted at x, nor is it useful to perform the edit in
sibling search trees. While this has been introduced for cluster editing, the technique can
be applied to arbitrary F-free editing problems.

Our algorithm maintains a global symmetric n×n-bit matrix. The entries in the matrix
correspond to node pairs. If a bit is set, the corresponding node pair must not be edited
anymore. We refer to these node pairs as blocked. In the following, we describe in detail
how these optimizations that were introduced in [Dam08] work.

No Undo Every solution that edits a node pair twice can be improved by not editing
the node pair at all. We exploit this observation by setting the bit corresponding to the
performed edit when recursing. When ascending from the recursion, we reset the bit. The
same optimization has also been used in [Boh15] and is the basis of efficient branching
rules for cluster editing [Böc+09].

No Redundancy A possible recursion tree is depicted in Figure 10.1. Note how
multiple branches contain the same set of edits, but the edits appear in a different order.

We ensure that every branch enumerates a different set of edits, by unblocking a node
pair only after all sibling edits have been explored. In particular, this ensures that every
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Figure 10.1: Example Recursion Tree. Children are explored from left to right. The “No
Redundancy” optimization prunes the red part.

solution is enumerated exactly once. Consider the first recursion level of the example
in Figure 10.1. The edits are explored in the following order: A, then B, and finally C.
Before descending into the branch of A, we set A’s bit. After ascending from A’s branch
and reverting the corresponding edit, the corresponding bit is not reset. In addition to
A’s bit, we set B’s bit and descend into B’s branch. Finally, we ascend from B’s branch,
leave its bit set, set C’s bit and descend into C’s branch. After all edits in a recursion
level are explored, all bits set in this level are reset, i.e., we reset A’s, B’s and C’s bit.

10.4.2 Skip Forbidden Subgraph Conversion.

Lemma 10.1. If each forbidden subgraph A ∈ F can be transformed into another one
B ∈ F by one edit, the branching factor of the FPT algorithm can be reduced from

(︁
p
2

)︁
to(︁

p
2

)︁
− 1.

There is an edit that transforms a P4 into a C4. Clearly, this edit can be skipped.
Further, there are four edge deletions that transform a C4 into a P4. One of these can
be skipped [NG10]. We can choose which one, but as any pair of two edge deletions
eliminates the forbidden subgraph, skipping more than one of them might eliminate a
necessary branch. Since the branching factor is reduced, this decreases the worst-case
running time from O(6k · (n+m)) to O(5k · (n+m)) for quasi-threshold editing.

10.4.3 Existing Lower Bound Approaches

At each branching node, we have a certain number k of edits left. If we can show that the
graph needs at least k + 1 edits, we do not need to explore further branches below that
node. Lower bounds have been used for cluster editing [BBK11; HH15] and {P5}-free
editing [Boh15]. Commonly, they are based on an LP relaxation of the ILP [HH15], or on
a disjoint packing argument [Boh15; HH15].

Subgraph Packing. A node-pair disjoint subgraph packing P is a set of induced
forbidden subgraphs that do not share a node pair. As no edit can eliminate more than
one subgraph, |P | is a lower bound on the number of edits required. Taking the previously
mentioned optimizations into account, we can include more subgraphs in P by allowing to
share blocked node pairs, as they cannot be edited. Further, for each forbidden subgraph
a node pair that transforms it into another forbidden subgraph may be shared. In the
case of F = {C4, P4}, the pair of degree-1 nodes of an induced P4 can be shared. For
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C4, we can choose any edge to share, but it remains the same as long as the C4 is in the
packing.

Finding such a packing can be modeled as an independent set problem [HH15]. The
forbidden subgraphs are nodes and every pair of forbidden subgraphs that shares a non-
shareable node pair is connected by an edge. A natural greedy heuristic for independent
sets is to iteratively add the node that has the smallest degree and then remove all its
neighbors from the graph. This can be implemented in linear time by splitting nodes into
buckets according to their degree (see e.g. [ARW12]). This heuristic has also been used to
calculate lower bounds for cluster editing [HH15]. We are not aware of complexity results
of the independent set problem on this special graph class.

In our experiments, we evaluate three bounds based on subgraph packing: 1) A basic
bound that iteratively adds subgraphs to the packing as they are found. 2) An incremental
version of 1) that updates the packing as the graph is modified in the branch-and-bound
algorithm. After applying an edit, we remove the subgraph that contains the edited
node pair. After both editing and blocking, we enumerate and add subgraphs to the
bound until it is maximal. 3) A greedy bound based on the minimum degree heuristic. In
contrast to the first two, this requires storing all forbidden subgraphs. To avoid this in
trivial cases, we first apply 2) to the previous bound and only compute a new packing if
this fails to prune the branch.

LP relaxation. The optimal solution of the LP relaxation provided in Section 10.3
is an upper bound for the node-pair-disjoint packing problem. This can be shown by
considering an LP with just the constraints that correspond to the subgraphs in a packing.
Each subgraph in the packing is a node-induced subgraph of G. Therefore, the terms on
the left side of its corresponding constraint appear in the objective function exactly as
they appear in the constraint, confer Equations 10.1 and 10.2. Each term in the objective
function is at least 0, and each group of terms corresponding to a fulfilled constraint
sums to at least 1. Since the packing is node-pair disjoint, the constraints do not share
any variables and thus groups do not overlap. Therefore, the objective value is at least
the number of subgraphs in the packing. Adding more constraints can only increase the
objective and thus improve the bound. We can also model blocked node pairs by replacing
the corresponding variable by its value. The variables in the constraints are then disjoint
again and thus the same argument applies.

10.4.4 Local Search Lower Bound

We propose a lower bound based on a subgraph packing that is computed using an
adaptation of the 2-improvements local search heuristic [ARW12] for independent sets.
Our local search starts with an initial packing and works in rounds. In each round,
it iterates over all forbidden subgraphs in the packing and tries to replace one by two
forbidden subgraphs. If this is not possible, it tries to replace one by one. Preliminary
experiments have shown that choosing this replacement from those candidates which cover
the fewest other forbidden subgraphs leads to significantly higher bounds than considering
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all candidates. We also found that using this strategy only 70% of the time and otherwise
choosing a random replacement is even better. We repeat this procedure until in five
consecutive rounds only one-by-one replacements were found. We also terminate the
search if the packing remains completely unchanged in a round, or if the packing is
large enough to prune the current branch in the search tree. To make this efficient, we
approximate the number of forbidden subgraphs that are covered by a certain forbidden
subgraph H, by adding up the number of forbidden subgraphs each node pair of H is
part of. For the latter we can efficiently maintain counters.

The initial packing is computed with the basic greedy bound. For recursive calls, we
update the previous bound as discussed above, before employing local search.

10.4.5 Branch on Most Useful Node Pairs

We can choose any forbidden subgraph for branching on its possible edits, e.g., the first
we find. If there is a forbidden subgraph with only one non-blocked node pair, we choose
it, as this will lead to just one recursive call. Otherwise, the first node pair we try to
edit should ideally lead to a solution, or blocking the edit should prune the search. We
propose to prefer forbidden subgraphs whose non-blocked node pairs are part of many
other forbidden subgraphs. Then, a single edit can eliminate many forbidden subgraphs
(possibly leading to a solution) and blocking the node pairs allows adding many subgraphs
to the lower bound. For each forbidden subgraph, we sort its non-blocked node pairs
in decreasing order by the number of forbidden subgraphs that contain the respective
node pair. The edits of the selected forbidden subgraph are also tried in this order. We
select the subgraph to branch on using a lexicographical ordering on these counts. The
last node pair is excluded, as there are no branches left to prune. Additionally, if two
subgraphs have identical count sequences (up to the length of the shorter one), we prefer
the subgraph with the shorter sequence.

10.4.6 Prune Branches Early

Normally, we attempt to prune a branch after applying an edit and descending into
recursion. With the optimization from Section 10.4.1, the edited node pair of a recursive
call remains blocked after returning from recursion. We update the lower bound to
consider this blocked node pair. If the new lower bound already exceeds the remaining
number of edits, we can directly prune all subsequent recursive calls, instead of pruning
them individually. There are two cases for which we skip the bound update to save
running time: If there is only one subsequent recursive call, as we would only prune a
single branch, and if the blocked node pair is only part of a single forbidden subgraph, as
it cannot yield a better lower bound.

10.4.7 Parallelization

The algorithm can be parallelized by letting different cores explore different branches.
Due to our optimizations, not every branch needs the same running time. Therefore, just
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executing the first branches in parallel is not scalable. Instead, we use a simple work
stealing algorithm. Whenever a thread has fully explored its branch, it steals a branch on
the highest available level from another thread and further explores it.

10.5 Experimental Evaluation

In Section 10.7 at the end of this chapter we discuss implementation details. The C++
source code1 of all discussed variants is available online. We use the C++ interface of
Gurobi [Gur20] to solve ILPs and LPs. We evaluate our algorithms on a set of 3964
graphs that are connected components of the COG protein similarity data2 that has
already been used for the evaluation of cluster editing algorithms [Rah+07; Böc+08].
The dataset consists of a similarity matrix for each graph. We treat all non-negative
scores as edges. Unless stated otherwise, we restrict our evaluation to the 716 graphs
that require at least 20 edits. On the 3248 excluded graphs, the maximum running time
is less than 0.43 seconds for the FPT algorithm using our local search lower bound. Of
these graphs, 1666 require no edits at all. Further, we evaluate our algorithms on a
set of 5 small social networks that were already considered by Nastos and Gao [NG13],
namely karate [Zac77], grass_web [DHC95], lesmis [Knu93], dolphins [Lus+04], and
football [GN02], see Section 2.2 for an introduction.

All experiments were performed on systems with two 8-core Intel Xeon E5-2670 (Sandy
Bridge) processors and 64 GB RAM. We set a global time limit of 1000 seconds. Experi-
ments comparing just FPT variants were executed on 16 different node orders, running 16
node orders in parallel. Due to the memory requirements of Gurobi, this is not feasible
for the ILP and the LP bound. For these variants, we run just one instance at a time. For
experiments involving ILP variants, we also limit the experiments to 4 node orders, and,
for better comparability, we run one instance at a time also for the FPT comparison runs
in Figure 10.4. By default, all algorithms terminate at the first found solution, as the ILP
is unable to enumerate solutions. Variants with the suffix -All enumerate all solutions.
Further, variants with the suffix -MT are parallelized using 16 cores.

10.5.1 Variants of the FPT Algorithm

The baseline branching strategy -F uses the first found forbidden subgraph. Our Most
branching strategy from Section 10.4.5 is denoted by -M, additional early pruning by
-MP. The basic greedy bound is denoted by -G, the incremental update bound by -U, the
min-degree heuristic by -MD, our local search lower bound by -LS, and LP relaxations
by -LP. The comparison includes the nine variants FPT-G-F-All, FPT-G-MP-All, FPT-U-
MP-All, FPT-MD-F-All, FPT-MD-MP-All, FPT-LP-MP-All, FPT-LS-F-All, FPT-LS-M-All
and FPT-LS-MP-All.

Figure 10.2 shows how many of the COG dataset instances can be solved within a
certain time limit and with a certain number of recursive calls – added over all k’s.

1https://github.com/kit-algo/fpt-editing
2https://bio.informatik.uni-jena.de/data/#cluster_editing_data
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Figure 10.2: Number of permutations of graphs of the COG dataset that require at least
20 edits and can be solved within a certain total running time / with a
certain number of recursive calls (and extra lower bound updates for -MP).
The horizontal black line indicates the total number of graphs and node
permutations that require 20 or more edits, including unsolved instances.

Additional lower bound calls due to -MP count extra. An instance is a single node id
permutation of a graph, i.e., every graph is counted 16 times. Of the 716 graphs we are
able to solve 547 within the 1000 second time limit. Below, we also compare calls and
running times per instances.

For comparing branching strategies, we fix the local search algorithm -LS as the lower
bound. The median factor of additional calls needed by -M over -MP is 1.9 and by -F over
-MP is 3.36, restricted to instances solved by both algorithms. While the median speedup
of -MP over -F is 3.11, it is just 1.06 over -M. On 5% of the instances, the speedup is at
least 56.62 and 1.24, respectively. This shows that for -M the improvement in the number
of calls directly leads to similar running time improvements, while early pruning just
reduces calls.

For comparing lower bound algorithms, we fix -MP as the branching strategy. There is
an inherent trade-off between the number of recursive calls and the time spent per call,
with a sweet spot that gives the best overall running time. The basic greedy bounds need
10 to 24 times as many calls as the other bounds in the median. The recomputed greedy
bound -G is slightly better than the updated one -U, -LP is the best, followed by -LS and
-MD.

Nonetheless, for very small time limits, -U solves the highest number of instances. For
larger time limits, reducing the number of calls pays off, though not at any cost. The
median speedup of min-degree over the LP is 2.16 while needing 47% more calls in the
median. Local search avoids their substantial memory overhead and spends significantly
less time per call than both. It needs 83% of the calls of -MD while being a factor of
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Figure 10.3: Speedup of FPT-LS-M-All-MT and comparison of the different ILP variants
on 16 (left) and 4 (right) node id permutations of the 716 COG graphs that
require at least 20 edits.

12.36 faster in the median. It is never slower, and on 5% of the instances even more than
137 times faster than -MD.

Comparing the state-of-the-art FPT-MD-F-All algorithm to our FPT-LS-MP-All algo-
rithm, we need 4.33 times less calls and are 46.06 times faster in the median. We are never
slower, on 75% of the instances more than 16 times and on 5% of the instances more than
1044 times faster. In conclusion, our local search lower bound gives high-quality bounds
while being fast. Our branching rules reduce the running time by another small factor
while early pruning mainly reduces the number of calls. Overall, we achieve a speedup of
one to three orders of magnitude over the state-of-the-art.

10.5.2 Parallelization

The left part of Figure 10.3 reports the speedup of FPT-LS-MP-All-MT over its sequential
counterpart FPT-LS-MP-All, the sequentially fastest variant on the COG dataset. We
show the speedup with 1, 2, 4, 8 and 16 cores in comparison to the number of recursive
calls and lower bound calculations. For each graph and permutation, we plot the speedup
on the last value of k for which the sequential version of the algorithm terminated within
the time limit. With only few recursive calls we cannot expect a good speedup. For a
high number of recursive calls, FPT-LS-MP-All-MT achieves almost perfect speedup for
all numbers of cores on many graphs. As the algorithm is executed with increasing values
of k, for some graphs only the last value of k needs a high number of calls and thus the
overall speedup is not perfect even though in sum the number of calls is high.

10.5.3 Variants of the ILP

Figure 10.3 (right) shows the impact of the different optimizations on the ILP, when
enabled one after another. We denote adding only one violated constraint by -S, adding
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Figure 10.4: Comparison of the ILP to the FPT algorithm on 4 node id permutations of
the 716 COG graphs that require at least 20 edits.

constraints during relaxations by -R, and specialized C4 constraints by -C4. The baseline
is ILP-B, where row generation always adds all violated constraints for intermediate
solutions.

In the median, ILP-S is just 5% faster than ILP-B. While on 95% of the instances it
is at most 20% slower, it is more than 44 times faster on 5% of them, which explains
the gap in Figure 10.3. ILP-S-R is not faster in the median, but on 95% of the instances
at most 12% slower and on 5% it is at least 73% faster. The C4 constraints make the
ILP 12% faster in the median, at most 26% slower on 95% and at least 95% faster on
5% of the instances. With all optimizations, the ILP solves 568 graphs. We also tried
providing a heuristic solution from QTM [Bra+15b] to Gurobi, but the improvement was
even smaller and disappeared in parallel.

Figure 10.4 compares the best ILP and FPT algorithms with and without -MT in
terms of running time and recursive calls. For the FPT algorithm, stopping at the first
solution is not slower on 95%, more than 52% faster on 50% and more than 3 times faster
on 5% of the instances. Multi-threading incurs a measurable overhead. Compared to
FPT-LS-MP-All, FPT-LS-MP-All-MT is at most 16% slower on 95%, 78% faster in the
median and more than 12 times faster on 5% of the instances. When stopping at the first
solution, this decreases to 24% slower, 1% faster and 10 times faster, as more branches
that do not lead to a solution are explored in multi-threaded mode. FPT-LS-MP-MT is
still 4% faster than FPT-LS-MP-All-MT in the median, at most 3% slower on 95% and at
least 68% faster on 5% of the instances.

The parallel ILP is at most 5% slower on 95%, as fast in the median and more than
52% faster on 5% of the instances than the sequential ILP. Thus, the parallelization helps
the FPT algorithm more than the ILP. A likely cause is that Gurobi needs much less
search nodes than the FPT algorithm which offer less potential for parallelism – on 50%
of the instances at least 185 times less, and on many graphs even just one or two, see
Figure 10.4.
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Figure 10.5: Comparison of heuristic solutions of QTM and the exact number of edits k
for solved graphs (left) or the best lower bound for unsolved graphs (right)
achieved by the FPT algorithm or the ILP. For readability, we exclude one
solved graph at k = 64, where QTM needed 202 edits.

The speedup of FPT-LS-MP over ILP-S-R-C4 is at least 0.59 on 95%, 3.25 in the median
and at least 10.72 on 5% of the instances. For FPT-LS-MP-All, this decreases to 0.29,
2.10 and 7.02. In parallel, the speedups are 1.09, 3.41 and 16.45 for all solutions, and
1.34, 3.67 and 18.14 for the first solution. Single-threaded, the ILP solves more instances
within 1000 seconds than the FPT algorithm, indicating that for difficult instances better
bounds are more important. Overall, the FPT algorithm is often faster than the ILP, in
particular in parallel and even when listing all solutions.

10.5.4 Comparison to QTM

Figure 10.5 compares the results of our heuristic Quasi-Threshold Mover (QTM) [Bra+15b]
(see Section 9.5) with exact results for solved and the best lower bounds for unsolved
graphs. We use the maximum value of k achieved for any permutation by FPT-LS-MP-MT
and by ILP-S-R-C4 with and without -MT. If any of the algorithms solved the graph, we
list it in the left part, otherwise in the right part. For QTM, we report the minimum k
that QTM found over 16 runs. Again, the plot excludes 3248 graphs that require less
than 20 edits. Of those, QTM solved 3172 exactly, 56 with offset 1, 15 with offset 2 and
5 with offset 3. Of the remaining graphs, 588 are solved and 128 are unsolved. Of the
solved graphs, QTM solved 319 graphs exactly. For none of the unsolved graphs, QTM
matches the lower bound. Apart from one outlier, QTM never needs more than 1.4 times
the number of edits of the exact solution and never more than 1.8 times the number of
edits indicated by the best lower bound. For 95% of the 716 graphs, QTM needs at most
1.22 times the edits of the exact solution or the lower bound.
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Table 10.1: Overview of the social network graphs. Using the algorithms FPT-LS-MP
and ILP-S-R-C4 with 1 and 16 cores, we report the maximum k that finished
within 1000 seconds, and the minimum time (T) over all permutations that is
needed to find the first solution. In the case of football, we report the time
needed to show that there is no solution with that k.

FPT ILP
1 core 16 cores 1 core 16 cores

Graph n m k T [s] k T [s] k T [s] k T [s]

karate 34 78 21 0.01 21 0.01 21 0.02 21 0.03
lesmis 77 254 60 0.17 60 0.13 60 0.96 60 0.97
grass_web 75 113 34 1.81 34 0.21 34 2.91 34 2.83
dolphins 62 159 70 126.54 70 18.57 70 23.81 70 12.10

football 115 613 223 929.55 228 649.94 235 1000.01 237 1000.05

10.5.5 Social Network Instances

Table 10.1 shows an overview of the social networks with results for FPT-LS-MP and
ILP-S-R-C4. Both solve karate and lesmis in less than a second, and grass_web within
3 seconds, with the FPT algorithm being faster. Even though lesmis is both larger than
grass_web and requires 60 edits instead of 34, both algorithms are significantly slower
on grass_web. This shows that their performance depends on the specific structure of
the graph and not just the graph size and k. For dolphins, the ILP is faster than the
FPT algorithm. For all graphs, the FPT algorithm scales better with the number of
cores. None of the algorithms can solve the football network. We show that there is no
solution for k ≤ 223, k ≤ 228 using the FPT algorithm with 1 or 16 cores respectively,
and k ≤ 235, k ≤ 237 using the ILP with 1 or 16 cores respectively. The previously
best known upper bound was 251, computed with QTM [Bra+15b] in 2.5ms, see also
Section 9.6.1. In 1000 seconds, the ILP shows a new upper bound of 250. For the smallest
three social networks, we verify that the best heuristic solutions Section 9.6.1 [Bra+15b]
are exact. QTM needs 72 edits on dolphins, whereas 70 edits are optimal.

10.5.6 Evaluation of the Found Solutions

The FPT algorithm offers the possibility to list all solutions exactly once. In this section,
we show the number of solutions found for the COG dataset. Further, we examine the
solutions that are found on the four solved social network instances in detail, comparing
them concerning the community detection application of quasi-threshold editing.

Figure 10.6 shows the number of found solutions for all solved graphs of the COG
dataset. We plot the number of solutions for the graphs grouped by k to see if there is
any correlation between k and the number of solutions. For some graphs with k > 100,
there are over a million solutions found. However, there seems to be no strong correlation
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Figure 10.6: Number of solutions for all solved graphs of the COG dataset sorted by k
with k > 0.

between k and the number of solutions found. Nevertheless, this shows that in many
cases there is not one clear solution for a graph.

To examine how this affects the graph clustering application suggested by [NG13],
we take a closer look at the solutions for the four solved social networks using Net-
worKit [SSM16]. Table 10.2 summarizes the found solutions. The number of found
solutions ranges from 24 on dolphins up to 3006 for grass_web. Nastos and Gao [NG13]
propose to use the connected components of the edited graphs as clusters. While two
closest quasi-threshold graphs might use different edits, they can still induce the same
clustering as some edits only affect edges inside clusters. Therefore, we also examine
the number of different clusterings found. For karate, the 896 solutions induce only 12
different clusterings, while for grass_web, there are 2250 different clusterings induced by
3006 solutions. This shows that there can be quite some variance in terms of the found
clusterings even between exact solutions. The number of clusters remains rather stable,
on the other hand. Figure 10.7 shows two solutions of grass_web with two different
clusterings. The brown cluster in the right solution is split into the brown, bright-green
and dark-blue clusters in the left solution. Further, two nodes that are marked by a blue
circle in the figures switch their cluster assignment.

To see if there is something all solutions can agree on, we examine the edits that are
common to all solutions. Out of the 21 edits necessary for karate, there are 11 common
edge deletions. These induce a cut into two clusters, which is also the cut found in [Zac77].
For grass_web, there are 1 edge insertion and 11 edge deletions common to all solutions
which also only split the graph into two parts – compared with the necessary 34 edits and
the up to 14 clusters in each solution. For lesmis, there are 4 edge insertions and 45 edge
deletions common to all solution which induce 6 clusters – this shows a structure that is a
lot more stable. On dolphins, there are 5 edge insertions and 56 edge deletions common
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Table 10.2: Summary of the solutions found. For each graph, we report the number of
different solutions, the number of different induced clusterings, the minimum
and maximum number of clusters in the different solutions, the number of
insertions and deletions common to all solutions, the number of clusters
obtained when just applying the common edits, the total number of different
insertions and deletions and the number of clusters obtained when intersecting
all found clusterings.

#Solu- #Clus- #Clusters Common Union
Graph k tions terings Min Max Ins. Del. Cl. Ins. Del. Cl.

karate 21 896 12 2 4 0 11 2 13 27 7
grass_web 34 3006 2250 11 14 1 11 2 11 45 22
lesmis 60 384 192 8 12 4 45 6 10 63 16
dolphins 70 24 8 12 13 5 56 9 11 71 16

to all solutions, i.e., each solution only adds 9 further edits. These common edits already
induce 9 clusters which is close to the 12 or 13 clusters found in the individual solutions.

Additionally, we look at the number of edits in the union of solutions. For all graphs
there are more edge deletions than insertions. Even if all edge insertions were in a single
solution, in all graphs but karate there were more than two times more edge deletions
than insertions. Further, we calculate the intersection of all found clusterings to obtain
the largest clusters that are not split in any solution. For karate, this gives us 7 clusters
that split both of the two parts into further parts. For grass_web, we even obtain 22
clusters (compared with at maximum 14 clusters in an individual solution). For lesmis
and dolphins, we obtain 16 clusters, i.e., a value relatively close to the up to 12 or 13
clusters that are found in individual solutions.

This analysis shows the power of being able to enumerate all solutions. We can not
only determine how stable the clustering structure of a graph is, we can also obtain the
smallest components on which all different solutions agree – or large clusters, where all
solutions agree that they should be split. This could also be used to obtain overlapping
clusters by assigning nodes that frequently change between clusters to several clusters.

10.6 Conclusion

We have introduced optimizations for two different approaches to solving any F -free edge
editing problem. We evaluate our optimizations for the special case of quasi-threshold
editing on a set of 716 protein interaction graphs. For the first approach, the FPT
algorithm, we show that the combination of good lower bounds with careful selection
of branches allows to reduce the running time by one to three orders of magnitude for
75% of the instances. For the second approach, an ILP, we evaluate several variants
of row generation and show that they achieve small speedups. We show that the FPT
algorithm is slightly faster than the ILP, with a larger margin in parallel, and it can easily

201



10 Engineering Exact Quasi-Threshold Editing

Figure 10.7: Two solutions of grass_web. Red edges have been deleted, green edges have
been inserted. Nodes are colored by connected component in the edited
graph. The two blue circles denote two nodes that changed clusters.

enumerate all optimal solutions. For our heuristic editing algorithm QTM, we show that
on 95% of the instances, it needs at most 22% more edits than our exact solutions or
lower bounds indicate.

Comparing the structure of exact vs. heuristic solutions might give further insights
how to improve heuristics. Exact FPT algorithms could be further improved by better
bounds, possibly based on LP relaxations. As the COG benchmark set actually contains
edit costs, an extension of our optimizations to the weighted editing problem could be
investigated.

10.7 Implementation Details

In this section, we document various details of our implementation. We first describe our
graph data structure and how we iterate over it. In Section 10.7.1, we describe how we list
forbidden subgraphs. We maintain subgraph counters that we describe in Section 10.7.2.
In Section 10.7.3, we describe for each lower bound algorithm how it is implemented
using the aforementioned subgraph listing algorithms. In Section 10.7.4, we describe the
implementation of our branching strategy. Finally, in Section 10.7.5, we describe our
parallelization in detail.

We store our graph as an adjacency matrix with 1 bit per node pair. To enumerate
edges or neighbors, we use special CPU instructions to count leading zeros in a copy of a
64 bit block of this matrix. We then remove the found 1-bit from the 64 bit block and
count again. If the current 64 bit block contains only zeros, we move to the next one. All
but the largest 24 graphs in our benchmark set have at most 320 nodes, thus requiring at
most five 64 bit blocks per row of the matrix. The largest graph has 8836 nodes and thus
requires 139 64 bit blocks per row, but its average degree is also 64, therefore on average
almost every second block contains a 1-bit. Thus, for almost all of the graphs we consider,
bit matrices seem an appropriate choice in terms of memory usage and enumeration

202



10.7 Implementation Details

efficiency. For the larger graphs, adjacency arrays might be a better choice but as we
are far from solving them, we did not further explore this. Adjacency matrices have the
advantage that we can easily combine multiple rows to list common neighbors or exclude
neighbors of another node, a feature that we use for subgraph listing as described in the
following. Let A[i, j] denote the entry of the adjacency matrix in row i and column j.
We use matrix slice notation A[:, j] to denote column j, and A[i, :] to denote row i, i.e.,
the neighbors of node i.

10.7.1 Subgraph Listing

To select subgraphs for branching and calculating lower bounds, we need to enumerate all
forbidden subgraphs. In preliminary experiments, we found that enumerating forbidden
subgraphs on demand does not only require much less memory than storing them, but is
also much faster. Our implementation provides two methods for this: a global one that
lists all forbidden subgraphs and a local one that lists all subgraphs containing a certain
node pair. The latter is required to efficiently implement our local search lower bound
and the branching on most useful node pairs. For simplicity, our descriptions focus on
{C4, P4}-listing but our source code works for arbitrary {Pl, Cl}, l ≥ 4 and {Pl}, l ≥ 2.

Global Listing. For the listing of all forbidden subgraphs, we enumerate all edges. We
consider each edge {u2, u3} as the central edge and then enumerate edges {u1, u2} in the
outer loop, and {u3, u4} in the inner loop, to complete the P4 or C4. For listing candidates
u1, we directly exclude neighbors of u3 by only iterating over A[u1, :] ∧ (¬A[u3, :]). We
list candidates u4 analogously. Fixing the central edge ensures each induced P4 is listed
exactly once. We list each C4 four times, which we use for trying different shareable node
pairs for the packing lower bounds, as each edge deletion transforms the C4 into a P4.

Local Listing. For the listing of forbidden subgraphs that contain a certain node pair
{u, v}, we need to consider all positions of {u, v} in the forbidden subgraph. If {u, v} is
an edge, this means that apart from the case where {u, v} is the central edge, we also need
to consider the case where we extend the path twice on each side. If {u, v} is not an edge,
the case where {u, v} consists of the two degree-1-nodes of the P4 can be omitted due to
the optimizations discussed in Section 10.4.2. We only need to find common neighbors
x ∈ A[u, :] ∧ A[v, :] of u and v. These are part of the central edge. We try extending
the path by one edge from u and v separately, i.e., iterate over A[u, :] ∧ (¬A[x, :]) and
A[v, :] ∧ (¬A[x, :]).

Listing For Lower Bounds. For lower bounds, we are only interested in forbidden
subgraphs that do not contain any node pair that is already used in the lower bound. We
maintain a bit matrix L where all node pairs that are already used in the bound are set to
1. By using A[u, :]∧(¬L[u, :]) instead of A[u, :] for neighbors of u and (¬A[u, :])∧(¬L[u, :])
for non-neighbors, we can directly exclude these node pairs from listing.
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Excluding Specific Node Pairs From Listing. To branch on its node pairs or to check
if a subgraph can be added to a lower bound, we need to enumerate its node pairs. For
this, we implicitly exclude blocked node pairs as well as {u1, u4}, which is the node pair
of degree one in a P4. As mentioned before, we always list a C4 four times, and thus omit
a different edge {u1, u4} in each enumeration. This lets the lower bound algorithms select
the best node pair to share or the branching strategy select the best node pair to exclude.

10.7.2 Subgraph Counters

In our Most and Most Pruned branching strategies and the local search lower bound, we
want to select the subgraph whose node pairs cover the most or least other forbidden
subgraphs. For this, we maintain a counter for each node pair in how many forbidden
subgraphs it is contained. Whenever a node pair is edited or blocked/unblocked we update
the counters. When blocking a node pair, we store its previous counter on a stack so that
it can be easily restored when unblocking, and set the current counter to zero. Note that
our counters count a C4 three times for edges and four times for non-edges due to listing
the C4 four times and omitting one of the edges each time. We also maintain the sum of
the subgraph counters to be able to quickly check if there are any forbidden subgraphs at
all.

10.7.3 Lower Bound Algorithms

Each of our lower bound algorithms has both a thread-state that is maintained once per
thread and a call-state that is copied for every recursive call. We compute an initial lower
bound on the input graph and start our search for kopt from this bound instead of 0. The
call-state is initialized once during this initial lower bound calculation and then used
as initialization for all ks that we try. For most algorithms, the call-state contains the
previously calculated lower bound as an array of subgraphs (node tuples) in the packing.
We pass the call-state down into recursive calls, but not back up. The rationale behind
this is that we need to remove at most one forbidden subgraph from the bound when
descending into recursion, whereas no longer blocked node pairs would force a lot of
subgraphs to be removed when returning from a recursive call.

Basic Bound. For the basic bound, we globally enumerate forbidden subgraphs H
and add H to the packing P if none of its node pairs are used by another graph in the
packing. This is done in each recursive call with an initially empty packing. After the
one pass, P is inclusion-maximal. We maintain a bit matrix C for node pairs covered by
the packing in the thread-state. When adding H to P , we mark its node pairs in C. We
also supply a reference of C to the listing algorithm to skip subgraphs we cannot use. As
additional bits in C are set during the listing, it does not skip all subgraphs we cannot
use. For example, the listing does not check the central node pair again. In preliminary
experiments this still gave a small speedup.
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Updates. For the basic bound with updates we pass the packing P through the search
tree. Before descending into recursion, we remove the subgraph H that contains the
edited node pair {u, v} from P , if it exists. If possible, we add subgraphs H ′ to P that
share a node pair with H or contain {u, v}, to make P inclusion-maximal. This is done
using the local listing. Similar to before, the local listing skips some subgraphs touched
by C. We store a list of subgraphs in the packing in the call-state. For memory efficiency,
we do not store C in the call-state but instead recompute it from scratch when modifying
the bound.

Local Search. The local search lower bound also just maintains the list of subgraphs
used in the bound in its call-state. The initial update works as described above. To find
candidates for replacing one subgraph by one or more subgraphs, we use the local listing.
In each round, we try to replace each subgraph H in the packing once. For this, we first
remove H from P and then use the local listing on all node pairs of H to obtain the set
R of subgraphs that could replace H. From R, we obtain candidates that can be inserted
together. For each subgraph H ′ ∈ R we first insert it into P , and then iterate over the
rest of R, trying to insert. If at least one additional candidate was found, we keep them
in the packing. Otherwise, we can only replace H by H ′. With 70% probability we take
the H ′ that covers the fewest other forbidden subgraphs, and with 30% probability we
choose a random one from R.

We apply several optimizations to speed up the search for additional candidates. For
each node pair of H, we store a separate list of candidates. This allows us to skip
candidates that use a node pair that is used by an already included candidate, without
considering each candidate separately. To avoid trying the same candidate twice, we
also list candidates only for the first node pair they contain by excluding the already
considered node pairs from the candidate search for subsequent node pairs.

Min-Degree Heuristic. The min-degree heuristic is based on the independent set
formulation where a subgraph is a node and two nodes are connected by an edge if the
corresponding subgraphs share a node pair. A good lower bound then corresponds to a
large independent set. For independent sets, the min-degree heuristic iteratively adds
the node with the smallest remaining degree to the independent set and then deletes it
and its neighbors from the graph. Instead of explicitly constructing this graph model, we
translate this formulation back to forbidden subgraphs.

We iteratively add subgraphs to the bound whose node pairs are shared with the least
number of subgraphs that can still be added to the bound. To implement it, we need to
explicitly maintain the “degree” of every subgraph in a priority queue as it is changing
over time as more and more subgraphs are added to the bound. For this, we (temporarily)
store an explicit list of all forbidden subgraphs that we obtain through global listing.
Further, for every node pair we store a list of subgraphs it is part of by storing their
indices in the list of subgraphs. Similarly, we store these list indices in the priority queue.
This allows to efficiently identify the elements that need to be updated or removed from
the priority queue. For a subgraph H, we initially use the sum over all node pairs of
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H of the number of subgraphs that contain the node pair as key. This might count the
same subgraph several times, but is more efficient to calculate. Preliminary experiments
showed that this is faster than calculating the actual number of subgraphs with whom H
shares a node pair.

Whenever we take a subgraph H from the priority queue and add it to the bound, we
need to remove its neighbors from the priority queue and update their neighbors’ degrees
accordingly. To obtain the neighbors N of H, we iterate over H’s node pairs and list all
subgraphs they are part of. We remove each subgraph n ∈ N from the priority queue
and for each of n’s neighbors, we decrement its key in the priority queue by one.

For the priority queue, we use a bucket priority queue. As nodes only need to be
moved between adjacent buckets, we can maintain all buckets in one large array and move
elements between buckets by swapping them to the boundary and then adjusting the
boundary.

LP Relaxation. The LP for our LP bound corresponds exactly to the ILP formulation
shown in Section 10.3 with the optimization of omitting one node pair as described in
Section 10.3.2. Our main goal for the implementation of the LP bound was to have a
comparison with a lower bound algorithm that is guaranteed to prune at least as good as
the packing-based lower bounds. For this reason, we ensure that the LP always contains
the constraints that correspond to forbidden subgraphs that could also be used in the
packing-based lower bound. Similar to the ILP, we initialize the LP with all constraints
that correspond to forbidden subgraphs in the input graph. Whenever we edit or block a
node pair, we fix the value of its corresponding value to 1 or 0, depending on whether it
is now connected by an edge or not. When a node pair is edited, it is always blocked and
thus all constraints that correspond to forbidden subgraphs that no longer exist in the
edited graph are trivially fulfilled and there is thus no need to remove them explicitly.
After each edit, we add constraints that correspond to forbidden subgraphs that contain
the edited node pair. After undoing an edit, we remove them again, as the LP solver
slows down when the LP contains a lot of constraints.

10.7.4 Branching Strategies

As described in Section 10.4.5, we want to prefer subgraphs that contain at most one
non-blocked node pair, as we know this edit has to be applied. In a call-state like those
of the lower bound algorithms, we store both this list of subgraphs, and a flag indicating
whether the branch can be pruned. Such subgraph can only appear when blocking or
editing a node pair {u, v}. Every time this happens, we enumerate all subgraphs H
containing {u, v}. If H contains exactly one non-blocked node pair, we store it. If H
contains only blocked node pairs, the current branch can be pruned immediately because
H cannot be destroyed. Before the branching strategy selects a forbidden subgraph, we
first check if the flag is set and return an empty list of node pairs, if so. Otherwise, we
iterate over the list of subgraphs in the call-state and return the only non-blocked node
pair of the first subgraph of the list where this node pair has not been edited yet. Note
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that two of these subgraphs might contain the same non-blocked node pair, thus after the
first of them has been selected, the second becomes invalid.

Only if the flag is not set and there is no subgraph with exactly one non-blocked node
pair, we apply the actual branching strategy. In our Most and Most Pruned branching
strategies, we avoid listing all forbidden subgraphs. Instead, we first identify those node
pairs that are part of the maximum number of subgraphs using the subgraph counters
introduced in Section 10.7.2. Due to our lexicographical ordering, we are only interested
in those subgraphs that contain these node pairs. We use our local listing to enumerate
them and select the maximum as described in Section 10.4.5. The output of the branching
strategy is a sorted list of node pairs and a flag whether the graph is solved. We set this
flag if the sum of the subgraph counters is zero.

10.7.5 Parallelization

In our parallelization, different threads explore different branches of the search tree. We
maintain a global queue of work packages that represent roots of unexplored branches. To
achieve a scalable parallelization we want to generate few work packages that have a lot
of recursive calls left. Due to our optimizations, we cannot know in advance how many
calls are left for a certain branch. Even branches that start at the root of our recursion
tree might be pruned after a single call. Therefore, we need to generate work packages as
we explore the search tree, i.e., employ work-stealing.

Each work package contains the number of remaining edits, the graph, the blocked node
pairs, the subgraph counters and the call-states of the lower bound and the branching
strategy (can be empty). Hence, creating a work package for every call is too expensive,
as we would need to copy these data structures, whose memory consumption is quadratic
in the number of nodes. Passing them through the search tree, and updating on-the-fly is
fast, but a work package constitutes the root of a new search tree and thus requires a
copy. Therefore, we only create work packages when the global work queue contains less
work packages than the number of threads.

When a worker finishes one recursion tree, it takes another work package from the
queue. If there is none left, it waits until either work becomes available or the algorithm
is finished. The latter is indicated either by the fact that no thread has a work package
anymore (we keep a counter how many threads are currently working), or a global flag
that is set when the first solution has been found and not all solutions shall be listed.
This flag is also checked in each recursive call to ensure that if one thread finds a solution,
all other threads terminate.

At the beginning of every recursive call, we check if work packages shall be generated.
A simple approach would be to split the recursive calls of the current search tree node
into work packages. Unfortunately, this does not scale well, as we would predominantly
create work packages on deeper recursion levels where only few edits remain. Instead, we
split off unexplored branches from the top of the current recursion tree, where we hope
the most work is left. For this, we explicitly maintain the current recursion path of each
worker thread.

Each element of the path contains the node pairs to branch on, the call-states of the

207



10 Engineering Exact Quasi-Threshold Editing

bound and the branching strategy for each of these branches and an index that indicates
the next branch to be explored. After potentially generating work packages, we invoke the
lower bound calculation. We then check if the recursive call can be pruned because of the
bound, because there are no more edits left or because a solution has been found. If not,
we create its element in the path. For this, we obtain the node pairs for the next recursion
level from the branching strategy. We then create copies of the call-states for all of them
and update them such that each of them can be directly used to create a work package.
This ensures that work package generation, which happens inside a global lock, is quick
and does not need to update call-states. For the early pruning (see Section 10.4.6), we
also directly check if calls can be pruned and if yes, we directly remove them from the
node pairs.

For the actual recursive calls, we iterate over the node pairs in the element of the path.
We advance the index that indicates the next call and execute an actual recursive call
with the call-state for that node pair. After all recursive calls finished, we remove the
element from the path. It is possible that during a recursive call on a lower level work
packages have been generated for the remaining node pairs. In this case, the path will
be empty when the recursive call returns. We check for this, and then return directly
instead of continuing with the remaining node pairs.

For our recursive calls, we also update a copy of the graph, the blocked node pairs
and the subgraph counters that are used for calculating lower bounds and the branching
strategy. Additionally to this copy that represents the state at the bottom of our path,
we also maintain a copy that corresponds to the state at the top of the path that is used
for generating work packages.

To generate work packages, we first advance the top state to the next node pair that
has not been used for a recursive call. For all remaining node pairs of the top element of
the path we generate a separate work package using the top state and the call-state that
is stored in the path’s element. Then, we remove the top of the path. This continues with
the new top of the path, until either the recursion path is empty or a sufficient number of
work packages (2x number of threads) are in the queue.

Note that we generate work packages before creating the element in the path that
corresponds to the current recursive call. Hence, the generating thread still has work left,
even if the recursion path becomes empty. This is to avoid that a thread immediately
needs to get another work package after putting work into the global queue.
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Local Communities
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11 Local Community Detection Based on
Small Cliques

This chapter is based on joint work with Eike Röhrs and Dorothea Wagner [HRW17].
Compared to the publication, this chapter has been slightly adapted to reference parts of
this thesis instead of repeating introductions. Further, experiments have been repeated
due to several bugs in the original implementation. While the new results support our
conclusions, there are slight differences that are discussed in this chapter.

The idea of local community detection is to detect a community around a seed node
without considering the whole graph. If only communities of few nodes are required,
this allows these community detection algorithms to scale to arbitrarily large graphs
while being potentially much faster. Further, many overlapping community detection
algorithms use local community detection algorithms as basic building block. We consider
the problem of finding a community locally around a seed node both in unweighted and
weighted networks. We provide a broad comparison of different existing strategies of
expanding a seed node greedily into a community. For this, we conduct an extensive
experimental evaluation both on synthetic benchmark graphs and real world networks. We
show that results both on synthetic and real-world networks can be significantly improved
by starting from the largest clique in the neighborhood of the seed node. Further, our
experiments indicate that algorithms using scores based on triangles outperform other
algorithms in most cases. We provide theoretical descriptions as well as open source
implementations of all algorithms used.

11.1 Introduction

In this chapter, we consider local community detection where a single community around
a given seed node or a set of seed nodes shall be detected. Local methods can be applied
when the user is, e.g., just interested in identifying a group of people around a given person
in a social network or the functional subset a molecule belongs to within a biochemical
network, and thus a clustering of the whole network is not needed. The advantage of
local methods is that their performance usually just depends on the size of the detected
community and not on the size of the whole network, which might be very large or even
unavailable. An example for such a network is the network that is defined by the pages
of the web and the links between them. Accessing this network by starting at a single
node is easy and computationally feasible. Having access to the whole network requires
huge computational resources and is basically impossible, so local community detection
algorithms provide a viable alternative here. Various local methods have been proposed
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that use the structure of the network to detect communities locally [SMM14; Sch07]. The
study in [SMM14] however shows that local algorithms still perform significantly worse
than global, disjoint community detection algorithms on synthetic benchmark graphs.
Expanding single nodes (LFM [LFK09], OSLOM [Lan+11]), single edges (MOSES [MH10])
or maximal cliques (GCE [Lee+10]) into communities is nevertheless a successful scheme
for overlapping community detection.

In this chapter, we compare different measures and algorithms for expanding communi-
ties by greedily adding (and possibly removing) single nodes. Greedy expansion is both a
common and usually also scalable approach for finding communities. In our extensive
experimental evaluation we show that in many cases the seed node is not embedded in the
detected community. The reason for this is that many algorithms fail to correctly select
the first nodes to add. To avoid this problem, we examine starting the expansion of the
community from a maximum clique that contains the seed node as proposed by [Fan+14].
Further, we introduce Triangle Based Community Expansion as an alternative strategy
for greedy community expansion. It exploits the fact that edges inside communities are
usually embedded in triangles [Rad+04] and uses an edge score based on triangles for
deciding which node to try next.

We compare the performance of the algorithms on synthetic benchmark graphs generated
using the LFR benchmark [LF09b; LF09a] with unweighted and weighted graphs with
disjoint ground truth communities as well as unweighted graphs with overlapping ground
truth communities. Further we also perform experiments on real-world social networks. We
implemented all examined algorithms in the network analysis toolkit NetworKit [SSM16]
and make them publicly available 1, we aim to make them part of the official NetworKit
code base. We show that starting from a clique dramatically improves the accuracy of the
detected communities both on synthetic and on real-world networks. In the experimental
evaluation, we show that Triangle Based Community Expansion has a solid performance
and even without starting from a clique it still often finds the correct community. The
computationally more expensive LTE algorithm [Hua+11] whose scoring is based on
triangles is among the best-performing algorithms on most tested graphs and has the best
performance on the tested real-world social networks. This indicates that exploiting local
structures like triangles is important for finding communities without global knowledge
and that exploiting such structures might lead to the development of better overlapping
clustering algorithms. To the best of our knowledge, we are the first to conduct such a
systematic and broad study that shows that starting with cliques does not only improve the
detected community, but also makes sure that the chosen seed node is actually embedded
in the detected community, an aspect frequently ignored in existing evaluations.

In this chapter, we treat all graphs as weighted graphs. We use the notation as
introduced in Section 1.2. In the next section, we provide a brief overview of the related
work. In Sections 11.2 and 11.3 we present in more detail the algorithms we compare.
Thereafter, we show our experimental results. Lastly, we conclude with a summary and
outlook in Section 11.5.

1https://github.com/kit-algo/LCD-cliques-networkit
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11.2 Density-Based Local Community Detection Algorithms

11.1.1 Related Work

Numerous local community detection algorithms have been proposed [SMM14; Cla05;
CZG09; Bag08; FZB14]. Many of these algorithms can be grouped as greedy community
expansion [SMM14], which also provides the basis of other (more complex) algorithms.
It can be described best as greedily adding the node to the community that currently
has the maximum value of some function that assigns a value to each node. This greedy
community expansion usually stops once the value of every node that could still be
added is negative. Often measures based on the ratio of internal edges to edges that are
connected to the rest of the graph are used. BME1 [NTV12] additionally uses the distance
to the seed node to assign less importance to edges from nodes further away from the
seed node. Other algorithms like iGMAC [Ma+14] also consider a wider neighborhood of
the nodes to be added and are thus computationally more expensive.

However, there are also algorithms that work with a different strategy, which is not
based on greedy community expansion. One of these is PageRank-Nibble, which works
by locally approximating PageRank-vectors [ACL06]. It first computes a ranking of
the nodes and only then finds a community based on this ranking. Flow-Pro [PPF15]
starts a network flow from the seed node and adds nodes to the communitiy when a
sufficient part of the flow arrives at them. LEMON is an approach based on local spectral
optimization [Li+15]. From these algorithms, we only include PageRank-Nibble in our
evaluation as for the other algorithms no efficient implementation is available.

Many of the above-mentioned algorithms can also start from a set of seed nodes instead
of a single seed node. This can be used to identify a community more precisely as discussed
in [DGG13]. Starting from a maximum clique as proposed in [Fan+14] is a similar idea
that helps identifying the community more precisely.

Triangles are not only an important part of our Triangle Based Community Expansion
algorithm and the LTE algorithm [Hua+11], but are also used in other community detec-
tion algorithms [FZB14; Jia+14; Rad+04]. Triangles have also already been popularized
with respect to social networks by the social sciences with the term of triadic closure and
are the basis of the clustering coefficient [WS98; EK10].

11.2 Density-Based Local Community Detection Algorithms

In this section, we introduce the existing community detection algorithms based on the
density of internal and/or external edges of the community. We will compare these
algorithms later in the experimental evaluation. For some of them we describe how we
adapted them for weighted graphs and for most of them we describe how their running
time can be optimized, an aspect often not included in the original publications. If the
algorithms have any parameters, we also mention the values we choose for the experiments.
We use the same values throughout all experiments as tweaking the parameters for each
graph (or set of graphs) requires knowledge about the expected communities which is
not always available in practice. For this chapter, we only selected algorithms that are
local in the sense that they use only information about nodes located around the seed
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node, and, except PageRank-Nibble, do not assume knowledge about the whole graph. In
particular, this also means that these algorithms do not know the number of nodes or
edges and their running time does not depend on them.

11.2.1 GCE M/L

One of the simplest schemes of local community detection is expanding a community by
adding in each step the node of the shell that leads to the highest quality improvement of
the community. In each step, the next node is selected by iterating over all nodes in the
shell of the community. We examine the two quality measures proposed for this algorithm
by [SMM14]: The M measure [LWP08] and the L measure [CZG09].

The M measure is defined as the number of internal edges of the community divided by
the cut of the community. This can be trivially generalized to weighted graphs by taking
the sum of the edge weights instead of the number of edges:

M(C) :=
volw(C)− cutw(C)

2 · cutw(C)

Large values of the M measure indicate internally dense and well-separated communi-
ties. It was shown [SMM14], that maximizing the M measure is actually equivalent to
minimizing the conductance of the community as long as the volume of the community
is smaller than the volume of its complement. The conductance of a community C is
defined as:

conductance(C) =
cutw(C)

min(volw(C), volw(V \ C))
. (11.1)

The L measure is defined using two terms, an internal and an external part. The internal
part Lin is defined as the internal edge weights divided by the size of the community:

Lin :=
volw(C)− cutw(C)

|C|

The external part Lex is defined as the cut of the community divided by the size of the
boundary:

Lex :=
cutw(C)

|B(C)|

The L measure is then the internal divided by the external L measure, i.e., L := Lin/Lex.
Note that if a community has no internal nodes, i.e., all nodes are adjacent to at least

a node outside the community, this is actually equivalent to the M measure as then
|C| = |B(C)|. Therefore, large values of the L measure again indicate internally dense and
externally well-separated communities.
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Implementation Details

To expand the community, we need to determine which node of the shell will lead to
the maximum improvement of the quality measure. In order to allow to compute this
in constant time per node in the shell, we store for every node in the shell the sum of
the edge weights towards the community and the sum of the remaining edge weights.
This allows to determine the best candidate for the M measure in a single scan over the
shell. Whenever we add a node to the community, we iterate over its neighbors and
update their values. When a node is not yet in the shell, we also need to determine its
initial external degree, which is its degree minus the weight of the edge through which we
discovered the node. For unweighted graphs our graph data structure already stores the
degree so this is possible in constant time, for weighted graphs we need to iterate over
the neighbors to determine the weighted degree. Therefore, for unweighted graphs we
get a total running time of O(vol(C) + |C| · |S|), where C is the final community and
S is the largest shell encountered during the execution of the algorithm. For weighted
graphs, we get an additional running time of O(vol(S(C))) if the weighted degrees are
not pre-computed.

For the L measure we additionally need to be able to tell how much the boundary will
change when we add a node u of the shell to the community C. This depends on two
factors: (a) if u has any external neighbors, the boundary size is increased by 1, (b) if
u has any neighbors in C whose only external neighbor is u, then these nodes will no
longer be part of the boundary. The first factor can be easily determined by looking at
the external degree of u. For the second factor, we maintain two counters: For every node
u in the boundary we store how many external neighbors ex(u) it has. For every node
v in the shell we store the counter exin(v) that denotes how many neighbors of v in C
have only v as external neighbor, i.e., the number of nodes x ∈ N(v) ∩ C with ex(x) = 1.
The counter exin allows us to determine the change in the boundary size in constant
time. We update these counter values as follows: Whenever we add a node u to the
community, we decrement the number of external neighbors ex(v) of every neighbor v of
u by 1. When the number of external neighbors ex(v) for a node v in the boundary drops
to 1, we need to notify this external neighbor x ∈ N(u) \C as their counter exin(v) needs
to be increased. To determine x, we iterate over all neighbors of v. We then increment
exin(v) by 1. Note that the number of external neighbors ex(v) only decreases as more
nodes are added to the community. Therefore, this will happen only once for every node
in the boundary. The asymptotic running time is thus the same as for optimizing the M
measure.

11.2.2 Two-Phase L

The originally proposed algorithm for L-based community detection [CZG09] is slightly
more complicated than GCE L. It considers three cases for the updated measures L′in
and L′ex that may lead to a higher value L′:

1. L′in > Lin and L′ex < Lex
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2. L′in < Lin and L′ex < Lex

3. L′in > Lin and L′ex > Lex

In a first discovery phase, they iteratively add the node that leads to the maximum
L′, but only if it is in case 1 or 3, otherwise they do not consider that node again. In a
second examination phase, they re-consider every node and keep it only when it is in the
first case. It may happen that the original seed node is removed from the community in
the second phase. Then they say that there is no local community for that seed node.

Implementation Details

For the first discovery phase, we can use the same data structures as described for GCE
L. In the second examination phase, we can simply iterate over the neighborhood of every
node again to determine the change in L′in and L′ex its removal would cause. This means
in total we get the same running time as GCE L, though the running time depends on
the community size after the first phase, not on the final size.

11.2.3 LFM

The LFM algorithm [LFK09] maximizes the fitness function

f(C) :=
volw(C)− cutw(C)

volw(C)α

where α is a real-valued, positive parameter. In each iteration, it adds the node that leads
to the highest improvement of f(C) to the community C and then removes every node
whose removal increases f(C). The parameter α can be used to influence the size of the
detected communities. Large values of α correspond to small communities while small
values correspond to larger communities. The authors report [LFK09] that values below
0.5 usually lead to just one community while values larger than 2 led to the smallest
communities. Further, they recommend α = 1 as a natural choice which is also the
parameter we use in our experiments.

Their proposed LFM algorithm is actually an algorithm for detecting overlapping
communities that cover the whole graph by iteratively expanding a random seed node
that has not yet been assigned to a community into a new community. We only consider
the basic building block of local expansion here.

Implementation Details For LFM, we use the same data structure as GCE M for
adding nodes to the community. In order to allow removals by simply scanning over the
nodes of the community once, we also store internal and external (weighted) degrees of
all nodes in the community. The running time is not so easy to state in terms of the
community size as nodes may be added and removed again. Each addition of a node u
needs time O(deg(u) + |C| + |S(C)|) as we scan first the shell to find u and then the
community to find a possible candidate for removal. Each removal of a node u needs time
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O(deg(u) + |C|) as we need to scan C again to find other nodes that possibly need to be
removed. Further, every time we add a node to the shell we might also need to calculate
its total weighted degree unless it has been pre-computed.

11.2.4 PageRank-Nibble

PageRank-Nibble [ACL06] is a two-step algorithm: first, it approximates personalized
PageRank vectors around the seed node and sorts all nodes with a positive score according
to that score in decreasing order. Then it considers all communities that are a prefix of
this sorted list and returns the prefix with minimum conductance as community. A larger
study of using different measures with the same ordering criteria shows that conductance
is actually a good choice [YL15]. The approximation of the personalized PageRank vectors
needs two parameters that determine the accuracy of the approximation (ϵ) and the loop
probability of a random walk (α). We use the values ϵ = 0.0001 and α = 0.1, these are
the values that performed best in a parameter study in [SMM14]. The running time
of the algorithm is in O((ϵ · α)−1), i.e., for given parameter values, it is constant and
therefore the maximum detected community size is actually also constant. Finding the
prefix with the best conductance is possible in time linear in the volume of the found
nodes if the total volume of the graph is known, otherwise this needs to be computed to
be able to optimize the true value of conductance and the algorithm is not actually a
local community detection algorithm.

11.3 Local Community Detection Algorithms Based on Small
Cliques

When the GCE or LFM algorithm starts, the community consists only of a single node.
Regardless which neighbor is added first, the internal density of the resulting community
of two nodes is the same. Therefore, regardless of the exactly used measure, the neighbor
of the lowest degree will be preferred. If the two nodes do not have a common neighbor,
again the neighbor of the lowest degree is chosen. This means that at the beginning of
the expansion phase, nodes of low degree are preferred regardless if they actually belong
to the community of the seed node. Therefore, it is possible that the community grows
into a community where the seed node is not strongly embedded in. Experiments (which
are reported at the end of Section 11.4.3) show that this is actually a problem.

A possibility to avoid such problems is to consider not only the density of the community
but also its internal structure and the structure of its neighborhood. Not all edges are
equally embedded in their neighborhood, some of them have more common neighbors
than others. The common neighbors of the two nodes of an edge thereby form a triangle,
i.e., a clique of size three. In Chapter 7, we already explored the use of scores based on
triangles to filter edges that are not contained in communities and showed that this can
amplify the community structure. Here, the same idea is used to identify edges that are
likely inside a community. The local tightness expansion algorithm (LTE) [Hua+11] uses
an edge similarity score based on triangles both for the decision which node to add next
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and for the quality of the community. LocalT [FZB14] uses a quality measure for the
community expansion process that is directly based on the number of triangles in and
outside of the community.

A different approach is to start directly with the maximum clique in the subgraph
induced by the neighbors as proposed in [Fan+14]. This also avoids the first error-prone
steps. Our own approach, Triangle Based Community Expansion (TCE) is similar to
LTE, we also use an edge score based on triangles. However, for the quality function of
the community we use conductance. In the following, we present all four approaches.

11.3.1 LTE

The local tightness expansion algorithm (LTE) [Hua+11] defines its similarity score s of
two connected nodes u, v as follows:

s(u, v) :=
2 · w(u, v) +∑︁x∈N(u)∩N(v)w(u, x) · w(v, x)√︂

(1 +
∑︁

x∈N(u)w
2(u, x)) · (1 +∑︁x∈N(v)w

2(v, x))

They then define the tightness T (C) of a community as

T (C) :=
SC
in

SC
in + SC

out

,

where SC
in is two times the sum of all internal similarities, i.e., using s as weight function,

SC
in = vols(C)− cuts(C) and SC

out is the sum of similarities between adjacent nodes inside
and outside the community, i.e., SC

out = cuts(C).
LTE always tries to add the node with “the largest similarity with nodes in C” [Hua+11].

We interpret this as the sum of the similarities of the node and all adjacent nodes in C.
This set of candidates can be efficiently maintained in a priority queue. A node is only
added to the community if its tunable tightness gain is positive. This tunable tightness
gain of a node a is defined as

ταC(a) :=
SC
out

SC
in

− αSa
out − Sa

in

2Sa
in

,

where Sa
in is the sum of the similarities of a and all adjacent nodes in C and Sa

out is the
sum of the similarities of a and all adjacent nodes outside of C. When ταC(a) is not greater
than 0, a is removed from the set of candidates. If a is added to the community, the set
of candidates is updated with the neighbors of a, therefore, a node may be re-added to
the queue later if a neighbor of it is added to the community.

Implementation Details The original paper [Hua+11] does not further address the
calculation of the edge similarity scores but simply assumes they are available in constant
time. We do not assume this but instead use an efficient triangle listing algorithm to
calculate them. To allow fast triangle listing, we build and maintain a local graph data
structure. For processing the whole queue, we need to know the external similarity for
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every node in the shell and therefore we need to be able to list all triangles a node in
the shell is part of. To allow this, our local graph H is the subgraph induced by the
community C, its shell S(C) and the shell of the shell S(S(C)). Using a hash table, we
map global node ids to local, small integer node ids.

Note that when a new node u is added to the community, only scores of neighbors
of u are affected. Therefore, we need to either add u’s neighbors that are not in C to
S or update their scores. The former means that the score of node v only consists of
s(u, v)/ degw(v). The latter implies that we need an increaseKey operation with the
updated score: scorenew(v) = scoreold(v) + s(u, v)/ degw(v). The total running time
of all priority queue operations are therefore O(vol(C) log(nH)) where nH denotes the
number of nodes in H. Using the h-graph data structure presented in [LSS12], the triangle
listing is possible in total time for all nodes O(mH · α(H)), where mH is the number
of edges in H and α(H) is the arboricity of H. As we do not need all operations, we
only maintain the list of higher-degree neighbors of every node and therefore only need a
simplified version of the h-graph data structure. Note however, that, in order to add a
node to H, we need to check for all of its incident edges if the endpoint is in H. Therefore,
in our situation we get an additional expected running time of O(vol(C∪S(C)∪S(S(C)))),
where vol denotes the volume in the whole graph. Whenever we add a node u to the
community C, we list all triangles u is part of and update the scores of its neighbors. We
then also add all its neighbors to the shell and for each of them we list all their triangles
to compute the initial external score values.

For storing the shell, we use a 4-ary (max-)heap that supports increasing keys. This
allows us to update scores whenever we add a node to the community C. In total, we
need O(vol(C)) priority queue operations yielding total costs of O(vol(C) log(vol(C))).

The total running time is composed of building the local graph H, computing the
scores by listing triangles and updating the priority queue, which is in O(vol(C ∪ S(C) ∪
(S(S(C)))) +mH · α(H) + vol(C) log(vol(C))). Studies on real world networks [LSS12]
show that the arboricity is small in practice, which means that the running time is close
to being linear in the volume of the nodes of H in the original graph.

If the whole input graph shall be covered by communities, the scores can be pre-
computed. The running time is then reduced to the required time for the priority queue
operations.

11.3.2 Local T

The local T algorithm [FZB14] optimizes their T-measure which is based on internal and
external triangles of the community. They define Tin as the number of triangles where
all three nodes are in C. The number of external triangles Tex is then the number of
triangles with exactly one node in C. Note that triangles with exactly two nodes in C
are neither internal or external according to this definition. The T metric is then defined
as follows:

219



11 Local Community Detection Based on Small Cliques

T := Tin ·
{︄
Tin − Tex if Tin ≥ Tex

0 otherwise

Their approach is also iterative, in each iteration the node that maximizes the T-
measure is added to the community. If there are ties, the node with the lowest Tex score
is preferred. Additionally, they detect outliers, i.e., nodes only weakly connected to a
community, and hubs. We do not evaluate these steps here as identifying outliers or hubs
is not the goal of this work.

Implementation Details Similar to the data structure for LTE, we also maintain a local
graph for Local T. The main algorithmic difference is that no priority queue is used but
instead for every node to be added to the community, the whole shell is scanned. Apart
from that the algorithm is very similar, we list triangles and update scores at exactly the
same places. Therefore, the total running time is O(vol(C ∪ S(C) ∪ (S(S(C)))) +mH ·
α(H) + |C| · |S|), where |S| is the maximum size of the shell which is in O(vol(C)).

Note that for LocalT each triangle needs to be considered in the context of the
community and therefore no scores can be pre-computed to make the algorithm faster.

11.3.3 Clique Based Community Expansion

The basic idea of Clique Based Community Expansion is to start with the maximum
clique in the subgraph induced by the neighbors of the seed node. For weighted graphs,
we use the clique that has the maximum sum of all edge weights inside it and towards s.
This is an extension that can be applied to all algorithms we consider. For algorithms
based on simple greedy addition of nodes, we simply first add all nodes of the clique,
for PageRank-Nibble the PageRank approximation simply starts with the initial weight
equally distributed to the nodes in the clique.

For overlapping community detection, this was already considered by the Greedy Clique
Expansion algorithm [Lee+10]. It first lists all maximal cliques in the graph and then
expands a subset of them into communities. For local community detection, this was
proposed by [Fan+14]. While they state that this can be combined with any greedy
expansion scheme, they only evaluate it in combination with GCE M.

Implementation Details Our Clique Based Community Expansion implementation first
creates the subgraph induced by the neighbors N(s) of the seed node s. Then we detect
cliques using the simple ELS-bare algorithm of Eppstein et al. [ELS13], which runs in
time O(d2n3(d/3)) on a graph with n nodes and degeneracy d. While they also present a
faster algorithm, this algorithm still achieves good running times in practice while being
much simpler to implement [ELS13]. In our usage of the algorithm n = deg(s), since we
only look in the neighborhood of a seed node s. For unweighted graphs we simply select
the largest clique, for weighted graphs we select the clique of maximum edge weight. For
the weighted case, we simply iterate over all neighbors of the clique nodes and sum up
the weights of intra-clique edges. As a graph with degeneracy d has at most d(n− d+1

2 )
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edges and the number of maximal cliques is at most (n − d)3(d/3) [ELS10], this step
needs at most O(d · n2 · 3(d/3)) asymptotically. Therefore, the total running time of the
initialization algorithm for unweighted graphs is the same as the running time for finding
the cliques on the graph induced by the neighbors of the seed node, while for weighted
graphs the clique selection step dominates the asymptotic worst case running time.

11.3.4 Triangle Based Community Expansion

Our Triangle Based Community Expansion (TCE) algorithm maintains the shell of
the community in a priority queue. The priority queue is sorted by a node score that
determines how well a node is connected to the community, taking the neighborhood of
the node and its neighbors into account. Our algorithm works iteratively by extracting a
node from the queue and, if it improves the quality of the community, adding it to the
community. If it is not added, we proceed with the node that has the next highest score
and continue until no node from the current shell meets the condition.

Our node score uses an edge score based on triangles. We chose triangles as they
were shown to be a good indicator of community structure and are successfully used
for community detection [YL15; Jia+14; FZB14]. Specifically, we found the edge score
described by Radicchi et al. [Rad+04] to perform quite well for unweighted graphs. The
score is given by the following equation:

|N(u) ∩N(v)|+ 1

min(deg(u)− 1,deg(v)− 1)
(11.2)

We adapt this score to weighted graphs by replacing the +1-term by the weight of the
edge and the size of the intersection by the minimum weight of the two involved edges.
Further, we removed the −1 in the denominator as it is otherwise not clear what the
score should be when one of the nodes has only one neighbor. Therefore, our edge score
is given by the following equation:

ω(u, v) =
w(u, v) +

∑︁
x∈N(u)∩N(v)min(w(u, x), w(v, x))

min(degw(u), degw(v))
. (11.3)

It can be understood as the ratio between the number/weight of actual triangles and
the maximum possible number/weight of triangles. Note that for strictly positive edge
weights, this edge score is also always strictly positive and at most 1.

The node score is computed for a node u as:

score(u) =
1

deg(u)

∑︂
v∈N(u)∩C

ω(u, v), (11.4)

which is the sum of all edge scores from edges connecting the node u to the community
C, divided by its unweighted degree. We normalize the score by the node’s unweighted
degree, so that nodes with high degree do not have high scores, simply by virtue of having
many edges connecting it with the community, regardless of edges, that connect it to
other parts of the graph. Due to this normalization, node scores are also at most 1.
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Input: Graph G = (V,E), edge weights w(·, ·), seed node s.
Output: A community C of the seed node s.

1 C ← {s}
2 S ← N(s)

3 while S ̸= ∅ do
4 umax ← arg maxu∈Sscore(u;G,C,w)
5 S ← S \ {umax}
6 if conductance(C ∪ {umax}) < conductance(C) then
7 C ← C ∪ {umax}
8 S ← S ∪ (N(umax) \ C)

Algorithm 11.1: Triangle Based Community Expansion (TCE) detects a community
around a given node. Uses a node scoring function based on triangles to add nodes to
the community.

By always removing the node with the maximum score from the shell, we consider
adding every node in the shell to C at some time. However, using the node scores we
prioritize some nodes over others, which leads to community growth in the directions of
nodes with higher node scores.

We add a node to the community, when adding it to the community improves the
conductance of the community. We choose conductance as it intuitively captures the defi-
nition of a community and was shown to perform better than other scores in comparative
study [YL15]. To use the original conductance score as shown in Equation (11.1), we
need to know vol(V \ C) in order to properly compute the conductance of a community
C, which requires knowledge of the entire graph’s volume. As we do not want to assume
this, we always use vol(C) in the denominator of conductance in Equation (11.1). This
approach mostly yields the same values as the original equation, since the community is
usually small in relation to the whole graph.

We show the pseudo-code of our algorithm TCE in Algorithm 11.1. It takes a graph G
with edge weights w and a seed node s. For simplicity, we assume access to the whole
graph here, however the algorithm does not actually access the whole graph but only a
local neighborhood of the nodes added to the community. It begins by initializing the
community C with s and the shell S as N(s), the neighbors of s (lines 1,2). Then the
loop is executed, taking the node umax ∈ S with the highest node score (line 4), which is
given by Equation (11.4). This node is then removed from S (line 5) and we check if it
would improve the conductance of C. If it improves the conductance, we add the node to
C and update S by inserting all neighbors of umax that are not in C (lines 6–8).

Implementation Details As for LTE and Local T, we build and maintain a local graph
data structure for counting triangles. For TCE, we only need the subgraph H induced by
the community C and its shell S(C), as we are only interested in triangles where at least
one node is in C. Like for LTE, we use a 4-ary (max-)heap for storing S that supports
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increasing keys.
When a new node u is added to the community, only scores of neighbors of u are

affected. Therefore, when a node u is added to the community, we only need to either
add u’s neighbors that are not in C to S or update their scores (Algorithm 11.1 (line 8)).
The former means that the score of node v only consists of ω(u, v)/degw(v). The latter
implies that we need an increaseKey operation with the updated score: scorenew(v) =
scoreold(v) + ω(u, v)/degw(v). The total running time of all priority queue operations
are therefore O(vol(C) log(vol(C)).

The total running time is composed of building the local graph H, computing the
scores by listing triangles and updating the priority queue. In total, this is O(vol(C ∪
S(C)) +mH · α(H) + vol(C) log(vol(C))). Note that compared to LTE, the subgraph H
is smaller as it does not contain the neighbors of the shell.

11.4 Experiments

We compare the previously presented algorithms including the initialization using a
clique on weighted and unweighted graphs. Firstly, we present our experimental results
on synthetic graphs from the LFR benchmark [LF09b; LF09a]. Secondly, we evaluate
our algorithms on 100 Facebook friendship networks [TMP12]. We start by describing
our experimental setup and the used scoring and then continue with the results on the
synthetic and the real-world networks. At the end of this section, we also evaluate the
running time of the different algorithms.

11.4.1 Experimental Setup

For all of these local community detection algorithms, we provide novel or improved
implementations in C++ as part of the open source network analysis tool suite Net-
worKit [SSM16]. The exact implementations used and the scripts used to generate graphs,
evaluate the detected communities and generate the plots are available online 2. We aim
to contribute the implementations to NetworKit.

We also compare against the global community detection algorithm Infomap [RAB09]
(see Section 1.3.4 for an introduction) which has been shown to perform excellently on the
synthetic benchmark graphs we use [LF09b]. This allows us to see how a state-of-the-art
global community detection algorithm performs in comparison to the local community
detection algorithm. For Infomap we use the implementation provided by the authors to
optimize a two-level partition, i.e., a disjoint clustering of the whole graph. To get the
community of a seed node, we simply use the cluster detected by Infomap that contains
the seed node.

All results are obtained on a computer with an Intel® Core™ i7 2600K Processor, run
at 3.40 GHz with 4 cores, activated hyper-threading, and 32 GB RAM.

We generate 20 random realizations for each synthetic graph and select a set of 20
random seed nodes for each of them. In our experiments on real world networks we use

2https://github.com/kit-algo/LCD-cliques-experiments
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100 randomly chosen nodes per graph as seeds, as there we have only one realization per
graph.

11.4.2 Scoring

We compare the detected communities to the ground truth communities generated in the
synthetic benchmark graphs and the communities induced by the attribute “dormitory”
in the Facebook 100 dataset. For simplicity, we will call them also “ground truth”
communities in the following. For the comparison, we match each detected community
with a ground truth community. We use two variants of this: one where we compare the
detected community to the best-matching ground truth community that contains the seed
node and one where we choose the best-matching ground truth community irrespective of
the seed. As score, we use the standard F1 score as introduced in Section 2.3.3. The F1

score is between 0 and 1, where 1 is the best score, it indicates a perfect match of ground
truth and detected community.

The F1-score and the similar Jaccard-Index are often-used measures in the area of
community detection and graph clustering [YL14; SMM14; Ma+14; CZG09]. Both work
well when comparing a single community that an algorithm finds to one or several ground
truth communities by taking into account nodes correctly and incorrectly identified.
Many other comparison measure typically used for comparing detected communities
to ground truth communities like NMI assume a whole clustering consisting of many
communities covering the whole graph. They are thus not suitable for our evaluation
where we explicitly want to compare individual detected communities to (possibly only
some) ground truth communities.

In order to give an idea how good a given F1 score is, we implemented a simple baseline
algorithm. The simplest idea would be to return a random set of nodes. However, any
connected subgraph containing the seed node could easily outperform this. To get a
more realistic, yet basically random community we instead perform a breadth-first search
starting at the seed node. As input, it takes not only the seed node but also the size k of
a random ground truth community the seed node is part of. It returns the first k nodes
it finds during the breadth-first search. Therefore, the size of the detected community
always perfectly matches the size of one of the grount truth communities the seed node is
part of. In the experiments, we denote this algorithm by “BFS”.

11.4.3 Synthetic Graphs

We use the LFR synthetic benchmark graphs as described in the introduction in Sec-
tion 2.1.1. We use the variants with unweighted graphs with disjoint cluster as well as
overlapping clusters and weighted graphs with non-overlapping clusters. We summarize
the parameters and our chosen values in Table 11.1.

For unweighted, disjoint communities we use the implementation of the LFR bench-
mark in NetworKit [SSM16]. For the weighted and overlapping variants we use the
implementations provided by the authors of the LFR benchmark.
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Table 11.1: Parameters of the LFR benchmark that we use in our experiments.

Name Description Unweighted Overlapping Weighted

n number of nodes 5000 2000 5000
k average degree 20 39.5, 61.5, 78.1,

91.8, 103.5
20

kmax maximum degree 50 120 50
τ1 degree exponent −2 −2 −2
Cmin minimum community size 10, 20 60 20
Cmax maximum community size 50, 100 120 100
τ2 community size exponent −1 −2 −1
µt topological mixing 0.1, . . . , 0.9 0.2 0.3, 0.5, 0.8
β weight exponent −1.5
µw weight mixing 0.1, . . . , 0.9
Om communities per node 1 1, . . . , 5 1

Unweighted Graphs

For the first experiment, we run the algorithms on the parameter set Unweighted in
Table 11.1, which are the large (5000 node) variants used by Lancichinetti et al. [LF09b].
This parameter set consists of two different community size ranges [10, 50] and [20, 100].
Therefore, we generate two different sets of graphs for which we vary µt, the topological
mixing parameter. We generate 20 instances of each graph and let the algorithms run
from 20 randomly picked seed nodes per graph.

Figure 11.1 shows the average F1-scores both for the variants starting from a single seed
node (left column) and the variants starting from the maximum clique (right column).
The “Cl” algorithm in the left column is just the maximum clique of the seed node, i.e.,
the starting point of the algorithms in the right column.

The performance of the plain Local T algorithm is well below the performance of the
baseline BFS. Even the simple clique algorithm outperforms it in terms of F1 score. With
clique initialization it performs better but is still one of the lowest-scoring algorithms.
Note that due to a bug in the handling of the initialization with multiple seed nodes,
LocalT performed worse in our original evaluation [HRW17]. The density-based simple
greedy expansion algorithms GCE M, GCE L and LFM all perform very similar, which
is not unexpected as they are based on very similar quality functions. With a clique as
initialization their performance is significantly improved, in particular on the smaller
communities they return almost perfect communities even past µ = 0.5. The original
L-based community detection algorithm, Two-Phase L, performs worse than these simple
expansion algorithms. One explanation for this behavior is that if the seed node is no
longer part of the detected community, the algorithm simply returns an empty community,
giving a score of 0. Only the triangle-based algorithms LTE and TCE perform well when
initialized with a single seed node. They also profit from the initialization with a clique,
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Figure 11.1: Avg. F1-scores on the LFR benchmark with the parameter set Unweighted,
which we specify in Table 11.1. The left column shows results when starting
with a single seed node, the right column shows results for starting with the
maximum clique as well as Infomap for comparison.
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though. In particular on the smaller communities their performance is not far from the
Infomap algorithm, which is able to perfectly recover the community structure till µ = 0.7.
The PageRank-Nibble algorithm (PRN) performs only well on the graphs with low values
of µ, for higher values its performance degrades very quickly.

To explore the performance of the different algorithms in more detail and get some
explanations for their behavior, we show more detailed results in Figure 11.2. In Fig-
ure 11.2a,b, we see the conductance of the detected communities. Due to the definition of
conductance and the ground truth communities in LFR, µ corresponds exactly to the
conductance of the ground truth communities. We can see here that the triangle-based
algorithms which almost perfectly recover the community structure (TCE and LTE) also
yield good, though not perfect conductance values. For the methods based on density and
simple greedy expansion, GCE M, GCE L, LFMLocal, we can see that the coductance of
the detected communities is improved by starting from a clique.

PageRank-Nibble shows an interesting behavior here: starting with µ = 0.4, the
conductance stays almost the same, i.e., is better than what the other algorithms find.
Looking at Figure 11.2c,d which show the sizes of the detected communities, we can
see that PageRank-Nibble finds really large communities that, starting with µ = 0.5
contain almost half of the nodes of the whole graph. The explanation for this is that if
you randomly cut a graph in two parts equally-sized parts, in expectation you also split
the neighbors of every node in two equally-sized parts. Therefore, for every node u in
expectation about half of u’s neighbors are in the same part as u and the other half is in
the other part. This yields a conductance of 0.5. Therefore, if the initial local PageRank
approximation visits enough nodes, a large enough prefix of the sorted nodes will have a
lower conductance than the actual community. Further, if the actual community is not
perfectly detected, its conductance is higher and therefore the effect starts already around
µ = 0.4.

The Local T algorithm consistently finds too large communities that also have high
conductance values except for some range around µ = 0.6, where probably the community
size is just right to get low conductance values regardless of the chosen cut. Only when
starting with a clique on graphs with low values of µ, the size and conductance are correct,
as expected from the good F1-scores.

Concerning the sizes, the density-based algorithms GCE M, GCE L and LFM as
well as TCE and LTE find approximately the right size, though for larger communities
they tend to discover too few nodes. Starting with a clique improves this, the detected
community sizes now rather correspond to the correct size which is always returned by
the BFS baseline by design. In our previous experiments, LTE tended to detect too large
communities for µ ≥ 0.8, this was due to a similar bug with the clique initialization as in
LocalT.

For Two-Phase L we can clearly see that above µ = 0.5, the algorithm finds smaller
and smaller communities on average, meaning that more and more often it decides that
the detected community is no community and discards it.

In Figure 11.2e,f we report the average F1 score of every detected community with the
best ground truth community regardless if that community contains the seed node. For
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Figure 11.2: Different measures for the 5000 node unweighted graph with disjoint big
communities.
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GCE M, GCE L and LFM we can clearly see that they get much better scores compared
to the comparison considering only the ground truth community of the seed node. This
shows that these algorithms find communities in which the seed node is not strongly
embedded. For the algorithms starting with a clique, this effect is much weaker, though
for higher values of µ it is visible for all algorithms. Existing work frequently ignores this
e.g., by just considering the cover that is detected by iteratively applying the algorithm
to nodes that do not yet belong to a community [LFK09; Hua+11].

11.4.4 Overlapping Communities

Our parameter set for overlapping communities is inspired by the highly overlapping
parameter set used in [Lee+10]. All nodes belong to the same number of communities Om

which is in the range [1, 5]. We modified the parameters slightly by not setting the average
degree but the minimum degree to 18 ·Om. This has the effect that the minimum internal
degree of a community stays the same with increasing values of Om. Using NetworKit,
we calculated the expected average degree for this minimum degree and used these as
parameters for the LFR generator.

Figure 11.3 shows the results for these networks. Note that here we do not evaluate
if an algorithm is able to discover all or a specific community of a node, we compare to
the community of the seed node that is best matched. The performance of LocalT is
extremely poor, it cannot detect any overlapping communities and without a clique as
initialization, it cannot even detect the non-overlapping communities. PageRank-Nibble is
also unable to discover any communities starting for Om ≥ 2, which is not really surprising
as the PageRank approximation has no way to decide for one of the communities of
the seed node. The other algorithms perform better, LTE being best when starting
without a clique. The largest clique of the seed node as initialization again improves
the performance, and, quite interestingly, when starting with a clique, the density-based
algorithms GCE M, GCE L and LFM perform better than the triangle-based algorithms
LTE and TCE. A possible explanation for this could be that triangles are less helpful in
the case of overlapping communities as a node can have triangles with neighbors of any
community. Infomap completely fails to discover the overlapping community structure,
but this is expected as we only used the variant for disjoint communities.

Weighted Graphs

For the weighted graphs, we use the parameter set “Weighted” in Table 11.1, those are
the parameters also used by Lancichinetti et al. [LF09b]. This means that we have a
single community size range, [20, 100]. We further choose three values for the topological
mixing parameter µt = 0.3, 0.5, 0.8. The weight mixing parameter is varied from 0.1 to
0.9 in each of these sets. For each µw we generate 20 instances and run the algorithms
from 20 randomly chosen seed nodes.

For the weighted graphs, we do not compare LocalT as it only works on unweighted
graphs and it is not clear how to generalize it to weighted graphs, the authors discuss
this as future work. In Figure 11.4 we show the results for the other algorithms. For each
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Figure 11.3: Results for overlapping communities with LFR graphs with parameter set
“Overlapping” as specified in Table 11.1.

value of the topological mixing parameter µt we plot the weight mixing parameter µw on
the x-axis and the resulting average F1 score on the y-axis.

Comparing the two plots at µt = 0.3 and µt = 0.5, we can see that while most algorithms
even improve their performance at µt = 0.5, LTE has a worse performance. A possible
explanation for this is that its score of the community is based on the presence of triangles.
While TCE is also based on triangles for the decision which node to add next, its score
of the community is solely based on the density and should thus be independent of the
structure of the graph as long as the weights are correctly distributed. This can be seen
by its performance which is even better for µt = 0.5. When initialized with a clique, LTE
has fewer problems though and even outperforms Infomap for high values of µw. This is
probably due to its community score being based on the structure of the graph and thus
taking weights less into account. Two-Phase L performs similarly well or worse than our
baseline BFS, apparently the two-phase process is not so suited for this kind of weighted
graph. The performance of the other density-based algorithms GCE M, GCE L and LFM
is similar to their performance on unweighted graphs.

For µt = 0.8, none of the algorithms is able to accurately detect the community
structure anymore. This is most likely due to the low intra-community degree. Note
that the chosen values of k = 20 and kmax = 50 result in a minimum degree of 10, which
means that at µt = 0.8, the low-degree nodes have only two neighbors in their own
community. PageRank-Nibble seems to be least affected by this, though its performance is
also significantly worse than for µt < 0.8. LTE performs worse than the other algorithms
as it is most affected by the lack of triangles. Cliques also only lead to small improvements,
this is most likely also due to the low internal degree. In the previous version of these
experiments, due to a bug, no improvements were visible for cliques at all, as the code
did not consider the edge weights from the seed node to the clique when determining the
maximum-weight clique. The still good performance of Infomap shows, though, that in
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Figure 11.4: Avg. F1-scores on the LFR benchmark with the parameter set Weighted, as
specified in Table 11.1.
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principle the community structure is still detectable.

11.4.5 Facebook Graphs

The synthetic graphs of benchmarks, like LFR, are an excellent way to compare algorithms
and can show their quality. However, as discussed in Chapter 2, good performance on
synthetic graphs does not necessarily translate to good performance on real world graphs.
Good performance on real world graphs is also an important quality of algorithms. After
all, we design our algorithms with the goal in mind to be able to find communities
on real graphs. Therefore, we test and evaluate the algorithms here on real world
social networks, more specifically the Facebook 100 data set that we have discussed
already in Section 2.2.3. It consists of 100 Facebook social networks from 100 universities
and colleges from September 2005.

In our evaluation, we compare against the community structure induced by the dor-
mitories. These are not ground truth communities, though. Therefore, our results only
show how well the communities detected by the algorithms and the attribute correlate.
This has many flaws, one of them being that the attribute is missing for some nodes.
Another is that the subgraph induced by one of the attribute values is not necessarily
connected, in preliminary tests we found that they often even consist of more than two
connected components. As these flaws affect all algorithms equally, we still consider this
a valid evaluation.

We pick 100 random nodes as seed nodes on each graph and execute the algorithms
for each of them. When picking the seed nodes, we ensure that each of them has the
dormitory attribute set. Figure 11.5 shows the resulting F1-scores for all 100 graphs,
which we sorted after the F1-score of LTE.

Clearly, LTE is the best-performing algorithm, in particular when starting with a
single seed node. There, on most graphs, none of the other algorithms even exceeds the
performance of the baseline BFS. When starting from the maximum clique, TCE, GCE
M, GCE L and LFM perform much better and now better than the BFS baseline on
many graphs but still worse than LTE. LTE also profits from starting from a clique, but
only slightly. PageRank-Nibble does not seem to profit from the clique at all, it appears
rather that results are becoming worse when starting from a clique. The Two-Phase L
algorithm often decides that no community was discovered, on some of the graphs it even
decided that for all 100 seed nodes. While Infomap is among the better algorithms, it
does not outperform LTE on most of the graphs.

11.4.6 Running Times

In Table 11.2 we present the running times (wall time) and detected community sizes of
the local community detection algorithms averaged over all 100 Facebook graphs and over
the overlapping LFR benchmark graphs. While they show different rankings, one can still
find some similarities. First of all, LocalT is the slowest algorithm by a large margin and
returns the largest communities. LTE is second-slowest, followed by TCE on the LFR
graphs. A main difference between the Facebook and the LFR graphs is the time required
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Figure 11.5: Average F1-scores of the algorithms on all 100 Facebook graphs. The scores
are calculated by treating the dormitory attribute as communities. The
graphs are sorted by the F1-score of LTE.
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11 Local Community Detection Based on Small Cliques

Table 11.2: Average times (ms) per seed node and average community sizes of the algo-
rithms.

(a) Overlapping LFR Benchmark. (b) Facebook Networks.

Size Time (ms) Size Time (ms)

Cl 7 0.4 TwoPhaseL 46 1.8
Cl+PRN 420 1.7 PRN 976 3.7
PRN 607 2.5 GCE M 292 6.6
Cl+GCE M 322 3.6 GCE L 287 8.2
GCE M 420 4.1 TCE 313 11.3
Cl+GCE L 315 4.3 LFMLocal 240 12.5
Cl+TwoPhaseL 233 5.0 Cl 14 16.8
GCE L 419 5.2 Cl+TwoPhaseL 45 20.9
LFMLocal 277 6.0 Cl+PRN 1079 21.5
Cl+LFM 266 6.0 Cl+TCE 924 50.3
TwoPhaseL 337 7.0 Cl+GCE M 1012 51.8
TCE 347 11.2 Cl+GCE L 924 54.5
Cl+TCE 327 11.2 Cl+LFM 914 87.3
LTE 311 29.0 LTE 263 106.5
Cl+LTE 303 29.1 Cl+LTE 378 150.8
LocalT 1616 56.6 LocalT 8063 1063.6
Cl+LocalT 1616 57.3 Cl+LocalT 8333 1098.5

for listing all maximal cliques. While it is really fast on the LFR graphs, it is slower
than executing any local community detection algorithm apart from LTE and LocalT on
the Facebook networks. A possible explanation could be the different structure of the
Facebook networks with larger cliques and higher degrees, though the average clique size
on the Facebook networks is with 14 only twice as large as the average on the LFR graphs,
which is 7. PageRank-Nibble is quite fast on both types of networks, closely followed
by the simple expansion strategies GCE M and GCE L. LFM with the more advanced
removal strategy is slightly slower. The Two-Phase L algorithm is the fastest algorithm
on the Facebook networks, but there it also hardly finds communities so probably it does
not only find communities without the seed node as we saw in earlier experiments but
the expansion also stops early on these networks. On the LFR benchmark where the
performance was similar to the simpler density-based algorithms, Two-Phase L is slightly
slower than these algorithms but still faster than the triangle-based algorithms.

11.4.7 Summary

In Figure 11.6 we summarize the experimental results concerning the quality of the found
communities. For each type of LFR graph with non-overlapping communities, we show
the result for µ = 0.5 as this is for all graphs a value where many algorithms still find
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reasonable results but differences between algorithms are already visible. For LFR graphs
with overlapping communities we picked 4 communities per node for the same reason.
For the set of 100 Facebook graphs we report the average over the 10 graphs where LTE
starting with a clique (the best-performing algorithm according to our results) found
the best-matching communities. On all considered types of graphs, the algorithms not
starting with a clique perform worse than those starting with a clique, though LTE
and TCE still show reasonable results for many graphs. The algorithms TwoPhaseL,
PageRank-Nibble and LocalT perform worse than the other algorithms on all types of
graphs. On unweighted LFR graphs with small communities, all other algorithms find the
ground truth (almost) perfectly when starting with a clique. With big communities, TCE
starting with a clique wins by a small margin. Note that in our previous experiments
where LTE had a bug, LTE starting with a clique found the ground truth even better
while now it performs slightly worse. On the Facebook graphs, LTE starting with a clique
is the best-performing algorithm. However, with overlapping communities and with edge
weights and a not so clear structure (i.e., µt ≥ 0.5), it seems its triangle-based score is
more easily confused and outperformed by the simpler density-based algorithms like LFM
or GCE with clique initialization. Our newly proposed TCE algorithm is between them,
on weighted LFR graphs it is even among the best-performing algorithms. Compared to
the global, non-overlapping Infomap algorithm the results are quite competitive, only on
the weighted graphs Infomap performs significantly better. On the Facebook networks,
the performance of Infomap is even inferior to some local algorithms. For the overlapping
LFR networks, Infomap correctly finds that there is no good non-overlapping community
structure.

Overall, these results show that while using a clique as initialization is beneficial on
all types of graphs, the choice of the expansion algorithm should always depend on the
type of the graph. For weighted graphs, it can be dangerous to depend too much on
the structure of the graph as LTE does. For LFR graphs with a highly overlapping
community structure, methods solely based on the density outperform those based on
triangles which is a bit surprising as one would still expect that intra-cluster edges are
structurally more embedded. This could mean that possibly scores based on triangles are
not as sophisticated as those based on density and should be further improved.

11.5 Conclusion

We have compared a set of 8 local community detection algorithms, one of them—Triangle
Based Community Expansion—being a novel algorithm. For the evaluation we used
both synthetically generated benchmark graphs and real-world social networks. We have
shown that triangle-based algorithms are superior to solely density-based algorithms, in
particular on real-world networks. Further, we have shown that all algorithms benefit
from not starting from a single seed node but the maximum clique in the neighborhood
of the seed node.

Algorithms based on triangles could also be used to improve global overlapping com-
munity detection algorithms such as GCE [Lee+10]. In the case of global algorithms, the
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Figure 11.6: Summary of F1-Score - seed values of all types of networks considered. The
results for the Facebook networks are averages over the 10 networks where
“Cl+LTE” had the best scores. LocalT does not support edge weights and is
therefore omitted for weighted graphs.
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pre-computation of edge scores and using more efficient arrays instead of hash tables lead
to significant speedups as preliminary experiments indicate. Further, our approach could
also be extended to dynamic graphs, possibly using a similar approach to [ZB15]. Data
structures for maintaining triangle counts [ES09; LSS12] could thereby be used to update
edge and node scores.
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12 Conclusion and Outlook

In this thesis we considered different aspects of scalable community detection. We started
with the question of how to evaluate community detection algorithms. With EM-LFR,
we contribute an important building block that allows to evaluate community detection
algorithms on graphs with tens of billions of edges using the exact model of the established
LFR benchmark. Our dynamic benchmark generator for overlapping communities on the
other hand proposes a very challenging benchmark for which scalable algorithms need to
be developed.

For disjoint, density-based communities we propose a scalable distributed community
detection algorithm that optimizes the established measures modularity and map equation.
We show that it is faster and offers better quality than a state-of-the-art algorithm.
Further, we compared different methods to filter edges with respect to the preservation of
community structure. Our results show that while some methods are effective at selecting
intra-community edges, community detection algorithms find different communities on the
filtered graphs. On the other hand, simple random edge selection maintains the structure
up to about 50% of the edges on the tested graphs.

For the quasi-threshold editing problem, that has been proposed as a possible community
detection algorithm, we developed the first scalable editing heuristic that allows editing
graphs with millions of nodes and edges. To allow an evaluation of such heuristics with
respect to their quality as well as to allow a more detailed evaluation of the quasi-threshold
editing approach, we further developed and evaluated exact algorithms. Due to the high
complexity of the problem, they are unable to find solutions for graphs with hundreds of
nodes. For some small social networks, we analyze the found solutions and show that
there can be thousands of them.

In the last part, we considered the problem of detecting a community around a seed
node. Here, our focus was on the quality of the detected communities and a detailed
experimental comparison of different approaches. We show that starting with the largest
clique in the neighborhood of the seed node significantly improves the results. Further,
approaches that use edge scores similar to those used in our work on sparsification perform
better both on synthetic benchmark graphs and on the Facebook networks.

Even after working more than five years on the research presented in this thesis1,
there are still many ways to continue this research. For our distributed community
detection algorithm, integrating approaches recently proposed as parts of the Leiden
algorithm [TWE19] should help to improve the quality, in particular for modularity.
For quasi-threshold editing, we are currently pursuing two directions of research. First,
we believe that inclusion-minimal editing, as proposed for cographs [Cre20], should be

1I started my work as a doctoral researcher in July 2014.
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possible with small modifications that might also further boost the quality of our heuristic.
Minimal editing might also be useful as an initialization heuristic. Second, both heuristic
and exact approaches could be adapted for editing costs. While a first attempt with an
adaptation of our exact FPT-based branch-and-bound algorithm was much inferior to an
ILP [Spi19], we are currently investigating new ideas for lower bounds.

Community detection is a vast field and there are many variants. While countless
community detection algorithms have already been proposed, there are still areas where
we are not aware of any scalable, high-quality algorithms. This in particular concerns
overlapping communities. Already the experiments on our dynamic generator in Chapter 4
reveal that there is still a lot of room for improvements. In a master’s thesis I supervised,
we considered further extending the Ego-Splitting framework [ELL17] as, while it is fast,
the quality of the communities is not perfect as our experiments show [Wie19]. While we
improved the quality significantly, there are still open questions concerning in particular
the scalability of the extensions and the improvements for detecting communities in
real-world networks that are hard to measure. If we combine dynamic networks with
overlapping communities, the problem becomes even more challenging. As a continuation
of our work on local community detection, further local community detection algorithms
could be adjusted for dynamic graphs similar to [ZB15].

Apart from distributed algorithms, external memory algorithms are also a way to
scale community detection algorithms to larger graphs. Based on existing work on label
propagation [ASS15] and a bachelor’s thesis I supervised [Pla16], in particular semi-
external algorithms seem promising. In this model, we keep O(log(n)) bits for each node
in the internal memory while storing the edges on disk. This should allow community
detection on significantly larger graphs without requiring a compute cluster.

Hypergraphs are a generalization of graphs consisting of nodes and hyperedges where a
hyperedge connects an arbitrary set of nodes instead of just two nodes. This allows a
more direct modeling of certain settings. For example, consider a co-authorship network
where nodes are authors that are connected if they co-authored a publication. Here, a
hyperedge could directly represent a publication instead of connecting all authors of a
publication by a clique. While some approaches for community detection in hypergraphs
have already been considered [PF11; Kam+19], further generalizations of quality measures
and algorithms could be developed.

All measures and algorithms for detecting communities that we considered in this thesis
only use the structure of a graph and ignore additional information like node attributes.
Those could for example indicate that two people work at the same company or attended
the same school. One approach to consider attributes is to add additional edges to the
graph that represent attribute similarity [RFP13]. Other approaches directly combine
attributes and graph structure into a single quality measure [YML13; Sán+15]. For
the first approach, all of the community detection algorithms we present in this thesis
could be used. In a bachelor’s thesis I co-supervised [Kra15], we considered such an
approach for local community detection where we extended local community detection
algorithms to consider attributes. We found that there are significant challenges how
to evaluate the quality of such algorithms. Further, this was before our work on local

242



community detection and only based on algorithms that did not perform well in our
comparison. Adjusting the proposed algorithms for graphs with node attributes to use a
better base algorithm might thus be promising. For the second case, first understanding
the community detection problem alone certainly helps later developing scalable methods
that combine both. Further, scalable algorithms like our distributed community detection
algorithms could be adjusted to optimize a quality measure like the one used in [Sán+15].
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