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Abstract Many numerical studies (Hansen and Salamon (1990), Schapire
(1990)) indicate that bagged decision stumps perform more accurately than a
single stump. In this work, we will investigate two approaches to create a forest
of stumps for classification. The first method is bagging with stumps, that is
growing a stump on different bootstrap sample size drawn from the training
dataset. The second method is Gini-sampled stumps, where we sample split
points with probability proportional to the Gini index. These two methods are
combined with two aggregation methods: Majority vote and weighted vote. We
use simulation studies to compare the performance and consumed time for these
two methods. The computing time of generating split points by Gini-sampled
stumps is less than half of the time needed to generate split points from bootstrap
samples. Also, weighted vote aggregation results in more accurate performance
than majority vote aggregation.
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1 Introduction

Over the past few decades, researchers around the world have increasingly
focused on data science and its applications. Data science unifies statistics
and computer science and their applications, methods, techniques and theories.
There are many subfields of data science such as machine learning, compu-
tational statistics (these two subfields are closely connected to each other)
and classification. While computational statistics is known as the science of
designing algorithms to implement statistical methods on computers and deal
with analytical problems (Lauro, 1996), machine learning is defined as a field
of computer science in which computers have the ability to learn from the data
without being explicitly programmed (Samuel, 1959). As the volume and nature
of the gathered data becomes larger and more complex, analysing it is also
more challenging. Therefore, researchers recently focus on developing efficient
algorithms that tackle the data properly. Decision stump algorithms are one of
the simplest kinds of algorithms and were mentioned first by Iba and Langley
(1992). We will introduce decision stumps, bagging, the Gini function and some
of the aggregating decision methods. We investigate here two main experiments:
The first experiment is to consider bagging with stumps which is an ordinary
stump fitted on bootstraps of different sample sizes and the decisions of these
trees are combined by using two different aggregating methods (Majority vote or
Weighted vote). The technique of the second approach (Gini-sampled stumps)
is to generate split points for a variable according to Gini index values, splitting
the training dataset into two subsets greater and smaller than this split point or
“threshold” by using this set of split points, and then combining the results by
using the same aggregation methods mentioned previously.

1.1 Decision Stumps

A decision stump is a one-level decision tree, with a root “the internal node”
that is directly connected to two leaves “the terminal nodes”.

We have = observations with ? feature variables that are used in making
predictions. Let G8: represent the value of the : Cℎ variable for the 8Cℎ observation,
where 8 = 1, 2, . . . , = and : = 1, 2, . . . , ?. We have a dataset - that can be
denoted as an = × ? matrix whose (8, :)Cℎ element is G8: .
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Every row of - represents one observation and we write the observations as
G1, G2, . . . , G=. Here G8 is a vector of length ?, containing the ? features for the
8Cℎ observation. That is, G ′

8
= (G81, G82, . . . , G8 ?). Every column of - represents

one variable and we write the variables as x1, x2, . . . , x?. Each is a vector of
length =. By using this we can write our dataset as

- = (x1, x2, . . . , x?). (1)

We use H8 to denote the label of the 8Cℎ observation such that H8 ∈ {1, 2, . . . , �}.
Also, we have a test dataset and it contains < observations with the same
structure. We have a classifier 5 (G), such that 5 (G) is a function defined on the
sample space Ω- and for every G ∈ Ω- , 5 (G) ∈ {1, 2, . . . , �}. This classifier 5

partitions the data - into subsets where:

- 9 = {G ∈ - : 5 (G) = 9}. (2)

A stump uses a variable x: to split the training data and make the prediction on
the testing data. For continuous feature variables, the most common approach
is that a feature variable and a corresponding threshold feature value, i.e. split
points are selected to create a stump with two leaves for values below and above
that threshold.

The classic way is that each of the two leaves is labelled based on the most
frequent class for the observations in that leaf, however, we will also keep track
of the proportion of observations in each leaf because it happens frequently that
the classes’ proportions are almost equal, for example 0.51 in one class and
0.49 in the other. This idea is the basis of the weighted vote aggregation method
which will be explained in Section 3. The stump selects the feature variable and
the “split point” in a way such that the child nodes, which are here the terminal
nodes, are always “purer” than their parent node. The most common function
used to measure impurity for nodes is the Gini function, for which the split point
is chosen. We will talk about the Gini function in more detail in Subsection 1.2.

A decision stump is called a weak learner due to its poor performance and
decision stumps are commonly used as components in ensemble strategies
such as bagging. A number of studies (Freund et al. (1996), Dimitriadou et al.
(2003)) show that combining the decision of a group of classifiers can result in
a better decision and improve the accuracy and performance of weak learners.
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Nevertheless, in this research we focus on bagged decision trees and bagging
will be discussed in Subsection 2.1.

1.2 The Gini Function

Binary tree classifiers are constructed by recursively splitting subsets of the
training dataset into two child nodes. To split any node into the child nodes we
have to select the splits in a way such that the child nodes are always “purer” than
their parent’s. The "purity" of a node can be measured e.g. by a concentration
measure. For this purpose we have chosen the Gini index (for a survey see e.g.
Giorgi (1990)). The Gini index is defined as follows:

For a given node 2 with =2 observations let =2 9 be the number of observations
in class 9 , 9 ∈ {1, 2, . . . , �}, such that

=2 =

�∑
9=1

=2 9 . (3)

Then, the Gini index can be defined as:

Γ(2) = 1 −
�∑
9=1

(
=2 9

=2

) 2
. (4)

Now, let 2 ∈ {%, !, '}, the change in the Gini index resulting from splitting
node % (parent) into ! (left) and ' (right) is

4Γ = Γ (%) −
(
=!

=%
Γ(!) + ='

=%
Γ(')

)
. (5)

The classification tree algorithm searches through all possible candidate splits
of % to select the one with the maximum change 4Γ.

2 Splitting Schemes

We investigate two different splitting schemes to build an ensemble of decision
stumps. The first scheme is bagging with stumps, which is basically combining
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stumps with the bagging technique and it will be described in more detail in
Subsection 2.1. The second scheme is Gini-sampled stumps, which is a new
subsampling method that builds a forest of stumps based on generated split
points from Gini indices. This method will be explained in Subsection 2.2.

2.1 Bagging with Stumps

We need here to define bagging before explaining this method. Bagging stands for
Bootstrap aggregating and was proposed by Breiman (1996). It is an ensemble
method designed to improve the classification by combining the classifiers
of randomly generated bootstrap samples of the training set. The size of the
bootstrap sample size is =∗ and it can be chosen to be equal to the training
data size.

Now, suppose we are given a sequence of learning sets {-1}, 1 = 1, 2, . . . , �,
each consisting of =∗ = = independent observations, drawn with replacement uni-
formly at random from the training data. This is the bootstrap technique and it has
been used in many ensemble methods like “Random Forests” (Breiman, 2001)
and “Bagging predictors” (Breiman, 1996). The goal is to use the {-1} to get a
better classifier than the classifier using a single learning dataset. By sampling,
each observation has a =−1 chance to be not repeated in this sampling and
(1 − =−1) being repeated. By repeating this =-times, we will get (1 − =−1)= of
repeated observations. The expectation of having not repeated values is

=

(
1 −

(
1 − 1

=

) =)
≈ =

(
1 − 1

4

)
, (6)

since lim=→∞(1 − =−1)= = 4−1. The percentage of unique observations is
= (1− 4−1)

=
= 1 − 4−1 = 63.2 %, so, we have, on average, 63.2 % of the unique

observations of the training dataset in each bootstrap sample.
After fitting a classifier (a stump) on each bootstrap-sampled version of

the training data, then we have to make a final decision by aggregating these
classifiers decisions. There are many aggregation decision methods and we will
talk about the two aggregation methods that are used in this work in Section 3.

The main idea of this method is fitting a decision stump on samples of size =∗
drawn from the training data, making a prediction on the testing data by using
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these models and finally applying aggregating techniques on an ensemble of
these stumps. The methodology of this ensemble can be summarised in the
following steps:

1. Repeat � times:

• Draw =∗ observations with replacement from the training data

• Fit a decision stump on the sampled data

2. Apply one of the aggregation methods that are mentioned in Section 3.

We consider different =∗ here to test whether the bootstrap sample size has any
affect on enhancing the performance of the method or not.

2.2 Gini-sampled Stumps

Here we take a random sample of split points derived from Gini indices to build
an ensemble of stumps. This method is a new way of generating a set of split
points and we refer to this as the Gini-sampled stumps method.

It is known that, any tree-based method will typically compute a Gini index at
all possible split points and variables, select the highest value and then split the
data by using that variable and corresponding split point. Using the generated
split points to divide the training dataset into two subsets is a new approach
which allows us to consider the possible occurrence of every possible split. Here,
we are treating the Gini function as a probability density function and sampling
from it. The following steps explain the method:

1. Let G1, . . . , G= be the data-points of variable ? = 1 and G (1) , . . . , G (@) be
the unique values in increasing order .

2. The Gini gain 6 is constant on the intervals (G (8) , G (8+1) ) and we have
6(G) = 0 for G < G (1) and G > G (@) .
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3. Generate random samples with density 1
(
6, where

( =

@−1∑
8=1

6

(
G (8) + G (8+1)

2

) (
G (8+1) − G (8)

)
. (7)

4. For the inverse transform method, find the cdf

� (G) = 1
(

( :∑
8=1

6

(
G (8) + G (8+1)

2

) (
G (8+1) − G (8)

)
+ 6(G)

(
G − G (:+1)

) )
, (8)

where : = max{8 | G (8+1) ≤ G}, and let �: = � (G (:) ).
5. Sample from � by using the inverse transform method as follows :

For (1 ← 1 to �)

a. Generate a random value uniformly distributed D ∼ * (0, 1) .

b. Find E = <0G{8 |� (G8) ≤ D}, so that �E ≤ D ≤ �E+1.

c. Find the slope of the ECℎ line segment 0 =
D−�E

�E+1−�E
.

d. Finally, compute G (E) + 0(G (E+1) − G (E) ) .

6. Make a stump of every split point from the previous step.

Please note that there are two differences between bagging with stumps and
Gini-sampled stumps. The first difference is the way split points are generated.
That is, selecting the split point to maximise the Gini index in each bootstrap
sample, and generating random split points according to the distribution of the
Gini indices. The second difference is the way to determine the class distribution
in each leaf. For bagging with stumps, this is defined by considering only the
bootstrap sample, while all the training dataset is used for the Gini-sampled
stump method.

We also consider raising Gini index values 6 to power ^ such that ^ ∈ [0,∞)
before Step 2 to have more flexibility and test whether decreasing the variation
of the randomly generated split points will have any effect on the performance
of this method. Note, ^ = 0 gives uniformly distributed splits and ^ →∞ will
always return the optimal split.
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3 Decision Aggregation

The aggregated decision is made by an aggregation function. The choice of
the aggregation function plays an important role in many disciplines such as
statistics, computer science and finance. It gives a single decision based on
combining several decisions in which the single decision represents all the
individual decisions well, for further information see Grabisch et al. (2011).
There are many forms of aggregation functions like means (arithmetic, geometric,
etc), mode, sum, minimum and maximum functions. In this work, we will talk
about two aggregation methods, namely majority voting (see Subsection 3.1)
and weighted voting (see Subsection 3.2).

3.1 Majority Vote

Majority vote (mode) is used in bagging, as introduced in Subsection 2.1 as
an aggregation decision function for classification. The performance accuracy
of a bagging classification ensemble tends to level off after combining a large
number of classifiers (Martínez-Muñoz et al., 2007). A majority vote technique
of aggregating decisions is counting the votes for each classifier, considers the
highest voted predicted class as the final decision. If 5 (G) predicts a class 9 ,
then the method of aggregating the 51 (G) by voting is as follows:

5 (G) = arg max
16 96�

�∑
1=1

� ( 51 (G) = 9), (9)

where � (·) is the indicator function which is 1 if the statement inside the
parentheses is true and 0 (false) otherwise.

3.2 Weighted Voting

A Weighted voting is another way of combining classifiers. This technique can
be explained by the following illustrative example:

Consider a data set which contains = observations, two classes � and �, and
a single explanatory feature variable x. A forest of three stumps {(1), (2), (3)}
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as in Figure 1 was grown on this data and the classification decision was made
by using one of two methods: Majority voting (MV) or weighted voting (WV).
Assume a new observation is equal to 30. Weighted voting works in the following
way: From the information in Figure 1, this observation is in the left leaf of
the decision stump (1) with the proportions ĉ�1 = 0.52 and ĉ�1 = 0.48. ĉ�1
denotes the proportion of class � stump (1). The same rule is applied for the
other two stumps, the position of the observation and proportions are as in
Table 1. We add up

�∑
1=1

ĉ 91

for each class 9 separately. Then we choose the class which maximises this sum-
mation. If 5 (G) predicts class 9 , then the weighted vote aggregation method is:

5 (G) = arg max
16 96�

�∑
1=1

ĉ 91 . (10)

Here, this observation will be allocated to class � due to its added-up proportion
of 1.53 which is greater than class � with an added-up proportion of 1.47.
Therefore, while this observation is allocated to class � by using the majority
vote, it is allocated to class � by using the weighted vote.

Table 1: The positions of the new observation x=30 in the dataset and the aggregated decisions.

Stump Leaf Majority vote Weighted vote
ĉA ĉB

(1) Left � 0.52 0.48
(2) Left � 0.60 0.40
(3) Right � 0.35 0.65

1.47 1.53
Decision � �

By combining the two splitting schemes and aggregation methods, we have four
methods, as in Table 2, that are compared in Section 4.
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Table 2: Four methods investigated in Section 4.

Aggregation Methods
Method Majority vote Weighted vote

Bagging with stumps Bagging with stumps MV Bagging with stumps WV
Gini-sampled stumps Gini-sampled stumps MV Gini-sampled stumps WV

Figure 1: An example of aggregation methods applied on a forest of three stumps. The percentages
indicate the percentages of the total number of observations in each leaf regardless of there classes.



Forests of Stumps 11

4 Results

4.1 Simulated Data

In this section, we consider five different models, each with two classes (�, �)
and one explanatory variable. The densities of the explanatory variable for these
models are described in Table 3. Table 4, shows maximal (Bayes rate) accuracies
of these models. The densities of the explanatory variable for these models are
shown in Figure 2.

Table 3: Densities of the explanatory variable for the five models.

Model A B

1 � ∼ # (17, 0.52) � ∼ # (19, 0.82)

2 � ∼
{
# (5, 1.82), probability 0.45
# (20, 0.62)

� ∼ # (13, 4)

3 � ∼ �(0.2, 0.22) � ∼ # (0.5, 0.22)

4 � ∼
{
# (4, 0.42), probability 0.30
# (11, 12)

� ∼
{
# (8, 22), probability 0.65
# (15, 12)

5 � ∼
{
# (5, 1.32), probability 0.35
# (11, 1.42)

� ∼ # (8, 1.62)

Table 4: Best possible classification accuracies (%) for the five models.

Model 1 2 3 4 5

Accuracy 94.21 92.87 83.50 87.36 78.50
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Figure 2: Densities of the explanatory variable of the five models for each class.
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Figure 2: Densities of the explanatory variable of the five models for each class.

4.2 Bagging with Stumps

Table 5 shows the prediction performance of the different tree-based methods
for the five models of Subsection 4.1. These methods are: Bagging with Stumps
MV, Bagging with Stumps WV, a forest of trees MV, a forest of trees WV, a
single tree and a decision stump. The term bagging with stumps is a relatively
new name for a group of � one-level trees that are bagged by using one
of the aggregation methods mentioned previously whereas forest of trees is
generally understood to mean a group of � standard trees with no feature
selection. These models are fitted on a bootstrap of size =∗ that is drawn from
a training dataset has = observations. Finally, their predictions are evaluated
on a test data has < observations. Here, = = 1000, < = 1000, � = 500 and
=∗ = (20, 40, 60, 80, 100, 200). It can clearly be seen from Table 5, that models
1 and 5 have similar results for the two bagging with stumps methods. However,
models 2 with WV, 3 and 4 perform more accurately in smaller bootstrap sizes.
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Model 2 MV shows the opposite behaviour, it shows a very small increase in
the percentages as the bootstrap sizes increased.

In terms of the aggregation methods, the WV aggregation method wins
regardless whether it combines with bagging with stumps or forest of trees.For
models 2, 3, and 4 the forest of tree method outperforms the other methods. The
best result (in bold) in Table 5 occur with WV and they are close to the maximal
accuracies shown in Table 4.

Figure 3 shows that the variation of split points decreases as =∗ increases for
model 2. The split point distribution is more diverse when =∗ is smaller and the
diversity decreases by increasing the bootstrap sample size.
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Figure 3: Split points of 500 stumps for different bootstrap sample sizes =∗ from model 2.
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Figure 3: Split points of 500 stumps for different bootstrap sample sizes =∗ from model 2 (continua-
tion).
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Figure 3: Split points of 500 stumps for different bootstrap sample sizes =∗ from model 2 (continua-
tion).

Table 5: The average of percentages of correctly predicted classes of 50 simulations
from five models by using different tree-based methods (1/2).

Model Sample
Size Bagging with Stumps Forest of Trees Standard

Tree
Decision
Stump

n∗ MV WV MV WV

1

20 94.09 94.10 94.13 94.13 91.00 92.51
40 94.11 94.13 94.07 94.06 90.42 92.89
60 94.12 94.13 94.11 94.11 91.38 93.20
80 94.13 94.15 94.10 94.10 90.96 93.33

100 94.13 94.14 94.05 94.05 92.04 93.61
200 94.14 94.09 94.08 94.09 92.99 93.73

2

20 72.48 87.24 88.58 88.59 85.51 67.76
40 72.53 83.71 88.78 88.90 84.38 70.86
60 72.77 77.95 88.53 88.89 84.43 69.59
80 72.83 76.12 89.24 89.25 84.77 70.80

100 72.93 73.73 89.72 89.84 84.51 70.85
200 73.02 73.17 90.20 90.30 85.43 72.49
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Table 5: The average of percentages of correctly predicted classes of 50 simulations
from five models by using different tree-based methods (2/2).

Model Sample
Size Bagging with Stumps Forest of Trees Standard

Tree
Decision
Stump

n∗ MV WV MV WV

3

20 72.84 83.16 83.16 83.17 76.51 63.84
40 70.50 83.18 83.18 83.19 76.61 65.44
60 68.25 83.12 83.12 83.10 75.54 64.77
80 66.27 83.07 83.07 83.06 76.33 65.43

100 65.71 83.11 83.11 83.12 76.60 66.03
200 65.14 83.21 83.11 83.20 80.56 65.44

4

20 77.01 83.78 87.11 87.14 80.34 61.24
40 66.54 66.72 87.30 87.30 80.88 63.22
60 66.54 66.14 87.34 87.33 80.58 64.58
80 66.56 66.31 87.25 87.33 80.82 64.70

100 65.57 66.33 87.28 87.35 81.80 65.14
200 66.55 66.48 87.28 87.28 81.30 65.99

5

20 69.43 69.82 78.41 78.42 69.04 64.13
40 69.34 69.90 78.41 78.41 68.83 66.06
60 69.32 69.89 78.30 78.31 68.84 66.79
80 69.35 69.89 78.31 78.30 69.83 66.88

100 69.35 69.88 78.31 78.28 70.08 67.89
200 69.31 69.84 78.42 78.40 74.78 68.54

4.3 Gini-sampled Stumps

Table 6 shows the percentages of correctly predicted classes by using the Gini-
sampled stumps method. The performance of model 1 and models 2, 4 and 5
with MV get more accurate as ^ increases whilst the performance of models 2,
4 and 5 with WV and 3 with MV decrease for larger ^.

Comparing general results of the two aggregation methods, WV also wins
here especially with smaller values of ^ = (0, 1/3, 1/2, 1). The best results (in
bold) appear in the WV column with smaller values of ^ and they are similar to
the maximal accuracies in Table 4, especially for models 1, 3 and 5.
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The plots in Figure 4 indicate Gini gains as a function of split points from the
five models in Figure 2. By comparing Figure (3a) with Figure (4b), we find that
the Gini curve almost resembles the histogram of the bootstrap sample size 20.

4.4 Comparing The Two Methods for Generating Splits

A comparison is carried out between these two methods in terms of their
consumed time to generate 500 split points. Gini-sampled stumps are fitted on
training data and bagging with stumps are fitted on different bootstrap sample
sizes =∗ are drawn from training data with = = 1000 observations. Here, the
bootstrap sample size =∗ takes the values (40, 60, 80, 100, 200, 500, 1000).

Figure 5 indicates the time needed to generate 500 split points by the Gini-
sample stumps method and bagging with stumps. It is clear that the Gini-sample
stumps method is faster than bagging with stumps.
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Figure 4: Gini gain as a function of split points from the five models. The highest values in these
curves occur at the overlapping areas between the densities in the corresponding model as in Figure 2.
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Figure 4: Gini gain as a function of split points from the five models. The highest values in these
curves occur at the overlapping areas between the densities in the corresponding model as in Figure 2.
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Table 6: The average of percentages of correctly predicted classes of 50 simulations from five models
by using Gini-sampled stumps method with raising Gini indices to different powers ^ .

Model ^ MV WV

1

0 86.74 93.89
1/3 92.36 93.98
1/2 92.91 94.02

1 93.67 94.07
2 94.00 94.11
3 94.05 94.16
4 94.09 94.11

2

0 66.54 88.50
1/3 58.57 88.02
1/2 58.48 87.83

1 66.36 86.69
2 72.71 79.03
3 73.12 73.68
4 73.16 72.77

3

0 82.46 83.05
1/3 75.50 83.13
1/2 68.26 83.19

1 62.47 83.14
2 62.93 83.12
3 63.72 83.06
4 64.27 82.94

4

0 61.96 71.18
1/3 66.19 64.42
1/2 66.21 64.31

1 66.27 65.13
2 66.31 65.79
3 66.28 65.99
4 66.23 66.14

5

0 50.24 76.01
1/3 55.87 74.32
1/2 60.12 73.25

1 66.54 70.03
2 68.76 69.87
3 69.18 69.91
4 69.26 69.92
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Figure 5: Consumed time to generate 500 split-points by the two stump approaches. Gini-sampled
stumps are fitted on a training data of size = and bagging with stumps are trained on different bootstrap
sample sizes =∗. These bootstrap sizes are drawn from a training dataset with the same number of
observations = and = = 1000 samples.

4.5 Conclusion

The Gini-sampled stumps method is a promising method because of its accurate
performance and fast speed. The Gini-sampled stumps method is more accurate
in model 2 and 5 which both consist of densities of similar shape and it has
almost the same accuracy in model 1 and 3 as the bagging with stumps method.
However, for some reason bagging with stumps performs better in model 4. The
classification performance has a large variation between the two aggregation
methods and it is higher for the weighted vote method regardless whether it is
with bagging with stumps or Gini-sampled stumps.
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