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Abstract
A forward modeling technique is developed for determining the characteristic features of
observed MHD modes from the line-of-sight data of the soft x-ray (SXR) tomography
diagnostics in the Wendelstein 7-X (W7-X) stellarator. In particular, forward modeling is used
to evaluate the poloidal mode numbers m, radial location, poloidal rotation direction and
ballooning character of the MHD modes. The poloidal mode structures have been modeled by
the radially localized Gaussian-shaped emission regions rotating along the magnetic surfaces.
In the present study the cases of rigid-shape emission regions and flexible emission regions are
modeled. Various mode phase velocity dependences on the magnetic surface position are

simulated. The modeled phase dynamics of line-integrated oscillations and the distribution of
oscillation amplitudes are compared with the experimental signals of the SXR cameras which
observe the plasma at various viewing angles in the poloidal cross-section. Application of this
technique enables describing of the 1–50 kHz modes. In particular, in the discharge W7X-PID
20180918.045 three identified branches with the poloidal mode numbers m = 8, m = 10 and
m = 11 localized at ρ ≈ 0.3 are rotating in the clockwise poloidal direction. The present paper
reports the first application of the forward modeling technique to the data from the SXR
diagnostics in W7-X. The high m-modes are identified by forward modeling in W7-X.
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1. Introduction

The Wendelstein 7-X stellarator (W7-X) has been designed
to be MHD stable up to <β> ∼ 4%–5% volume-averaged
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plasma beta [1]. In order to prove if the optimization criteria
have been met, it is crucial to analyze and understand any
MHD mode activity in the device. Moreover, modes might
be caused by physics mechanisms beyond the MHD descrip-
tion and their study can thus provide a deeper insight into the
processes determining the plasma stability in optimized stel-
larators. Furthermore, a well-diagnosed mode activity may be
used for ‘MHD spectroscopy’, i.e. to obtain information about



the radial location and spatial structure of observed modes,
which is essential to understanding driving instabilities and
underlying physics.

In W7-X plasmas quasi-harmonic oscillations in the low
kHz range up to multiple 100 kHz were observed in various
discharges during operational phase 1.2 by various plasma
fluctuation diagnostics like magnetic probes [2], phase con-
trast imaging [3] and the soft x-ray (SXR) tomography system
[4–6]. In the present paper we focus on the 10–50 kHz modes
observed by the SXR tomography diagnostics. For this we are
concentrating on the radial location and poloidal mode num-
bers of these modes.

The data from SXR cameras are commonly used for study-
ing spatial structures of MHD instabilities in magnetically-
confined high-temperature plasmas, in W7-X the soft x-ray
multi-camera tomography system (XMCTS) has been put in
operation for this purpose [4–6]. An initial study on tomo-
graphic reconstruction ofMHDmodes based on surrogate data
and errors expected for the XMCTS diagnostic is described in
[4]. The installation of the XMCTS in W7-X can be found
in [5]. The detailed description of the final XMCTS system
and first results with experimental data from W7-X and their
tomographic inversion are presented in [6]. It consists of the 20
pinhole cameras, each equipped with a silicon diode detector
array with 18 channels. This system provides excellent capab-
ilities for studying the spatial structure of the MHD modes.

The analysis of the mode structure from the SXR raw
data is not straightforward one due to the line-of-sight integ-
ral nature of the SXR signals. The mode dynamics is usu-
ally observed by the poloidal propagation (in literature mostly
called as ‘rotation’) of plasma parameter perturbations. The
perturbation crosses twice a line-of-sight of SXR diagnostics
during a full poloidal turn. In the SXR signals the impacts
of positive and negative emissivity of the mode perturbations
are combined. A spectral analysis of raw SXR signals can
be used to determine the radial locations of MHD modes
without tomographic inversion [7–11]. The poloidal mode
number and radial location can be determined using a sin-
gular value decomposition technique [7, 9]. Forward model-
ing [7, 12, 13] can be used for this purpose as well. It can
also reveal a detailed mode structure while the tomography
method yields an unstable or spurious image. In particular, as
is known, the modes are localized from other diagnostics or
other knowledge, forward modeling can reveal finer structures
than tomography.

2. Models and features of forward modeling
techniques

The SXR forward modeling technique is based on a compar-
ison of experimental data with the line-integration of a syn-
thetic emissivity. In contrast to the usual tomography, the
direct problem is solved in the forward modeling approach.
Additional constraints implemented in forward modeling can
substantially increase the diagnostic resolution, simplify and
speed-up the subroutines in comparison with the conventional

tomography. These constraints can be adapted according to the
goal of the modeling.

We are studying the fluctuations of SXR emission caused
by plasma modes. The constant background SXR radiation
part is out of scope of our modeling. The background part of
the SXR emission is subtracted from the experimental data and
is not considered in the model. The fluctuating plasma density
inside the plasma mode causes positive and negative perturba-
tions of the SXR emissivity in relation to the SXR background
emissivity. For forward modeling of the plasma modes in the
context of our study a synthetic perturbation pattern is applied.
The approach of usingmode eigenfunctions can be used in for-
ward modeling of line-integrated diagnostics such as SXR or
phase contrast imaging diagnostics [14]. However these eigen-
functions are usually not known, if the mode type is unknown.
Constraints in this case are based on the nature of typicalMHD
modes in stellarators. Most of the MHD modes in stellarators
and tokamaks are localized on the magnetic flux surfaces. This
fact is used as constraints in the models.

The dependence of the mode rotation velocity on the pol-
oidal angle should be implemented in the model as the next
step. The perturbation rotation velocity is equivalent to the
phase velocity of the mode. A rotation of the centers of the
perturbations can be expressed by: A(l, t) = A0 sin(kl−ωt) =
A0 sin(Φ), where A0 is the mode amplitude, l is the pol-
oidal position of the perturbation in the magnetic flux sur-
face, k is the wavevector, ω is the angular frequency, t is
the time. The phase velocity is the velocity of the constant
phase Φ. From dΦ/dt= 0 we can obtain the phase velo-
city formula: vΦ = ω/(k+ l · dk/dl) in the case of constant
ω. The phase velocity dependence on the poloidal angle
vΦ (l(θ)) is contained in the (k+ l · dk/dl)−1 term. Thus,
the angular dependence of the perturbation velocity can be
modeled via the direct determination of the phase velocity
vΦ(θ) or via the determination of the wavevector dependence
k(l(θ)). One of these two equivalent (for the constant ω)
approaches can be selected in a particular case. For example,
the shear Alfvén eigenmodes [15] are formed by coupling
of two counterpropagating waves. The coupling of m and
m+ 1 continuummodes causes the toroidicity induced Alfvén
eigenmode (TAE) formation. The coupling of the m and
m + 1 modes in the oversimplified case can be described as:
cos(mθ−ωt)+ cos(−(m+ 1)θ−ωt)∼ cos(θ/2). Thus, the
ballooning TAE mode is located mainly at the low field side
where−π/2 < θ< π/2. This mode can bemodeled via the angu-
lar dependence of the combined mode wavevector in order to
highlight the ballooning nature represented by the cos(θ/2)
term. This case can be modeled via the direct determination of
phase velocities of m and m + 1 modes.

A dependence of the wavevector on the magnetic surface
position causes deformation of the perturbation shape. This
shape can bemodeled by the eigenfunctions of themode, if this
information is available. The set of rigid rotating Gaussian per-
turbations can be used as a first approach in the opposite case.
The angular dependence of the wavevector results in perturb-
ation deformations. This can be taken into account in more
sophisticated models. The perturbation length λ along the



magnetic flux surface increases with phase velocity increasing
(vΦ ≈ ω/k∼ λ). The perturbation size in the perpendicular
direction should be inversely proportional to the length along
the flux surface due to the integrated perturbation amplitude
conservation. This also should depend on the angular variable
distance between the neighboring flux surfaces.

Various criteria of a comparison of the experimental data
with the line-integration of the synthetic emissivity can be
selected. In the first approach the influence of the spatial mode
structure on the line-integrated signals can be analyzed. For
example, in the oversimplified ballooning TAE case the term
cos(θ/2) indicates that the mode should be observed mainly in
the low field side of a tokamak. One more criterion is based
on the comparison of oscillation amplitudes in the different
SXR lines-of-sight. The techniques based on the spatial modes
structure use this criterion. These based on the mode amp-
litude (or amplitude and phase) distribution techniques are
considered in ASDEX-U [9, 10] for low frequency and low-
m kink and tearing modes or high frequency low-m reversed
shear Alfvén eigenmode modes in Alcator C-Mod [14].

Amore improved comparison is based on the phase dynam-
ics of line-integrated oscillations. This phase dynamics caused
by the spatiotemporal mode evolution accumulates the contri-
butions of the spatiotemporal evolution of each mode perturb-
ation. The techniques based on the spatiotemporal approach
are used for low frequency and low-m modes in RFP [11]
and STOR-M [13] for low frequency and average-m modes
in W7-AS [7] and U-3M [12].

The perturbations cross the line-of-sight twice during a full
poloidal turn along the flux surface. The line-integration of the
opposite propagating mode perturbations leads to the interfer-
ence that causes rather complex phase diagrams. The phase
diagram is reconstructed on the base of synthetic perturba-
tions in the real geometry of the SXR diagnostics. This dia-
gram is used as an advanced criterion in forward modeling.
It contains information about the mode structure encrypted by
the line-integration. For example, a divergence of the lines-of-
sight causes a different apparent velocity of the perturbation
in the near and far parts of the flux surface with respect to the
camera. On the base of this difference it is possible to evaluate
the mode rotation direction [13]. The asymmetry of the flux
surfaces can be used for determination of this direction too
[12]. In the present work, we first describe the experimental
determination of the radial location, poloidal mode numbers
and direction of 10–50 kHz modes poloidal rotation in the
W7-X stellarator by applying the forward modeling approach.

3. SXR system and experimentally observed
oscillations

Figure 1 shows the lines-of-sight of the three SXR pin-
hole cameras plotted across the magnetic flux surfaces cal-
culated by the VMEC equilibrium code [16]. The cameras
with labels ‘1B’, ‘1D’ and ‘1E’ are chosen from the 20
available XMCTS cameras for covering different viewing
angles sufficient for the signal processing technique. The view
cones of the central line-of-sight span a poloidal angle of

Figure 1. Lines-of-sight of SXR cameras 1B, 1D and 1E across the
W7-X flux surfaces of the magnetic configuration W7-X ref 170.
The red flux surface at ρ ≡ r/rLCFS ≈ 0.3 corresponds to the mode
location under consideration whereas rLCFS represents the last
closed flux surface.

3.7◦. A discharge (W7X-PID 20180918.045) with transient
20–35 kHz oscillations is depicted in figure 2(a). This spec-
trogram represents oscillations measured by the SXR chan-
nel #18 of camera 1B. Similar spectrograms are observed in
neighboring SXR lines-of-sight. Two frequency ranges, i.e.
29–37 kHz and 23–28 kHz, can be distinguished. The oscil-
lation amplitude dynamics of these two parts can be repres-
ented by the time evolution of root mean square (rms) of the
filtered SXR signal amplitudes. The rms represents the har-
monic mode amplitude. Two bandpass filters are applied to the
raw SXR data in order to separate the frequency ranges under
consideration. The temporal evolution of the two frequency
bands observed by the photodiodes of camera 1D are plotted
in figures 2(b) and (c).

Note that within the narrow frequency range of 29–37 kHz
the different branches can be observed (figures 2(a) and (b)).
At 3.415 s of figure 2(b) a separation of the branch with a
decreasing frequency and a branch with a frequency constant
in time can be distinguished.

A distinct pattern of the rms amplitude across the photo-
diodes can be recognized in figures 2(b) and (c). The spatial
pattern of the rms amplitudes can be explained by the inter-
ference of negative and positive parts of a single (or more)
plasma mode(s) aligned with the magnetic flux surfaces as
detected along the lines-of-sight of the SXR camera. This
effect is described in detail in the next sections. The spatial
structure of the single frequency branches is quasi-stationary.
This indicates that the signal-to-noise ratio of the SXR dia-
gnostics is sufficient for the mode analysis. The phase evolu-
tion of oscillations provides more detailed information about



Figure 2. (a) Spectrum of SXR signal fluctuations of diode #18 (camera 1B), (b) rms of 29–37 kHz and (c) 23–28 kHz fluctuations
(color coded) versus time and photodiode number of the data from the SXR camera 1D.

Figure 3. Spatiotemporal evolution of the SXR emission data of experimental program XP20 180 918.045, time range 400 µs at 3.4237 s,
measured by the camera 1D. A 29–37 kHz band-pass filter is applied to the data. (a) Raw data. (b) Numerical interpolation of the raw data
of 18 diodes.

the nature of the modes. The time delay observed between
different lines-of-sight is caused by the poloidal rotation of
perturbations. The spatiotemporal evolution of the perturba-
tion amplitude measured by the XMCTS camera 1D is shown
in figure 3 for a time interval of 400 µs at t = 3.4237 s.
The measured, bandpass-filtered perturbation amplitude (the
same bandpass parameters as in figure 2(b)) is color-coded.
Along the vertical axis the line-integrated data from the
diodes in the camera 1D are plotted against the time on the
horizontal axis.

4. Forward modeling of mode perturbations aligned
on the magnetic flux surfaces

In order to extract information about the mode numbers and
rotation direction from the line integrated SXR measurement
we use a simplified eigenmode model for the mode pattern
in the poloidal plane of the location of the SXR cameras
(cf figure 4). It is possible to perform ‘virtual measurement’
along the lines-of-sight across the modeled x-ray radiation
distribution. This ‘virtual measurement’ is performed via the

numerical integration for a given SXR camera geometry and
using the flux surfaces from the plasma equilibrium calculated
by VMEC. The expected signals for a radiation distribution
can be modeled by the numerical integration and compared
with the measured signals.

Figure 4 represents, as an example, a modeledm= 10mode
structure (color coded). The mode maxima and minima (blue
color), consist of 2D Gaussians with their centers poloidally
aligned on one of the magnetic flux surface. In this model, the
constant background radiation distribution is assumed as sub-
tracted, therefore, the negative radiation intensities can exist in
the model. The individual 2D perturbation profile is modeled
by the Gaussian ξi = ξ0i · e−(⃗r−⃗ri)2/σ2

where r⃗i = r⃗i (t) is the
coordinate of the perturbation center for a time point t, σ is
the weight coefficient determining the spatial perturbation size
and the index i = 1,…, m indicates the perturbation number.
Several attributes define the radiation distribution pattern: the
number of maxima and minima (mode numberm), the rotation
velocity direction, the width of the Gaussians and their amp-
litudes (for a ballooning mode, the amplitude of the Gaussians
varies with R and is maximal at the unfavorable curvature loc-
ation). Using this approach a simultaneous presence of more



Figure 4. Lines-of-sight of the SXR camera 1D (magenta) across
the magnetic flux surfaces are shown in black from VMEC
(vacuum-field matching conditions of XP20 180 918.045). A model
radiation distribution of 20 Gaussian-shaped perturbations (of
alternating positive and negative amplitudes, σ = 0.025 m, color
coded), exemplarily representing an m = 10 MHD mode located at
ρ ≈ 0.3 and poloidally propagating toward the green arrows. An
SXR viewing angle of a single channel of 3.7◦ is marked in channel
#54 (green).

than a single mode can be modeled. A similar signal pro-
cessing approach for the SXR camera data has been reported
by Weller et al for W7-AS [7] and used in ASDEX-Upgrade
[9, 10]. The presented forward modeling of the mode structure
is similar to that of [12, 13].

5. Determination of the radial location, poloidal
mode numbers, mode rotation direction and mode
type

5.1. Basic description of the method

The radial location of plasmamodes can be estimated from the
oscillation pattern shown in figure 2 as explained in the fol-
lowing. The oscillations are observed only by the SXR lines-
of-sight which are crossing the modes. The edges of the rms
distributions, where the mode amplitudes become observable,
mark these radial locations. The radial mode locations are
roughly equal to the impact parameters of these SXR lines-of-
sight [7–11]. The phase evolution of the oscillations provides
more detailed information about the mode dynamics. In our
model description, one poloidal mode pattern is composed by
a set of perturbations. Each of perturbations causes a relative
increase (or decrease in the case of negative perturbations) of
the measured SXR radiation along the corresponding line-of-
sight. Due to the poloidal rotation of the mode structure along
the flux surface, the time lags can be observed between those
lines-of-sight which observe the plasma at different poloidal
positions. For the following analysis the model described in
section 3 is applied.

As a first step the radially thin perturbations (σ = 0.001 m)
are used to fit the experimentally observed paths of centers

Figure 5. Evolution of an oscillating part of the experimental SXR
emission measured by cameras 1B (top), 1D (middle) and 1E
(bottom (color-coded)). The same 29–37 kHz band-pass filter, as in
figure 3, is applied to the experimental data. The black lines mark
the projected mode paths calculated for the maxima of a radially
narrow m = 10 mode (σ = 0.001 m) in the case a single clockwise
turn. For one of the selected maxima, the projected propagation is
detailed for the movement near (yellow color) and far (magenta
color) from the camera 1D.

of the perturbations by variation of the mode number. The
paths of ten perturbations (i.e. mode maxima) are represen-
ted in figure 5 by the black lines. The width of the black lines
represents a perturbation size of sigma (σ = 0.001 m) and the
paths are plotted along 200 synthetic SXR channels to obtain
a higher resolution. The experimental data are shown as a con-
tour plot. Numerical interpolation of measured data is used in
order to construct the SXR distribution along the cross-section
on the base of 18 lines-of-sight.

The mode rotation in the poloidal direction is visible by the
spatial shift of the perturbation with increasing time. A simul-
taneous rotation of the perturbations is observed by all opera-
tional XMCTS cameras, in particular 1B, 1D and 1E (as it is
seen from figures 3 and 5). The perturbations cross the lines-
of-sight twice during a full poloidal turn along the flux surface
(see figure 4). The line-integration of the opposite propagat-
ing mode perturbations leads to the interference that causes
the rather complex phase diagrams depicted in figures 3 and
5. The poloidal movement of individual perturbations projec-
ted onto the detection plane of the camera leads to an apparent
propagation in the opposite directions for perturbations near
and far with respect to the camera. In figure 5 the two direc-
tions are indicated by the yellow and magenta lines. The path
along the distant part of the flux surface (magenta) is longer
due to the divergence of lines-of-sight (cf figure 4) resulting
in a lower projected velocity in the phase diagram. Here we
assume the same poloidal linear velocity of the mode in the



Figure 6. Evolution of an oscillating part of the experimental SXR emission measured by camera 1D (as in figure 5(b), the same for all the
windows) and the numerical calculations of the m = 8, m = 9 and m = 10 mode paths (black lines) calculated for a radial narrow mode
(σ = 0.001 m) for a single turn in the clockwise direction. The color-coding is the same as in figure 5.

near and far parts of the flux surface with respect to the cam-
era. The different projected velocities enable us to determine
the poloidal direction of mode rotation. From figure 5 one can
deduce that the mode rotates in the clockwise direction [13].
The difference in the projection velocities can also be caused
by asymmetry of the flux surfaces [12], but it is not a case
of W7-X. Relatively sharp edges of the oscillation localiza-
tions in the space are visible in figures 2, 3 and 5. The oscil-
lation amplitudes increase distinctly at channel #23 of cam-
era 1B, at channel #58 of camera 1D, and at channel #81 of
camera 1E. The impact parameters of these lines-of-sight cor-
respond consistently to a normalized radius of ρ ≈ 0.3. Note
that for determining the radial location and the rotation dir-
ection of the mode, the model of figure 4 is not necessary as
these parameters can be directly deduced from the (bandpass-
filtered) raw data. Forwardmodeling is described for a detailed
mode analysis. The poloidal mode number and radial mode
location in the forward model are manually adjusted. In our
calculations the case of a constant angular poloidal rotation
velocity in the VMEC straight-line coordinate system [16]
is used except especially mentioned cases. The path along
the flux surface is used in our calculations for the poloidal
mode velocity modeling. The distance between the neighbor-
ing points of the flux surface is passed during the uniform time
interval in our model. For example, in the case of a constant
linear mode velocity this distance is constant. We use the nor-
malized path ln in our calculations. The ln = 1 value corres-
ponds to the single poloidal turn of the mode. In order to com-
pare these calculations with experimental data we perform the
matching of two parameters: the initial phase and the rotation
velocity. We adjust the phase by aligning the first crossing
of the calculated perturbation paths with the maxima of the
experimental perturbations. In the second step, we superpose
other maxima of the experimental perturbations with another
crossing in order to match the proportionality between time
and ln. By this step we adjust the poloidal rotational velo-
city. The matching of these two parameters should result in an
agreement between the experimental data and calculatedmode
paths, if the poloidal mode number m and the radial location ρ
are matching. A comparison of the calculated mode paths for

different mode numbers with the experimental data is shown in
figure 6.

The maxima of the experimental data coincide only with
the modeled mode paths (black lines) for the m = 10 mode
(figure 6(c)). The low amplitudes of the mode traces for chan-
nels #69–71 of camera 1D are caused by the decreased sig-
nal intensity due to the partly shadowed photodiodes (further
details can be found in [5]). Figure 7 shows the effect of the
radial mode perturbation width. A modeled m = 10 mode
having a wider perturbation size (σ = 0.025 m) is compared
with the experimental data. The effect of the finite perturbation
width, causing oscillations in channels #56 and #57 of camera
1D, is in good agreement with the experimentally measured
data.

5.2. Comparison of various poloidal velocities

Two equivalent approaches can be used for modeling the vari-
able mode velocity, as it was highlighted in the introduction.
A spatiotemporal analysis is used to model the phase dynam-
ics of line-integrated oscillations mentioned in the foregoing
chapter. It is logical to determine the phase mode velocity vΦ
(equal to the perturbation velocity) directly, in contrast to an
implicit definition by the spatiotemporal analysis based on the
wavevector. It is possible to use the poloidal angle θ of the
perturbation or the perturbation position at the magnetic sur-
face l for the poloidal dependence modeling. In our model-
ing we use the perturbation position normalized to the mag-
netic surface perimeter length ln. The linear phase velocity is
vΦ = dl/dt ≈ ∆l/∆t. It is matched with the experimental one
via the scaling, as described above. Thus we can use a vari-
able perturbation step∆l along the magnetic flux surface for a
uniform time interval∆t as a gauge of the variable phase velo-
city. An actual experimental phase velocity is compared with
the modeled one by the implicit∆t selection. Also we use the
dependence of this step on the magnetic surface position∆l(l)
or ∆l(ln).

The poloidal phase mode velocity depends on the driv-
ing instability as well as on the plasma rotation velocity. In
turn, the poloidal phase velocity depends on the ρ value and



Figure 7. Evolution of (a) experimental and (b) modeled data of the m = 10 mode (mode size σ = 0.025 m). The same numerical
interpolation of the 18 channels is used for both graphs. The black lines indicate the m = 10 mode path calculated for a thin mode
(σ = 0.001 m) for a single clockwise turn.

poloidal angle θ. However, a detailed analysis of the plasma
background physics [14, 15] is outside of the scope of the
present work. Below we compare three different cases of the
mode rotation to demonstrate once more the forwardmodeling
technique. The case of a constant angular poloidal phase velo-
city in the VMEC straight-field-line coordinate system is the
reference one. This case is used in all the calculations repres-
ented above. It is compared with the case of a constant angular
poloidal phase velocity in the physical coordinate system and
with the case of a constant linear phase velocity. The angular
dependence of the phase velocity is modeled via different dis-
tances between the neighboring points on the flux surface. The
mode passes these distances during the uniform time interval.
In our model the neighboring points on the flux surface are
chosen by the u = const, θ = const or l = const laws, where
u is the poloidal coordinate in the VMEC straight-field-line
coordinate system [16], θ is the physical poloidal angle and l
is the path along the flux surface. The comparison of these cal-
culations is shown in figure 8 for the case of thin perturbations
(σ = 0.001 m).

The two cases: u= const and l= const are in a good agree-
ment with the experimental data (cf figure 8). The dependence
of the mode rotation velocity on the poloidal angle introduces
an additional correction to the calculated phase diagram of the
modes, but the main features are defined by m and ρ of the
mode.

Modeling of the thick perturbations can introduce one more
correction to the phase diagram of the modes. The shape of
perturbations can be flexible. The perturbation size along the
magnetic flux surface and in the perpendicular direction can
depend on the poloidal angle. This flexibility can be explained
by the angular dependence of the mode wave vector and, con-
sequently, of the phase velocity perturbation. The perturba-
tion size parallel to the flux surface is increasing in the regions
of a higher phase velocity. The size of the perturbation in the
perpendicular direction can depend on the set of factors such

as a size of the perturbation in the parallel direction, such as a
distance between the neighboring flux surfaces. The perturb-
ation shape should be constructed by the curvilinear shape of
the flux surface. This curvature can be neglected in the case
of the high m-modes under consideration. In this case the dis-
placement of the flux surface from the straight line in the small
enough length of perturbation is rather insignificant. We can
use a rotating Cartesian coordinate system (x,y) with the axis
x parallel to the flux surface and the axis y perpendicular to
the flux surface for every position in the flux surface l. The
individual 2D perturbation profile in this case is modeled by
the Gaussians ξi = ξi0 · e−(x−xi)

2/σ2
x (l) · e−(y−yi)

2/σ2
y (l) where xi

and yi are the coordinates of the perturbation center for the
position along the flux surface l; σx and σy are the corres-
ponding weight coefficients. We cannot simulate a real plasma
mode without knowledge of σx(l) and σy(l) dependences in
this mode. Nonetheless, according to our simulation, the dis-
tortions of the phase diagram are not significant even in the
case of the strong σx(l) and σy(l) dependences. The compar-
ison of a rigid mode case with a flexible perturbations case
possessing a strong flexibility: σx ∼ ∆l2, σy ∼ ∆l−1 is shown
in figure 9.

The phase diagrams are rather similar in the two models as
is seen from figures 9(c) and (d). This effect has been expected
in the high-m case under consideration. The phase diagram is
determined mainly by the centers of the short in comparison
with the flux surface length perturbations.

5.3. Ballooning-like mode analysis

We use the modes with a single poloidal mode number,
although the modes with co-existing different poloidal mode
numbers could be observed by XMCTS. For modeling of a
ballooning-like mode we use the sum of perturbations of two
modes with poloidal mode numbers m = 10 and m + 1 = 11
with equal radial location and size (σ = 0.025 m). In figure 10



Figure 8. Step∆l versus the position on the flux surface (a) and the major radius (b) for the constant VMEC velocity, constant angular
velocity and constant linear velocity modeling; (c) lines mark m = 10 (σ = 0.001 m) mode paths calculated for the three phase velocities
(marked by the same colors); (d), (e) camera 1D experimental data and m = 10 (σ = 0.001 m) mode paths as black lines for u = const and
l = const respectively.

Figure 9. Modeled topology of the m = 10 mode: (a) rigid model
(σ = 0.025 m) and (b) flexible model. The corresponding evolution
of the modeled line-integrated responses (c) and (d).

the non-ballooningm= 10 mode is compared with them= 10
ballooning-like mode. A stable pattern of the SXR response
is formed in the single m case (figure 10(c)) in contrast to
the time-varying SXR response of the ballooning-like mode

(figure 10(d)). An interference of perturbations of m and
m + 1 modes causes a distortion of the SXR response pat-
tern. Similar distortions are observed in the case of the anti-
ballooning mode or in the cases of combination of m and
m + 2 modes (typical for the elipticity induced by the Alfvén
eigenmodes, EAE). If the amplitude of one of the poloidal
harmonics of the combined mode is substantially higher, this
mode is seen as a single m mode. A regular, stable pattern
of the SXR response is observed experimentally at 3.42 s
(as seen from figures 3, 5 and 7(a)). We can conclude that
the observed mode is determined as an m = 10 single pol-
oidal mode (or a mode with the strongly dominant m = 10
component).

5.4. Amplitude distribution analysis

One more available experimental property of the modes under
consideration is the time-averaged mode amplitude distribu-
tion (see figure 2). It is expected that the perturbation interfer-
ence in the case of multiplemmodes should form different pat-
terns of the time-averaged mode amplitude. Non-uniformity
of the fluctuations amplitude are observed in figure 2(b) and
(c) at 3.3–3.4 s but are not observed in figure 2(c) at 3.5 s.
Figure 11 shows the amplitude distribution versus the photo-
diode obtained by numerical integration of the data given in
figures 10(c) and (d) for single m mode and ballooning-like
modes.

The time-averaged amplitude distribution is clearly differ-
ent, as it has been expected. Amore uniform distribution in the
case of ballooning-like modes (and other multiple m modes)



Figure 10. Modeled topology of (a) an m = 10 mode and (b) an
m = 10 ballooning-like mode (σ = 0.025 m). The corresponding
evolution of the modeled line-integrated responses (c) and (d).

Figure 11. Distribution of rms amplitudes of the modeled mode
structure: (a) for a single m mode, as in figure 10(c), and (b) for a
modeled ballooning mode, as in figure 10(d). The rms values of
oscillations are plotted versus photodiodes of camera 1D.

is substantially different from the uniform case of a single m
mode. Thus, our numerical modeling shows not only a similar
phase evolution of the perturbations but also demonstrates a
non-uniform distribution of the experimentally observed fluc-
tuation amplitudes (see figure 2) in the case of a single m
mode. This non-uniform distribution is used for discrimina-
tion of single m modes from other modes. Three branches
of W7X-PID 20 180 918.045 contain the non-uniform dis-
tribution of the SXR oscillations amplitude as is seen from
figure 2. The branch observed at 3.5 s contains a rather uni-
form distribution. This last branch is caused by the multiple-m

Figure 12. Poloidal mode numbers of the three different mode
branches in the discharge W7X-PID 20180918.045 (raw FFT
spectra shown in figure 2(a)).

mode according to the criterion of the amplitude distribution
uniformity.

5.5. Mode numbers in the W7X-PID 20180918.045
discharge

The capabilities of the forward modeling technique are
demonstrated in the foregoing sections. The application of the
described numerical forward modeling of mode structures to
different parts of the spectra allows separating of three differ-
ent single mmode branches in the W7-X discharge W7X-PID
20180918.045, as shown in figure 12.

The separation of the mode branches follows from the com-
parisons to the modeled oscillation phase analysis as well as
directly from the mode amplitude distribution analysis of the
raw data (as shown in figure 2). One can see from figure 2 that
the last branch (23–28 kHz at 3.5 s) is a more complex case.
The responsible mode cannot be described by a single pol-
oidal mode number m. A more detailed analysis of the com-
bined m case (discrimination from (m, m + 1); (m, m + 2); …
combinations) is limited by the spatial resolution of a single
SXR camera. The combination of all the 20 available XMCTS
cameras in W7-X and more complex modeling may provide a
more sophisticated technique in this case. Our forward model-
ing technique can be used for determination of singlemmodes
in the W7-X discharges. It can be used for discrimination of
more complex mode structures from the single m modes as
well. The dependence of mode rotation velocity on poloidal
angle can introduce an additional correction to the calculated
phase diagram of the modes, but the main features are defined
by m and ρ of the mode.



6. Conclusions

A forward mode modeling technique of MHD mode analysis
on the base of lines-of-sight data of SXR diagnostics is first
applied for W7-X geometry. The real geometry of SXR cam-
eras is used in our modeling. The poloidal mode structures are
modeled by the radially localized Gaussian-shaped emission
regions rotating along the magnetic surfaces. A set of models
with a constant phase velocity and a phase velocity depend-
ing on the poloidal angle are considered. A model with rigid
shapes of emission regions are compared with a flexible model
of these regions. In this model the parallel and perpendicular
sizes of the flexibly shaped emission regions depend on the
poloidal angle. Two techniques based on the comparison of
calculated and measured data are used. The calculated spati-
otemporal phase evolution of line-integrated modeled data is
compared with the experimental data in the first technique.
The spatial distribution of the oscillation amplitudes versus
the SXR channel is compared in the second technique. All the
models shows, that in the case of a high-m mode the phase
diagram is determined mainly by the poloidal mode number
m and radial location of mode ρ. So, this technique allows
us to determine reliably the radial location ρ, poloidal mode
number m and mode rotation direction of high-m modes with
a single m. Thus the single m modes are discriminated from
other modes (for example, ballooning modes). In particular,
in the discharge #180 918 045 there are identified three single
mmode branches with poloidal mode numbersm= 8,m= 10,
m = 11 localized at ρ ≈ 0.3 and rotating in the clockwise dir-
ection (when looking in the positive toroidal direction). As a
result, using the forward modeling inW7-X the highm-modes
are identified.
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