

#### RESEARCH FOR GRAND CHALLENGES

<u>T. Dritschler</u>, M. Caselle, L. Ardila, S. Chilingaryan, A. Ebersoldt, J. Hurst, N. Karcher, A. Kopmann, O. Sander, T. Stockmann<sup>(\*)</sup>

# (Commercial) DMA technologies to realize a flexible DAQ system for Tera-Scale experiments

Karlsruhe Institute of Technology (KIT) (\*)Forschungszentrum Jülich

## **Challenges for modern DAQ Systems**

#### Complex data paths and heterogeneous architectures



- Advancements in Detector Technologies lead to highly complex DAQ systems
- This complexity results in heterogeneous systems with many different components

## **Challenges for modern DAQ Systems**

#### Complex data paths and heterogeneous architectures



Development and maintenance of complex DAQ systems is expensive and time consuming

Using commercially available standards and "off-the-shelves" components might mitigate these efforts

Can we design scalable and maintainable DAQ using mostly commercial components?

## Data transfer inside of conventional computing systems

#### CPU involvement in data movement



HELMHOLTZ

## Data transfer inside of conventional computing systems

#### CPU involvement in data movement

- Data arrives and is placed in device buffer
- **CPU Fetches data** from buffer
- CPU Places data into Driver memory
- CPU Fetches data from Driver
- CPU Places data into application space



## **Direct Memory Access (DMA) enabled data transfer**

#### Freeing up CPU and reducing copy efforts

- CPU "reserves" memory in application space (Pinning)
- CPU configures the device's DMA engine, effectively "Mapping" the pinned memory to the device
- Data arrives and is placed right into destination memory



### **RDMA enabled GPGPU computing**

#### Efficient use of GPUs for On-Line and In-Line data processing

- DMA is possible for GPU memory as well
- Analogous to main memory DMA
- $Pin \rightarrow Map \rightarrow Place$
- Significantly reduces latency!





### InfiniBand, the ,de facto' standard for RDMA

#### Commercial High-Speed, Low-Latency data transfer

» *n* • •

|                                           | ConnectX·b               |
|-------------------------------------------|--------------------------|
| General Specs                             |                          |
| Ports                                     | Single, Dual             |
| Port Speed (Gb/s)                         | 10, 25, 40, 50, 100, 200 |
| PCle                                      | 2x Gen3 x16; Gen4 x16    |
| Connectors                                | QSFP56; SFP-DD           |
| Message Rate (DPDK)<br>(million msgs/sec) | 215                      |
| RoCE Latency at Max Speed                 | 0.78                     |



HELMHOLTZ

#### InfiniBand

From Wikipedia, the free encyclopedia

**InfiniBand (IB)** is a computer networking communications standard used in high-performance computing that features very high throughput and very low latency. It is used for data interconnect both among and within computers. InfiniBand is also used as either a direct or switched interconnect between servers and storage systems, as well as an interconnect between storage systems. It is designed to be scalable and uses a switched fabric network topology.

As of 2014, it was the most commonly used interconnect in supercomputers. Mellanox manufactures InfiniBand

#### MT Annual Meeting 2021

## Next generation RDMA capable computing accelerators

#### Closing the gap between networking and computing

- Commercially available components
- Software Programmable
- Low development effort
- Easy to upgrade to newer generations, once they become available
- (R)DMA Capable
- Optimized for Machine Learning and Al applications!



#### **Communication between heterogeneous components**

One protocol for all the most common components?

Ethernet is one of the most common commercially available interconnects



Is there a way to benefit from RDMA using Ethernet?

## **RoCE (RDMA over Converged Ethernet)**

#### Enabling RDMA benefits for conventional Ethernet networks

#### **RDMA** over Converged Ethernet

From Wikipedia, the free encyclopedia

**RDMA over Converged Ethernet (RoCE)** is a network protocol that allows remote direct memory access (RDMA) over an Ethernet network. It does this by encapsulating an IB transport packet over Ethernet.



## **KIRO: KIT RDMA Programming Library**

Integrating RMDA capabilities into software







Clone it on Github! https://github.com/ufo-kit/kiro

- Works for both: InfiniBand and RoCE!
- KIRO Server/Client:
- Unidirectional data transfer from Server to Client (Clients "Pull" from Server)
- Fixed-Size memory segment
- Supports multiple connected clients per server
- KIRO Messenger (Beta):
- Layers bi-directional point-to-point messaging on top of KIRO
- Messengers can connect to multiple peers
- Fully RDMA enabled arbitrary sized memory exchange ("Push" and "Pull")

## **Novel DAQ architecture using commercial HPC Components**

High-performance distributed ML for physics experiments

- Versatile DAQ optimized for detector and AI applications
- High-performance ML inference on modern programmable hardware platforms
- Novel heterogeneous FPGA/GPU architecture based on emerging Ethernet protocols



## **Machine Learning Application Example**

#### **PANDA Tracking and Event Selector**





## Machine Learning Application Example

PANDA Tracking and Event Selector

DAQ

ROCE

Proposed for PANDA



#### PANDA online event selector **Raw Data/Simulation Physics Channels** ee 240 Phi [%] Etac [e] 220 126 Online Trigger Statem (FPGA, GPU, CPU) l2mu D0 G 200 Online Reco Dch \* 🔻 Ds 02 رکار 180 Tracking Lam Lamc **Event Building** Software Trigger 2.4Ge\ PID • 3.8GeV 0) JJJ 160 (NN) 140 Best network: CNN 4.5GeV **Neutral Reco** 5.5GeV ₩ 120 Trigger Tag 🖕 🎍 + 🔺 Data Storage 20 50 Software trigger selects Efficiency(NN) [%] 100% physical interesting Heterogeneous system channels from background All data points above 100% efficiency vs. Unifiable communication for data storage conventional approach $\rightarrow$ Indicates Neural

Efficiency improvement for different physics channels CNN vs. Classical method

Network performs better accross all metrics

HELMHOLTZ

Peiyong Jiang

MT Annual Meeting 2021

15

# Heterogeneous FPGA – GPU architecture for beam physics

High-performance distributed ML for physics experiments

- Versatile DAQ optimized for detector and AI applications
- High-performance ML inference on modern programmable hardware platforms
- Novel heterogeneous FPGA/GPU architecture based on emerging Ethernet protocols





## Hardware implementation

As seen in: "Accelerated Deep Reinforcement Learning for Fast Feedback of Beam Dynamics at KARA" <u>A. Ebersoldt</u>

Reinforcement Learning on modern programable device



## Control of the complex beam with ML

fund)

#### Machine Learning toward Autonomous Accelerators

Closed feedback loop at KARA: THz detector Detection of signals with THz detectors and KAPTURE @ 500 MPulse/s **KAPTURE** Data processed by Reinforcement Learning on FPGA **RF** System FPGA action as special RF signal modulation is sent to the kicker cavity Ethernet Goal: total latency of control feedback loop << 1 ms action **Target applications:** KARA, FLUTE, ARES and more **HighFlex card** Al deployed in the FPGA Status: first beam control on FPGA developed within AMALEA  $\rightarrow$  will continue in ACCLAIM (Helmholtz Innovation MicroTCA

A. Ebersoldt

HELMHOLTZ

## **Application: RoCE in FPGA for the ECHo experiment** ECHo Experiment to measure the Neutrino mass

![](_page_18_Figure_1.jpeg)

Jonas Hurst, Nick Karcher, Oliver Sander

HELMHOLTZ

# Application: RoCE in FPGA for the ECHo experiment

Xilinx ERNIC IP Core implementation and integration

![](_page_19_Figure_2.jpeg)

HELMHOLTZ

20

## Conclusion

#### Application of industrial RDMA standards for modern DAQ

#### **Drawbacks:**

- Integration into existing infrastructure requires (complex) retooling
- Difficult to deploy and operate from within virtualized software environments
- Full performance can only be reached when using dedicated networking hardware

#### **Benefits:**

- Computing Accelerator integration → Full support for HPC and on-line processing
- Readily available Hard- and Software → Drastically reduces development efforts
- Single, commercial components → Easy maintenance and easy upgrades to newer versions
- Highly versatile → Unify communication between all components: CPU, GPU, FPGA