

A Liquid Metal Backward Facing Step Experiment: Facility, Instrumentation and what to Expect

Thomas Schaub

www.kit.edu

Outline of this presentation

- Motivation: why a liquid metal backward facing step experiment?
- Presentation of the DITEFA 2 facility and its instrumentation
- Measured data / data to be expected
- Outlook and further work: warning!

Why a backward facing step?

- Original motivation: to test calculation (prediction) methods under strong perturbations or non-equilibrium conditions (strong enough to invalidate boundary layer theory)
- "Nowadays": (almost) all-flows-in-one kind of geometry for single phase flow
 - Wall bounded flow
 - Mixing layer
 - Recirculation regions
 - Dettachment/Reattachment
 - Secondary motions of the second kind (if confined)
 - Buoyancy effects (if heated)
- Logic: good results in a BFS, not bad chances of not brutally missing engineering applications (in a qualitative sense)

Noise/drift level problems of permanent magnet probe:

- Frequency converter (FC) / variable frequency drive
- Ambient noise (hall heaters, sun, hall air circulation)
- Power line (not optimum)
- Grounding of thermoelectric-

cable

Measured data / data to be expected

- Data to be expected
 - (u) profiles

12

17.03.2021

Nu distribution along the heating plate

■ 10000 <
$$Re_h = \frac{U_b \cdot h}{v}$$
 < 30000 (... 75000 ...)

•
$$0.005 < Ri_h = \frac{g\beta\Delta Th}{U_b^2} < 0.2$$
, with $\Delta T = \frac{\dot{q}h}{\lambda}$, i.

- Measurement uncertainty for $\langle u \rangle$ with a 95% confidence interval
 - P1<5%, P2<3.5%, P3<11%, P4<27%, P5<16%, P6<6%</p>

Karlsruhe Institute of Technology

Outlook and further work

- Postprocess the data
- Uncertainty calculations/analysis
- Publish papers/dissertation: honest report considering all limitatations the results may contain
- Future PhD Student
 - Install a heating plate with more thermal power (to achieve higher Richardson (... and Reynolds...) numbers).
 - Install a new heat removal system and/or a heat storage system as a system temperature fluctuation damper.
 - Improve inlet boundary conditions (they are good, but you can always improve).
 - Measurement of $\langle T \rangle$ -, $\langle T'^2 \rangle$ and $\langle u'^2 \rangle$ -profiles $\langle u'T' \rangle$ (all possible with current instrumentation, but not the actual system setup (heat removal system + wiring of the involved thermocouples).
 - Perform spectral and wavelet analysis for u' and T'.