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Abstract—In this work, a multistatic uniform diffraction to-
mography (MUDT) method, that was proposed by the authors as
a new qualitative imaging method just recently, is combined with
the quantitative Bayesian inversion framework. In this combined
approach, MUDT is applied to find the location of the moisture
and this localization is employed as a pre-knowledge for the
Bayesian framework to estimate the moisture levels in a polymer
foam. The proposed combined algorithm might become a major
part of the development of a new kind of intelligent industrial
microwave drying systems. The imaging algorithm is tested with
simulated measurement data. The frequency band from 8 GHz
to 12 GHz (X-band) is used for the MUDT algorithm whereas
a single frequency of 8.2 GHz is assumed for the Bayesian
framework. The first results demonstrate the ability of the
developed combined algorithm for optimizing the computational
load unlike seen in the quantitative inversion approaches.

Index Terms—industrial drying, inverse EM scattering, mi-
crowave imaging, MUDT, Bayesian inversion method

I. INTRODUCTION

Microwave drying is an emerging technology in the industry
for batch and continuous processing due to the possibility
of volumetric and selective heating. Intraction of high-power
microwaves to materials with certain moisture content results
in significant energy and time-saving as compared to conven-
tional, convective, and radiative heating. Therefore, microwave
based drying is used in a wide variety of applications, e.g. for
dielectric heating of ceramics, food, chemical, and pharma-
ceutical industries [1].

We work on the HEPHAISTOS microwave system [2] that
has a patented hexagonal cross-section design with an overall
length and hexagon circumferential diameter of 4 m and 1 m,
respectively. It has a modular structure and consists of three
microwave modules of the same type; each module is 1 m
in length and mounted with six slotted waveguide antennas
delivering a total power of 36 kW at the 2.45 GHz ISM-
band. Another unique feature of the HEPHAISTOS microwave
system is the conveyor belt that can be added and that allows
a continuous drying process [3]. One target application is the
processing of polymer foam that has low thermal conductivity.
The objective is to dry the foam uniformly with the final target

to keep the moisture under a certain level inside the complete
volume at the end of the heating process. Oftenly those foams
have non-uniform moisture distribution at the inlet. Together
with a nonuniform distribution of the electromagnetic field
that leads to the formation of hot-spots. Those hot spots
might deform and destroy the foam respectively. Intelligent
control of distributed microwave sources is a possibility that
might efficiently address the non-uniform moisture distribu-
tion [3]. However, it requires the in-situ and non-invasive
measurements of the unknown moisture distribution inside the
material under test. Thus, to attain the moisture location and
level inside the polymer foam in a running belt process, a
microwave tomography (MWT) method is integrated into the
HEPHAISTOS system.

The MWT imaging algorithm is used to estimate the mois-
ture distribution and its level in the foam of infitite length and
with a large cross-sectional size ( 36 cm × 8 cm). A preferred
method is to apply an optimization based quantitative recon-
struction approach. However, for the mentioned large problem
size, this approach suffers from heavy computational burden
due to high number of unknowns. Here, pre-knowledge of the
scatterer location (distribution) under a known background can
be useful. As it can limit the unknowns only to the scatterer
domain. Hence, improved estimates can be obtained with less
computational burden.

In this study, the recently developed qualitative imaging
algorithm MUDT is used for the first time to estimate the
location of the scatterers. This estimation is provided as initial
input to the iterative Bayesian algorithm [4]. The MUDT is
an extended version of the uniform diffraction tomography
(UDT). It can exploit all the scattering elements of the
scattering matrix rather than only the diagonal elements as in
UDT. Thus, results in better resolution than UDT. Also, under
condition 1) the low number of antennas, and 2) if two adjacent
antennas are not in close vicinity to each other, the UDT
imaging algorithm fails to truly reconstruct the location of
the scatterer [5]. With this combined approach, more accurate
estimates can be obtained with improved computational time.

The paper is organized as follows: Section II provides a



Fig. 1. 3-D MWT setup used in this study to generate synthetic data.

view over the geometrical configuration. Section III and Sec-
tion IV details the MUDT qualitative method, and quantitative
Bayesian inversion framework, respectively. In Section V the
simulation results are presented and Section VI shows the
discussion and concluding remarks.

II. MWT SETUP

The 3-D configuration of the multistatic microwave imaging
system is illustrated in Fig. 1. Different to most of the known
qualitative applications, where the antenna array is located
on one side of the medium only (limited-angle) [6], [7],
here, in order to determine the dielectric value, the antenna
array is located at both sides of the foam (full-angle). The
computational domain consist of the polymer foam of size
Ωfoam = [−25, 25]× [−18, 18]× [−4, 4] cm. It is placed in
free space. The setup of the sensor consists of WR-90 waveg-
uide antennas that are capable to excite an electromagnetic
field into the medium at 8–12 GHz. An array of 7 waveguide
antennas is located in semi-infinite free space, above and
below the polymer foam. The distance of the antenna to the
top of the polymer foam is t1 = 16 cm and the center to center
distance between two adjacent antennas is 6 cm. In free space,
the relative dielectric constant is set to εr = 1 − 0j whereas
the relative dielectric constant of the foam is set to ε2. It is
assumed that the dielectric property of the foam varies is in
z-direction only. The free space is represented as layer 1 and
3 and the foam is presented as layer 2 .

III. QUALITATIVE METHOD: MUDT

In this section the two reconstruction approaches are dis-
cussed in more detail. The combined approach is evaluated
for a fixed cross-section (i.e. y × z) of the foam. As a result,
the formulation is represented in 2-D only. That is done to
simplify the approach. An expansion to full 3-D is possible.

Under the assumption of an excitation by a point source
and under the assumption of antennas located at the top of the
foam only, the scattered electric fields due to the irregularities
in the layer 2 , can be written in the following form [8], [9]

~Esct
2 (~rr, ~rt) = k2

∫
Ωfoam

¯̄G
(21)
eb (~rr, ~r

′) ·O2(~r ′) ~Etot
2 (~r ′) d~r ′ (1)

where ~Etot
2 (~r ′) is the total electric field in layer 2 and

~Esct
2 (~rr, ~rt) represents the scattered field due to the unknown

irregularities in layer 2 . O2(~r ′) = (εr(~r
′) − ε2) is the

object function. εr(~r ′) is the profile of the dielectric constant
of the target and ε2 denotes the dielectric constant of the
background. Ωfoam ⊂ R2 is the region of interest which is
layer 2 and and ~r ′ ∈ Ωfoam. Throughout the paper, e−jωt

harmonic time convention is assumed and suppressed. ω is
the angular frequency. In (1), the vectors ~rr = (yr, zr) and
~rt = (yt, zt) represent observation and source points while
¯̄G

(21)
eb (~rr, ~rt) is the electric background (multilayered media

without any scatterer inside) dyadic Green’s function (DGF).
The superscript (21) denotes that the source point is located
in layer 1 and the observation point is in layer 2 .

By applying the first-order Born approximation, the total
electric field ~Etot

2 can be replaced by the background electric
field of the layer. Due to the excitation by a point source the
electric field can be replaced by the Green’s function and also
using the symmetry property of Green’s function, a model for
the scattering electric field can be expressed as follow

Esct
2 (~rr, ~rt) = k2

∫
Ωfoam

¯̄G
(21)
eb (~r r, ~r

′).O2(~r′)Ḡ
(21)
eb (~r ′, ~r t) d~r

′.

(2)

The spectral representation of the Green’s function in layer 2
(modeled by the incident field in that layer) when the point
source is located in layer 1 is [10]

G
(21)
eb (~r, ~rt) =

1

π

∫ ∞
−∞

T̃2(ky, kz)
e−jkz2(z−zt)

kz1
e−jky(y−yt)dky

(3)
if z > zt and =(k2

2 − k2
y)

1
2 < 0. T̃2(ky, kz) is the transmission

coefficient in layer 2 and can be obtained by applying
the continuity conditions between layers for the transverse
magnetic field in x-direction (TMx). The dispersion relation
in the layer l (l = 1, 2, 3) is expressed by kzl =

»
k2
l − k2

yl

and kl = k0
√
εl is the wavenumber in layer l while k0 is

the free-space wavenumber.
From (2) the object function can be determined. Substituting
(3) in (2) with the prime integrand for the second Green’s
term, changing variables to ky = k′y+k′′y and using 2-D spatial
Fourier definition for the received signal and employing the
stationary phase approximation method and finally after some
straightforward calculation, the object function can be obtained
as given in (4)(see next page), where Ẽsct

2 (k′′y , ω) is the spatial
Fourier transform of the received scattered field and where 6
is the phase.
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The object function gives the location of the target, denoted by
Ωsct, in the foam region Ωfoam. The obtained O2(y, z) ∈ Ωsct
will be used as an initial updated domain for the Bayesian
algorithm. So, instead of using Ωfoam, by employing Ωsct, the
computational burden of estimating the moisture level will
decrease and algorithm may not trap in a local minimum. From
here on the vector notations are omitted.

IV. QUANTITATIVE METHOD: BAYESIAN INVERSION
FRAMEWORK

Consider an inverse problem of identifying an unknown
parameter εr ∈ C given noisy measurement data Emeas ∈ C
according to the observation model

Emeas = F (εr) + ξ, (5)

where F : εr → Emeas is the forward model represented
by (1) that maps εr to the measurement, and ξ denotes the
additive measurement noise component in the antenna. The
unknown parameter and noise terms are considered mutually
independent. Note that the measurement data and unknown
terms are complex quantity, therefore in the present study the
real and imaginary parts are concatenated to solve the inverse
problem.

In Bayesian framework the unknown parameters are treated
as random variables, and information about them are expressed
in terms of probability densities. The inverse problem is then
expressed as given the measured scattering data, the task is
to find the conditional probability density π(εr | Esct) for the
unknown quantity εr. The conditional probability density is
constructed using the Bayes’ formula as

π(εr | Emeas) =
π(Emeas | εr)π(εr)

π(Emeas)
∝ π(Emeas | εr)π(εr),

(6)
where π(εr | Emeas) is the posterior density, π(Emeas | εr)
is likelihood density which represents the distribution of the
measured data if εr is known, and π(εr) is the prior density
which contains the prior information available for unknown
εr. The denominator is the marginal density of the measured
data and plays the role of normalization constant and is often
ignored.

The posterior density in (6) contains the complete solution
of the inverse problem in the Bayesian framework and can be
expressed by point estimates. One of the most common point
estimate in tomographic imaging problems is the maximum a

posteriori (MAP). The MAP estimates can be computed from
the posterior as

ε̂rMAP = arg max
εr

π(εr | Emeas). (7)

This problem is equivalent to the minimization problem [4]

ε̂rMAP = arg min
εr

{
‖Lξ(Emeas−F (εr))‖2 +‖Lεr (εr−ηεr )‖2

}
,

(8)

which is a regularized non-linear least-squares problem. In (8),
Lξ is the Cholesky factor of the inverse of the noise covariance
matrix Γξ; Lεr is a Cholesky factor of the inverse of the prior
covariance matrix Γεr and ηεr denotes the mean value of the
prior. This minimization problem can be formally solved using
Gauss-Newton method as

εri+1
= εri + αiA

−1B, (9)

with,

A = (JTi Γ−1
ξ Ji + Γ−1

εr )

B =
Ä
JTi Γ−1

ξ (Emeas −F (εr))− Γ−1
εr (εri − ηεr )

ä
where αi is the step length parameter, Ji is a Jacobian matrix,
and index i is the iteration number.

An initial guess value is required to compute (9). A close
initial guess to the true value can result in faster convergence.
Hence, here the initial dielectric value εr0 is supplied by
the MUDT imaging algorithm. To the MUDT reconstruction,
obtained using (4), firstly a threshold value ℘ is applied to
retrieve the shape of the scatterer

Othreshold = O2(y, z) |>℘ . (10)

The choice of the threshold value is somewhat heuristic. After
the thresholding operation, the moisture area and dry part can
be assigned to dielectric constant values as

εr0 =

{
εmoisture, ∀ Othreshold ∈ Ωsct

εdry, ∀ Othreshold 6∈ Ωsct
(11)

where εmoisture denotes the moisture areas in the target domain
Ωsct and εdry denotes the dry areas in the foam.
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Fig. 2. Localization from MUDT with the true scatterer shape in red color is
shown in top. The bottom image shows the effect of thresholding operation.

V. RECONSTRUCTION

In this section, we investigate the proposed combined mi-
crowave imaging algorithm. To generate the simulated data,
the 3D time domain solver of the commercial Software CST
Studio Suite is used. The data is stored in terms of scattering
matrix of size 14 × 14. Moisture is given a spherical shape
with εr = 1.7 − 0.1j and surrounded by the dry part with
ε2 = 1.16− 0.01j. These dielectric constant values are equiv-
alent to 40% and 0% wet basis moisture levels (determined
based on the cavity-perturbation method carried out at the
HEPHAISTOS laboratory at the KIT). The implementation
details are given as follows.

A. MUDT

To obtain the qualitative image using the MUDT, only the
scattering parameters of the top antennas are used. Moreover,
in addition to the diagonal element of the scattering matrix,
the Si(i+1), (i = 1, 2, .., 6) of the top antennas are used
as well for the image reconstruction. Fig. 2(top) shows the
reconstructed image using the MUDT imaging algorithm. As
can be perceived from this figure, the location of the scatterer
is truly obtained with normalized value of the object function.
In the next step, a threshold operation is applied where the
values more than 0.6 (equivalent to the scatterer location) are
set to εmoisture and rest areas are set to the dielectric constant
of the background εdry as can be seen in right image of Fig.
2(bottom).

B. Bayesian inversion with MUDT

Here, the full matrix of simulated data for 8.2 GHz is used.
It should be noted that we used the symmetry between the
S-parameters to fill out the scattering matrix. To compute
(9), lower limit of X-band frequency is chosen to have less
number of unknowns in the inverse problem. The scattered
electric field is calculated using method of moment (MoM)
method with pulse basis and point-matching testing function.
The antennas are modeled as point source, and electric field

data is converted to the scattering matrix with a calibration
scheme, also Jacobian matrix is evaluated [11]. The noise and
prior covariance matrix is calculated as follows.

1) Noise model: Let us denote the noise variance of the
real and imaginary part of the complex-valued scattered field
data to be σR and σI, respectively. The noise covariance is
then given as,

Γξ =

ï
σ2
RIn×n 0n×n
0n×n σ2

I In×n

ò
,

where I is an identity matrix and n denotes the total number
of measurements. The noise level may be estimated from
repeated measurements, but for this case of simulation data,
a small noise level is assumed. The standard deviation of the
real and imaginary part are set 10−4.

2) Prior model: The moisture field variation inside the
foam is assumed to be smooth. Here, such a random field
is generated using a multivariate Gaussian distribution with
anisotropic covariance structure C [12], [13].

If real and imaginary part of the dielectric constant are
assumed uncorrelated, then the prior covariance matrix can
be written as

Γεr =

ñ
σ2
ε′r
C 0

0 σ2
ε′′r
C

ô
. (12)

Here σε′r , and σε′′r are the standard deviations for the real and
imaginary parts of dielectric constant, respectively. For the
standard deviations, the values of σε′r = 1, and σε′′r = 0.05 are
set in all cases, respectively. The mean value of the prior ηεr
is set to dielectric constant of the dry foam i.e 1.16− 0.01j.

MUDT reconstructed dielectric values are used as initial
value for iteration. Only the unknowns inside the moisture
domain are solved and rest of the values are assumed dry
in each iteration. As a stopping criteria, posterior norm in
current and past iteration is compared. The estimation result
using Bayesian approach with initial guess input from MUDT
is depicted in Fig. 3. The real part of the dielectric constant
is closely estimated. For the Bayesian approach the scatterer
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Fig. 3. MAP estimate using the proposed combined scheme with true shape
of scatterer highlighted in red.

shape is not retrieved. This is dominantly caused due to
smoothness assumption in the prior and modelling errors.
Moisture distribution in such strict shape is hard to find in
real scenario. Thus, smoothness prior assumption is sufficient.



VI. CONCLUSION

In this paper, MUDT and Bayesian inversion approaches
are combined as a new imaging algorithm and tested on the
simulated data to estimate the moisture content distribution
and its level in a porous foam. The combined approach
estimated the moisture scenario with optimized computational
load. This approach is expected to overcome the computa-
tional challenges of conventional quantitative approaches when
applied to solve the present problem. In the next step we
investigate to assign the proper moisture levels for multiple
scatterers in MUDT. In the final phase, the algorithm will be
tested in a real scenario.
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