KIT | KIT-Bibliothek | Impressum | Datenschutz

Analysis and Prediction of Electromobility and Energy Supply by the Example of Stuttgart

Wörner, Ralf; Morozova, Inna; Cao, Danting; Schneider, Daniela; Neuburger, Martin; Mayer, Daniel; Körner, Christian; Kagerbauer, Martin; Kostorz, Nadine; Blesl, Markus; Jochem, Patrick; Märtz, Alexandra ORCID iD icon

Abstract:
This paper seeks to identify bottlenecks in the energy grid supply regarding different market penetration of battery electric vehicles in Stuttgart, Germany. First, medium-term forecasts of electric and hybrid vehicles and the corresponding charging infrastructure are issued from 2017 to 2030, resulting in a share of 27% electric vehicles by 2030 in the Stuttgart region. Next, interactions between electric vehicles and the local energy system in Stuttgart were examined, comparing dif-ferent development scenarios in the mobility sector. Further, a travel demand model was used to generate charging profiles of electric vehicles under consideration of mobility patterns. The charg-ing demand was combined with standard household load profiles and a load flow analysis of the peak hour was carried out for a quarter comprising 349 households. The simulation shows that a higher charging capacity can lead to a lower transformer utilization, as charging and household peak load may fall temporally apart. Finally, it was examined whether the existing infrastructure is suitable to meet future demand focusing on the transformer reserve capacity. Overall, the need for action is limited; only 10% of the approximately 560 sub-grids were identified as potential weak points.


Verlagsausgabe §
DOI: 10.5445/IR/1000133342
Veröffentlicht am 27.05.2021
Originalveröffentlichung
DOI: 10.3390/wevj12020078
Scopus
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Industriebetriebslehre und Industrielle Produktion (IIP)
Institut für Verkehrswesen (IFV)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 06.2021
Sprache Englisch
Identifikator ISSN: 2032-6653
KITopen-ID: 1000133342
Erschienen in World electric vehicle journal
Verlag MDPI
Band 12
Heft 2
Seiten Art.-Nr. 78
Vorab online veröffentlicht am 21.05.2021
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page