KIT | KIT-Bibliothek | Impressum | Datenschutz

Geometry dependence of excitonic couplings and the consequences for configuration-space sampling

Schieschke, Nils 1; Bold, Beatrix M. 1; Dohmen, Philipp M. 1; Wehl, Daniel 1; Hoffmann, Marvin; Dreuw, Andreas; Elstner, Marcus 1,2; Höfener, Sebastian 1
1 Institut für Physikalische Chemie (IPC), Karlsruher Institut für Technologie (KIT)
2 Institut für Biologische Grenzflächen (IBG), Karlsruher Institut für Technologie (KIT)

Abstract:

Excitonic coupling plays a key role for the understanding of excitonic energy transport (EET) in, for example, organic photovoltaics. However, the calculation of realistic systems is often beyond the applicability range of accurate wavefunction methods so that lower-scaling semi-empirical methods are used to model EET events. In the present work, the distance and angle dependence of excitonic couplings of dimers of selected organic molecules are evaluated for the semi-empirical long-range corrected density functional based tight binding (LC-DFTB) method and spin opposite scaled second order approximate coupled cluster singles and doubles (SOS-CC2). While semi-empirically scaled methods can lead to slightly increased deviations for excitation energies, the excitonic couplings and their dependence on the dimer geometry are reproduced. LC-DFTB yields a similar accuracy range as density-functional theory (DFT) employing the ωB97X functional while the computation time is reduced by several orders of magnitude. The dependence of the exchange contributions to the excitonic couplings on the dimer geometry is analyzed assessing the calculation of Coulombic excitonic couplings from monomer local excited states only, which reduces the computational effort significantly. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000133585
Veröffentlicht am 03.06.2021
Originalveröffentlichung
DOI: 10.1002/jcc.26552
Scopus
Zitationen: 8
Web of Science
Zitationen: 7
Dimensions
Zitationen: 9
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Biologische Grenzflächen (IBG)
Institut für Physikalische Chemie (IPC)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 30.07.2021
Sprache Englisch
Identifikator ISSN: 0192-8651, 1096-987X
KITopen-ID: 1000133585
HGF-Programm 47.14.01 (POF IV, LK 01) Molekular Information Processing in Cellular Systems
Erschienen in Journal of Computational Chemistry
Verlag John Wiley and Sons
Band 42
Heft 20
Seiten 1402-1418
Vorab online veröffentlicht am 16.05.2021
Nachgewiesen in Dimensions
Web of Science
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page