

SFR Thermalhydraulics

(input taken from current ESFR-SMART, SESAME, THINS, CP-ESFR,...; ASCHLIM – 2 decades of EUROPEAN Support) not to mention various projects in support to Pb, LBE reactor development)

CONTENT - OUTLINE

- SFR LWR (PWR)*
 - Features SFR vs. PWR
 - Fundamental equations & dimensionless quantities
 - thermo- physical quantities & their impact in reactor applications quantities
- Thermal-hydraulics in reactor applications
 - Challenging flow domains of SFR
 - Flow modelling General ideas, hierarchy and approaches (DNS, LES, System-Thermalhydraulics-STH)
 - Some applications
 - Core (forced, mixed convection ?)
 - Pool (jets –flow separation, buoyancy uppper plenum)

Synopsis

SFR-LWR (design features)

SFR

- pool type integrated design (6 immersed IHX)
- secondary loop (intermediate heat exchanger -IHX)
- Iow pressure
- high core power density
- flat core small active core height
- large fluid upper/lower plena

- loop type (3-4 loops, external IHX)
- high pressure
- Iow/medium power density
- large active core height
- small plena

4 March 22, 2021 Robert Stieglitz

SFR-LWR- The "core"*

constitutional volume fraction [%]	SFR	PWR
nuclear fuel	37	30
coolant	35	60
steel	24	9
void	5	1
geometry [mm]	SFR	PWR
active core height H	1000	4000
pin diameter D	7.5-8.5	9.5-10
pitch/diameter P/D	1.15-1.2	1.3-1.4
height/diameter H/D	100	400
operational parameter	SFR	PWR
pressure p [MPa]	0.1	15.5
core inlet/outlet temperature T_{in}/T_{out} [°C]	395-540	285-315
core temperature rise ⊿T [°K]	145	30
volumetric power density $\dot{q} [MW/m^3]$	300	100
avg. linear heat rate $q' [kW/m]$	28	16

Main differences of SFR vs PWR

Iow thermal capacity

- large surface beat flux g"
- large surface heat flux q"

SFR-Why is the core temperature relevant ?

in contrast to PWR neutronic feedback does not only depend on Doppler+ and coolant density

thermal changes

- thermal expansion of structures
- Impact on reactivity (+ or minus)

most relevant ones

- fuel expansion (–)
- clad expansion (+)
- diagrid expansion (–)
- strongback expansion (–)
- vessel expansion (+)
- CR driveline expansion (+ /–)

SFR-PWR – Thermal hydraulics-fundamental equations & dimensionless quantities

SFR-PWR – thermo- physical quantities & their impact in reactor applications

quantity	unit	PWR	SFR	ļ
ρ	kg/m^3	694	808	
ν	$\cdot 10^7 m^2/s$	1.19	2.7	ļ
c _p	J/(kg K)	5920	1260	2
λ	W/(m K)	0.539	62.9	ļ
$\beta = (1/\rho) \partial \rho / \partial T$	1/K	3.53	0.282	
а	$\cdot 10^7 m^2/s$	1.31	617.8	

thermo-physical quantities

@ nominal operation conditions for SFR core

- fully turbulent $(Re > 10^4)$,
- forced convective flow (Ri < 0.2)
- tight lattices $(P/D) \rightarrow$ strong secondary flows

dimensionless numbers in reactor core *

	number	PWR	SFR
	Re	$5\cdot 10^5$	$4\cdot 10^4$
	Pr	0.907	0.007
	Ri	$3 \cdot 10^{-4}$	0.08
	Fr	31	31
	Ре	$4.6 \cdot 10^{4}$	100
	Gr	$6.2\cdot10^{10}$	$2 \cdot 10^{9}$

@ transient conditions of SFR

- mixed convection (Ri > 0.2),
- thermal stratification

Thermal-hydraulics in reactor applications*

2

3

Thermal-hydraulic modelling-General

Problem adapted solution approaches

- CFD- Class solutions
 - Direct Numerical Simulation (DNS)
 - Large Eddy Simulation (LES)
 - Reynolds Averaged Navier-Stokes method (RANS)
 - Reduced Order Modelling (ROM)
- System-Thermal-Hydraulic-Simulation
 - Sub-channel approach
 - Nodal system codes
 - Handbook equations

11 March 22, 2021 Robert Stieglitz

Approach of "high fidelity solutions"

DNS

- Resolution up to smallest eddy scale Kolmogrov scale
- "quasi exact solution"
- high grid resolution requirements
 - spatial resolution h (scales L to be resolved) $N \cdot h \ge L$, but down to l requiring h < l
 - ➡ requiring mesh elements $N^3 \ge Re'^{9/4}$
 - **temporal resolution** to capture vortex $C = (u' \cdot \Delta t)/h < 1$ total time interval $\tau = L/u'$ and number of time integration steps L/(lC)
 - → total number of integration steps $\frac{L}{T} = Re^{3/4}$
 - No. of operations mandatory $\sim Re'^3$

DNS limited to small problems

- periodic boundary conditions (!) = applicability
- Reynolds number poses large computational constraint, but
- indispensable for RANS turbulence model development

Re' = Reynolds-number turb.scale *u'*= turb. Velocity *h*= spatial resolution

 $l \sim \left(\frac{\nu^3}{\epsilon}\right)^{\frac{1}{4}}$

v = kinematic viscosity

Shams et al. (2015)

 ϵ = rate of kinetic energy dissipation

Approach of "high fidelity solutions"

LES

- relying on self similarity (large eddies = f (geometry))
- smaller scales are quasi-"universal" (treated by sub grid scale model-SGS)
- introduction of filter function
- ➡ decomposition of velocity field $u_i = \overline{u_i} + u'_i$
- causing virtual turbulent viscosity v_t

LES vs. DNS

- reduced spatial resolution $h \sim Re$ and $h \sim L$
- Courant number constraint remains
- knowledge on dissipation mandtory

NOTE:

LES for low Pr-fluid (sodium) is quasi DNS if SGS-model dynamic respecting thermal scales
 be aware if ∆T > 30°K (SGS-model!!)

Vertical backward facing step for Ri = 0 and Ri = 0.38(Niemann et al. 2017, 2018)

(U-)RANS Modelling -the working horses of CFD

- Idea Momentum field
 - decomposition of velocity
 - virtual turbulent Reynolds-stress tensor
 - model assumption (GDH): (representation by mean flow)
 - solution classes:

 $\frac{\partial}{\partial u_i' u_i'} \left(\rho \overline{u_i' u_i'} \right)$

$$\overline{u_i'u_j'} = \varepsilon_m^{ij} \left(\frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial \overline{u}_j}{\partial x_i}\right)$$

- spatial resolution similar as LES for low *Re*-models
- temporal resolution at discontinuities
 Courant number (C) limited

 $\varepsilon_m^{ij} = \text{eddy diffusivity of mass}$ (tensor !)

order	isotropic	anisotropic	no. transport eq.		
1 st	gradient models, eddy diffusivity				
	mixing length	mixing length	0		
	k-l		1		
	$k - \varepsilon, k - \omega, SST$	Cubic $k - \varepsilon$, EARSM, V2f	2 (3)		
2 nd		RSM	6+2		

RANS Modelling – the working horses of CFD

- Idea heat
 - Reynolds decomposition yields turbulent heat flux
 - introducing similarly an eddy diffusivity of heat

Robert Stieglitz

turbulent Prandtl-number

Solution classes:

$$Pr_{t} = f(Re, Pr, y/R) = \frac{u'v'}{v'T'} \cdot \frac{\partial T/\partial y}{\partial u/\partial y}.$$

 $ho c_p \overline{u'_i T'}$

orderisotropicanisotropicNo. transport
eq.look-up tables local turbulent
$$Pr_t$$
stmixed wall law
approachesalgebraic heat flux
models (AFHM)
 $k - \varepsilon - k_a - \varepsilon_a$, TMBF1+ (2)

 $\overline{u'_j T'} = \varepsilon_H^j \quad \left(\frac{\partial T}{\partial x_j}\right) \qquad \varepsilon_H^j = \text{eddy diffusivity of heat}$

Reynolds Analogy:

March 22, 2021

15

$$\overline{u_j'T'} = \varepsilon_H^i \frac{\partial T}{\partial x_j} \approx \frac{\varepsilon_M}{Pr_t} \frac{\partial T}{\partial x_j}$$

assuming $\varepsilon_M/Pr_t \approx const$., despite different statistics of *u*- and *T* – field, anisotropy (most codes use $Pr_t = 0.9$)

(vector !)

Thermal-hydraulic modelling-System thermalhydraulics

- Most complex STH: Core Treatment SA-wise Approach:
- Meshing of SA
 - Lateral direction
 - triangular (Δ), rectangular shaped (\Box), corner sub-channels,
 - Axial direction
 - mostly equidistant
- Power from neutronics
 Reconstruction of power distribution

 \dot{V}_i

- ⇒ 3 pins for Δ channel P_{Δ} =3.1/6 P_{pin} ,
- ⇒ 2 pins for □ channel P_{\Box} =2.1/4 P_{pin}
- \Rightarrow 3.1/6 P_{pin} corner channel

Computations

- mass conservation $\dot{V}_{SA} = \sum \dot{V}_i$
- flow/pressure BC

$$=\frac{A_i\cdot d_{h,i}^{\beta}}{\sum_{i=1}A_i\cdot d_{h,i}^{\beta}}\cdot \dot{V}_{SA}$$

Result

different flow rates in-subchannels $\dot{V}_{\Box} > \dot{V}_{\Delta} \Rightarrow$ consequence W/D adaption

 d_h =hydraulic parameter β =lateral exchange coefficient A_i =cross-sectional area 1.0

0.8

0.6

 $P(z)/P_{max}$

Thermal-hydraulic modelling-System thermalhydraulics

- Most complex STH: Core –Treatment SA-wise Approach:
- assume stable axial flow

Computations

• mean temperature \overline{T} $\overline{T} = \frac{T(z) + T(z + \Delta z)}{2}T$

• power in SC P_i : $P_i = \sum_j P_i^j$

- transfer coefficients between adjacent SC B_i^a , transfer SC to boundary B_i^b
- energy balance $c_p \cdot \dot{V}(z) \cdot (T(z + \Delta z) T(z)) = P_i \sum_a B_i^a (\overline{T}_i \overline{T}_a) B_i^b (\overline{T}_i \overline{T}_b)$

Challenge: determination of transfer coefficients B_i^*

- solution for border (thermal BC to solid boundary) $B_i^b = \alpha \cdot A_b \cdot \Delta z + P_b$
- Iateral exchange modelled by superposition of different effects
 - heat transfer due to wires B_i' (by spiral flow motion)
 - heat transfer due to thermal conduction $B_i^{"}$ (by spiral flow motion)
 - heat transfer due to turbulent mixing $B_i^{"'}$ (dissipation effects)

SOLUTION:

- Reynolds-Analogy (hydraulic diameter concept) with experimentally determined coefficients
- correlations from experiments

Applications-CORE

Momentum transfer- SA

- Hydraulic benchmark
 - 7-pin bundle
 - RANS vs. LES deviations max. 10%
 - streamwise velocity
 - cross-flow
- KALLA
 - 19-pin bundle

March 22, 2021

18

- Measurement vs. STH correlations
- Cheng and Todreas (1986): RMS = 3.8%, all data within 8%
- for skilled user STH is similarly good as CFD (important for design)

Robert Stieglitz

Applications-CORE

Energy Transfer- SA

- KALLA Experiments
 - Computational Mesh $(4 \cdot 10^7 \text{ solids } 1.6 \cdot 10^8 \text{ fluid})$

20

18

16

14

12

100

'n 10 N

- local Pr_t Approach, $Re = 3 \cdot 10^4$
- local deviations $\Delta T/T \leq 13\%$ (end of length)
- Nusselt number deviation Nu~20% to CFD
- Nusselt number deviation to best correlation ~3% others 20%

19 March 22, 2021 Robert Stieglitz

Applications-CORE

- Energy Transfer- SA
- Performance of CFD vs. STH
 - 3 sub-channel grous,
 - 46 cells planar, 128 axial $\Rightarrow \sim 6 \cdot 10^3$ cells

STH predictions are in range of 20% as well !!!

MESSAGE:

- CFD (by qualified used) accuracy of 10% for u -, T field with high local resolution
 - Identification of hotspots (recirculation areas)
 - Lateral exchange coefficients
- Similar quality obtained for mean bulk values by STH (best agreement for Δp Rehme correlation, T –field and Nu – Kazimi-& Carelli) requiring experienced input, lot of pre-emptive know-how
- What about mixed & buoyant convection ?

Applications- CORE -conclusions

some comments on SA -bundle flows

- sparse data matrix for sodium
- even poorer in conjunction with wire wraps
- inconsistent documentation of experiments (power balance, flow state –forced –mixed-buoyant)
- Iow degree of instrumentation, poor consistency
- contradictory measurement data (limited to scalars such as *p*, *T*)
- both CFD & STH quality depend essentially on USER know-how

Benchmarks on SA -bundle flows are rare

- mandatory to proof local flow distribution
 - air water sufficient (Kamide, 2016)
 - without "healthy" u-field satisfactory acceptable T-field not achievable
- improvement of local measurement techniques in sodium
 - ➡ spectral quantities of T-field to get data on $\overline{T'^2}$ and $\varepsilon_{\overline{T'^2}}$
 - evaluation of onset of transition of flow regimes (forced→mixed convection- mixed → buoyant convection)

well posed benchmarks required

Overview of experiments for fuel assemblies with wire wraps.

Experiment	Fluid	No. of Pins	Re
Collingham et al. (1970)	Sodium	7	5000-50,000
Fontana (1973), Wantland	Sodium	19	n.a.
et al. (1976)			
Ohtake et al. (1976)	Air	37	6800-15,000
Lorenz and Ginsberg (1977)	Water	91	9000-24,000
Chiu (1979)	Water	37	3000-14,000
Fenech (1985)	Water	61	100-11,000
Roidt et al. (1980)	Air	217	12,000-73,000
Engel et al. (1980)	Sodium	61	500-15,000
Chun and Seo (2001)	Water	19	100-60,000
Choi et al. (2003)	Water	271	1100-78,000
McCreery et al. (2008)	Mineral oil	7	22,000
Sato et al. (2009)	Water	7	6000
Tenchine (2010)	Air	19	3000-28,000
Prakash et al. (2011)	Water	217	75,000

extracted from Roelofs et al. (2015)

Applications- CORE -conclusions

■ a clean experiment requires evaluation of buoyant effects e.g. analysis by dimensionless quantities $Y = Gr/Re^2$ (according to Jackson (1983) onset of mixed convection occurs if $Y \ge 2 \cdot 10^{-3}$)

well documented mixed& buoyant experiments absent !

improvements require closed definition of benchmarks by model developers&simulations AND experiments (starting already in the definiton of the experiment along preparation, up to execution & analysis)

Many aspects not adressed in this context

- impact of pin deformation on flow field
- flow induced vibrations
- inter-wrapper flow (sodium-Kamide, 2001- LBE- Pacio 2019)
- flow blockage (partial, total, porous

 sodium-Raj Velusami, 2016, LBE-Pacio et al. 2018)
- sodium boiling (as it may occur in ULOF Khafizov et al. 2015)

Applications-Pool

- Relevance for reactor licensing
 - normal operation
 - thermal inertia (ramp-up/shut down)
 - reduced power
 - particle/gas transport
 - operational transients
 - component failure (pump, HEX)
 - Ioss of flow (LOFA)
 - loss of heat sink (LOHS)
 - decay heat removal (DHR)

Thermal-hydraulic issues

core coolability

- Heat transfer, Overcooling (freezing)
- Transient flow behaviour, natural circulation

structural loads

- thermal stratification/thermal fluctuations
- flow mixing, flow separation
- flow induced vibrations
- coolant level fluctuations
- Gas/vapour/particle transport
 - gas entrainment/fission product transport

Applications-Pool

solution strategy

separate-effect tests (numerical+experimental)

T.Schaub

- referring to single physics phenomenon (e.g. mixing, thermal striping, flow separation,....)
- intensive instrumentation/ refined meshing

model tuning/improvement, transport characteristics

scaled integral test (requiring experiment)

- Combination of phenomena in scaled set-up
- Utilization of dimensional analysis (model fluids)
- interaction time scales (STH- CFD coupling)

prototype experiments w/o reactor

- prototypical conditions (length scales, fluid, mimicing feedbacks, active components
- limited instrumentation, large effort

reliable, extrapolable scaling

Applications- Pool – separate effects (SE)

Thermal mixing of cold & hot jet (Water vs Sodium)

- two hot jets neighboring cold jet
 - relevant dimensionless quantity –densimetric Froude number $Fr = (M \cdot \bar{u})/(B \cdot d)$
 - $Fr > 10^3$ inertia dominate, $Fr \approx 400$ mixed, Fr < 100 buoyant)
 - simulation: LES ($1.2 \cdot 10^7$ cells), URANS ($3 \cdot 10^6$ cells), RANS ($3 \cdot 10^5$ cells),

 $Fr \approx 600$

- **good agreement of sodium & water experiments** (z/D = 5)for mean (\bar{u}/\bar{u}_0) and fluctuating velocity part (u'/\bar{u}_0)
- self-similarity of momentum profile (coincides with Knebel 1994)

- as expected about 25% less temperature fluctuations $(T'/\Delta \overline{T})$ in sodium compared to water, but
- good qualitative & quantitative agreement
- is now all fine ?

Momentum flux $M = \int (\bar{u}_i^2 - \bar{u}_a^2) dA$ Buoyancy flux $B = g \int \frac{\rho_a - \rho(\bar{T})}{\rho(\bar{T})} dA$

y/D

Institute for Neutron Physics and Reactor Technology (INR)

2.5

v/D

Applications-Pool – coupled STH –CFD

strategy to calculate multi-scale phenomena (adopted from LWR's)

- decompose reactor in several domains to be treated by different tools
 - external loops treated 1D STH tools (RELAP, TRACE, CATHARE, ATHLET, ASPEN,.....)
- provision of boundary conditions (p, T, \dot{Q}) and time scale Δt
- depict core internals as much as possible by reduced order models
 - porous body modelling of e.g. HEX or core (to account for 3D flow)
 - subchannel analysis of SA flow 1.5D to attain correct N-TH feedbacks
 - pumps as momentum source (Δp , vorticity ω – inviscid approach)

evaluate appropriate coupling scheme STH 🔶 CFD (code hierarchy, synchronisation-communication, domain treatment, numerics)

Pucciarelli et al. 2021, Zhang 2018

Applications- Pool – coupled STH – CFD

Example : E-SCAPE (European – Scaled Pool Experiment) coupled STH + CFD

Translation real world

Reduction of required meshs from min. $10^8 \Rightarrow 10^6$

capability to run transient ("high fidelity") but at least trustworthy simulations

Karlsruhe Institute of Technol

Applications- Pool – coupled STH – CFD

t=86.0 s

t=1006.0 s

Result for E-SCAPE-Identification of

- local design hot spots by flow pattern analysis
- critical time thresholds (flow reversals) during a transient

t = 26.0 s

t=386.0 s

design optimization

t=0.0 s

t=186.0 s

improved intrumentation

Above core structure temperature distribution 300s after LOFA

Mass flow rate in active and bypass region of core simulator during a LOFA transient

Upper plenum temperature field evolution for a selected vertical section (LOFA) Many other examples (e.g. for facilities as TALL, NACIE -LBE, Phenix, EBR-II sodium real reactors) (see Tarantino,2020)

NOTE:

- identification of all phenomena still indespensibale
- many coupled phenomena are still lacking of benchmarks need to be defined

Institute for Neutron Physics and Reactor Technology (INR)

30 March 22, 2021 Robert Stieglitz

Synopsis

- Significant progress has been achieved worldwide in understanding of LM thermalhydraulic phenomena due to
 - modelling improvements (AHFM, RSM, numerical schemes, coupling procedures)
 - enhanced collaborations (R&D Centers with Universities, within Europe EU programs, worldwide through OECD, IAEA)
 - synergetic cross-fertilizing actions of SFR and LFR(ADS) communities
 - increasing computational power
 - advanced instrumentation
- CFD Thermal hydraulics
 - advanced understanding of complex steady state problems with high degree of confidence (forced convective, mixed convective and buoyant flows-partially) in range of 10-15%
 - significant gaps still existing in flow separation, onset of transitions (bifurcations), free –surface flows confidence level sometimes exceeding 25%
 - Intelligent single effects as well as intelligent integral effects benchmarks (numerical, experimental and both) need to be expanded. CFD guidelines have been elaborated setablishment of benchmarks mandatory

Coupled STH-CFD

- getting more and more a reference for transient analysis.
- validation require benchmark library for a set of scenarios (best: in-pile, but also out-of-pile) preferrably with high instrumentation degree > need for establishment of a library and OECD group

Literature

- Bandini G. et al., 2015. Assessment of systems codes and their coupling with CFD codes in thermal–hydraulic applications to innovative reactors. Nuclear Engineering & Design, vol. 281, p.p. 22-38
- Grötzbach, G., 2013. Challenges in simulation and modeling of heat transfer in low-Prandtl number fluids. Nuclear Engineering & Design, vol. 264, p.p. 42-55
- Jackson, J. D., 1983, Turbulent mixed convection heat transfer to liquid sodium. Int. J. Heat & Fluid Flow, 107-111.
- Kamide H., Hayashi K., Isozaki T., Nishimura M., 2001. Investigation of Core Thermohydraulics in Fast Reactors Interwrapper Flow During Natural Circulation. Nucl. Techn., vol. 133, p.p. 77-91
- Kamide H., Ohshima H., Sakai T., Tanaka M., 2015. Progress of Thermal Hydraulic Evaluation Methods and Experimental Studies on a Sodium-cooled Fast Reactor and its Safety. NURETH16, Chicago, USA
- Khafizov, R.R., Poplavsky, V.M.; Rachkov, V.I.; Sorokin, A.P.; Ashurko, Yu.M., Volkov, A.V., Ivanov, E.F., Privezentsev, V.V., 2015; Experimental investigation of sodium boiling heat exchange in fuel subassembly mockup for perspective fast reactor safety substantiation, Nuclear Energy and Technology, Volume 1, Issue 2, October 2015, Pages 147-152, https://doi.org/10.1016/j.nucet.2016.01.008
- Knebel, J.U., Krebs, L., 1994, Calibration of a Miniature Permanent Magnet Flowmeter Probe and Its Application to Velocity Measurements in Liquid Sodium. Experimental Thermal and Fluid Science 1994; 8:135-148
- Kobayashi J, Takana M., Ohno S., Oshima H., Kamide H., 2015. Proposal of Benchmark Problem of Thermal Striping Phenomena in Planar Triple Parallel Jets Tests for Fundamental Code Validation in Sodium-cooled Fast Reactor Development. NURETH16, Chicago, USA
- Li, R., Chen, X.-N.; Andriolo,L.; Rineiski, A., 2017; 3D numerical study of LBE-cooled fuel assembly in MYRRHA using SIMMER-IV code; <u>Annals of Nuclear Energy</u>, <u>Volume</u> 104, June 2017, Pages 42-52, <u>https://doi.org/10.1016/j.anucene.2017.02.009</u>
- Manservisi S., Menghini F., 2015. CFD simulations in heavy liquid metal flows for square lattice bare rod bundle geometries with a four parameter heat transfer turbulence model. Nuclear Engineering and Design, Vol. 295, p.p. 251-260
- Merzari E., Fischer P., Yuan H., Van Tichelen K., Keijers S., De Ridder J., Degroote J., Vierendeels J., Doolaard H., Gopala V., Roelofs F., 2016. Benchmark Exercise for Fluid Flow Simulations in a Liquid Metal Fast Reactor Fuel Assembly. Nuclear Engineering & Design, vol. 298, p.p. 218-228.
- Nieman, M., Fröhlich, J., 2017, Buoyancy Effects on Turbulent Heat Transfer Behind a Backward-Facing Step in Liquid Metal Flow, doi:10.1007/978-3-319-63212-4
- OECD-NEA, 2015, Assessment of CFD Codes for Nuclear Reactor Safety Problems Revision 2, NEA/CSNI/R(2014)12
- Pacio, J., Daubner, M., Fellmoser, F., Wetzel, Th., 2019, Experimental study of the influence of inter-wrapper flow on liquid-metal cooled fuel assemblies, Nuclear Engineering and Design, Volume 352, October 2019, 110145, https://doi.org/10.1016/j.nucengdes.2019.06.007
- Pacio, J., Daubner, M., Fellmoser, Litfin, K.; Wetzel, Th., 2018, Heat transfer experiment in a partially (internally) blocked 19-rod bundle with wire spacers cooled by LBE, Nuclear Engineering and Design, Volume 330, 15 April 2018, Pages 225-240, https://doi.org/10.1016/j.nucengdes.2018.01.034
- Pacio, J., Litfin, K., Wetzel, T., Kennedy, G., Van Tichelen, K., 2017, Thermal-hydraulic Experiments Supporting the MYRRHA Fuel Assembly. IAEA-CN245-283.

Literature

- Pucciarelli, A, Toti, A., Castelliti, D., Belloni, F., Van Tichelen, K., Moscardini, M., Galleni, F., Forgione, N., 2021, Coupled system thermal Hydraulics/CFD models: General guidelines and applications to heavy liquid metals. Annals of Nuclear Energy 153 (2021) 107990, https://doi.org/10.1016/j.anucene.2020.107990
- Raj, M.N, Velusamy, K., Maity, R. K., 2016, Thermal hydraulic investigations on porous blockage in a prototype sodium cooled fast reactor fuel pin bundle, Nuclear Engineering and Design, Volume 303, July 2016, Pages 88-108, https://doi.org/10.1016/j.nucengdes.2016.04.008
- Roelofs F., Shams A., Otic I., Böttcher M., Duponcheel M., Bartosiewicz Y., Lakehal D., Baglietto E., Lardeau S., Cheng X., 2015. Status and perspective of turbulence heat transfer modelling for the industrial application of liquid metal flows. Nuclear Engineering and Design, vol 290, p.p. 99-106.
- Roelofs, F., Uitslag-Doolaard, H., Dovizio, D. et al. 2019 Towards validated prediction with RANS CFD of flow and heat transport in a wire-wrap fuel assembly, <u>Nuclear Engineering and Design Volume 353</u>, November 2019, 110273, <u>https://doi.org/10.1016/j.nucengdes.2019.110273</u>
- Shams A., Roelofs F., Komen E., 2015. High-Fidelity Numerical Simulation of the Flow through an Infinite Wire-Wrapped Fuel Assembly. NURETH16, Chicago, USA.
- Tanaka, M., Nagasawa, K., 2016, Benchamrk analysis of thermal striping phenomena in planar tripple jets test for fundamental validation of of fluid structure interaction code for SFR, NURETH-16, Chicago, IL, August 30-September 4, 2015, paper-ID 6650
- Tarantino, M., Roelofs, F., Shams, A., Batta, A., Moreau, V., Di Piazza, I., Gershenfeld, A., Planquart, Ph, 2020, SESAME project: advancements in liquid metal thermal hydraulics experiments and simulations. EPJ Nuclear Sci. Technol. 6, 18 (2020), https://doi.org/10.1051/epjn/2019046
- Tenchine D., 2010. Some Thermal Hydraulic Challenges in Sodium Cooled Fast Reactors. Nuclear Engineering & Design, vol. 240, pp. 1195-1217.
- Toti, A., Vierendeels, J., Belloni, F., 2018aa. Coupled system thermal-hydraulic/CFD analysis of a protected loss of flow transient in the MYRRHA reactor. Ann. Nucl. Energy. 118, 199–211.
- Van Tichelen, K., Mirelli, F., Greco, M., Viviani, G., 2015. E-SCAPE: A scale facility for liquid-metal, pool-type reactor thermal hydraulic investigation. Nucl. Eng. Des. 290, 65– 77.
- Velusamy, K., Chellapandi, P., Chetal, S.C., Raj, B., 2010, Overview of pool hydraulic design of Indian prototype fast breeder reactor, *Sadhana* Vol. 35, Part 2, pp. 97–128
- Visser, D.C. Roelofs, F., Mirelli, F., Van Tichelen, K. 2020, Validation of CFD analyses against pool experiments ESCAPE, Nuclear Engineering and Design, Volume 369, 1 December 2020, 110864, https://doi.org/10.1016/j.nucengdes.2020.110864
- Yu, Y.Q., Merzari, E., Thomas, J.W., Obabko, A., Aithal, S.M., 2017, Steady and unsteady calculations on thermal striping phenomena in triple-parallel jet, Nuclear Engineering and Design, Volume 312, February 2017, Pages 429-437, https://doi.org/10.1016/j.nucengdes.2016.06.015
- Zhang,K, 2018, The multiscale thermal-hydraulic simulation for nuclear reactors: A classification of the coupling approaches and a review of the coupled codes. International Journal of Energy Research, 2'2': 44:3295-3315. DOI: 10.1002/er5111

