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Abstract

The electrocardiogram (ECG) is the standard measurement device of the electrical heart
activity. It is highly available and allows for a quick, inexpensive, and non-invasive monitor-
ing. This is especially important for the diagnosis of cardiovascular disease (CVD) which
is one of the major concerns for the health care system in Europe. CVD causes costs of
C210 billion and is responsible for 3.9 million deaths (45% of all deaths) a year. Apart from
risk factors, chronic kidney disease (CKD) and structural changes in the heart tissue are
underlying pathologies causing CVD. Both diseases can lead to life-threatening arrhythmia.
This is why the following two pathologies connected to CVD are focused on in this thesis:
Electrolyte imbalances in CKD patients and ectopic foci in the ventricles autonomously
triggering an excitation. In both cases, the overall goal is to develop methods with the help
of simulated signals supporting diagnosis.
In the first project, ECG simulations are used to optimize a signal processing workflow
for an ECG-based estimation of blood potassium concentration ([K+]b) and blood calcium
concentration ([Ca2+]b). The findings from the simulation studies are incorporated into two
[K+]b estimation methods which are evaluated on patient data. Mean absolute estimation
errors were 0.37 mmol/l for a patient-specific approach and 0.48 mmol/l for a global approach
with patient-specific adjustment. Advantages compared to existing approaches are extensively
discussed. All algorithms being important for a signal processing workflow are published
under an open source license.
The second project aims at estimating the location of ectopic foci with the surface ECG
without knowing the individual geometry of the patient. 1,766,406 simulated ECG signals
(body surface potential maps (BSPMs)) are utilized to train two convolutional neural net-
works (CNNs): The first estimates start and end of the depolarization, the second uses the
depolarization part in the BSPM to localize the excitation origin. This CNN is designed to
be able to show multiple solutions in the case of several possible excitation origins. The
smallest median localization errors were 1.54 mm on the test set for the simulated and 37 mm
for the patient data. Hence, the combination of the two CNNs yields a reliable method for
the localization of ectopic foci on simulated and on patient data, although patient signals
were not used during training.
The results from the two projects demonstrate how simulated data can be used to develop
and improve adequate ECG signal processing methods and how diagnosis can be supported.
Furthermore, the potential of the combination of simulations and CNNs for overcoming
the problem of unavailable clinical datasets as well as for finding estimation models being
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valid for different patients is demonstrated. The proposed methods can be used to accelerate
diagnosis and is therefore likely to improve the outcome of the patients.



Zusammenfassung

Das Elektrokardiogramm (EKG) ist die Standardtechnik zur Messung der elektrischen Ak-
tivität des Herzens. EKG-Geräte sind verfügbar, kostengünstig und erlauben zudem eine
nichtinvasive Messung. Das ist insbesondere wichtig für die Diagnose von kardiovaskulären
Erkrankungen (KVE). Letztere sind mit verursachten Kosten von 210 Milliarden Euro eine
der Hauptbelastungen für das Gesundheitssystem in Europa und dort der Grund für 3,9
Millionen Todesfälle – dies entspricht 45% aller Todesfälle. Neben weiteren Risikofaktoren
spielen chronische Nierenerkrankungen und strukturelle Veränderungen des Herzgewebes
eine entscheidende Rolle für das Auftreten von KVE. Deshalb werden in dieser Arbeit zwei
Pathologien, die in Verbindung zu KVE stehen, betrachtet: Elektrolytkonzentrationsverän-
derungen bei chronisch Nierenkranken und ektope Foki, die autonom Erregungen iniitieren.
In beiden Projekten ist die Entwicklung von Methoden mithilfe von simulierten Signalen zur
Diagnoseunterstützung das übergeordnete Ziel.
Im ersten Projekt helfen simulierte EKGs die Signalverarbeitungskette zur EKG-basierten
Schätzung der Ionenkonzentrationen von Kalium und Calcium zu optimieren. Die Erkennt-
nisse dieser Optimierung fließen in zwei patienten-spezifische Methoden zur Kaliumkonzen-
trationsschätzung ein, die wiederum mithilfe von Patientendaten ausgewertet werden. Die
Methoden lieferten im Mittel einen absoluten Fehler von 0,37 mmol/l für einen patienten-
spezifischen Ansatz und 0,48 mmol/l für einen globalen Ansatz mit zusätzlicher patienten-
spezifischer Korrektur. Die Vorteile der Schätzmethoden werden gegenüber bereits existieren-
der Ansätze dargelegt. Alle entwickelten Algorithmen sind ferner unter einer Open-Source-
Lizenz veröffentlicht.
Das zweite Projekt zielte auf die Lokalisierung von ektopen Foki mithilfe des EKGs ohne
die Nutzung der individuellen Patientengeometrie. 1.766.406 simulierte EKG-Signale (Body
Surface Potential Maps (BSPMs)) wurden zum Trainieren von zwei Convolutional Neural
Networks (CNNs) erzeugt. Das erste CNN sorgt für die Schätzung von Anfang und Ende der
Depolarisation der Ventrikel. Das zweite CNN nutzt die Information der Depolarisation im
BSPM zur Schätzung des Erregungsurpsrungs. Der spezielle Aufbau des CNNs ermöglicht
die Darstellung mehrerer Lösungen, wie sie durch Mehrdeutigkeiten im BSPM vorliegen
können. Der kleinste Median des Lokalisierungsfehlers lag bei 1,54 mm für den Test-
Datensatz der simulierten Signale, bzw. bei 37 mm für Patientensignale. Somit erlaubt die
Kombination beider CNNs die verlässliche Lokalisierung von ektopen Foki auch anhand
von Patientendaten, obwohl Patientendaten vorher nicht im Training genutzt wurden.
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Die Resultate dieser zwei Projekte demonstrieren, wie EKG-Simulationen zur Entwicklung
und Verbesserung von EKG-Signalverarbeitungsmethoden eingesetzt werden und bei der
Diagnosefindung helfen können. Zudem zeigt sich das Potential der Kombination von
Simulationen und CNNs, um einerseits die zumeist raren klinischen Signale zu ersetzen
und andererseits Modelle zu finden, die für mehrere Patienten/-innen gültig sind. Die
vorgestellten Methoden bergen die Möglichkeit, die Diagnosestellungen zu beschleunigen
und mit hoher Wahrscheinlichkeit den Therapieerfolg der Patienten zu verbessern.



Acknowledgments

This thesis is the final result of my scientific work at the Institute of Biomedical Engineering
at Karlsruhe Institute of Technology (KIT) during the last years. Many people contributed to
the finalization of work and I would like to sincerely thank them in the following.
First, I want to thank Prof. Dr. rer. nat. Olaf Dössel for letting me join his research group,
for his scientific enthusiasm, his support until the finalization of this thesis and for always
having my back. Moreover, I would like to thank ass. Prof. Cristiana Corsi for providing me
important data for my research, for refereeing this thesis and for always being such a kind
and helpful person. The same holds for Dr. Stefano Severi who mainly hosted our research
stay in Cesena, which I will always remember as a wonderful time, and gave me and my
student valuable feedback for the work. I also want to thank Dr. Axel Loewe for the fruitful
collaboration, his excellent feedback on our joint publications, and his support during my
work. This embraces the contact to Peter Kotanko and Dr. Jochen Reimann from Renal
Research Institute, as well as Dr. Doris Fürtinger from Fresenius Medical Care who kindly
supported the student research project of María Hernández Mesa financially.
All my colleagues and former colleagues at the institute deserve a special thank. In particular,
I would like to thank Steffen Schuler for proof-reading the parts of the first draft of this thesis,
the pleasant collaboration where we strongly benefit from each other. I appreciate him as one
of the most helpful colleagues at the institute and especially as a good friend. Furthermore,
I would like to thank Laura Unger for the pleasant work in the joint projects regarding
intracardiac processing, for her time spent on correcting this thesis, and for all the various
talks and AcroYoga sessions which helped to re-focus on work. Thanks for being such a
sympathetic and helpful friend. I would like to thank Claudia Nagel for being a pleasant
office mate, for the discussions about ECG processing and simulations, for the support with
selected student projects, but also for her effort on revising the draft of this thesis. In addition,
I thank Andreas Wachter for being always helpful, for the nice scientific and management
discussions with him and Steffen Schuler at Vogelbräu, Ady Naber for always being available
for a short talk in his office and his visits on the third floor, Michael Kircher for the support
with my teaching task and for the constructive conversations about management, Yannick
Lutz for making my time at the institute hilarious for about seven years, Ekaterina Kovacheva
for being such a positive person and for reminding me to continue smiling, Mark Nothstein
for always having a compliment for everyone, Giorgio Luongo for the nice cooperation and
being a large-minded person, Jochen Brenneisen, Luca Azzolin, Jorge Sánchez and Deborah
Nairn for their support with my teaching task. I would like to thank Tiago Almeida for the

v



vi Acknowledgments

countless discussions about research, about life in general and about Whisky during his stay
at the institute. Furthermore, Dr. Stefan Pollnow for a fruitful collaboration and Dr. Gustavo
Lenis for introducing me into the research world. I want to express a heartfelt thank you also
to all the others I did not mention here: You form an excellent team. Please preserve this
atmosphere.
Apart from the scientific staff, I would like to thank the technical and administrative staff in
the following who supported me in organizing and teaching the class Lineare Elektrische
Netze for three years: Ich danke Ramona Modery, die mich während der drei Jahre, in denen
ich die Lehrveranstaltung Lineare Elektrische Netze organisierte und die Übung leitete,
enorm und verlässlich unterstütze. Das gleiche gilt für die Sekretärin des Instituts, Irene
Günter, die gewissenhaft alle Verwaltungsaufgaben, insbesondere die Eintragung der Noten,
übernommen hat. Weiterhin danke ich Manfred Schroll für seine Unterstützung in Sachen
IT-Problemen. Wenn es darauf ankam, war er immer da. Ich sowie meine Studenten konnten
uns immer seiner Hilfe sicher sein.
My Bachelor and Master students deserve in particular my severe gratitude: Gerald Moik,
Michael Meinzer, Silvia Becker, Moritz Lindner, Jeanne Koch, Claudia Nagel, Bilian
Smardanski, and Simon Süß. Special thanks go to María Hernández Mesa and Maike Rees,
who supported me until the end of my work. As well, I thank all of my tutors for Lineare
Elektrische Netze. The nice teamwork with all of the students helped me to recognize my
enthusiasm to lead small teams.
I thank all of my friends for being patient with me, for always being there for me and
supporting me. Especially, I want to thank Alexander Engelmann for his valuable feedback
on optimization topics and Lisa Sielaff for the best and deepest feedback on texts I have ever
got.
Furthermore, I want to thank my girlfriend Lorena for always having an open ear and
encouraging words for me. A last thank goes to my familiy who unconditionally backed me:
Danke Mama, Grazie Papà, Danke Marisa für eure Unterstützung und Geduld mit mir. Ich
bin überglücklich, euch zu haben.



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

I Fundamentals 5

2 Medical Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Physiology and Anatomy of the Heart . . . . . . . . . . . . . . . . . . . . . 7
2.2 Electrocardiography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Disturbances of the Ionic Concentration Homeostasis . . . . . . . . . . . . 11
2.4 Ectopic Sources and Ventricular Tachycardia . . . . . . . . . . . . . . . . . 14

3 Technical Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Electrophysiological Modeling . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Regression and Classification Methods . . . . . . . . . . . . . . . . . . . . 19

II Ionic Concentration Estimation with the ECG 31

4 Introduction to the Topic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1 Himeno et al. Whole Heart Simulations . . . . . . . . . . . . . . . . . . . . 35
5.2 Optimization of Pre-processing Steps . . . . . . . . . . . . . . . . . . . . . 38
5.3 Proof of Concept Study for Concentration Estimation . . . . . . . . . . . . 51
5.4 Influence of Patient Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 53



viii Contents

5.5 Conclusions from the Simulation Studies . . . . . . . . . . . . . . . . . . . 62

6 Application to Clinical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.6 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

III Localization of Ectopic Foci with the ECG 79

8 Introduction to the Topic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

9 Proof of Concept Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
9.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
9.7 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

10 Deep Learning Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
10.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
10.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
10.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
10.5 Application to Clinical Data . . . . . . . . . . . . . . . . . . . . . . . . . . 100
10.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
10.7 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

IV Open Source Projects 113

12 Introduction to the Topic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

13 ECGdeli - ECG Delineation Algorithms . . . . . . . . . . . . . . . . . . . . . 117
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
13.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



Contents ix

13.3 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

14 ECGfeat - ECG Feature Extraction Algorithms . . . . . . . . . . . . . . . . . 121
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
14.2 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
14.3 Pre-processing Recommendation and Robustness Evaluation . . . . . . . . 122
14.4 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

15 ECGconc - ECG Concentration Estimation Algorithms . . . . . . . . . . . . 127
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
15.2 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
15.3 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

16 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

V Final Remarks 131

17 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

18 Ideas for Future Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
18.1 Machine Learning and ECG Signal Processing . . . . . . . . . . . . . . . . 135
18.2 Intracardiac Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . 137

A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
A.1 Himeno et al. Whole Heart Simulations . . . . . . . . . . . . . . . . . . . . 140
A.2 Influence of Filtering on Feature Extraction . . . . . . . . . . . . . . . . . . 141
A.3 Influence of Patient Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 145
A.4 ECGdeli - ECG Delineation Algorithms . . . . . . . . . . . . . . . . . . . . 147
A.5 Convolutional Neural Network Structures . . . . . . . . . . . . . . . . . . . 148
A.6 ScaleNet Error Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
A.7 LocaNet Error Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
A.8 Results on Clinical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

List of Publications and Supervised Theses . . . . . . . . . . . . . . . . . . . . . 179





Abbreviations

ANN artificial neural network
AP action potential
AV atrioventricular
BSP body surface potential
BSPM body surface potential map
[Ca2+]o extracellular calcium concentration
[Ca2+]b blood calcium concentration
Ca2+ calcium
CCA Canonical Correlation Analysis
CKD chronic kidney disease
Cl- chloride
CNN convolutional neural network
CVD cardiovascular disease
ECG electrocardiogram
ECGI ECG imaging
K+ potassium
[K+]o extracellular potassium concentration
[K+]b blood potassium concentration
MLP multilayer perceptron
Na+ sodium
PCA principal component analysis
SCD sudden cardiac death
SNR signal to noise ratio
SVR support vector regression
TMV transmembrane voltage





Chapter 1
Introduction

1.1 Motivation

Cardiovascular diseases (CVDs) are one of the major concerns for the healthcare system
being responsible for over 3.9 million deaths a year, or 45% of deaths in Europe (40% in men,
49% in women) [1]. In contrast, cancer accounts for only under 1.1 million deaths. Among
CVD, heart ischemia and infarction are the single most cause of death and responsible for
862,000 deaths a year. These numbers reflect also in the expenses: it is estimated that CVD
cause costs of C210 billion a year in Europe. The exact cause for CVD can be various but
it is known that secondary prevention, i.e. the therapy of other underlying diseases, reduce
the risk of CVD events [2]. Apart from classical risk factors like smoking, diabetes, high
blood pressure, or obesity, chronic kidney disease (CKD) and structural changes in the heart
tissue (e.g. as a result of myocardial infarction) are further underlying problems causing
CVD [2–4]. The two latter pathologies can lead to life-threatening arrhythmia and can
become therefore the original cause for the disease [5–11]. An early diagnosis and therapy
of these causal diseases can help to improve the outcome of the patients [12–14].
The electrocardiogram (ECG) is the standard monitoring tool of the electrical activity of
the heart over time. It is available and used in nearly every clinical setting. This makes this
device highly available and allows for a quick inexpensive non-invasive measurement of the
electrical heart activity. Subsequently, the ECG is applied during the first diagnosis steps in
CVD patients. ECG data can be used to calculate rhythmical and morphological features
in which the physician decides about the optimal treatment for the patient. Apart from the
clinical setting, ECG measurement devices become more and more included into consumable
devices, e.g. the Apple Watch. A trend towards transferring the evaluation of the health status
of the user to an ECG system exists [15, 16]. The automatic detection and evaluation of heart
diseases has the potential to support a quick and early in- and out-of-hospital diagnosis and
support physicians in decision making during treatment.
As the automatic determination of the health status of the patient affects therapy decisions and
therefore patient outcomes, algorithms have to be designed carefully: All possible influences
on the result must be evaluated under the constraint that medical data show large inter-patient
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2 Chapter 1. Introduction

variations and are not easily accessible due to privacy regulations and an infrastructure in
the clinics that is not always capable of exporting the needed digital data. One possibility to
overcome these constraints are simulations of ECGs. Computational modeling of the heart
offers the possibility to create as many data as desired being able to control all influences
separately. This can help to gain knowledge about the problem and match the evaluation
algorithms to the findings. Nevertheless, computational modeling alone can only be the first
or a supporting step towards a clinical application. Every method has to proof its potential
evaluated on clinical data which usually show larger temporal and individual variations than
simulations.
In this thesis, two pathologies were focused on which can both lead to life-threatening
arrhythmia: Electrolyte imbalances in CKD patients and ectopic foci in the ventricles
autonomously triggering an excitation. In both projects, simulations were utilized to develop
methods being applicable to patient data and support in the detection and curing of these
diseases.

1.2 Objectives of the Thesis

The general aim of this work is to develop ECG signal processing methods to extract meta
information from the ECG. These can be used to accelerate the diagnostic workflow by
supporting physicians finding diagnoses and improving the patient’s outcome.
As already stated, two major topics will be incorporated into this thesis: The estimation of
electrolyte concentrations and the localization of ectopic foci in the ventricles. The leading
aims of the first project are:

1. Improve ECG feature extraction methods with regard to a clinical application.
2. Perform a proof-of-concept study for the ECG-based blood potassium concentration

([K+]b) and blood calcium concentration ([Ca2+]b) estimation.
3. Evaluate the influence of patient-specific anatomical properties on feature extraction

and therefore concentration estimation.
4. Develop a method for ECG-based [K+]b estimation using findings from the first three

studies and overcoming drawbacks from published approaches.

The second topic described in this thesis is the localization of ectopic foci. The aims of this
project comprised:

1. Implement a method to detect the start and end of the depolarization wave to be used
in the localization procedure.

2. Perform simulations to train a localization technique that can be also applied to clinical
data.

3. Localize the excitation origin in the ventricles on both simulated and clinical data as
precise as possible.

4. Visualize the results and possible ambiguities.
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1.3 Structure of the Thesis

Part I presents selected fundamentals being relevant for understanding the presented methods
and results:

• Chapter 2 contains the medical background being important for this work. Anatomical
and physiological phenomena are explained as well as the origin of the ECG.

• Chapter 3 presents an overview on the technical fundamentals. An introduction to
computational modeling of the heart is given. Moreover, regression and classification
techniques pertinent for this work are presented.

Part II comprises the concentration estimation project using model based and data driven
methods.

• Chapter 4 gives a general introduction to the topic.
• Chapter 5 contains the projects connected with simulations. The main goals were the

optimization of pre-processing steps, the evaluation of possible inter-patient variations
and a proof-of-concept study for [K+]b and [Ca2+]b estimation.

• Chapter 6 outlines two approaches for concentration estimation applied to clinical
data that are based on the findings from the simulation studies.

• Chapter 7 gives a general conclusion of this part.

Part III describes methods for ectopic foci localization.
• Chapter 8 comprises a general introduction into the field of ectopic foci localization.
• Chapter 9 presents results from a proof-of-concept study based on simulations and

support vector regression evaluating the feasibility of an ECG-based localization
approach.

• Chapter 10 studies the application of a deep learning approach for the localization of
ectopic foci.

• Chapter 11 presents a conclusion of this part.

Part IV describes three open source projects containing algorithms developed during this
thesis.

• Chapter 12 introduces and motivates the topic of open source research software.
• Chapter 13 presents ECGdeli, a highly modular collection of ECG pre-processing

and delineation algorithms being important for most studies in this thesis.
• Chapter 14 outlines ECGfeat, the first collection of ECG feature extraction algorithms

on github that were evaluated and optimized regarding their robustness.
• Chapter 15 describes the repository ECGconc containing all algorithms being impor-

tant for concentration estimation.
• Chapter 16 outlines a summary and conclusion of this part.
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Part V summarizes the findings from all of the studies from a general perspective and gives a
comment on topics worth to work on. This includes the projects that I worked on during my
time at the Institute of Biomedical Engineering and are not reported in this thesis. The topics
were mostly connected with intracardiac signal processing, comprising the estimation of the
conduction velocity in the atria and the quantification of the complexity of atrial signals.
Selected results obtained during my time at the Institute of Biomedical Engineering were
published in five journal papers out of which three are with a shared authorship. Two further
publications are in preparation and writing has already started. The articles are mostly
referenced at the beginning of the respective sections and are listed again at the end of this
thesis. Furthermore, I supervised 14 student projects. Findings from these projects were
partly considered during development and assessment of new methods and results were
incorporated into this thesis. The respective theses are also referenced at the beginning of
the respective sections.
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FUNDAMENTALS





Chapter 2
Medical Fundamentals

2.1 Physiology and Anatomy of the Heart

The human heart is a hollow muscle enclosed by the pericardial sac which is located in the
mediastinum, the space between spine and sternum. The heart consists of four cavities: two
atria and two ventricles (Figure 2.1) connected to each other either directly or through the
circulatory system. Starting from the venae cavae through which low-oxygenated blood
flows into the right atrium, the blood flow is driven by contraction and by other filling
mechanisms out of the right atrium into the right ventricle passing the tricuspid valve. When
the right ventricle contracts, the blood is pumped into the pulmonary vessel system where
it is oxygenated and returns into the left atrium. From there, the blood moves into the left
ventricle and is pushed into the aorta and thereby into the body circulatory system. From
here, the oxygen is released into the cells, and the blood flow returns through the venae cavae
into the right atrium [17, pp. 522-525].

2.1.1 Conduction System of the Heart

The trigger for the heart muscle cells to contract arrives the cells through the conduction
system of the heart (Figure 2.2). Starting from the sinus node, the primary pacemaker of the
heart located in the right atrium, the excitation is conducted over the atria into the second
pacemaker, the atrioventricular (AV) node. Atria and ventricles are electrically isolated and
a propagation of the excitation wave is only possible through the AV node. From there,
the excitation wave is conducted with a delay through the bundle of His (third pacemaker),
over Tawara’s branches and the Purkinje fibers into the working myocardium. The latter is
formed of contractile cells being responsible for most of the contraction. The cells forming
all the pacemakers are self-depolarizing, i.e. after a certain time, they can provoke a new
excitation of the heart. The frequency of spontaneous depolarization descends from the
primary to the fourth pacemaker. This results in a domination of the sinus node fixing the
rate of contraction (60 to 80 bpm) in the physiological case. If the primary pacemaker fails

7
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Figure 2.1: Anatomy of the heart. Modified from [18], licensed under Creative Commons Attribution-
Share Alike 3.0 Unported.

to trigger the excitation, the second (40 to 50 bpm) pacemaker, the AV node can act as a
fall-back. Equivalently, the third pacemaker (30 to 40 bpm) compensates a failure of the
second pacemaker [17, pp. 522-525].

2.1.2 Electrophysiology

The excitation of a heart cell is determined by the change of the transmembrane voltage
(TMV). When a neighboring cell is depolarized, a small charge transfer is induced which
triggers the cell to change its TMV as shown in Figure 2.3. This typical course is referred
to as action potential (AP). When hitting the threshold potential (-70 mV), certain inward
(into the cell) potassium (K+) channels that are open during the resting phase get deactivated
and a fast sodium (Na+) inward current increases the TMV up to 20- 40 mV (upstroke phase
0 and and overshot phase 1 in Figure 2.3). Afterwards, the fast Na+ channels deactivate
dependent on the TMV. Repolarizing K+ outward and chloride (Cl-) inward currents make
the TMV decrease again. In the plateau phase (phase 2 in Figure 2.3), slow calcium (Ca2+)
inward currents compensate the repolarizing currents holding the TMV on a nearly constant
level. Dependent on the heart rate and the cell location, the Ca2+ inward currents last for
200-400 ms determining also the length of the plateau. With the decay of these Ca2+ currents,
the cell activation enters the repolarization phase (phase 3 in Figure 2.3). Mainly slow and
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Figure 2.2: Anatomy of the heart and conduction system of the heart. Modified from [18] and from
[19], both licensed under Creative Commons Attribution-Share Alike 3.0 Unported.

rapid K+ outward currents drive the TMV back to the resting potential. There, the rapid
and slow K+ outward channels close and certain inward K+ channels open again that are
enabled during the resting phase (phase 4 in Figure 2.3). Here, the cell can be activated again,
whereas during the plateau phase, the cell is in the absolute refractory period, i.e. a new
activation is not possible. During the repolarization phase, the cell is relatively refractory, i.e.
with decreasing TMV the needed trigger potential decreases, too [17, pp. 518-520]. Apart
from the ion channels, there are other transporting mechanisms for ions through the cell
membrane. Two important are: the Na+pump and the Na+-Ca2+ exchanger. Those types of
transporters restore the original distribution of K+, Na+ and Ca2+ ions between intra- and
extracellular space [17, p. 520].

2.1.3 Electromechanical Coupling

As explained in Section 2.1.2, the Ca2+ influx sustains the plateau phase. Apart from this
electrical effect, the increased concentration of Ca2+ triggers an additional release of Ca2+

from the sarcoplasmic reticulum in the cell into the cytosol. This Ca2+ activates the proteins
of the contractile apparatus and therefore the mechanical activation of the cell [17, p. 521].
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Figure 2.3: AP from a heart muscle cell with the respective phases. Phase 0: Upstroke/Depolariza-
tion, fast Na+ influx; Phase 1: Overshoot, Na+ channels close; Phase 2: Plateau, Ca2+ influx; Phase 3:
Repolarization, K+ outflux; Phase 4: Resting membrane potential.

Figure 2.4: Placement of electrodes for a standard 12-lead ECGon the torso. Electrodes 1-3 are used to
measure the Einthoven andGoldberger leads, as well as to calculateWilson central terminal. Electrodes
4-9 are used to measure the Wilson leads together with Wilson central terminal. Modified from [20],
licensed under Creative Commons Attribution-Share Alike 3.0 Unported.

2.2 Electrocardiography

Electrocardiography is one of the most common non-invasive diagnostic tools for heart
diseases. As it is complicated to evaluate the health status of the heart cells within the body,
the electrocardiogram (ECG) can be used to get a macroscopic view on the heart’s status.
Therefore, different voltages are measured with electrodes on the torso surface resulting in
characteristic curves that can be interpreted by a physician.
Figure 2.4 shows the typical placement of the electrodes for a standard 12-lead ECG on the
torso. The 12-lead ECG consists of three Einthoven leads (voltages I, II, III), three Goldberger
leads (voltages aVR, aVL, aVF) and six Wilson leads (voltages V1-V6). Although there are
12 voltages to be measured, only nine electrodes suffice for an exact measurement. This is
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due to the fact, that one Einthoven lead and all three Goldberger leads are mathematically
redundant. Einthoven leads I and II can be calculated from the potentials at the two arms
(ΦRA, ΦLA) and the left leg (ΦLL) using

I = ΦRA−ΦLA , (2.1)

II = ΦRA−ΦLL . (2.2)

(2.3)

The redundant leads can be calculated from the others as follows [21]

III =−I + II (2.4)

aV R =− I + II
2

, (2.5)

aV L =
I− III

2
, (2.6)

aV F =
II + III

2
. (2.7)

The voltages of the Wilson leads usually use the reference potential of Wilson central terminal
ΦWCT [22]

ΦWCT =
ΦLA +ΦRA +ΦLL

3
, (2.8)

which is used to calculate the precordial leads [22] with

Vn = ΦV n−ΦWCT with n = 1, ...,6 . (2.9)

The characteristic lead signals originating from one excitation cycle are shown in Figure 2.5.
When the excitation spreads over the atria, the P wave gets visible in the ECG. Afterwards,
the excitation is delayed in the AV node resulting in the PQ interval and then conducted into
the ventricles resulting in their depolarization, represented by the QRS complex, and their
repolarization, represented by the T wave [23, pp. 12-13]. As the repolarization in each cell
is much slower than the depolarization, the resulting spatial gradient should also be much
smaller. Nevertheless, the T wave is more prominent than expected. This is connected to
regional repolarization profiles yielding characteristic spatial gradients that are captured with
the ECG [24].

2.3 Disturbances of the Ionic Concentration
Homeostasis

The physiological concentrations of Na+, K+ and Ca2+ in the blood plasma are 141 mmol/l,
4 mmol/l and 2.5 mmol/l, respectively. In the interstitial space, the concentration of Ca2+

differs (1.3 mmol/l) [17, p. 669]. The homeostasis of the ionic concentration is mostly
preserved by the kidneys [17, p. 665]. A (chronic) dysfunction can evoke pathological
concentrations in the blood. However, not only kidney diseases can cause changed ion
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Figure 2.5: Anatomy of the heart, excitation conduction system, excitation spread and the representa-
tive parts in the ECG curve. The excitation starts in the atria (blue arrows) yielding in the P wave in the
ECG. The PQ distance (brown) represents the conduction delay of the AV node. The QRS complex rep-
resents the depolarization of the ventricles (green). The repolarization of the ventricles is denoted by
the Twave (red). Modified from [18] and from [19], both licensed under Creative Commons Attribution-
Share Alike 3.0 Unported.

concentrations but also drug administration, second order diseases like hypertension, etc. [25]
Chronic kidney disease (CKD) can be classified into five stages out of which four impair the
patient’s life. In stage I, a renal disease can be diagnosed, nevertheless, the renal function
is not impaired. In stages II-IV the renal function is increasingly impaired until stage V
representing the end-stage with a complete renal failure. A typical treatment can include drug
therapy but also a renal replacement therapy as transplantation or dialysis [26, pp. 957-960].
The effects of CKD are various. In this work, the effect on the cardiovascular system is of
special interest. Considering the relationship between cardiac excitation development and
ionic currents described in Section 2.1.2, it gets apparent that changed ion, especially of K+

and Ca2+, concentrations directly affect the electrophysiological behavior of the heart cells.
This results in a higher mortality through cardiovascular events in CKD patients than through
the nephrological impairment itself [26, pp. 957-960].
In the end-stage of CKD, hemodialysis is a standard therapy for restoring the physiological
ionic concentrations. Therefore, the principle of diffusion is used. The blood from the patient
is driven into a dialysis (Figure 2.6) machine where the blood flow passes a semi-permeable
membrane (Figure 2.7). On the other side of the membrane, a personalized dialysate
consisting of demineralized water with added acetate or bicarbonate and electrolytes of
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Figure 2.6: Concept of hemodialysis. Blood from the patient is pumped into the dialysis machine,
cleaned and enters afterwards the body. For cleaning, the dialysate is used. Adapted from [27], licensed
under Creative Commons Attribution-Share Alike 3.0 Unported.

Figure 2.7: Concept of blood cleaning in the dialyser. Adapted from [28, p. 65].

different concentrations, adapted to the needs of the patient, passes the membrane. Usually,
caused by the concentration gradient, Na+ is transported into the blood, urea, creatine, water
and K+ is extracted from the blood [26, pp. 983-985].
Apart from hemodialysis, there are further concepts for dialysis, i.e. peritoneal dialysis or
ultrafiltration. A detailed explanation can be found in medical textbooks [26, pp. 987-990].
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2.4 Ectopic Sources and Ventricular Tachycardia

Ventricular tachycardia (heart rate > 160 bpm [26, p. 38]) can be caused (among other
origins) by an ectopic source in the ventricular myocardium [23, p. 109]. In contrast
to the physiological sinus rhythm having its origin in the sinus node, this ectopic source
drives the excitation of the ventricles. In the case of a high excitation rate, this leads to
ventricular tachycardia and consequently to death. Ventricular tachycardia can be classified
as non-persistent if they last up to 30 s, and as persistent if they last longer than 30 s or if the
tachycardia needs to be interrupted for hemodynamic reasons [26, p. 146].
Due to a changed excitation origin in the ventricles, the morphology of the ECG changes.
P waves are not necessarily visible, QRS complexes and T waves change morphology
dependent on the location of the ectopic center [23, pp. 108-109].
Dependent on the type of arrhythmia and the function of the left ventricle, the long-term
success of a pharmacological treatment differs. If the arrhythmia cannot be compensated
by anti-arrhythmical drugs, catheter ablation is the treatment of choice [26, p. 147]. During
an electrophysiological treatment, the physician inserts a catheter into the venous system
of the patient guiding it into the ventricles. Through mapping, i.e. the measurement of the
potentials on the inner heart surface (endocardium) and additional stimulation maneuvers,
the origin of the excitation can be determined. The tissue is then ablated (destroyed by either
high or low temperature) to restore the physiological autonomous excitation [26, p. 155].
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Technical Fundamentals

3.1 Electrophysiological Modeling

Electrophysiological modeling aims at describing mathematically the behavior of the heart
cells and tissue. This can be achieved through detailed biophysical and more phenomenologi-
cal modeling. In the following, selected approaches covering different degrees of granularity
will be presented.

3.1.1 Cell Models

Cell models describe the electrophysiological behavior of cardiac cells, specifically the
transmembrane voltage (TMV). Cell models usually build up on the differential equation [29,
30]

dVm(t)
dt

=− Iion(t)+ Istim(t)
Cm

, (3.1)

where Vm is the TMV, Cm is the capacity of the cell membrane, Istim is the stimulation current
and Iion is the ion current through the membrane. Cm is usually given as capacity per area
([C] = F/m2), thus the currents are given as current densitites ([I] = A/m2). Iion is defined as
the sum of the currents of each ion channel through the cell membrane. The formulation of
this variable is dependent on the cell model. The widely used ten Tusscher et al. [31, 32]
models from 2004 and 2006 formulates this Iion e.g. as

Iion = INa + IK1 + Ito + IKr + IKs + ICaL + INaCa + INaK + IpCa + IpK + IbCa + IbNa . (3.2)

Here, Iion consists of different sodium (Na+), potassium (K+), and calcium (Ca2+) currents
(determined by the respective indices) through the ion channels in the membrane, exchanger
currents (INaCa, INaK), and pump currents (determined by an index p, e.g. IpK). These currents
are again formulated by individual expressions by the cell model. The formula for the L-type
Ca2+ current in the ten Tusscher et al. model from 2006 is for example given by [32]

15
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ICaL = GCaL ·dV fV fV 2 fcass ·4 ·
(Vm−15)F2

RT
0.25[Ca2+]SS · e2(Vm−15)F/RT− [Ca2+]o

e2(Vm−15)F/RT−1
. (3.3)

The L-type Ca2+ current is modeled depending on Vm, the constant maximum conductivity
GCaL, a voltage dependent activation gate dV , two voltage dependent inactivation gates fV
and fV 2, an inactivation gate fcass dependent on the subspace Ca2+ concentration [Ca2+]SS

and the constants R, F and T. The gating variables d and f represent the partial opening and
closing of the channels, either dependent on the TMV or the intracellular Ca2+ concentration.
The other currents for channels, exchangers, and pumps are modeled in a similar way yielding
a set of coupled (differential) equations.
Dependent on the desired application, single currents in the Iion formulation can be dropped,
merged or even be refined. The latter was done in the work of Himeno et al. [33] for the
formulation of the Ca2+ currents. Here, the authors introduced mainly two modeling steps:

1. Introduction of three intracellular subspaces with specific Ca2+ concentrations for each
compartment (Figure 3.1).

2. Usage of Markov states (for further information see [34]) with three gating variables
to describe the Ca2+ releasing units.

The first implementation was motivated by findings, e.g. of Acsai et al. [35], showing that
near Ca2+ releasing sites, a Ca2+ concentration gradient can be observed in the cell. Himeno
et al. discretized this cytosolic gradient by using three subspaces that are shown in Figure 3.1:
bulk space (blk), an intermediate zone (iz), and a junctional space (jnc). Every subspace
shows an individual Ca2+ concentration. As stated above and apart from the subspaces, the
authors extended an existing Markov formulation by Hinch et al. [36] and Stern et al. [37]
of the Ca2+ releasing units to be more realistic with respect to experimental results. This
detailed Ca2+ modeling of the cell yields a more complex calculation of the current

ICaL = ∑
x

∑
y

ICaL_y_x with x ∈ { jnc, iz,blk} and y ∈ {Ca,Na,K} (3.4)

with
ICaL_y_x = fCaL_x ·PCaL_y ·GHKy_x · pOLCC_x

1

1+
( 1.4

6 mmol/l

)3 . (3.5)

Here, fCaL_x, PCaL_y are constants, GHKy_x is the result of the used modified Goldman-
Hodgkin-Katz equation, pOLCC_x is the Markov chain probability for the opened L-type Ca2+

channel LCC_x gate. Comparing equation (3.3) to (3.4), it gets apparent that the computational
demand increases compared to the widely used and above mentioned ten Tusscher model.

3.1.2 Excitation Propagation in the Tissue

Moving from microscopic single cell to macroscopic tissue simulations, it is not sufficient
to consider only the behavior of each cell individually. Hence, it is crucial to model the
excitation conduction in the connecting tissue, too. In the following, two approaches will be
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Figure 3.1: The concept of the Himeno et al. model [33]. The three subspaces are colored in light blue
(iz), blue (jnc) and white (blk). L-type Ca2+ currents (LCC) are visualized with arrows for the different
subspaces. NCX: sodium-calcium exchanger. NaK: sodium-potassium pump. The concentraion index
cyt denotes the cytosolic concentration. Adapted from Biophysical journal, vol. 109, no. 2, Himeno
et al., A human ventricular myocyte model with a refined representation of excitation-contraction cou-
pling, pp. 415-427, 2015, with permission from Elsevier. For the sake of clarity, several text blocks
have been blanked in the figure. The figure has been cropped.

presented: a detailed biophysical model in Section 3.1.2.1 as well as a more phenomenologi-
cal approach in Section 3.1.2.2.

3.1.2.1 Bidomain and Monodomain Model

The bidomain model was originally proposed by Tung [38] and is today the standard excita-
tion propagation model for cardiac tissue. In this model, cardiac tissue is divided into two
coupled domains: the intracellular and extracellular space, separated by the cell membrane.
These two domains are characterized by anisotropic conductivity tensors σi/e for intracellular
(i) and extracellular (e) space, a current density per volume through the cell membrane im
(i.e. from one domain to the other), current densities ji/e and potentials Φi/e in the respective
space. Poisson’s equation delivers the following relationship

∇(σi∇Φi) = im , (3.6)

∇(σe∇Φe) = −im . (3.7)

With the two Poisson’s equations, the definition of the TMV Vm = Φi−Φe and the expression
of im

im = β

(
Cm

dVm

dt
+ Iion + Istim

)
, (3.8)



18 Chapter 3. Technical Fundamentals

where β is the cell surface to volume ratio, the two bidomain equations can be derived as

∇((σ i +σe)∇Φe) = −∇(σi∇Vm) , (3.9)

∇(σi∇Vm)+∇(σi∇Φe) = β

(
Cm

dVm

dt
+ Iion + Istim

)
. (3.10)

The components of σi and σe are given in the parallel and perpendicular direction with
respect to the direction of the myocardial fibers. If the ratio κ of the tensor components of
σi and σe is equal, it can be written as σi = κσe. Using this, a simplified expression of the
bidomain equations, the monodomain equation

1
1+κ

∇(σi∇Vm) = β

(
Cm

dVm

dt
+ Iion + Istim

)
(3.11)

is obtained. The calculation of the monodomain solution is computationally less expensive
than of the bidomain solution.

3.1.2.2 Eikonal Equation and Fast Marching Algorithm

The excitation spread over the heart tissue can also be described phenomenologically [30, 39].
One well-established approach is solving the Eikonal equation

c
√

∇taGta = 1 (3.12)

with the speed c(n) for each node n in an anatomical heart mesh, the node-wise activation
time ta(n) and the tensor G introducing anisotropy in the conduction properties similar
to σi/e in the bidomain model (Section 3.1.2.1). To solve the problem, i.e. calculating
the activation times ta(n), the fast marching algorithm offers lower computational costs
compared to Newton’s method [40]. With the distribution of ta(n), the excitation spread over
the heart tissue is determined.

3.1.3 Forward Problem of Electrocardiography

With the discrete formulation of the temporal and spatial TMV distribution in the heart tissue
(e.g. from the discretized bidomain model), it is possible to extract the electrocardiogram
(ECG). Therefore, the forward problem of electrocardiography has to be solved, which
describes the mapping of sources from the heart (e.g. TMVs) to the body surface. The tissue
between heart and body surface can be modeled as a volume conductor. Hence, Poisson’s
equation can be applied as before in the bidomain formulation [41] obtaining

∇(σi∇Vm) =−it . (3.13)

The spatial gradient of the TMV induces a current density it into the tissue which itself serves
as a source for the field potential Φe in the surrounding space

∇((σi +σe)∇Φe) = it . (3.14)
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Assuming a torso with only passive resistive electrical properties, this delivers a linear and
stationary way to calculate the potentials on the body surface with the TMV distribution in
the heart [42]. The problem can be solved discretely using the finite element or boundary
element method with two boundary conditions: a Dirichlet boundary condition caused by a
reference electrode and a Neumann boundary condition using the boundary layer between
thorax and air [43]. While the finite element method is computationally more expensive than
the boundary element method, it offers the possibility to introduce a fixed distribution of
different anisotropic conductivity regions, e.g. defined by different organs. The resulting
surface ECG can be derived by evaluating the potentials Φe at certain predefined points (the
desired electrode positions) on the body surface. In order to obtain the standard lead signals
described in Section 2.2, these potentials have to be combined in a predefined way [44].

3.2 Regression and Classification Methods

In this section, selected methods for regression and classification will be described that were
used in this work. They all belong to the class of supervised learning techniques, i.e. model
fitting is based on given inputs (x) and the corresponding known outputs (l) which are often
called labels. The pairs of known inputs and outputs is often referred to as training data.

3.2.1 Overfitting

Overfitting describes the phenomenon that a learning method performs well on the given
inputs but fails to work well on new inputs [45]. The learning method only memorizes the
training data and the generalization capability, i.e. performing also well on new inputs, is
missing. This can be caused by an over-complex model or an unbalanced set. An example for
overfitting is given in Figure 3.2. Six training data points (red circles) are used to approximate
a sine wave (black dashed line). The 15th order polynomial fit (yellow line) is too complex
and yields undesired results for points apart from the training points. The fit with the 3rd
order polynomial (red line) better estimates the sine wave while the linear model is due to its
low complexity not capable of showing the behavior of the sine wave.

3.2.2 Polynomial Regression

Polynomial regression forms one of the most intuitive regression techniques. Here, a model
y(x,w) is parameterized using polynomial basis functions φ(x) [45, pp. 138-142]. This can
be written as

y(x,w) =
M−1

∑
j=0

w jφ j(x) = wT
φ(x) . (3.15)

Here, M is the total number of parameters in the model. To find the model parameters w, the
least squares method can be utilized. Hence, the known labels and inputs are used. Under the
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Figure 3.2: Regression of a sine wave (dashed) based on the given sparse training points. The used
models were polynomials of first, third, and 15th order. This example is adapted from [45, p. 7].

assumption that the labels l are realizations of y(x,w) superimposed with zero mean white
Gaussian noise ε ,

l = y(x,w)+ ε , (3.16)

a solution of the problem

w = argmin
w

1
2
‖l−wT

φ(x)‖2
2 (3.17)

is given by
w = (ΦT

Φ)−1
Φ

Tl .s (3.18)

The matrix Φ is called design matrix and has size N×M, where N is the number of input-
labels pairs available. The elements of the matrix are given as Φi j = φ j(xi) where xi is one
specific input from the set of input-label pairs.
Depending on the pre-chosen order of the polynomial and the available data, overfitting might
be a problem. Regularization can be used to reformulate the least squares problem (Equa-
tion (3.17)) and increase robustness. Adding a regularization term λ

2 ‖w‖
2
2 to Equation (3.17)

yields [45, pp.144-145]

w = argmin
w

1
2
‖l−wT

φ(x)‖2
2 +

λ

2
‖w‖2

2 . (3.19)

The optimal solution in the least squares sense is given by

w = (λ I+Φ
T
Φ)−1

Φ
Tl . (3.20)

This formulation penalizes both large deviations between model outputs y(w,x) and labels l
and large coefficient values w. The regularization parameter λ controls the influence of the
two L2-norms in Equation (3.19) on the solution. The incorporation of the squared sum of
the coefficient values makes the method more robust against overfitting, since (especially
with large polynomial model orders) the resulting high order model coefficients must stay as
small as possible, consequently yielding smooth solutions [45, pp.144-145].
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3.2.3 Support Vector Regression

Support vector regression (SVR) is another regression technique which is closely related to
and inspired by the classifier support vector machine, a popular method for solving binary
classification problems [46]. The basic idea behind SVR will be described in the following
with a simplified example [46, 47]. The aim is to find a set of coefficients w describing a
linear function

f (w,x) = wTx+b (3.21)

for approximating N given label-input pairs (li,xi). This is done not by minimizing the
squared error as with polynomial regression but by minimizing the squared sum of the
coefficients w written as multiplication of the coefficient matrix

min
w

1
2
‖w‖2

2 , (3.22)

subject to

{
li−wTxi−b≤ ε for all i = 1, . . . ,N ,

wTxi +b− li ≤ ε for all i = 1, . . . ,N .

The demand for small deviations between each label value li and the approximated value
f (w,xi) is allowed to deliver an error up to a threshold ε . Nevertheless, the existence of
a solution is not granted if ε < ∞ since some values f (w,xi) might be located outside of
the ε band defined by the constraints in Equation (3.22). Therefore, the formulation in
Equation (3.22) is extended by the individual errors (slack variables) ζi and ζ ∗i yielding

min
w,ζi,ζ ∗i

1
2
‖w‖2

2 +C
N

∑
i=1

(ζi +ζ
∗
i ) , (3.23)

subject to

{
li−wTxi−b≤ ε +ζi for all i = 1, . . . ,N ,

wTxi +b− li ≤ ε +ζ ∗i for all i = 1, . . . ,N .

The resulting situation is visualized in Figure 3.3. It gets apparent that only points outside
the ε band (green dots) contribute to the cost function with their individual error ζi , the
ones inside the gray area are neglected (black dots). The parameter C controls the trade-off
between a small coefficient values w (“flatness”) and the accepted degree of deviation from
the threshold ε .
The optimization problem in Equation (3.23) can be converted into the dual formulation
with the transformed variables αi,α

∗
i being advantageous for numerical computation and
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Figure 3.3: The concept of the SVR fit. The black line is the result of the fit. Only the green dots with
the error ζ are considered during error calculation. All dots inside the ε region are not considered for
the error calculation during the fitting procedure. The figure is adapted from [46].

obtaining a solution fast. The formulation is according to [46]

max
αi,α∗i
−1

2

N

∑
i=1

N

∑
j=1

(αi−α
∗
i )(α j−α

∗
j )k(xi,x j) (3.24)

−ε

N

∑
i=1

(αi +α
∗
i )+

N

∑
i=1

(αi−α
∗
i )li ,

subject to
N

∑
i=1

(αi−α
∗
i ) = 0 and αi,α

∗
i ∈ [0,C] for all i = 1, . . . ,N

This can be solved by quadratic programming. In this dual formulation, a kernel transform
k(xi,x j) can be applied to make this method applicable to non-linear problems. When

choosing the Gaussian kernel k(x, x̂) = exp(− ||x−x̂||2
2σ2 ), in total three hyperparameters ε , C,

and σ (the standard deviation of the Gaussian kernel) have to be set. Furthermore, it should
be emphasized that SVR is only capable of estimating a one-dimensional output as visible in
Equation (3.21).

3.2.4 Artificial Neural Networks

Artificial neural networks (ANNs) is a further powerful method for regression and classifica-
tion. In the following, basic principles will be explained.

3.2.4.1 Artificial Neuron

The artificial neuron is the element which ANNs consist of. Figure 3.4 shows the basic
concept of a neuron. The inputs x are fed into an input function z(x,w), characterized by the
weights w and a constant bias term w0. The output of z is passed to the activation function
f (z) which calculates the output of the neuron y. Input function and activation function can
be chosen dependent on the network type [48, pp. 47-50].
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Figure 3.4: An artificial neuron with inputs x j , weights w j , an input function z(x,w), an activation func-
tion f (z) and the output y.

3.2.4.2 Shallow Neural Networks

input layer hidden layers output layer

...

w1

w2

wNxN

x2

x1

z(x,w) f (z) y

w0

1

Figure 3.5: Typical ANN with an input layer, two hidden layers and one output layer. All connections
between the layers are forwardly directed. Only preceding and succeeding layers are connected.

A shallow ANN consists of connected single neurons that are arranged in layers. Figure 3.5
shows an example for an ANN consisting of an input layer, two hidden layers and an output
layer. Each layer consists of a predefined number of neurons. The number of input variables
is equivalent to the number of neurons in the input layer, the number of neurons in the
output layer is fixed by the number of output variables [48, pp. 122-129]. In addition to
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the topology shown in Figure 3.5, it is possible to manipulate the interconnections between
the neurons, e.g. introducing dropping connections, adding feedback loops, etc. [48, pp.
794-795] Nevertheless, it is important to prevent dead ends in the architecture.
One very common architecture is the multilayer perceptron (MLP) network. It is charac-
terized by linear activation functions in input and output layers, differentiable non-linear
activation functions in one or more hidden layers, and a high (commonly forwardly directed)
connectivity [48, pp. 122-124]. In the following, a simple example will be utilized to explain
the capability of ANNs to solve regression problems. Figure 3.6 shows an exemplary MLP
with a two-dimensional input and a one-dimensional output. The number of hidden layers
is one. The naming of the weights w[l]

i j in the figure follows a pattern: the upper index l
is the number of the corresponding layer, the first lower index i determines the number of
the neuron in preceding layer, the second index j the number of the neuron in the current
layer. Input x and output y only depend on j and l. For this very simple example shown in
Figure 3.6, it is possible to write down the functional connection between the input of the
network (x[1]1 and x[1]2 ) and the output y[3]1 . For the output of the neurons in the input layer, we
can write:

y[1]1 = f [1]1 (z[1]1 ) = w[1]
11 · x

[1]
1 +w[1]

01 (3.25)

y[1]2 = f [1]2 (z[1]2 ) = w[1]
22 · x

[1]
2 +w[1]

02 (3.26)

z[1]1 is the linear input function of neuron 1 in layer 1, given by:

z[1]1 (x[1]1 ,w[1]
1 ) = w[1]

1 x[1]1 +w[1]
01 (3.27)

with l = 1 for the first layer. All other layers use the same input function. The activation
function of layer l = 1 is linear: f [l]j = z[l]j . The activation function in layer 2 of neuron j,

f [2]j is usually defined as a sigmoid function of the form

f [2]j = σ(z[2]j ) =
1

1+ e−z[2]j

or alternatively to (3.28)

f [2]j = σ(z[2]j ) =
2

1+ e−2z[2]j

−1 . (3.29)

The exact shape of the sigmoid can be chosen. With this (and following the red, respectively
the blue path in Figure 3.6), the output of the hidden layer forms to

y[2]1 = f [2]1 (z[2]1 ) = σ(w[2]
11 · y

[1]
1 +w[2]

21 · y
[1]
2 +w[2]

01) , (3.30)

y[2]2 = f [2]1 (z[2]2 ) = σ((w[2]
12 · y

[1]
1 +w[2]

22 · y
[1]
2 +w[2]

02) . (3.31)

Finally, the output layer depends on the output of the hidden layer (grey arrows in Figure 3.6)
and uses again a linear activation function

y[3]1 = f [3]1 (z[3]1 ) = w[3]
11 · y

[2]
1 +w[3]

21 · y
[2]
2 +w[3]

01 . (3.32)
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Figure 3.6: AnMLPwith two input neurons, one hidden layer consisting of two neurons and one output
neuron.

The full expression for the output of the network

y[3]1 = w[3]
11 ·σ(w[2]

11 ·w
[1]
11 · x

[1]
1 +w[1]

01 +w[2]
21 ·w

[1]
22 · x

[1]
2 +w[1]

02 +w[2]
01) (3.33)

+w[3]
21 ·σ((w[2]

12 ·w
[1]
11 · x

[1]
1 +w[1]

01 +w[2]
22 ·w

[1]
22 · x

[1]
2 +w[1]

02 +w[2]
02)+w[3]

01 (3.34)

is similar to the regression expression in Equation (3.15). The output of the ANN delivers
a solution of a regression problem but utilizing sigmoid functions of a weighted linear
combination of the inputs x instead of polynomials φ(x) in Equation (3.15).

3.2.4.3 Optimization Methods

When applying neural networks as supervised learning strategy, the weights w of the network
have to be determined in such a way that the output of the network y = fnet(w,x) fits given
labels l with respect to given inputs x. This is called training in machine learning terminology.
The estimation error is determined by the so-called loss function L(y, l) which should be
minimal [49, pp. 82–83]. The optimization problem which is solved during training states as

w = argmin
w

L( fnet(w,x), l) . (3.35)

The loss function L(y, l) is chosen dependent on the specific task and can exemplary be
chosen to

L(y, l) = ‖y− l‖2
2 (3.36)

for a regression task. In the following, three methods will be described to obtain the optimal
weights w (obtaining a minimal loss) during training.

Gradient Descent To obtain a locally optimal solution, gradient descent can be applied.
The idea behind this algorithm is to use the gradient of the function L( fnet(w,x), l). The
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function, respectively the gradient, describes the behavior of the network and is used to
change w iteratively in such a way that the loss function gets minimal (Equation (3.35)).
Starting with w j, the iterative process of finding the next set of weights w j+1 can be described
by the following expression [49, pp. 82–86] [50, pp. 35–36]

w j+1 = w j−η∇wL(F(w j,x), l) . (3.37)

It gets apparent, that an initial weight vector w0 needs to be preset, e.g. by random initializa-
tion. Furthermore, the step size (or learning rate) η needs to be given.

Stochastic Gradient Descent When training neural networks consisting of millions of
weights, the gradient descent method might run into problems. Large datasets are required
and due to memory constraints, it might be hard to calculate the optimal solution. However,
it can be proven that randomly splitting the whole dataset into subsets, and calculating the
gradient on just one subset solves the problem as well [49, pp. 271–292]. Including these
steps, Equation (3.37) changes to

w j+1 = w j−η∇wL(F(w j,x), l) = w j−η∇w

N

∑
i=1

(yi− li)2 = w j−η

N

∑
i=1

∇w(yi− li)2 (3.38)

≈ w j−η

M

∑
i=1

∇w(yi− li)2 ,

where N is the number of label-input pairs, M < N is the number of samples in the subset.
Stochastic gradient descent uses the fact that the gradient can be approximated by calculating
the gradient with only a selected part of the given data which however have to be chosen
randomly in each iteration. This is then used to update all weights. The subset of label-input
values which is used for the calculation of the gradient is called minibatch. When applying
stochastic gradient descent in practice with ANNs, it is important to decrease the learning
rate η over the iterations as the random minibatch selection introduces a source of noise
which does not vanish when arriving at the minimum [49, pp. 151–152, 271–292].

ADAM The ADAM algorithm was proposed by Kingma and Ba in 2014 [51]. Their
idea was to calculate the parameter update dependent on the calculated gradient g j+1 =

∇wL(F(wj,x), l), the element-wise squared gradient g2
j+1 and preceeding values for those.

The ADAM update expression is defined as

w j+1 = w j−η
m̂ j+1√

v̂ j +1+ γ
. (3.39)

Here, γ is a small constant that prevents the denominator to get zero. The variables m̂ and v̂
are defined as

m̂ j+1 =
m j+1

1−β
j+1

1

, (3.40)

v̂ j+1 =
v j+1

1−β
j+1

2

, (3.41)
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with

m j+1 = β1 ·m j +(1−β1) ·g j+1 , (3.42)

v j+1 = β2 · v j +(1−β2) ·g2
j+1 . (3.43)

The parameters β1 and β2 have to be pre-chosen, m0 and v0 have to be initialized. The novelty
of this method was the combination of the minibatch concept from stochastic gradient descent
and the inclusion of preceding gradients in the weight update calculation.

3.2.4.4 Back-propagation Algorithm

During the training of ANNs, the so-called back-propagation algorithm is applied [48, pp.
129-131]. The idea is to use the chain rule to find an expression for the gradient ∂L

∂wl
i
, where

wk
i is a weight in a layer k, being dependent on only the weights and outputs of succeeding

layers. Considering this, the optimization problem originally stated in Equation (3.35) can be
solved by a layer-wise optimization (computation of the gradients). This finding is exploited
in the back-propagation algorithm which works as follows [48, pp. 139-141]: First, all
weights are initialized and all needed outputs of the single layers are computed. Afterwards,
the actual back-propagation is performed: with the error of the output layer calculated from
the known targets, the errors in all preceding layers are calculated successively gaining the
updated weights. With the new set of weights, all the variables are calculated again and the
procedure is repeated until a stopping criterion is hit.
The calculation of the errors of a single neuron in one layer is independent of the other
neurons in that layer permitting parallel computation of those.

3.2.4.5 Regularization

A common problem in machine learning is overfitting. To avoid this in ANNs, regularization
can be used. Two common methods are presented here:

Bayesian Neural Networks The idea behind Bayesian neural networks is to add a regu-
larization term EB to the cost function (Equation (3.35)) in the optimization yielding

LReg =
α

2
L(y, l)+

β

2
‖w‖2

2 . (3.44)

α and β are weightings optimized during the learning process and depend on the errors and
weightings, respectively. The purpose of this extension is to keep the norm of the weights
small, favoring in a smoother and simpler solution similar to the regularization approach
described in Section 3.2.2. Hence, overfitting can be reduced [45, pp. 277-284][52].

Early Stopping With early stopping it is tried to detect overfitting before it happens.
Therefore, a part of the training dataset is used for the validation (validation dataset) of the
loss during training. When the loss on this subset which is not be used for the calculation of
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the optimal w increases for a predefined number of training iterations, training is stopped.
This aims at decreasing the error with an unseen test dataset [45, pp. 259-261].

3.2.5 Convolutional Neural Networks

When applying the regression and classification techniques described until now, it is not
common to use, e.g. the samples of an ECG signal directly as input. More, features describing
a certain change that is expected to be visible, are calculated in advance and these are used
as inputs for the learning method. Shallow neural networks were shown to solve a large
variety of existing problems. Nevertheless, they were found to deliver unsatisfying results in
pattern recognition. The algorithms are not able to generalize well, i.e. performing well on
data different from training samples. To overcome this in an efficient way, deep learning was
designed [49, p. 155]. The expression is not clearly defined but covers ANNs consisting of
many layers making them “deep”.
Convolutional neural networks (CNNs) form a class of neural networks that are usually
designed as deep neural networks. The main idea behind CNNs is to use convolutional layers
for an automatic feature extraction. These convolutional layers apply different convolutional
kernels on a given input which can be a two-dimensional signal for example. The definition
of the convolutional kernels becomes part of the optimization process. The CNN learns how
to perform these convolutions in such a way that the problem from Equation (3.35) is solved.
Figure 3.7 visualizes the concept of a CNN. The input is a multi-lead ECG signal which
is visualized as an image. Here, lead signals are arranged horizontally, vertically time is
visible. The amplitude is gray value coded. The upper part of the image showing many
white and black spots is the part of the QRS complex. A set of convolutional operations
(with different convolutional kernels) is applied to this two-dimensional input. The results
from the convolutions forms a set of outputs, called feature maps. After a downsampling
(usually referred to as pooling), the convolutional operation is repeated as the downsampling
is. When the information is reduced to a set of images of size 1x1, i.e. single values, these are
fed into a fully connected layer (similar to the architecture shown in Section 3.2.4.2) which
calculates the output of the network. The weights of the final fully connected layer, as well
as all the convolutional kernel coefficients are the optimized parameters during training [49,
pp. 339-341].
As with shallow neural networks, deep neural networks utilize the back-propagation algo-
rithm during training making them highly parallelizable. Nevertheless, the high complexity
of these networks with regard to their number of parameter values (weights) enforces the
application of regularization (e.g. early stopping) and special optimization techniques as
stochastic gradient descent or ADAM (Section 3.2.4.3). More information is given in [49,
pp. 274-329].



Figure 3.7: Concept of a CNN. The two dimensional input image consists of different ECG lead signals
concatenated vertically. The input is passed through several convolutional and downsampling steps
obtaining different feature maps. Finally, several 1x1 images are fed into a fully connected layer yield-
ing the output. Adapted from [53], licensed under the Creative Commons Attribution-Share Alike 4.0
International license.
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Chapter 4
Introduction to the Topic

The disturbance of the blood ion concentrations is a relevant clinical issue. In a study
comprising 364,955 patients accessing healthcare in Stockholm, Sweden, 13.6% of the
patients were found to suffer from hypokalemia ([K+]< 3.5 mmol/l), 2.5% showed moderate
or severe hyperkalemia ([K+] > 5.5 mmol/l) [54]. As with potassium, the impairment of
other electrolytes can only be diagnosed with blood samples. A non-invasive monitoring
technique at the point-of-care is desirable allowing an early diagnosis, a rapid therapy start
and consequently an optimized patient outcome [54]. Nevertheless, apart from the emergency
setting, patients with chronic diseases causing the impairment of the electrolyte concentra-
tions may also benefit from a rapid diagnosis. For example, chronic kidney disease (CKD)
patients treated with haemodialysis undergo severe blood electrolyte changes during the
dialytic and inter-dialytic phases. These go hand-in-hand with a 14-fold increased risk of
dying from sudden cardiac death (SCD) compared to patients without renal impairment
but with pre-diagnosed cardiovascular diseases [3]. The reasons for this are various and
not entirely understood, but electrolyte changes are assumed to be one important factor [8–
11]. Complications can be observed not only during the haemodialysis sessions but also
during the inter-dialytic phase [5–7]. Especially in this latter phase, the patient is usually
not hospitalized making concentration measurements impossible and preventing a final
evaluation of the influence of concentration fluctuations and cardiovascular events. The
electrocardiogram (ECG) as a non-invasive monitoring device which is already used for
home monitoring in other diagnostic domains, could be utilized for a continuous measure-
ment of the patient’s ionic concentration values. This idea is obvious since blood calcium
concentration ([Ca2+]b) and blood potassium concentration ([K+]b) are important players
in the excitation mechanisms of the heart which can be captured by the ECG. Furthermore,
such a technique could support the reasearch on the underlying mechanism being responsible
for the increased cardiovascular disease (CVD) incidence in CKD patients [55]. There have
been approaches for ECG-based [K+]b estimation [56–59] (Table 4.1). Apart from the lack
of studies estimating [Ca2+]b, there are still open problems with the [K+]b estimation as the
errors in Table 4.1 suggest. The aim of this project was: analyzing the shortcomings of
existing approaches, revealing hidden influences leading to the errors and proposing new
workflows for the concentration estimation. Furthermore, a possible [Ca2+]b estimation was
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Table 4.1: Methods for [K+]b estimation from literature. CNN: Convolutional neural network, Ts/a: T
downslope divided by T amplitude, Ts/

√
a: T downslope divided by the square root of T amplitude,

Result: mean±standard deviation of unsigned errors in mmol/l, Dataset: distribution of [K+]b in the
analyzed dataset, n/a: not available/given. The table is taken from [60].

Work Lead(s) Features Result (mmol/l) Dataset (mmol/l)
Corsi et al. [56] PCA TS/A 0.46±0.39 n/a
Attia et al. [57] personalized V3-V5 TS/

√
A 0.36±0.34 4.2±0.95

Attia et al. [57] global V3-V5 TS/
√
A 0.50±0.42 3.9±0.8

Yasin et al. [58] personalized I TS/
√
A 0.38±0.32 4.3±0.8

Lin et al. [59] 12-lead CNN 0.53±n/a n/a

investigated. All investigations were based on simulations and clinical data. The latter were
provided by courtesy by Stefano Severi and Cristiana Corsi from the University of Bologna
and parts of the dataset was used by them in [56].



Chapter 5
Simulation Studies

5.1 Himeno et al. Whole Heart Simulations

As stated in Chapter 4, the existing algorithms for blood potassium concentration ([K+]b)
estimation still show mean absolute errors in the range of 0.5 mmol/l. The exact reasons for
these can be various. Computational modeling offers the possibility to minimize confounding
(partly random) factors in the signal acquisition to get a clear view on the effects caused by
[K+]b changes. This enables an analysis of the workflow and the proposal of new optimized
methods. Furthermore, it enables the generation of data that are not available yet. As
measurements from patients with large blood calcium concentration ([Ca2+]b) variations
are rare, this fact allows for the development of a [Ca2+]b estimation method based on the
simulated signals.
In the following, the generation of a simulated electrocardiogram (ECG) dataset with different
underlying [K+]b and [Ca2+]b is described. These data were subsequently utilized to analyze,
optimize and continue to develop a workflow for concentration estimation. This work was
done in collaboration with Axel Loewe and María Hernández Mesa. Results were published
in [61–63].
The widely used cellular models proposed by ten Tusscher et al. [31, 32] and O’Hara et
al. [64] fail to reproduce a correct relation between action potential (AP) duration and
extracellular calcium concentration ([Ca2+]o) [65–68]. Consequently, they could not serve as
basis for realistic ECG simulations with changing [Ca2+]o. Instead of adjusting the proposed
models, the Himeno et al. ventricular cell model was used. This is described as a single cell
model only [33], however, as described in Section 3.1.1, it offers a more realistic description
of the calcium (Ca2+) handling in the cell, e.g. by the introduction of compartments modeling
the spatial Ca2+ concentration gradients known to exist.
To be able to perform a full ventricular simulation with a following ECG extraction, mainly
two things have to be done: first, a formulation of the transmural heterogeneity, i.e. adding
epicardial and midmyocardial cell type formulations to the model, needs to be found as stated
in [69]. Second, a spatial gradient of the IKs channel conductivity needs to be incorporated
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into the model to achieve a realistic T wave [69, 70]. In the following, the two steps will be
presented.

Transmural Heterogeneity The Himeno et al. model offers a formulation for the endocar-
dial cell types. Nevertheless, for transmural heterogeneity, two other cell types, epicardial and
midmyocardial cells, are usually described. The introduction of the missing two cell types
was done according to the formulation of O’Hara et al. [64]. Table 5.1 lists the parameters
that were changed to introduce transmural heterogeneity, for both the O’Hara et al. model
and the adjusted version for the Himeno et al. model [61]. Variable names differed in both
articles so the corresponding abbreviations are given together with the ratios of epicardial to
endocardial and midmyocardial to endocardial values.

Table 5.1: Ratios of epicardial (epi) to endocardial (endo), and midmyocardial (m) to endocardial (endo)
parameters describing the transmural heterogeneities in theO’Hara et al. model [64] and in the adjusted
formulation of the Himeno et al. model.

Parameter names epi/endo m/endo
O’Hara et al. Himeno et al. O’Hara et al. Himeno et al. O’Hara et al. Himeno et al.

GNaL PNa 0.6 0.6 1 1
Gto GKto 4 4 4 4

PCa, PCaNa, PCaK PCaL_Ca 1.2 1.2 2.5 2
GKr GKr 1.3 1.3 0.8 1
GKs PKs_K 1.4 1.4 1 1
GK1 GK1 1.2 1.2 1.3 1.3

GNaCa,i, GNaCa,ss AmpNCX 1.1 1.1 1.4 1.4
GNaK AmpNaK 0.9 0.9 0.7 1.5
GKb PbNSC_K 0.6 0.6 1 1

Jrel,NP,∞, Jrel,CaMK,∞ PRyR 1 1 1.7 1.4
Jup,NP, Jup,CaMK AmpSERCA 1.3 1.3 1 1

δepi = 1.0− 0.95

1.0+ exp(V+70.0
5.0 )

(5.1)

τi,epi,fast = τi,fast ·δepi (5.2)

τi,epi,slow = τi,slow ·δepi (5.3)

The ratios between epicardial cells and endocardial cells could be applied to the Himeno
et al. as it was proposed by O’Hara et al. Nevertheless, for the ratio of midmyocardial to
endocardial, adjustments had to be made. These comprised the Himeno et al. parameters
PCaL_Ca, PRyR, AmpNaK and GKr yielding to a stable AP with a pronounced overshoot, an
adequate repolarization and no early or delayed afterdepolarizations. These adjustments
stayed in the range of experimental data. Delayed afterdepolarizations, i.e. spontaneous
depolarization during AP phase two or three (Figure 2.3), could only be avoided by the
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Figure 5.1: Relationship between AP duration and the gKs ratio between base and apex. The AP dura-
tion is normalized to the AP value for a gKs ratio of 1.

adjustment of AmpNaK. This seemed to be legitimate as the restitution behavior of the model
was still according to findings from [71].

Spatial IKs Gradient As proposed by Keller et al. [69], the experimentally found spatial
variation of the AP duration can be modeled by a spatial gradient of the conductivity gKs

determining the current IKs. Seemann et al. applied the ten Tusscher et al. model [32] with a
gradient of twice the gKs conductivity of the base of the heart compared to the conductivity
at the apex with a linear course between those two regions [70]. This gradient was scaled
appropriately for the Himeno et al. model by demanding the AP durations at base and apex
to be equivalent to those visible with the ten Tusscher et al. model. Figure 5.1 visualizes
the relationship of different AP durations, the models applied and the conductivity factor of
gKs with respect to the conductivity at the base of the heart. The factor for the Himeno et al.
model was 3.5 achieving equivalent AP durations as with the ten Tusscher et al. model used
in [70].
With these adjustments, it was possible to perform monodomain simulations with the sim-
ulation framework acCELLerate [72]. The anatomical models from [70] were used. The
resulting simulated transmembrane voltages on the heart were forward calculated with an
inhomogeneous torso model including separate conductivities for heart, lung and liver using
the finite element method. Last, the standard 12-lead ECG was extracted from the voltage
distribution on the torso surface. 81 simulations were conducted varying [K+]b in the range
of 3 mmol/l and 7.8 mmol/l and [Ca2+]b between 0.8 mmol/l and 3 mmol/l. The exact list of
simulations can be found in Table A.1.
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5.2 Optimization of Pre-processing Steps

With the simulations from the section before, it was possible to answer the following three
questions:

1. Can existing feature extraction methods be improved?
2. How do noisy signals need to be filtered to reduce noise efficiently but not distort the

feature values?
3. What is the optimal choice of a lead reduction technique?

The answers helped to optimize the workflow used for concentration estimation. The
simulated ECGs additionally offered the possibility to quantify improvements and problems
connected to these questions as there is always the ground truth available.

5.2.1 Improvement of Feature Extraction

5.2.1.1 Motivation

Feature extraction is a crucial step in the analysis of ECG signals. Although it is used in
several studies, e.g. presenting arrhythmia classification [73], the actual evaluation of feature
extraction methods is very often missing. This fact seems plausible as it is very hard to
generate a ground truth dataset including values for features like slopes from the T wave.
However, simulated signals can help to circumvent this problem with regard to the evaluation
of the robustness. If the feature extraction algorithm works robustly, it has to show the
following two characteristics:

1. The algorithm has to deliver a similar or the same result for noise-free and noisy
signals.

2. Visually visible trends (e.g. an amplitude decrease caused by a decreasing [K+]b) have
to be visible in the feature progression.

As the extracted ECGs from the simulations are noise-free and noise can easily be induced
artificially, the first property can be checked easily. The second requirement can be checked
by the analysis of functions whose parameters can induce feature changes directly, e.g. the
standard deviation of a Gaussian function.

5.2.1.2 Methods

81 simulated ECGs with different [K+]b and [Ca2+]b were fed into the feature extraction
methods proposed in [74, 75]. These algorithms were designed to compute 14 features on
simulated signals. The features were:

1. first statistical moment of the T wave distribution (T center)
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2. second statistical moment of the T wave distribution (T variance)
3. third statistical moment of the T wave distribution (T skewness)
4. fourth statistical moment of the T wave distribution (T curtosis)
5. distance between R and T wave peak (RT distance)
6. peakedness of the T wave (T peakedness)
7. T wave amplitude (T amplitude)
8. slope of the ascending part of the T wave (T upslope)
9. slope of the descending part of the T wave (T downslope)

10. ratio of second half T wave energy and whole T wave energy (T ratio 2nd half)
11. ratio of first half T wave energy and whole T wave energy (T ratio 1st half)
12. R peak amplitude (R amplitude)
13. R peak energy (R energy)
14. ratio R peak energy and R peak amplitude (R ratio en. to amp.)

For several features, different ways to calculate the value can be imagined, e.g. for the slopes
of the T wave, it remains unclear, how to exactly calculate one specific value as the slope is
still a temporal function. Moreover, it is not clear how these feature extraction algorithms
perform on noisy signals. To estimate the performance of this initial implementation, white
Gaussian noise was added to the simulated ECGs obtaining a signal to noise ratio (SNR)
of 20 dB. The resulting signals were then low-pass filtered with a fourth order zero phase
Butterworth filter (cut-off frequency 80 Hz) to generate signals that are comparable to the
clinical setting. Features were calculated for these signals, as well as for the noise-free
signals. The relative error was taken as the measure to evaluate the robustness of the feature
extraction algorithms. After the analysis of the initial implementation, selected further
calculation methods (if available) for the single features were evaluated. The most robust
approach was selected for the further analysis.

5.2.1.3 Results

The performance of the initial implementation of the feature extraction is shown in Figure 5.2.
It gets apparent that temporal and amplitude features perform quite robust. Nevertheless,
even for a high but realistic SNR of 20 dB [76–78], the interquartile range of the relative
error of the fourth statistical moment, the peakedness, T ratio 2nd half, RT distance, and the
slopes of the T wave exceed 20%. This is problematic as the downslope is one of the most
frequently used features for [K+]b estimation.
One well-established way to increase robustness is introducing a-priori knowledge into the
algorithm. Hence, T downslopes and upslopes were approximated with a polynomial fit of
fourth order before calculating the slope. Figure 5.3 shows the fitted functions for the up-
and downslope of the T wave. It gets apparent that the slope calculation from the smooth
model fit can be more robust. In fact if this implementation was compared to the initial
calculation of the slopes, the robustness of the slope calculation increased (Figure 5.5(a) and
Figure 5.5(c)).
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Figure 5.2: Relative errors with regard to the noise-free signals of the single features. The less robust
features regarding the interquartile range are the third and fourth order statistical moments, T peaked-
ness, T ratio 2nd half, RT distance, and the slopes of the T wave.
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Figure 5.3: Noisy simulated ECG signal with the polynomial fits for both upslope calculation (red) and
downslope calculation (blue).
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Figure 5.4: Simulated ECG signal with two Gaussian fits for the ascending part (red dashed line) and
for the descending part (yellow dashed line). The two Gaussians have different standard deviations and
offsets that are used for the calculation of the peakedness and the ST change.

Apart from the slopes, two further features were calculated based on model parameters: an
improved version of T peakedness and ST elevation. Therefore, two Gaussian functions

of the form f (x,a,µ,σ ,b) = ae−
(x−µ)2

2σ2 +b were fitted to the ascending and descending part
of the T wave (Figure 5.4). The peakedness (Figure 5.5(b) which is now the inverted sum
of the two standard deviations σ of the Gaussians (the lower the two standard deviations
are, the narrower the T wave is), and the ST change (elevation or depression) which is the
difference of the fitted offset parameters b, were determined with the model parameters.
The determination of the slopes with the Gaussian model fit delivered better results than
the original approach but less robust results than the selected fourth order polynomial fit
approach.
To check the validity of this approach, synthetic waves were generated using the centralized
non-normalized lognormal function

f (x) = exp
(
−(ln(x))2

2σ2
ln

)
. (5.4)

Varying σln in the interval between 0.1 and 0.9 resulted in a set of curves with different
upslopes, peakednesses and offsets. After flipping the curve in time and adding constant
values in the beginning, the model functions in Figure 5.6(a) were obtained. The new feature
algorithm calculating upslope, peakedness and ST changes was applied to every single wave.
Figure 5.6(b)-(d) show the normalized feature values dependent on σln. All feature values
change monotonously as expected.

5.2.1.4 Discussion and Conclusion

In this study, the effect of noise on the feature extraction was quantified. Following that,
existing algorithms were improved regarding their robustness. As already explained, a
ground truth value for a feature value is often hard to determine and there is no standard
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(c) Approaches for the calculation of T up-
slope.

Figure 5.5: Comparison of improved feature calculation methods with the former implementations as
shown in Figure 5.2.

database including annotated feature values. However, a proof for robustness with simulated
ECGs is possible. Although it was checked if the feature algorithms deliver the same values
in the case of noise-free data and noisy data, this does not mean that the feature value itself is
correct. There is no unique definition for a feature value e.g. describing the slope of a wave.
To tackle this problem, the reversed lognormal function was utilized. The feature extraction
algorithm was expected to deliver decreasing feature values for peakedness and upslope and
increasing values for the ST change with increasing σln. Nevertheless, this plausibility check
again does not include a ground truth value for the respective features, since there is a lack
of an exact feature definition. A further point for discussion is the fixed SNR. Although,
different sources confirm that this is a realistic choice [76–78], the value can be even lower.
However, the improvement of the SNR should be part of a preceeding processing step.
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Figure 5.6: Experiment with different lognormal curves shown in (a). Three features were extracted
(b)-(d) showing the changes as expected.
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In conclusion, simulated signals without and with added noise serve as an excellent tool to
evaluate the robustness of feature extraction techniques. Methods can be evaluated, compared
and optimized for the application to (noisy) clinical data. Furthermore, inaccuracies can now
be quantified which helps to explain possible discrepancies during clinical application.

5.2.2 Influence of Lead Reduction Techniques

5.2.2.1 Motivation

Having a look at Table 4.1, it gets apparent that different established methods used different
lead combinations, i.e. selected leads from the 12-lead ECG, transformed leads from a
principal component analysis (PCA) or the whole 12-lead ECG in the case of convolutional
neural networks (CNNs). The justification of this choice is lacking in all these works and the
question remains how this choice influences the final regression result. In the following study,
this influence was quantified using a simple regression method and pre-selected features.
The study is based on the results from the student research project by María Hernández
Mesa which were published with a similar methodology in [79] This study here is based on a
larger database and the improved feature extraction techniques.

5.2.2.2 Methods

A dataset of 81 noisy and noise-free simulated 12-lead ECGs was used as described in
Section 5.2.1. The PCA coefficients for the first and second component of the whole beat
were calculated, as well as the PCA coefficients (for only the first component) of the T wave
part. Both sets of coefficients were applied to the single beat signals yielding two different
transformed signals, in the following named PCART 1st, PCART 2nd and PCAT. Furthermore,
a transform not maximizing the variance of the T wave as with PCAT but the amplitude
of the T wave was calculated (MaxAmp). The resulting transformation coefficients were
applied to the single beat signals again. Hence, 15 leads in total were available in the study.
These were used to estimate [K+]b and [Ca2+]b from features using linear regression with a
polynomial of first and third order lead by lead. The fit for the third order polynomial was
regularized with Tikhonov first order. Noise-free as well as noisy ECGs (filtered according
to the findings from Section 5.2.3) were evaluated. Features used for [K+]b estimation were:
T peakedness, T wave amplitude, T wave up-/downslope, T ratio 1st half and R peak amp.
Features considered for [Ca2+]b estimation were T center, ST elevation and RT distance. The
feature choice was based on findings from [62, 75, 80]. The improved feature extraction
algrithms were used as described in Section 5.2.1.
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Table 5.2: Estimation errors for [K+]b and [Ca2+]b on noise-free and noisy data using a first order and
third order polynomial fit. Errors are given as mean±standard deviation of signed errors in mmol/l. The
single lead showing the lowest error among all of the 12-lead ECG is given in brackets in the order of
the columns.

1st order fit Error [K+]b Error [Ca2+]b Error [K+]b noisy Error [Ca2+]b noisy
MaxAmp 0.00±0.10 -0.00±0.18 0.00±0.37 -0.00±0.20
PCART 1st 0.00±0.43 0.01±0.32 -0.00±0.79 -0.00±0.35
PCART 2nd 0.00±0.11 0.00±0.22 0.00±0.35 0.00±0.25
PCAT -0.01±0.23 -0.00±0.18 0.00±0.42 -0.00±0.21
Best lead (II/V6/V6/V6) -0.00±0.17 -0.00±0.12 -0.00±0.61 -0.00±0.21
3rd order fit Error [K+]b Error [Ca2+]b Error [K+]b noisy Error [Ca2+]b noisy
MaxAmp 0.00±0.06 0.00±0.09 0.01±0.38 0.01±0.16
PCART 1st -0.13±1.43 -0.05±0.46 -0.00±2.16 0.00±0.34
PCART 2nd 0.00±0.04 -0.00±0.10 0.01±0.36 -0.00±0.22
PCAT 0.01±0.15 0.00±0.09 0.01±0.41 0.01±0.17
Best lead (aVR/V1/III/V6) -0.00±0.10 -0.00±0.09 -0.00±2.16 0.00±0.17

5.2.2.3 Results

Lead reduction influenced in both the noise-free and noisy case the estimation result. As
visible in Table 5.2, lead reduction led to a worse result than the processing of the best single
lead in the noise-free case for [Ca2+]b estimation for a first order fit and an equal result for
a third order fit. Nevertheless, results improved for [K+]b estimation. This changed when
noise was added to the signal: the use of lead transform (except PCART 1st) delivered better
results than using the single leads. Apart from this fact, it got apparent that between the lead
reduction techniques, differences were visible, too. PCART 2nd and MaxAmp delivered the
most reliable results for all experiments. For [Ca2+]b estimation alone, PCAT led to results
comparable to the two aforementioned methods.

5.2.2.4 Discussion and Conclusion

This study was aiming at quantifying the influence of the choice of a lead reduction technique.
This was evaluated with two regression techniques using preselected features. In the case
of [K+]b estimation, PCART 2nd, PCAT and MaxAmp delivered the best results on noisy
ECGs. The noise reducing characteristics of these transformations are beneficial for the
estimation. PCART 1st showed in all settings the worst results as the transformation is mainly
influenced by the R peak. This can lead to T waves with small amplitudes in the resulting
signal making feature extraction more complicated (Figure 5.8). This is substantiated by
the fact that transformations specifically aiming at maximizing the influence of the T wave,
delivered better results. In the noise-free setting, PCART 2nd and MaxAmp delivered the
best results, for a third order fit even better results than for the first order fit. On the one
hand, this might be connected to a better fitting model for the concentration feature behavior,
and on the other hand, to the influence of the transformation on exactly this concentration
feature behavior. Figure 5.7 shows the connection between feature and concentration value
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for selected lead transformations and the best single lead which is of course not known
in advance. While leads II and V6 showed a nearly linear behavior, the behavior for lead
transformation follows more a quadratic (or higher order) relationship.
For [Ca2+]b estimation, PCART 2nd, PCAT and MaxAmp also delivered the best results. In the
noise-free case, MaxAmp and PCAT delivered errors as low as the best single lead. It seems
that these transformations preserve the information being important for the concentration
estimation based on the selected features. In conclusion, the selection of appropriate lead
reduction techniques is essential for the estimation of ionic concentrations. In general,
PCART 2nd, PCAT and MaxAmp are promising candidates for a concentration estimation.

5.2.3 Influence of Filtering on Feature Extraction

5.2.3.1 Motivation

Even the most robust feature extraction technique depends on the input. If the information is
overlaid with noise, signal processing methods can help to separate the noise from the signal
of interest. Nevertheless, if a pre-processing step (like the usual bandpass filtering) already
distorts the information, even the most advanced method cannot reconstruct it. A trade-off
exists between attenuating the noise and not disturbing the signal parts of interest. In the
following, the optimal bandpass filtering limits will be evaluated in terms of not influencing
the feature extraction while still attenuating noise as much as possible.

5.2.3.2 Methods

The 81 simulated 12-lead ECGs were superimposed by white Gaussian noise (0 dB, 3 dB,
10 dB, 20 dB, 30 dB) and bandpass filtered with different cut-off frequencies for high-pass
and low-pass. This was repeated for each signal 20 times using different realizations of the
noise. Additionally, the noise-free signals were filtered with the same cut-off frequencies.
The features as presented before were extracted and the relative error compared to the noise-
free unfiltered features were calculated for both the noisy filtered and noise-free filtered
signals. Comparing the results between noise-free filtered and noise-free unfiltered helps to
find a lower bound for the low-pass filter. Here, the influence of the filtering on the signal
itself was evaluated. The comparison between noisy filtered and noise-free unfiltered helps
to find the upper bound for the cut-off frequency of the low-pass. It was assumed that there
is one cut-off frequency at which the result does not change any more with increasing cut-off
frequencies meaning that only noise was filtered. This holds similarly for the high-pass filter
but estimating an upper instead of a lower bound with the noise-free filtered signals.
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Figure 5.7: Feature [K+]b behavior for four lead transformed ECGs and two standard leads. [Ca2+]b
was constant.
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Figure 5.8: Transformed ECG signals. PCART 1st shows lowest T wave amplitude.

Table 5.3: Averaged (over all features) absolute values of median relative errors for different cut-off
frequencies for the low-pass filter. The high-pass cut-off frequency was 0.05Hz. fc: cut-off frequency.

fc 20Hz 40Hz 50Hz 60Hz 70Hz 80Hz 100Hz 150Hz 200Hz
Noise-free 0.055 0.005 0.002 0.002 0.001 0.001 0.001 0.001 0.001
Noisy 0.054 0.015 0.014 0.013 0.014 0.015 0.018 0.028 0.037

5.2.3.3 Results

In the following, only the results for an SNR of 20 dB will be shown for the sake of clarity.
Similar results were obtained with the other SNR values and are visible in Section A.2.
Results are visualized in Figure 5.9 to Figure 5.12. Here, the median errors (line plots)
and the interquartile range (bars) of the relative errors of the feature extraction (related to
the unfiltered feature values) for all of the T wave features and selected cut-off frequencies
for high-pass and low-pass are shown. Figure 5.9 and Figure 5.11 show the errors for
the noise-free filtered data and Figure 5.10 and Figure 5.12 for the noisy input data. The
smallest median relative errors averaged over all features were achieved for a low-pass cut-off
frequency between 60 Hz and 100 Hz for the noisy data (Table 5.3). Figure 5.10 underlines
this finding. In this interval, the median relative errors were below 5% (red dashed lines).
The averaged median relative errors remained quasi constant from 60 Hz on for the noise-free
filtered errors (Figure 5.10). For the high-pass filtering, the highest acceptable averaged
median value for noise-free and noisy data was found to be at 0.1 Hz (Table 5.4). The feature
being mostly influenced by high-pass filtering was ST change (Figure 5.11).

5.2.3.4 Discussion and Conclusion

The aim of this investigation was to assess the influence of bandpass filtering on the feature
extraction. From the results, borders for an adequate filtering can be extracted. A note of
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Table 5.4: Averaged (over all features) absolute values of median relative errors for different cut-off
frequencies for the high-pass filter. The low-pass cut-off frequency was 60Hz. fc: cut-off frequency.

fc 0.05Hz 0.1Hz 0.2Hz 0.3Hz 0.4Hz 0.5Hz
Noise-free 0.002 0.001 0.001 0.001 0.003 0.005
Noisy 0.013 0.012 0.018 0.024 0.031 0.031
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Figure 5.9: Relative errors of T wave feature extraction algorithms for selected low-pass cut-off fre-
quencies. The algorithms were applied on the noise-free filtered data and compared with the features
extracted from the unfiltered noise-free data. The lines represent the median values of the relative
errors, the bars visualize the interquartile ranges. HP: high-pass, LP: low-pass; all values on the x-axis
are cut-off frequencies in Hz. The red dashed lines mark errors of ±1%.
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Figure 5.10: Relative errors of T wave feature extraction algorithms for selected low-pass cut-off fre-
quencies. The algorithms were applied on the noisy filtered data and compared with the features ex-
tracted from the unfiltered noise-free data. The lines represent the median values of the relative errors,
the bars visualize the interquartile ranges. HP: high-pass, LP: low-pass; all values on the x-axis are cut-
off frequencies in Hz. The red dashed lines mark errors of ±5%.
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Figure 5.11: Relative errors of T wave feature extraction algorithms for selected high-pass cut-off fre-
quencies. The algorithms were applied on the noise-free filtered data and compared with the features
extracted from the unfiltered noise-free data. The lines represent the median values of the relative
errors, the bars visualize the interquartile ranges. HP: high-pass, LP: low-pass; all values on the x-axis
are cut-off frequencies in Hz. The red dashed lines mark errors of ±5%.
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Figure 5.12: Relative errors of T wave feature extraction algorithms for selected high-pass cut-off fre-
quencies. The algorithms were applied on the noisy filtered data and compared with the features ex-
tracted from the unfiltered noise-free data. The lines represent the median values of the relative errors,
the bars visualize the interquartile ranges. HP: high-pass, LP: low-pass; all values on the x-axis are cut-
off frequencies in Hz. The red dashed lines mark errors of ±5%.
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caution is due here since the presented results are only valid assuming an SNR of 20 dB
and for exactly these feature extraction algorithms. However, one should keep in mind, that
ECGs with an SNR of 20 dB are common to measure, especially in resting patients [76–
78]. Another crucial point was again highlighted in this study: Although it is suggested in
literature, that the spectral contents of the T wave are located up to around 10 Hz, it was
clearly visible, that a low-pass filter with a cut-off frequency of 20 Hz (and still 40 Hz) clearly
distorts most of the feature values (Figure 5.9). In conclusion, the bandpass filtering step
should include a high-pass filter with a cut-off frequency of 0.1 Hz and a low-pass filter with
at least 60 Hz or more assuming an SNR of 20 dB.

5.3 Proof of Concept Study for Calcium and
Potassium Concentration Estimation

5.3.1 Motivation

After the optimization of the pre-processing steps, a final evaluation of the estimation of the
concentrations is still missing. Although reconstruction results were already presented in the
last sections, features were selected empirically and the used methods remained simple. In
this study, a systematic feature selection method was used and more advanced methods for
reconstruction were utilized. Furthermore, the influence of noise on the reconstruction result
was evaluated systematically. This study was similarly published in [81].

5.3.2 Methods

The 81 simulated ECGs from the Himeno model were used during this study. Features were
extracted from a transformed lead using the MaxAmp transformation. The transformation
matrix was calculated for the reference concentration ([Ca2+]o=1.8 mmol/l and extracellular
potassium concentration ([K+]o)=4.5 mmol/l) and applied to all ECGs. To reduce the number
of features from 16 to six, Canonical Correlation Analysis (CCA) was used [82]. CCA
quantifies redundancy by correlating one feature with a linear combination of all others. The
analyzed feature was dropped if it was redundant in terms of showing a high correlation with
the others. This was repeated until the desired number of six features was achieved.
For estimating [K+]b and [Ca2+]b, a shallow neural network was selected as regression
method. The small amount of data made regularization essential: a regularized Bayesian
neural network with early stopping was used as implemented in MATLAB’s Machine
Learning Toolbox (MATLAB 2020b, The MathWorks, Inc., Natick, Massachusetts, United
States). The early stopping criterion was evaluated with six randomly chosen training
samples. The network consisted of one hidden layer with 12 neurons. Random initialization
of the weights was repeated 20 times to exclude possible effects of a bad initialization.
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The estimation study was performed with two different underlying datasets: First, using
the 81 noise-free simulated ECGs, second, with 81 noisy ECGs (SNR of 20 dB) and third
with 81x20 noisy ECGs, i.e. 20 different realizations of noise (SNR of 20 dB) were added to
each of the 81 simulated ECGs. The noisy data were prefiltered with a low-pass of 70 Hz
and a high-pass of 0.1 Hz according to Section 5.2.3. Leave-one-out cross validation was
selected as validation method. In the augmented dataset, it was ensured that noisy ECGs
coming from the same noise-free ECG were always either in the validation or training dataset.
The concentration distribution in the simulated dataset was 5.15±1.00 mmol/l for [K+]b and
1.78±0.74 mmol/l for [Ca2+]b.

5.3.3 Results

CCA determined R amplitude, T center, RT distance, T peakedness, T amplitude, ST change
as the six most non-redundant features. The results of the estimation with these features
are summarized in Table 5.5. Mean and standard deviations were calculated for all 20
random initializations of the neural network and then averaged. As expected, concentration
estimation on noise-free data performed better than on noisy data. Using the six features,
a standard deviation (signed errors) of 0.06 mmol/l was achieved for [Ca2+]b estimation,
0.07 mmol/l for [K+]b estimation. In the noisy, non-augmented case, the standard deviation
of the errors increased to 0.74 mmol/l, respectively 0.79 mmol/l. With the augmentation, the
estimation performance again improved to a standard deviation of 0.1 mmol/l for [Ca2+]b and
0.16 mmol/l for [K+]b. In addition to the signed mean and standard deviations in Table 5.5,
unsigned errors were also evaluated to make the study comparable to other published articles.

Table 5.5: Calcium/Potassium estimation error in mmol/l given asmean± standard deviation for signed
and unsigned errors.

[Ca2+]b signed unsigned
Noise-free 0.00±0.06 0.03±0.05
Noisy 1 rep. -0.01±0.74 0.64±0.38
Noisy 20 rep. -0.00±0.10 0.07±0.07

[K+]b signed unsigned
Noise-free 0.00±0.07 0.04±0.06
Noisy 1 rep. -0.03±0.79 0.62±0.50
Noisy 20 rep. 0.00±0.16 0.12±0.10

5.3.4 Discussion and Conclusion

In contrast to the before used approaches for concentration estimation, feature selection was
this time not performed empirically but in a more objective way. Although CCA considers
only linear dependency as selection criterion and this does not per se imply the suitability of
the feature, all features were designed for the concentration estimation. Nevertheless, the
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number of features was empirically chosen and the influence on the result was not evaluated
here.
Comparing the standard deviations of errors with the standard deviations of concentrations in
the dataset, especially the method trained on noise-free and on the augmented noisy case per-
formed well. However, without augmentation, the standard deviation of the estimation error
were quite high. The neural network is not capable of learning to distinguish between noise
and actual feature value changes if only one noise realization is considered. Nevertheless,
when passing more information by artificially augmenting the dataset, the network learns to
correct the uncertainty in the feature values. This was expected since the regression method
is then able to average over different realizations of a zero mean noise. Another option to
decrease the estimation error could be to use more and possibly redundant features.
Different regularization techniques for neural networks (e.g. a Bayesian neural network)
were utilized to prevent overfitting together with a low network complexity with only one
hidden layer with 12 neurons in it. As there is no standard measure to quantify overfitting,
the errors in the training, validation, test dataset were compared. Figure 5.13 visualizes the
errors in the single datasets. It is visible that - as expected - the training dataset is the one
with the lowest error. Nevertheless, errors in the test dataset are in a comparable range. Thus,
overfitting should not be present.
In conclusion, the estimation of both [Ca2+]b and [K+]b seems to be feasible with the proposed
features and methods. For a noise-free signal, mean absolute errors as low as 0.03 mmol/l
can be achieved. Nevertheless, an optimized pre-processing or redundant data is needed to
compensate the influences of noisy data. It should be emphasized that these results were
generated on one geometry. The influence of different heart geometries on the features still
needs to be evaluated.

5.4 Influence of Patient Geometry

5.4.1 Motivation

Until now, the influences and feasibility of concentration estimation with only one ventricular
geometry located in one specific torso were analyzed. However, when applying these
methods to clinical data, the question arises if a general model is still valid or if patient-
specific properties lead to different feature concentration behaviors that later need to be
compensated. To quantify the influence, a study was performed varying the following
properties:

• [K+]o and [Ca2+]o

• Position of the heart in the torso
• Geometry of the ventricles

In the end, T wave feature values were compared between the selected anatomical and
physiological variations helping to answer the above stated question. A comparable study was
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(a) Noise-free dataset.
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(b) Augmented noisy dataset.

Figure 5.13: Errors from the training (train), validation (valid., for checking the early stopping criterion)
and test dataset for [K+]b and [Ca2+]b estimation. Err.: error. Outliers are not visualized.

published in [83], but evaluating only the QRS complex. This project was similarly presented
in the Master thesis of Michael Meinzer [84] but now uses optimized algorithms, and it
was extended by further geometrical variations. Michael Meinzer’s work was supported by
Claudia Nagel.

5.4.2 Methods

To achieve a large number of simulations in a short time, monodomain simulations were
not feasible. Instead, a combination of single cell simulations and activation patterns from
the Eikonal approach were used to obtain a realistic ECG as similarly proposed in [85]. By
doing so, it was possible to introduce geometrical, rotational and concentration variations. In
the following, the underlying methodology will be explained, starting with the simulation
method. Afterwards, the used optimization procedure in order to get a realistic T wave will
be presented. Last, the parameter variations will be introduced.

5.4.3 Action Potential Simulation

APs were simulated using the extended Himeno et al. model parameterized with different
ionic concentrations. Therefore, single cell simulations with a length of 60 s were performed
triggering an AP every second using an existing simulation tool ElphyModelTest. Only
the last AP was selected for further processing to exclude non-steady state APs.
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5.4.4 Eikonal Activation Patterns and ECG Extraction

Activation patterns on a ventricular geometry were simulated using the Eikonal approach.
Therefore, the location of seven trigger points for the activation were taken from [86]. As
they are only given on a specific geometry, they were visually transferred to the other
geometries. Ventricular fibers were calculated with an extended and adjusted approach
available at the Institute of Biomedical Engineering based on [87]. Instead of a Purkinje
tree, a fast conducting sub-endocardial layer (cv f ast = 2000 mm/s in fiber direction) on the
endocardium was used to initiate the depolarization. The remaining nodes were assigned
the conduction velocity cvtis = 650 mm/s in fiber direction. The anisotropy factor between
the conduction velocity in fiber direction and perpendicular to it was 1.64. The resulting
activation times were subsequently used to shift the simulated APs in time. The obtained
transmembrane voltage (TMV) distributions on the heart were blurred with a Laplacian filter
kernel and forward calculated using spatially downsampled surfaces of the ventricles and
of the torso surface [88]. The 12-lead ECG was extracted using the potentials on the torso
surface.

5.4.5 Geometrical Variations

Three different ventricular geometries were used. They were generated with an adjusted
version [89] of the ventricular statistical shape model presented in [90]. The torso geometry
was not varied.

Figure 5.14: The three ventricular geometries used in the study. They were all generated with the
shape model described in [90].
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5.4.6 Optimization of the ECG Signal

With the methodology described until now, it is not possible to create a physiological ECG.
Rather, a tuning of different parameters needs to be performed. In this study, the following
parameters were optimized:

• the position change in apicobasal (ab) and rotational (rt) direction on the ventricular
surface (Figure 5.15) of the seven trigger regions (their positions were only roughly
known on the specific geometry),

• a delay time of the single trigger points,
• the conduction velocities cv f ast and cvtis.

The parameter search was constrained as shown in Table 5.6. The optimization was performed
with a genetic algorithm (100 generations, 24 individuals).

(a) Apicobasal component (b) Rotational component

Figure 5.15: Apicobasal (ab) and rotational (rt) component on the geometry 1. The rotation is defined
for each ventricle separately. Both are normalized between 0 and 1. The components were calculated
with an adjusted version of [91].

To obtain a physiological T wave, further parameters were optimized (as similarly done
in [69]):

• the conductivity of the IKs channel on the base gKs,b,
• the conductivity of the IKs channel at the apex gKs,a,
• a simultaneous scaling of both by the same factor.

The gKs values between apex (gKs,a) and base (gKs,b) were exponentially varied in apicobasal
direction. Therefore, 20 discrete layers with constant gKs,b values were defined. The
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Table 5.6: QRS complex optimization constraints and initial values for the genetic algorithm. Position
changes are given in percentages of the apicobasal (ab) length and the circumference (rt).

Parameter min init max
cvfast (mm/s) 1300 2000 2700
cvtis (mm/s) 400 650 1200
delay (ms) 0 0.003-0.005 0.016
position change ab -10% 0 10%
position change rt -10% 0 10%

exponential change of gKs corresponds to a linear change of AP duration as described in [69].
The optimization of the T wave was again performed with a genetic algorithm (98 generations,
12 individuals). The constraints are given in Table 5.7.

Table 5.7: T wave optimization constraints and initial values for the genetic algorithm. gKs,a,org and
gKs,b,org describe the original values.

Parameter min init max
gKs,b/gKs,b,org 0.5 1 1.5
gKs,a/gKs,a,org 1.5 2.25 9.5
scaling 0.5 1 2.5

The optimization was always performed for the non-rotated geometry using the AP obtained
with the default concentration proposed in the Himeno et al. model [33].
The fitness function for the genetic algorithm was calculated in the following way: First, the
maximum value from a normalized cross-correlation was calculated between the template
xt(l) and the result from the simulation xs(l) for every lead l = 1...12. The values were
inverted and subtracted from one yielding the fitness function

fi = 12−

√
12

∑
l=1

max(cc(xt [l],xs[l]))√
max(cc(xs[l],xs[l])) ·max(cc(xt [l],xt [l]))

. (5.5)

cc is the cross-correlation function. The denominator guarantees that the subtrahend is
maximum one. For the optimization of the QRS complex, xt and xs contained only the QRS
complex, for T wave optimization, the T wave respectively. As ground truth templates, three
ECG signals of healthy subjects from the PTB diagnostic database on physionet [92, 93]
(s0292lre, s0306lre, s0312lre), each for one geometry, were used.

5.4.7 Rotational Variations

Applying the found set of simulation parameters, the position of the heart in the torso was
varied. Therefore, each ventricular geometry was rotated around four axes: first, an axis
from the base to the apex in the left ventricle (rotation described by the angle γroll), second, a
anterior-posterior axis (rotation described by the angle γyaw) and third, an axis perpendicular
to the two before mentioned (rotation described by the angle γpitch). The axes are visualized



58 Chapter 5. Simulation Studies

in Figure 5.16. According to [94], the standard deviation of these angles are between 8.8◦

and 12.2◦. Considering this, a variation of approximately twice the mean standard deviation
(±20◦) was used for all angles changing them separately in steps of 2◦ from simulation to
simulation. Furthermore, 100 different angle combinations (respecting the before mentioned
borders) were randomly chosen from a uniform distribution to simulate a simultaneous angle
change. By doing so, for each geometry, 163 rotational variations were created.

Figure 5.16: The three rotation axes for roll (γroll ), yaw (γyaw) and pitch (γpitch) angle. Adapted from [84].

5.4.8 Concentration Variations

Next to the rotational variations, [K+]o was varied in discrete steps: 3.8 mmol/l, 4.5 mmol/l,
6.3 mmol/l and 7.8 mmol/l. Furthermore, [Ca2+]o was set to the following values: 0.6 mmol/l,
1.0 mmol/l, 1.8 mmol/l,2.6 mmol/l and 3.0 mmol/l.

5.4.9 Results

For every geometry, in total 3260 12-lead ECGs were extracted with different underlying
rotations and ionic concentrations. To reduce the amount of information to a manageable
size, the MaxAmp transformation was used. Moreover, only results for T amplitude and
T downslope will be presented in the following since these two features were the most
important ones for the following study on clinical data (Chapter 6) and for most of the
methods from literature (Table 4.1), the approach was compared to.
Figure 5.17 shows the results from feature calculation on the 100 rotational variations of
geometry 1. It gets apparent that the boxes in both subplots representing absolute feature
values are overlapping especially for lower potassium concentrations. This makes a patient-
independent concentration estimation difficult as there is no unique relationship between
concentration value and feature value. A similar behavior is visible in Figure 5.18, but with
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overlapping values for higher concentrations. Similar findings were made on single leads
and for other features.
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Figure 5.17: Feature values for different [K+]o for the 100 random rotations of geometry 1.
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Figure 5.18: Feature values for different [Ca2+]o for the 100 random rotations of geometry 1.

Comparing the results of different geometries with only varying one angle emphasizes the
dependency of the results from the actual geometry. Figure 5.19 shows the results for T
amplitude and T downslope for different γroll and the three geometries. Modifying γroll ,
feature values were changing, but the absolute change with a changing γroll was different



60 Chapter 5. Simulation Studies

between the geometries. Similar results were visible for γpitch and γyaw (Figure A.9 and
Figure A.10). This again underlines that the relation of feature values between different
patients might change even with normal concentrations.
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Figure 5.19: Feature changes dependent on γroll for the three geometries for the default concentration
of the Himeno et al. model.

5.4.10 Discussion and Conclusion

To obtain an estimation of the dependency of the features from the patient geometry, a
simplified simulation method was used to extract a large number of simulations in a short
time. This is of course connected with certain shortcomings in the extracted ECGs. From
this, the first topic to discuss arises: the realisticness of the simulations which was surely
limited. Figure 5.20 shows two exemplary signals from a realization with the corresponding
ECG template used for the optimization. Although it could be that the correspondence
between template and simulations was low, for the final evaluation of the influence of the
rotations, this should be of secondary importance since only changes were evaluated.
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Figure 5.20: Comparison of simulated ECG signals with the templates. (a) shows an example for a good
correspondence between simulation and template, (b) shows an example with a low correspondence.

Compared to a monodomain simulation, diffusion processes were completely neglected on
the cellular level which also influence the shape of the ECG [95] and might be curcial for
realistic ECGs. Figure 5.17(a) shows an unexpected progression of the feature for increasing
[K+]o. Amplitudes are expected to rise with increasing [K+]o like it was the case with the
results from the monodomain simulation (Figure 5.21). This should be definitely considered
for the interpretation of the results. It cannot be guaranteed that the shape (and therefore
the absolute feature values) of the ECG waves would show a similar variation for different
[K+]o as with an underlying monodomain simulations. Nevertheless, the variations for a
fixed concentration are quite large so an ambiguity between feature value and underlying
concentration value is likely. Besides that, monodomain simulations show a relative T
amplitude change between [K+]o=3.8 mmol/l and [K+]o=6.7 mmol/l of 84%, whereas relative
feature variations caused by geometrical changes as shown in in Figure 5.19 were up to
42%. To sustain the fast computation and get more accurate results, the implementation
and application of a Reactional-Eikonal model could be considered in a follow-up study as
proposed in [95].
A further simplification was connected with the applied forward model. In this study, a
homogeneous torso was used with the boundary element method for solving the underlying
Poisson’s equation. It is known, that the introduction of other organs into the torso causes
ECG shape changes [96]. However, the use of an inhomogeneous torso does not guarantee a
realistic ECG since there is no clarity how to parameterize the conductivities of the organs
although they influence the resulting ECG severely [42]. In spite of this, for the evaluation of
the influence of the rotation, mainly the change of a feature was relevant, so this simplification
should be justified.
Regarding the optimization process with the genetic algorithm, further aspects for discussion
emerge: The used template during optimization was taken from PTB diagnostic database on
Physionet [92, 93] and naturally does not need to fit the geometrical shape model instance.
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Figure 5.21: T amplitude feature values for different [K+]o obtained from the monodomain simulations.

Moreover, the choice of seven trigger points according to [86] is not guaranteed to be valid
for every individual. For example, Durrer et al. identified only four trigger points in the left
and right ventricle [97]. Both the choice of the template and the number and locations of the
trigger points leads to the problem that a perfect fit cannot be achieved. Furthermore, the
used constraints were arbitrary as for the phenomenological modeling, it is hard to extract
these meta parameters from measurements. Nevertheless, they were successfully applied
in a preceeding study [84]. Last, the number of iterations for the genetic algorithm was set
to 100 due to computation time constraints. Better results might have been gained for more
iterations.
In conclusion and apart from all discussed issues, this study underlines the patient-dependency
of T wave features. These findings need to be considered for an application to clinical data.

5.5 Conclusions from the Simulation Studies

In this chapter, simulated signals were used to evaluate and improve pre-processing, lead
reduction and feature extraction methods. Furthermore, the influence of patient specific
anatomical variations were analyzed and their impact on the concentrations estimation were
assessed. The main conclusions from these studies with regard to an application to clinical
data are:

• The bandpass filter bounds minimally influencing the feature values are: 0.1 Hz for
the high-pass and 70 Hz for the low-pass filter.

• Maximum amplitude transformation is an adequate choice for lead reduction.
• A patient-specific approach or alternatively a global approach with a patient-specific

correction is needed.

These findings were incorporated into the methodology of the next chapter describing the
application to clinical data.



Chapter 6
Application to Clinical Data

6.1 Introduction

Up to this point of the thesis, all findings were based on simulated data. Nevertheless,
keeping an application in a clinical environment in mind, the methods need to be applied
to and evaluated on patient data. These data need to consist of simultaneously measured
electrocardiograms (ECGs) and measurements of the ionic concentration in the blood. Data
from hemodialysis patients meet these needs as an ECG can be easily recorded during a
dialysis session and the patient is expected to show concentration variations. An example
for the expected concentration values were reported in [67]: pre-dialysis blood potassium
concentration ([K+]b) was 5.23±0.76 mmol/l, post-dialysis [K+]b was 3.67±0.25 mmol/l
(mean±standard deviation). Consequently, hemodialysis patiens are a favorable data source
for studies on the interplay of ECG morphology and ionic concentration and these kind of
data have been widely used in previous investigations. However, blood calcium concentration
([Ca2+]b) variations are usually not as prominent in the dialysis sessions as in the simulation
studies presented in this work where extracellular calcium concentration ([Ca2+]o) was varied
between 0.6 mmol/l to 3.0 mmol/l. This complicates the evaluation of a [Ca2+]b estimation
method.
In the following, the methods optimized in the last chapter will be applied to a dataset
including ECG recordings with simultaneous discrete measurements of ionic concentrations
in the blood from dialysis patients. Considering findings from Section 5.4, different patient-
specific regression techniques for [K+]b estimation will be used. The performances of the
methods will be compared to each other and to approaches from literature. The estimation
of [Ca2+]b was not possible due to the small variety of concentration values in the dataset
([Ca2+]b mean±standard deviation: 1.16 mmol/l±0.15 mmol/l).

63
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6.2 Dataset

The data used for this study were taken from two databases (“Calcio Profilato” and “ECG
Potassio”) provided by the University of Bologna, Department of Electrical, Electronic, and
Information Engineering “Guglielmo Marconi". During dialysis sessions, the ECGs of 34
patients were recorded with a sampling rate of 1000 Hz. Each patient was monitored in two
to four dialysis sessions. All ECGs were acquired with the same ECG device Mortara H12+,
Mortara Instrument, Inc., Milwaukee, Wisconsin, U.S.A., however, at different hospitals
and in different studies. The ECG recordings lasted for four to six hours. During the ECG
recording, the blood ion concentrations were measured discretely five to eight times during a
session.

6.3 Methods

6.3.1 Global Model with a Simplified Patient-specific
Adjustment

6.3.1.1 Compensation of Unbalanced Datasets

A topic addressed very seldom in other publications dealing with concentration estimation
is the correction of unbalanced [K+]b in the dataset. According to the description in the
publications presented in Table 4.1, none of them introduced such a correction. Nevertheless,
this might be useful to train the regression method to cover also the less likely but more
important pathological cases. This is the reason why a variable bias compensation was
introduced by weighting the least square errors during model fitting. The method is dependent
on the histogram of the dataset and will be explained by an example in the following:
Figure 6.1 shows a histogram of the dataset. The histogram is approximated by a continuous
loglogistic function (red line in Figure 6.1(a)) to then describe the distribution by the
corresponding probability density function G. Negating G in combination with a shift by
+1 yields G− = 1−G. Finally, G− is shifted and normalized (Figure 6.1(b)). The tuning
parameter wr which controls the compensation, influences the normalization. The shifting
and normalization step can be expressed by

G−scaled =
G−−wr ·min(G−)

max(G−−wr ·min(G−))
. (6.1)

6.3.1.2 Regression

The clinical ECG signals were bandpass filtered with a phase-free Butterwoth filter of fourth
order (passband 0.1 Hz to 70 Hz as proposed in Section 5.2.3). Afterwards, time windows
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Figure 6.1: (a) Histogram of [K+]b, the loglogistic fit on it, and (b) the respective weighting functions for
different wr values. The curves are bounded by the minimum and maximum [K+]b values in the dataset.

of four minutes were extracted around the time instants when the blood test was performed.
For each ECG window, a single beat template was built neglecting artifacts. This pipeline
yielded one single beat template per concentration measurement.
The next step was lead reduction. The maximum amplitude transformation was applied to
the single beat templates reducing the eight linearly independent leads to one showing a
maximized T wave amplitude. This single lead single beat signal was then analyzed with the
feature extraction algorithms introduced in Section 5.2.1.
Instead of using the six features as proposed in Section 5.3, the three features showing the
maximum absolute value of the Spearman correlation were selected for the mapping from
ECG signals to [K+]b which were T amplitude, T downslope and T upslope. A regularized
weighted least squares problem was solved for a polynomial of third order to fit the model.
The weightings were dependent on the distribution of [K+]b values in the dataset used for
the fitting as described in Section 6.3.1.1. Three different values for wr were chosen: 0,
0.5, 1. Besides and for comparison, one experiment was performed without weighting. For
regularization, first order Tikhonov was used minimizing the L2 norm of the found solution.
The regularization parameter was determined by evaluating the curvature of the L-curve as
proposed in [98].
The model was finally evaluated with a leave one patient out cross validation, i.e. all patients
except one (training set) were used to fit a global model which was then applied to the test
patient. Regularization parameter determination and feature selection were performed with
only the training data. The simplified patient adjustment of the global model was carried out
for the test patient in the following way: the model was applied to the first session of the
test patient and the estimation errors for all blood samples in this first session were averaged.
This averaged error was subtracted from the estimation with the global model. Thus, a
constant over- and underestimation due to patient-specific properties should be prevented.
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6.3.2 Patient-Specific Model

In contrast to the methodology described in Section 6.3.1, the patient-specific approach skips
the compensation of an unbalanced dataset and the generation of a global model. The idea
behind this approach was to build the regression model only with data of one patient. For
this, ECG templates were extracted, leads were reduced, and features were calculated as
explained in Section 6.3.1.2 with one slight difference: the lead transform was calculated
for each template separately. The application of a template-specific lead transform was
introduced since there were no inter-patient variations expected and results from previous
studies showed that this might be appropriate, too [84].
The first and second session of the patient were used to fit a regularized (the regularization
parameter was fixed to 0.01) linear model relying on three features: T amplitude, T upslope
and T downslope. Two sessions were used to achieve a more robust solution. In return, this
meant that patients with only two sessions (14) had to be omitted.

6.4 Results

6.4.1 Global Model with a Simplified Patient-specific
Adjustment

The results of the global model approach for different weightings are shown in Table 6.1.
It gets apparent that the regularization was influenced by the choice of wr: when changing
wr from zero to one, the regularization parameter increased. With the introduction of the
weighting, the overall absolute error of the dataset decreased slightly for wr = 0 and wr = 0.5.
However, for concentrations larger than 5.5 mmol/l, the mean absolute error improved by up
to 0.18 mmol/l whereas the absolute error and its standard deviation for concentrations less
than 5.5 mmol/l differed by 0.01 mmol/l only. The weighted standard deviation of the whole
dataset accounts for the weighting of the respective samples and increased from 0.77 mmol/l
to 1.08 mmol/l.

Table 6.1: Determined regularization parameters and estimation errors ε for the global approach. All un-
signed errors are given asmean±standard deviation. Errors are given additionally for only hyperkalemic
(εhyper, [K+]b > 5.5mmol/l) and non-hyperkalemic (εnonhyper, [K+]b ≤ 5.5mmol/l) samples. Furthermore,
the standard deviations of the dataset (Std data) and the weighted standard deviation (Std data weight)
are listed. All values except the weighting are given in mmol/l.

Weighting λ ε εnonhyper εhyper Std data weight Std data
none [1.58;1.61] 0.48±0.37 0.45±0.33 1.03±0.50 0.77 0.77
wr = 0 [1.45;1.58] 0.47±0.37 0.44±0.34 0.92±0.51 0.90 0.77
wr = 0.5 [1.45;1.58] 0.47±0.37 0.44±0.34 0.88±0.51 0.95 0.77
wr = 1 [1.58;1.81] 0.48±0.37 0.45±0.35 0.85±0.50 1.08 0.77
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6.4.2 Patient-Specific Model

The results for the patient-specific solution are given in Table 6.2. As expected, results
compared to the globally adjusted model shown in Table 6.1: Although the overall standard
deviation of the estimation error was almost the same, the mean absolute error decreased from
0.48 mmol/l to 0.37 mmol/l. Furthermore, the mean absolute errors of the samples showing a
concentration above 5.5 mmol/l dropped dramatically from 1.03 mmol/l (no weighting) to
0.60 mmol/l.

Table 6.2: Determined regularization parameters and estimation errors for the patient-specific ap-
proach. All unsigned errors are given asmean±standard deviation. Errors are given additionally for only
hyperkalemic (εhyper, [K+]b > 5.5mmol/l) and non-hyperkalemic (εnonhyper, [K+]b ≤ 5.5mmol/l) samples.
Furthermore, the standard deviations of the dataset (Std data) and the weighted standard deviation
(Std data weight) are listed. All values except the weighting are given in mmol/l.

Weighting λ ε εnonhyper εhyper Std data
none 0.01 0.37±0.30 0.34±0.33 0.60±0.40 0.79

6.5 Discussion

6.5.1 Used Data

As already described in the last chapter, one main drawback of this study is the usage of
data only from dialysis patients. This could lead to a biased method development and
evaluation. Furthermore, the quality of the data varies. Although the pre-processing and
template creation should increase the signal to noise ratio (SNR), it was not ensured that
this was successful for all signals in the dataset. A manual exclusion of data from patients
showing certain pathologies influencing the ECG as in [57] was not performed here. This,
however, could further increase the performance of the proposed methods. An estimation
of [Ca2+]b as described in Section 5.3 could not be performed since data with an adequate
concentration variance (standard deviation = 0.15 mmol/l) was not available. Besides the
bias in the dataset, problems occurred during the pre-processing of the data. Originally, the
dataset consisted of more patients and measurements than described in Section 6.2. However,
it was not always possible to add them to the evaluation since blood measurements were
not taken during ECG recording, or since a failure of the ECG recording. Furthermore,
patients with only one dialysis session had to be excluded. Overall, an optimization of the
pre-processing could further improve results.
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6.5.2 Regression Model

A regularized polynomial of third order was chosen for the application to patient data in
contrast to the neural network as regression model used in Section 5.3. This was mainly
due to the fact that regularization and weighting could easily be implemented. First tries
with a neural network and a weighted loss function for the training did not deliver results as
good as the presented ones. This might be connected with the larger number of parameters
for the network, an improper selection of learning rates and activation functions or other
hyper-parameters of the network.

6.5.3 Compensation of Unbalanced Datasets

The selection of the histogram fitting function for compensating the bias in the dataset was
empiric and not evaluated against other possibilities for bias compensation. Furthermore,
the result of the weighting function is dependent on the bin size of the histogram which was
fixed to 0.1 mmol/l. Nevertheless, the weighting seemed to be more reasonable than e.g.
randomly dropping a part of the most frequent samples to equalize the dataset as the amount
of datapoints would have been severely reduced. Besides, the Synthetic Minority Over-
sampling Technique (SMOTE) [99], an augmentation strategy, did not deliver acceptable
results [100]. The introduction of wr allowed an increased weighting of the pathological
concentrations in the fitting process and therefore led to better results on exactly these data
with increasing wr. However, the user must choose an appropriate wr depending on the
desired model: a model being appropriate for most of the concentrations in the dataset (small
wr) or a model appropriate for the whole spectrum of the data (large wr).

6.5.4 Comparison of Approaches

In the following, the patient-specific and the global approach will be compared to each other
and to two approaches from literature. The work by Attia et al. [57] will be analyzed as a
first comparative approach. In their work, the authors propose one patient-specific approach
and two different global models:

(a) A global approach trained with data including sessions from patients in the validation
group. The sessions from the training were not included in the validation set.

(b) A further global approach trained on sessions from those patients that were not included
in the validation group.

Since the correction proposed in Section 6.3.1.2 can be seen as an inclusion of the evaluation
patient during the training, approach (a) was chosen for comparison.
Common measure for comparison are the mean absolute error and its standard deviation
(Table 4.1). However, mean and standard deviation are dependent on the concentration
distribution in the dataset [60]. Besides these measures, the authors give selected plots that
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determination of a potassium value are generally acceptable
clinically. Broadly, a major challenge in remote patient
monitoring is the issue of artifact and noise, commonly
present when nonobtrusive, well-tolerated sensors are used
to acquire often-noisy signals in ambulatory patients. Lever-
aging data redundancy may be applicable in a large array of

physiological signal and monitoring applications. A second
strategy was the use of the Kalman filter, historically used to
distinguish returning radar signals caused by flocks of birds
from those of tracked airplanes by recognizing constraints in
the abruptness of change of trajectory and velocity of which
an airplane is capable. In a similar manner, we recognized that
a marked change in potassium over a time frame of a few
minutes, particularly if not a consistent change, represents
measurement error, permitting correction and increased
accuracy.

In this study, we used advanced algorithms to further
validate the use of easily obtained ECG repolarization to
predict potassium in both personalized and global prediction
models in hemodialysis patients. We focused on single-lead
recordings to allow practical implementation and used 2 T
wave features that we found best correlated with potassium in
our prior work.16 These were used to develop both the
personalized and global predictor models. The use of the
descending T wave in lateral precordial leads mechanistically
corroborated the relationship between potassium and repo-
larization. Extracellular potassium differentially affects the
action potential repolarization in midmyocardial compared
with endocardial and epicardial myocytes, reflected predom-
inantly on the surface ECG as the T-right slope.24 Changes in
extracellular potassium concentrations affect the transmem-
brane voltage gradient of each myocyte, in aggregate
summarized as the surface T wave. The function of potassium
channels is essential to life, and their genetic sequence is
highly conserved on an evolutionary scale, with similar
sequences in a variety of species including bacteria and
humans.25 Consequently, transmembrane channels are ideal
microsensors of potassium levels, and global analysis is
feasible, supporting the concept that we are detecting the
sum of potassium changes at the cellular level and accounting
for our unique fidelity in detecting subtle changes.

We previously described the correlation between the T-
right slope and T-amp and potassium, and in this work, we
used the correlation in a personalized and global predictive
manner. Corsi et al26 found a similar relationship between the

Figure 5. Cumulative mean absolute error in calculated potas-
sium. In all panels, the abscissa shows the mean absolute error in
calculated potassium, and the ordinate indicates the percentage of
patients with that error. Panel (A) demonstrates the error when
using the personalized predictor model. In panel (B), we see the
same presentation of the data but using the global predictor
applied to group 1 patients. In other words, the group of patients
used to create the global model then had that model tested in
subsequent dialysis sessions. In panel (C), the global predictor was
applied to an independent cohort of patients (group 2A and 2B) to
assess the parameters developed for one set of patients with
regard to the other. As can be seen, when using the personalized
predictor (A), 92% of patients had a mean absolute error
<0.6 mmol/L. Abs indicates absolute.
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Figure 6.2: Cumulative mean absolute error for the global corrected approaches. (a) Global approach
by Attia et al. (b) Global model with patient-specific adjustment from this work. Figure (a) is adapted
from [57], licensed under Creative Commons Attribution Non-Commercial License.

were reproduced with the methods suggested in this work. Figures 6.2 and 6.3 visualize the
distribution of absolute errors over a cumulative number of patients for the patient-specific
and global approaches by Attia et al. and for the respective methods described in this work.
In comparison to the percentage of patients showing errors less than 0.5 mmol/l, 0.6 mmol/l
and 1 mmol/l, the global adjusted approach proposed in this work outperformed the method
by Attia et al. only regarding the maximally observed mean absolute error. When using the
correlation plot in Figure 6.4(a) instead of the mean absolute errors, it follows that the method
by Attia et al. was not capable of predicting concentrations above 5 mmol/l in their dataset.
If concentrations above 5 mmol/l cannot be detected, the method cannot be used for the
detection of hyperkalemia ([K+]b>5.5 mmol/l). Although the method from this work tended
to underestimate higher concentration values, it was still capable of detecting concentrations
above 5.5 mmol/l (Figure 6.4b).
The patient-specific approach presented in this work excelled the method by Attia et al.
at the upper two estimation error thresholds (Figure 6.3). Both approaches show a good
correspondence between estimated and measured concentrations (Figure 6.5). In comparison
with the global approaches, the patient-specific method allows a more robust estimation of
concentrations above 5 mmol/l. Comparing the patient-specific model results to the one from
an adjusted global model, the high discrepancy of the results underlines the need for a more
advanced patient adjustment of the global model. However, the global adjusted model found
in this work offered two main advantages compared to the patient-specific model: first, only
one session from a patient was needed to adjust the model; second, it was possible to fit more
complex models with the higher amount of data (polynomial of third order instead of first
order).
The work by Corsi et al. [56] will be assessed as a second comparative approach in the
following. The authors proposed only a global adjusted model. The results are visualized in
form of a Bland-Altman plot in Figure 6.6(a). Again, in order to compare the results better to
the ones obtained in this work, the Bland-Altman plots of the global approaches presented in



70 Chapter 6. Application to Clinical Datadetermination of a potassium value are generally acceptable
clinically. Broadly, a major challenge in remote patient
monitoring is the issue of artifact and noise, commonly
present when nonobtrusive, well-tolerated sensors are used
to acquire often-noisy signals in ambulatory patients. Lever-
aging data redundancy may be applicable in a large array of

physiological signal and monitoring applications. A second
strategy was the use of the Kalman filter, historically used to
distinguish returning radar signals caused by flocks of birds
from those of tracked airplanes by recognizing constraints in
the abruptness of change of trajectory and velocity of which
an airplane is capable. In a similar manner, we recognized that
a marked change in potassium over a time frame of a few
minutes, particularly if not a consistent change, represents
measurement error, permitting correction and increased
accuracy.

In this study, we used advanced algorithms to further
validate the use of easily obtained ECG repolarization to
predict potassium in both personalized and global prediction
models in hemodialysis patients. We focused on single-lead
recordings to allow practical implementation and used 2 T
wave features that we found best correlated with potassium in
our prior work.16 These were used to develop both the
personalized and global predictor models. The use of the
descending T wave in lateral precordial leads mechanistically
corroborated the relationship between potassium and repo-
larization. Extracellular potassium differentially affects the
action potential repolarization in midmyocardial compared
with endocardial and epicardial myocytes, reflected predom-
inantly on the surface ECG as the T-right slope.24 Changes in
extracellular potassium concentrations affect the transmem-
brane voltage gradient of each myocyte, in aggregate
summarized as the surface T wave. The function of potassium
channels is essential to life, and their genetic sequence is
highly conserved on an evolutionary scale, with similar
sequences in a variety of species including bacteria and
humans.25 Consequently, transmembrane channels are ideal
microsensors of potassium levels, and global analysis is
feasible, supporting the concept that we are detecting the
sum of potassium changes at the cellular level and accounting
for our unique fidelity in detecting subtle changes.

We previously described the correlation between the T-
right slope and T-amp and potassium, and in this work, we
used the correlation in a personalized and global predictive
manner. Corsi et al26 found a similar relationship between the

Figure 5. Cumulative mean absolute error in calculated potas-
sium. In all panels, the abscissa shows the mean absolute error in
calculated potassium, and the ordinate indicates the percentage of
patients with that error. Panel (A) demonstrates the error when
using the personalized predictor model. In panel (B), we see the
same presentation of the data but using the global predictor
applied to group 1 patients. In other words, the group of patients
used to create the global model then had that model tested in
subsequent dialysis sessions. In panel (C), the global predictor was
applied to an independent cohort of patients (group 2A and 2B) to
assess the parameters developed for one set of patients with
regard to the other. As can be seen, when using the personalized
predictor (A), 92% of patients had a mean absolute error
<0.6 mmol/L. Abs indicates absolute.
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Figure 6.3: Cumulative mean absolute error for the personalized approaches. (a) Personalized approach
by Attia et al. (b) Personalized model from this work. Figure (a) is adapted from [57], licensed under
Creative Commons Attribution Non-Commercial License.

The temporal progression tool confirmed the utility of using
the T-right slope as a parametric feature to calculate
potassium. In addition, it confirmed that the temporal change
in calculated potassium paralleled changes in the blood tests
and suggested a more accurate means of assessing potas-
sium values during dialysis (Figure 6 and Video S1).

Discussion
In patients with cardiovascular and/or renal disease,
hyperkalemia is frequent, life-threatening, and usually
asymptomatic.3,5 The emergence of safe and effective
medications that lower potassium underscores the impor-
tance of detection of hyperkalemia.11,12,14,23 The ability to
remotely, unobtrusively, frequently, and noninvasively assess
potassium through a single-channel signal-processed ECG
would permit currently available wireless ECG patches,
implanted monitors, and cardiac devices to infer measure-
ments of potassium; would address a critical need; and would
affect a large population. In this study of patients undergoing
hemodialysis, the signal-processed ECG was able to calculate
potassium values with a mean error of 0.36!0.34 mmol/L
using a personalized strategy that required a seeding blood
test, providing a clinically meaningful value via individualized
medicine. Importantly, even without personalization and in the
absence of any blood draws, clinically useful estimates of
potassium were obtained, providing potassium values with a
mean error of 0.5!0.42 mmol/L, and could be useful for
alerts and trending. These findings, using a single lead of high-
resolution ECG data, suggest that this approach may be
suitable for remotely monitoring potassium in dialysis
patients. This population is at high risk for hyperkalemia
and sudden death, often in the 12 hours before a dialysis
session, suggesting a hyperkalemic mechanism.1

Several algorithmic strategies were applied to achieve a
high level of precision. One was application of an artifact
detector concept, in which the availability of redundant data
permitted use of an automated artifact detector that
discarded poor-quality data rather than attempt to filter or
clean it. This fundamental strategy may be applicable to the
analysis of a large number of physiological signals for which
mild or moderate latency is tolerable. Given that potassium
values are not available clinically in the absence of blood
tests, even once- or twice-daily assessments would represent
a significant advance, particularly in high-risk patients recently
discharged from the hospital. Delays of minutes or hours in

Figure 4. Algorithmically calculated and laboratory potas-
sium values. A, The algorithmically estimated potassium value
using the personalized prediction system is on the ordinate,
and the laboratory-derived value is on the abscissa. Panels (B)
and (C) reflect the same, using the global methodology. B, The
first dialysis run was used to create global parameters, and
those parameters were then tested in the same patients in
dialysis runs 2 and 3. C, A separate validation set of patients
was used to test the parameters developed using patient
group 1. The yellow line represents a perfect match between
calculated and laboratory potassium values, and the red
boundaries represent the area for which each predicted value
is within the 0.5 mmol/L absolute error range.
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Figure 6.4: Correlation plot of estimated and measured [K+]b for the global corrected approaches. The
yellow lines indicate the perfect fit between estimation and measured concentrations. Points within
the red lines show an error of less than 0.5mmol/l. In (a), K Lab corresponds to themeasured concentra-
tions; all values are given in mmol/l. Figure (a) is adapted from [57], licensed under Creative Commons
Attribution Non-Commercial License.
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The temporal progression tool confirmed the utility of using
the T-right slope as a parametric feature to calculate
potassium. In addition, it confirmed that the temporal change
in calculated potassium paralleled changes in the blood tests
and suggested a more accurate means of assessing potas-
sium values during dialysis (Figure 6 and Video S1).

Discussion
In patients with cardiovascular and/or renal disease,
hyperkalemia is frequent, life-threatening, and usually
asymptomatic.3,5 The emergence of safe and effective
medications that lower potassium underscores the impor-
tance of detection of hyperkalemia.11,12,14,23 The ability to
remotely, unobtrusively, frequently, and noninvasively assess
potassium through a single-channel signal-processed ECG
would permit currently available wireless ECG patches,
implanted monitors, and cardiac devices to infer measure-
ments of potassium; would address a critical need; and would
affect a large population. In this study of patients undergoing
hemodialysis, the signal-processed ECG was able to calculate
potassium values with a mean error of 0.36!0.34 mmol/L
using a personalized strategy that required a seeding blood
test, providing a clinically meaningful value via individualized
medicine. Importantly, even without personalization and in the
absence of any blood draws, clinically useful estimates of
potassium were obtained, providing potassium values with a
mean error of 0.5!0.42 mmol/L, and could be useful for
alerts and trending. These findings, using a single lead of high-
resolution ECG data, suggest that this approach may be
suitable for remotely monitoring potassium in dialysis
patients. This population is at high risk for hyperkalemia
and sudden death, often in the 12 hours before a dialysis
session, suggesting a hyperkalemic mechanism.1

Several algorithmic strategies were applied to achieve a
high level of precision. One was application of an artifact
detector concept, in which the availability of redundant data
permitted use of an automated artifact detector that
discarded poor-quality data rather than attempt to filter or
clean it. This fundamental strategy may be applicable to the
analysis of a large number of physiological signals for which
mild or moderate latency is tolerable. Given that potassium
values are not available clinically in the absence of blood
tests, even once- or twice-daily assessments would represent
a significant advance, particularly in high-risk patients recently
discharged from the hospital. Delays of minutes or hours in

Figure 4. Algorithmically calculated and laboratory potas-
sium values. A, The algorithmically estimated potassium value
using the personalized prediction system is on the ordinate,
and the laboratory-derived value is on the abscissa. Panels (B)
and (C) reflect the same, using the global methodology. B, The
first dialysis run was used to create global parameters, and
those parameters were then tested in the same patients in
dialysis runs 2 and 3. C, A separate validation set of patients
was used to test the parameters developed using patient
group 1. The yellow line represents a perfect match between
calculated and laboratory potassium values, and the red
boundaries represent the area for which each predicted value
is within the 0.5 mmol/L absolute error range.
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Figure 6.5: Correlation plot of estimated and measured [K+]b for the personalized approaches. The yel-
low lines indicate the perfect fit between estimation and measured concentrations. Points within the
red lines show an error of less than 0.5mmol/l. In (a), K Lab corresponds to the measured concentra-
tions; all values are given in mmol/l. Figure (a) is adapted from [57], licensed under Creative Commons
Attribution Non-Commercial License.

this work were created (Figure 6.6(b)-(c)). Similar to the global approaches presented in this
work, the method by Corsi et al. tends to underestimate higher [K+]b and overestimate lower
[K+]b (Figure 6.6(a)-(c)). The patient-specific approach presented in this work does not show
this behavior (Figure 6.6(d)). By comparing Figure 6.6(b) and (c), the effect of the weighting
gets apparent: higher concentrations are underestimated more seldom. In return, the errors in
the physiological and most frequently measured range (around 4 mmol/l) increased.

6.5.5 Amplitude Dependency of Features

An important finding from this study was the importance of amplitude and amplitude
dependent features in the fitting process. All three features, T wave amplitude, upslope, and
downslope are dependent on the amplitude. Although the beat templates were normalized
to an R peak amplitude of one, the dependence on the T wave features from the T wave
amplitude remains. To visualize this, a lognormal function was used to represent a T
wave similar to the experiments in Section 5.2.1. The features T downslope, T upslope, T
downslope divided by the square root of T amplitude (Ts/

√
a, as proposed in [57]) and T

downslope divided by T amplitude (Ts/a, as proposed in [56]) were calculated for different
amplitudes of the synthetic T wave. All features show a dependence on the amplitude which
might be problematic. The origin of an amplitude change was already hypothesized to
be linked to a change in the extracellular liquid during dialysis as discussed in [101] and
in [102]. If this is true, the result of the concentration estimation methods might be partly or
fully dependent on the extracellular liquid change. However, a final proof of the hypothesis
from [101] and [102] is still missing. This is directly connected to the problem that the
studies by Corsi et al. [56] and by Attia et al. [57] as well as this study utilized only ECGs
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causes action potential shortening in all cell types (endocardial (endo), M, and epicardial (epi)) but also increases 
the velocity of phase 3 action potential repolarization. As a consequence, the degree and timing of heterogeneity 
across the cardiac wall is modi!ed (Fig. 5, top panels), and the T-wave shows an increasingly peaked shape (Fig. 5, 
middle panels)—quanti!ed as an increasing value of TS/A (Fig. 5, lower panel, squares) as potassium increases. 
Simulations of the LQT2 condition produced a generalized decrease of the TS/A parameter in spite of the use of the 
same potassium levels used in control simulations (Fig. 5, lower panel, circles). #at is, a decrease in extracellular 
potassium and a reduction (unrelated to potassium concentration) of IKr current have similar e$ects on TS/A.

����������
#e availability of a non-invasive tool for [K+] assessment would have a signi!cant impact on clinical prac-
tice, facilitating cheaper and more e$ective monitoring of several classes of patients a$ected by diseases and/or 
undergoing pharmacological treatments that carry the risk of hypo/hyper-kalemia. We originally proposed this 
method for quanti!cation of blood [K+] from the ECG a few years ago, with promising preliminary !ndings15. 
Here, we have tested the new automatic method on a total of 686 [K+] measurements in dialysis patients, to assess 
its suitability for clinical application. Moreover, we investigated the physiological mechanism underlying the link 
between blood [K+] and T-wave features in order to further evaluate the applicability of the proposed estimator.

#e new method we developed was tested on data from dialysis patients. Due to the wide changes in serum 
potassium during the dialysis session, HD therapy is a unique “experimental model” for this testing in individual 
patients. Furthermore, the reference values for [K+], measured through standard laboratory analysis, are easily 
available through blood samples taken from the extracorporeal circuit. #e proposed approach was tested in a 
population of 45 patients; we performed 686 [K+] measurements (pre-, post- and during HD), characterized by 
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Figure 4. Le%. When a patient-speci!c bias (PB2), estimated from the !rst dialysis session of each patient, 
is subtracted from the data, a nonlinear relationship can be observed between KLAB and TS/A, assessed 
in the remaining sessions. #is observation led to the de!nition of the !nal ECG-based [K+] estimator 
(KECG =  0.36*TS/A

2 +  0.22*TS/A +  PB). #is quadratic relationship is very similar to the one describing the 
dependence of the maximal conductance of IKr and IK1 currents on extracellular [K+] at the cellular level (inset 
panel24). Right: Bland-Altman plot of [K+] obtained applying the quadratic estimator and the reference values 
for [K+].

Patient # Age Gender KLAB [mM] KECG [mM]
1 26 F 4.6 2.2
2 57 F 3.9 2.5
3 39 F 4.5 2.5
4 11 F 4.8 3.1
5 47 F 4.4 4.2
6 36 F 4.2 2.4
7 39 M 4.7 2.8
8 26 M 4.0 2.9
9 19 M 4.1 2.8
10 17 F 3.9 6.3
11 17 M 4.2 4.0
12 12 M 3.9 2.7
m ±  sd 4.3 ±  0.3 3.2 ±  1.1

Table 1.  Results obtained from LQT2 patients (KLAB: serum potassium concentration from blood test; 
KECG: ECG-based serum potassium concentration estimate; m: mean; sd: standard deviation).
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Figure 6.6: Bland-Altman plots for the approach by Corsi et al. and the ones presented in this work.
Figure (a) is adapted from [56], licensed under Creative Commons AttributionNon-Commercial License.

from dialysis patients, which in general can cause a biased evaluation. However this choice
of the dataset allowed a controlled and reliable data acquisition as already explained in
Section 6.1.

6.5.6 Differential Diagnosis

Corsi et al. showed that their proposed feature Ts/a for concentration estimation could also
be influenced by changes in patients suffering from the Long-QT2 syndrome [56]. This
pathology influences the conductivity of certain potassium channels. The finding by Corsi
et al. was substantiated in a study confirming that the proposed features might also be
dependent on the pathological block of a potassium channel [103]. However, data availability
was limited and a final statement could not be made. The work by Corsi et al. suggests
that the Long-QT2 syndrome might only lead to a constant offset of the estimation result.
Consequently, a fixed compensation or the application of a patient-specific model might help
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Figure 6.7: Experiment with different lognormal curves shown in (a). Four features were extracted. All
are dependent on the amplitude.

to overcome this problem. Other diseases could influence further T wave features in a very
similar way. These diseases have to be identified and the changes have to be compensated in
an estimation method.

6.5.7 Errors in Ground Truth Measurements

Blood tests are the common state-of-the-art method for ion concentration measurement.
These were used in this study as ground truth method. In a recent study [104], Friedman et
al. investigated the variability of blood tests. In 1170 fasting and resting patients, potassium
concentrations were measured repeatedly in a time frame of 60 min every 30 min and results
were compared. Approximately 12% of the repeated measurements showed a difference
of 0.5 mmol/l. 20% of the patients had at least one difference exceeding 0.5 mmol/l. The
maximum deviation was 2.5 mmol/l. The calculated mean deviations were in the range
of 0.26 mmol/l with a standard deviation of 0.25 mmol/l. These mismatches could lead to
pseudo-normokalemia in hyperkalemic patients as well as to a wrongly diagnosed hyper-
kalemia in normokalemic patients. Such variations could be caused either by application
errors as well as technical shortcomings, or by a physiological variability in the patients. In
spite of everything, these measurement deviations can lead to a misfitting of the potassium
estimation model and to biased error values.
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Table 6.3: Results of hyperkalemia classification approaches from literature and two naive threshold-
based methods from this work. The approaches by Galloway et al. and Lin et al. are based on convo-
lutional neural networks (CNNs). PPV: Positive Predictive Value; NPV: Negative Predictive Value. The
table is adapted from [60].

Work Accuracy Sensitivity Specificity PPV NPV
Wu et al.[105] 62.5 60 65 n/a n/a
Tzeng et al.[106] n/a 85 79 n/a n/a
Galloway et al.[107] 76.1-80.4 78.1-80.5 75.2-81.3 13.8-18.1 97.6-98.5
Lin et al.[59] n/a 50.8 96.0 26.9 98.5
Global (wr = 1) 95.8 31.8 100 100 95.7
Pat-spec. 96.1 55.6 99.1 83.3 96.8

6.6 Summary and Outlook

In this chapter, two approaches for potassium concentration estimation were presented.
Methods for an optimized pre-processing were selected based on the findings from the
simulation studies in Chapter 5. The proposed methods were comparable to or better than
methods from literature dependent on the performance parameter. For the first time, the
distribution of the dataset was considered in a global model during the fit of a polynomial
regression leading to a more precise estimation of concentrations above 5.5 mmol/l.
Apart from these results, there is room for further work: If only the diagnosis hyper- and
hypokalemia is of interest, a classification approach can be used as already done in [105, 106]
or more recently using a deep learning strategy in [59, 107]. Table 6.3 gives an overview
on the performance of methods for hyperkalemia detection from literature. In addition, the
methods proposed in this work were used as classifiers by applying a threshold at 5.5 mmol/l
on the regression result and performance parameters were calculated. Especially the patient-
specific approach performs already comparably to the methods from literature although no
optimized technique for classification was applied. A comprehensive investigation on this
topic could lead to a robust hyperkalemia detection.
Besides the use of a classification approach, the detection of unreliable templates and feature
values could be implemented as in [57] with a Kalman filter. This could decrease estimation
errors of the proposed methods.
Compared to the evaluation in Section 5.3, an estimation of [Ca2+]b was not performed. This
was due to the lack of data with a representative variety of [Ca2+]b values. However, if data
were accessible, the methods described here should be applied for [Ca2+]b estimation, too.
Last, an additional evaluation and improvement of the patient-specific adjustment of the
global model could be beneficial for a better estimation. The advantage of a global model
being fitted with many data allows for a more complex model than in the single-patient
approach. An alternative to adjusting the global model as done in the presented global
approach with the subtraction of a patient-specific error, could be the adjustment of the
inputs. As shown in Section 5.4, features are dependent on patient-specific anatomical
properties. These could be estimated and features could be “normalized” using measures
quantifying the anatomical properties.
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As the results in Table 6.3 suggest, a deep learning approach for the patient-specific adjust-
ment of the signals, for the adjustment of the global model, or for a direct regression could be
beneficial. Patient-specific properties can influence the ECG as shown in Section 5.4, hence,
they influence the features and make the estimation based on a global model more difficult.
The only possibility is an advanced patient-specific adjustment which can be delivered e.g.
by a deep learning approach.





Chapter 7
Conclusion

In this part of the thesis, a complete pipeline for the estimation of ionic concentrations
was presented. Simulations were used for the optimization of feature extraction methods,
pre-processing steps, and to estimate possible influences of patient-specific properties that
need to be addressed when designing the concentration estimation method. The results from
the simulation studies were incorporated into the two proposed estimation methods, namely
a fully patient-specific model and on a global model with a simplified patient adjustment. In
the global model, the distribution of the dataset was considered during the fit of a polynomial
regression leading to better results for the pathological cases. Nevertheless, if the application
allows for a patient-specific model, this should be preferred due to more precise concentration
estimations. This could be imaginable for example for the application with dialysis patients
visiting a clinical site regularly.
Together with the studies already presented in literature, this work not only proofed the
feasibility of an ECG-based concentration estimation but also showed that a clinical applica-
tion becomes more and more realistic. This will deliver an additional benefit to researchers
helping them to better investigate the connection between concentration shifts and sudden
cardiac death (SCD). Moreover, patients suffering from concentration shifts will benefit from
a more rapid diagnosis of ion concentration imbalances and therefore an improved outcome.
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LOCALIZATION OF ECTOPIC FOCI
WITH THE ECG





Chapter 8
Introduction to the Topic

Ventricular ectopic beats are triggered by ventricular cells outside the region of pacemaker
cells. These beats are considered as normal as long as their frequency is limited. However,
they can also cause ventricular tachycardia and this can lead to death. In these pathological
cases, catheter ablation can be a suitable treatment. During this, physicians insert a catheter
into the ventricles, try to find the triggering source and ablate, i.e. destroy the cells by
extreme heat or extreme cold. However, manually locating these spots using sequential
catheter mapping can be very time consuming. This is why clinicians have developed
manual rule-based methods for identifying these spots based on electrocardiogram (ECG)
interpretation. They usually rely on QRS morphologies in the single leads and an algorithm to
map these on a region of the heart where the excitation origin is probably located [108, 109].
A possible automatic solution is the utilization of ECG imaging (ECGI) where body surface
potentials (BSPs) are used to calculate the sources, e.g. transmembrane voltages (TMVs),
on the heart [110]. With the TMV time courses, the activation pattern can be determined
and the spatial source of the activation can be detected. This information can consequently
be used during the ablation treatment to directly navigate to the location of the ectopic
region. However, a major drawback of ECGI is the need of a patient-specific geometry
and the need to solve a highly underdetermined problem as the number of measurements
on the body surface usually goes below the number of sources in the heart. To overcome
these drawbacks, there have been ideas to introduce ventricular segments and use the ECG
information for a classification of the original segment. This was for example presented by
Kaiyue et al. in [111]. They mapped the information from the ECG to 11 regions on the
ventricles using support vector regression (SVR), random forests, gradient boosting decision
tree and Gaussian naive Bayes classifiers. Similarly, Yang et al. utilized a convolutional
neural network (CNN) for the localization of segments on the ventricular surface containing
the origin of the excitation [112, 113]. However, in the last study, the authors still used a
patient geometry.
Knowing these studies, the question arises if there is an automatic method to directly
estimate the excitation origin from the BSPs without an ECGI or classification step or patient
geometries but directly outputs one set of coordinates describing the anatomic position within
the heart. One main advantage might be that the direct solution of the problem might be more
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robust than methods with various intermediate steps each being prone to errors. However, the
effectiveness of this idea must be proven. Subsequently, a method for a clinical application
must be designed. These two steps were the aim of this project. The general applicability
was evaluated in a proof-of-concept study in Chapter 9. A possible implementation heading
to a clinical application is proposed in Chapter 10.



Chapter 9
Proof of Concept Study

9.1 Motivation

As explained before, it is not clear if the idea of directly calculating the excitation origin
coordinates is practicable and reliable. Therefore, the problem of estimating the excitation
origin will be considered as a regression problem. If there is a connection between the
body surface potential map (BSPM) and the excitation origin, a regression technique should
be able to estimate the coordinates of the excitation origin only with the information from
the BSPMs. Additionally, the result from regression was compared to a method utilizing
ECG imaging (ECGI) used as reference. To focus on just the evaluation of the feasibility,
influences of other variations like patient-specific properties were kept in the following as
low as possible. This study was done in collaboration with Christian Ritter. The results were
published in [80].

9.2 Simulations

Data from a previous study were utilized [114]. Here, 600 simulations with different
excitation origins were performed. The de- and repolarization waves were simulated with a
cellular automaton on a ventricular mesh (n = 3340 nodes, spatial resolution 4 mm). The
starting node for each excitation origin was chosen randomly (Figure 9.1(a)-(c)). Using a
heterogeneous torso model and 120 defined electrode positions (Figure 9.1(d)-(e)), a 120-lead
BSPM was extracted performing a forward calculation.

83



84 Chapter 9. Proof of Concept Study

(a) (b) (c)

(d) (e)

Figure 9.1: (a)-(c) Different views on the ventricular geometry and the excitation origins (blue dots).
(d)-(e) Torso model with electrode positions (blue dots).

9.3 Methods

9.3.1 Tikhonov Regularization

To find the excitation origin on the heart, one classical approach from ECGI used here as
reference method is to reconstruct the transmembrane voltages (TMVs) on every node on
the heart and then determine the first activated node with the calculated TMV courses. The
TMVs x can be found by solving an underdetermined set of equations utilizing 0th order
Tikhonov regularization

x = argmin
x

(||b−Ax||22 +λ
2||x||22) . (9.1)

with λ 2 being the squared regularization parameter, b the measured BSPMs and A the matrix
describing the mapping from TMVs to the BSPM which is known from the simulation. Due
to the significant influence of the λ on the solution x, a grid search was applied varying λ

from 10−8 to 10−2. The λ yielding the minimal Euclidean distance between estimation and
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truth was selected for calculating the TMVs.
As already described, the origin of the activation can be found by analyzing the reconstructed
TMV signals. In this work, the signals were evaluated 0.01 s after the known start of the
depolarization wave. The 5%-quantile of all TMVs was set as threshold and the center of
mass of those exceeding the threshold was selected as origin as similarly proposed in [115].
The heart node being closest (minimal Euclidean distance) to the detected origin was used
for error calculation. The single coordinates x, y, and z were evaluated separately, i.e. one
optimal regularization parameter per coordinate was allowed.

9.3.2 Support Vector Regression

Support vector regression (SVR) was utilized for estimating the global Cartesian coordinates
of the excitation origin directly from the surface ECGs. The first 10 principal component
scores (showing the maximum variance) were used as input values instead of using all the
signals from the 120-lead BSPM. As the original formulation of the SVR allows only one
output, three SVRs (one per coordinate) were trained. For the calculation of the errors,
six-fold cross validation was used. The method was trained with 500 of 600 samples and
evaluated with the remaining 100 samples. The hyperparameters C, ε and σ were determined
with the help of a grid search. The parameters were varied between 10−5 and 105 and
the solution with the lowest mean error was chosen for evaluation. As already with the
regularization parameter in the Tikhonov regularization, a coordinate specific set of optimal
hyperparameters was allowed.

9.4 Results

Results from the two evaluated methods are summarized in Table 9.1. The selected hyper-
parameters respectively the regularization parameter choice are presented per coordinate.
Furthermore, the mean Euclidean distance between estimated and true excitation origin (er-
ror) in every direction is given. For Tikhonov regularization, the error was between 5.27 mm
and 6.16 mm. The Euclidean distance dglobal =

√
d2

x +d2
y +d2

z was dglobal,Tikh = 10.03 mm.
By contrast, errors obtained with SVR were approximately five times smaller (0.92 mm to
1.08 mm) yielding an Euclidean distance to the true origin of dglobal,SV R = 1.73 mm which
is below the mesh resolution of 4 mm. The spatial distribution of the errors are shown in
Figure 9.2 for SVR and in Figure 9.3 for Tikhonov regularization. The latter shows the
largest errors in the region of the septum on which the BSPMs to source relationship is
known to be ambigious [116]. SVR shows the largest errors in the region of the apex.
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Table 9.1: Estimation errors of VEB origin obtainedwith SVR. Optimal parameters and estimation errors
are given for each coordinate separately.

Parameter/ X coordinate Y coordinate Z coordinate
Estimation error

log10(λ ) -2.5 -3.5 -3
d (mm) 6.16 5.90 5.27
log10(ε) 0.65 -0.74 -10.63
log10(C) 5.02 5.04 4.40
log10(σ) 2.18 2.19 1.95
d (mm) 0.92 1.08 0.99

(a) (b)

(c) (d)

Figure 9.2: Error values for the SVR method visualized on the ventricular geometry from different
perspectives.
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(a) (b)

(c) (d)

Figure 9.3: Error values for the Tikhonov regularization method visualized on the ventricular geometry
from different perspectives.

9.5 Discussion

In this study, 600 BSPMs with different excitation origins were used to estimate the excitation
origin. Simulations were all performed with the same patient geometry and the same simple
simulation method. On the one hand, this allowed the exclusion of patient-specific or
simulation dependent variations on the result, on the other hand, this does not reflect clinical
reality. As a consequence, the method as presented above might not meet clinical needs,
since a method being applicable to all patients should be generally preferred. Nevertheless,
this was not the aim of this proof-of-concept study. Especially for Tikhonov regularization,
the mapping matrix A was already known from simulation which cannot be granted without
a segmented patient geometry from magnet resonance tomography. In contrast, SVR is not
dependent on this information. However, the current implementation hardly allows a patient
independent application as coordinates were not normalized in any kind. Furthermore, it can
be hypothesized that SVR could have learned some kind of mapping matrix A from the data.
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Moreover, the dimensionality of the BSPMs was reduced arbitrarily to the first 10 scores of
the principal component analysis (PCA) showing the largest eigenvalues.
This work relied apart from the fixed patient properties on other optimal preconditions: noise-
free signals, optimized hyperparameters, and consequently probable overfitting resulted in
good results that are unlikely to achieve in clinical practice without further pre-processing or
adjustment steps. These simplifications are usually referred to as “inverse crime”. This holds
of course for both methods. Nevertheless, all these limitations do not contradict the general
suitability of a regression technique like SVR for the estimation of the excitation origin.

9.6 Conclusion

SVR was able to deliver apart from all limitations an excitation origin estimation error of
1.73 mm which is below the mesh resolution. This promotes the hypothesis that there is a
functional connection between the BSPM and the excitation origin that can be exploited with
an adequate regression technique to achieve a highly accurate excitation origin estimation.
In contrast to methods relying on classical ECGI, the regression technique works without
using a patient geometry which might be beneficial in a clinical application.

9.7 Outlook

The main drawback of this proof-of-concept study is the missing variation of patient ge-
ometries and conduction properties. In a follow-up study, patient data could be varied with
the help of a ventricular shape model as presented in [90]. Furthermore, a variation of the
position of the ventricles in the torso, of the conduction velocities and an anisotropy of the
velocities could be introduced. These data could then be used with a method estimating all
coordinates at the same time using the full BSPM. The additional use of universal ventricular
coordinates [91] could introduce a patient-independent coordinate system. Most of the
drawbacks were addressed in the project presented in the next chapter 10.



Chapter 10
Deep Learning Approach

10.1 Introduction

The proof-of-concept study reported in the last chapter confirmed the hypothesis of a feasible
direct estimation of the excitation origin. Nevertheless, the drawbacks of the study comprised
limited variations in the simulations. To account for this point, in the following study, a
database including different excitation origins, different ventricular geometries with different
orientations in the torso and different conduction properties was generated. These data were
used to train a fuzzy classifier unifying regression and classification for the estimation of the
excitation origin. By doing so, ambiguous solutions could be visualized. The results in this
project were obtained in close collaboration with Steffen Schuler. The findings are based on
the the Master’s theses of Gerald Moik [89] and Maike Rees.

10.2 Simulations

10.2.1 Geometrical Variations and Conduction Properties

Ventricular geometries were created using a ventricular shape model presented in [90, 117]
available on github [118]. It was generated based on more than 1000 ventricular geometries
and includes a mean shape and 100 principal components with their respective variance
covering 99.9% of all variation in the dataset. This shape model was extended to output
not only a right ventricular endocardial but also a right ventricular epicardial wall with
a transmural volume in between. As new points were added to the mesh which have no
principal component and variance assigned, they were inter-/extrapolated using a Laplace
interpolation based on the existing points. For the left ventricle, there was already a endo-
and epicardial wall with a transmural volume in the orginal mean shape. 1000 instances of
the shape model were generated adding the weighted sum of all principal components (three
examples are shown in Figure 10.1). The weighting was calculated with a quasi-random
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variation (Halton sequence) of the standard deviation of the respective principal component.
This weighting was constrained to ±three times the standard deviation of the respective
principal component. Ventricular coordinates were calculated for all 1000 instances of
the shape model similar to the method proposed by Bayer et al. [91] These coordinates
content for every point an apicobasal, rotational, transventricular and transmural coordinate
as shown in Figure 10.3. As the rotational coordinate has a jump between 0 and 1 (2π

in the non-normalized formulation), it can be transformed with a sine and cosine function
obtaining a continuous course and preserving the uniqueness of the coordinate. Although
this adds another coordinate, this facilitates the error calculation e.g. during the training of
the regression method. In this study, transmural and transventricular coordinates were treated
as binary variables by applying a threshold at 0.5. Next, ventricular fibers were calculated
for all the shape model instances using an extended and corrected version of the approach
from [87]. Fiber angles were between 40◦ to 80◦ for the endocardial surface and -80◦ to
-40◦ for the epicardial surface. The ventricular geometries were placed into a torso geometry
and aligned while varying the roll, pitch and yaw angles as described in Section 5.4. As
well, the geometries were translated. For each geometry, three different angle-translation
combinations were used as shown in Figure 10.2. Obtaining all these variations, a total
number of 3000 geometries were generated.

(a) (b) (c)

Figure 10.1: Three different shape model realizations. The heart was neither aligned with the torso nor
rotated or translated.

10.2.2 Excitation Simulations and Forward Calculation

For each of the 3000 geometries, 560 to 615 (mean 588.802) triggering points were distributed
over the left and right ventriclular endocardium as well as the epicardium dependent on the
area proportion of the respective parts on the sum of all areas. Activation time distribution
for all trigger points on all geometries were calculated using the Eikonal approach (FIM
Eikonal [119]). The anisotropy ratio was set to 2.7. A change of conduction velocities
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(a) (b) (c)

Figure 10.2: Three different positions of the geometry from Figure 10.1(b). The heart was aligned with
the torso, rotated and translated.

was introduced by scaling the calculated activation times achieving a conduction velocity
between 0.4 m/s and 1.2 m/s. The change was quasi-randomly (Halton sequence) applied
to the simulations. Body surface potential maps (BSPMs) were extracted using the transfer
matrix from a boundary element method and 200 electrodes on the torso front and back
(Figure 10.4). To calculate the surface potentials, a transmembrane voltage (TMV) template
was shifted according to the activation times obtained by the Eikonal approach and forward
calculated with the transfer matrix. The sampling rate was 1000 Hz. In total, 3000 ·588.802=
1,766,406 single beat BSPMs were created with a known excitation origin that can be
described by ventricular coordinates. The single beat realizations were padded at the
beginning randomly between 0 and 100 ms and randomly cut between 0 and 100 ms after the
end of the activation. This was done to simulate an unaligned signal snippet which are usually
solely available in the clinical environment. To simulate realistic input data, the BSPMs
were overlain with realistic noise from the MIT-BIH Noise Stress Test Database [78, 120].
Baseline wander, muscle artifacts and white Gaussian noise was added to two randomly
selected but distantly located electrodes. The noise for all other electrodes was calculated
using a spatial Laplacian interpolation of the respective noise types. The noise was amplitude
scaled yielding the following average signal to noise ratios (SNRs) over all electrodes per
noise type: Baseline wander showed an SNR of 10 dB, muscle artifacts 30 dB, and white
Gaussian noise 30 dB, respectively. the single leads of the BSPM with a random weighting
between 0 and 1 to obtain different SNRs in different leads. Afterwards, the lead signals
were filtered with a Butterworth bandpass filter between 0.5 Hz and 150 Hz and resampled
to 500 Hz. Each lead was normalized to the maximum absolute amplitude in the respective
lead. The length of all lead signals was 350 samples. The missing 24 electrode signals in the
region of the arms were spatially interpolated to obtain a symmetrical shape.
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(a) Apicobasal coordinate (b) Rotational coordinate

(c) Transventricular coordinate (d) Transmural coordinate

Figure 10.3: The four ventricular coordinates describing each position on and in the ventricles. All
coordinates are normalized between 0 and 1.

10.2.3 Generation of Ventricular Classes

In order to formulate the localization task, which is originally a regression task, as a fuzzy
classification task, the ventricular surface was divided into 303 classes. Therefore, the
ventricular mesh (Figure 10.5(a)-(b)) was converted into a coarse triangular surface mesh
(Figure 10.5(c)) containing 303 points. Endocardium and epicardium were separated as
visible in Figure 10.5(c). The procedure to determine the class weightings for a focus will be
described with an example in the following: Figure 10.5(d) shows a focus (red dot) on the
coarse triangular mesh. The three vertices of the triangle containing the focus are determined
(orange dots). With the help of barycentric coordinates, the position of the focus can be
described easily: In this example, the coordinates are one third for each vertex as the focus is
in the center of mass of the triangle. These barycentric coordinates (one third for all) are
now assigned as class weights to the 303 classes as every vertex represents one class. All
other points (partly visualized with white dots in Figure 10.5(d)) are zero. This procedure is
repeated for each focus obtaining always three non-zero values among the 303 classes.
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(a) Front view (b) Side view (c) Back view (d) Side view

Figure 10.4: Different views on the torso with the 200 electrodes (blue dots). In the region of the upper
arms, no electrodes were placed.

Moreover, the number of classes can be reduced by estimating the transmural and transven-
tricular coordinate separately. As the left and right endo- and epicardial triangular meshes
always consist of the same amount of points, the classification method can also be trained
with only 93 classes out of which 91 (triangles) represented solely the apicobasal and rota-
tional position independent from the transmural and transventricular position. The remaining
2 classes of the 93 were used as binary classes for transventricular and transmural position
classification.

10.2.4 Dataset Preparations

The BSPM dataset was splitted into three subsets: a training set (70%, i.e. 700 geometries),
a validation set (15%, i.e. 150 geometries) and a test set (15%, i.e. 150 geometries). By
dividing the dataset using only the geometries, the scenario of a “new patient” could be
simulated.

10.3 Methods

10.3.1 ScaleNet - Activation Onset and Offset Detection

The extracted single beat BSPMs contained ventricular depolarization (QRS complex) and
at least parts of the repolarization (T wave). Nevertheless, it is reasonable to only consider
ventricular depolarization in the signal as this delivers all the needed information about
the origin of the excitation. Reducing the data to only the depolarization delivers a further
advantage: The training of a learning method is accelerated since the dimensionality of the
problem is reduced and only relevant information is presented to the method. Nevertheless,
the start and end of the depolarization in the heart tissue cannot be detected easily only
relying on the BSPM. This is the reason why in a first step, a convolutional neural network
(CNN) called ScaleNet was trained to detect start and end of the ventricular activation.
It should be emphasized that it is not the same as the beginning and end of the QRS
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(a) Top view original mesh (b) Side view original mesh

(c) Top view segmented mesh (d) Side view segmented mesh

Figure 10.5: (a)-(b) Original mesh from top and side view. (c) Top view on segmented mesh. Endo- and
epicardium are separated. (d) Side view on the segmented mesh. An example for an ectopic focus (red)
dot is given. The points defining the surrounding triangle are colored in orange. The white dots are
examples for the vertices of the triangles not directly surrounding the ectopic focus.

complex. The detection of depolarization start and end delivers a further advantage: in a
following localization step, signals can be resampled to a constant length compensating for
different conduction velocities and therefore offering a kind of normalized beat facilitating
the following part. For the training of this and all following CNNs, the PyTorch framework
(v1.7.0) was used [121].
The true start and end of the depolarization was obtained from the Eikonal simulations. For
training and evaluation, the single leads of the BSPM were arranged into a two-dimensional
matrix with the dimensionality 224x350 as shown in Figure 10.6. The second dimension
is time, the other is the electrode signals that were arranged going spirally craniocaudally
around the torso starting at the top front.
As architecture, ResNeXt-50 (32x4d) [122] was used. For being applicable to the problem,
the input and output layers were changed. The output layer consisted of two neurons
(delivering the value for start and end). The input layer was changed to a convolutional layer
with a kernel size of five with stride two. The input channel size was set to one, the output
channel number was kept at 64. For the training, the following hyperparameters were set:

• Optimizer: ADAM with β1 = 0.9 and β2 = 0.999, γ = 10−8

• Batch Size: 680
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(a) Focus 1 (b) Focus 298

Figure 10.6: Two different BSPM images from different excitation origins. Time and electrodes are
visible in the spatial domain. Amplitudes are grey value coded.

• Learning Rate: Cyclic learning rate [123] with a maximum learning rate of 1.623 ·10−3

and a minimum learning rate of 4.553 · 10−4; the learning rate is increased for two
epochs, and decreased for another two epochs.

• Training time: 90 hours.
• Initialization: Weights and biases of the different layer types were initialized according

to the default values of PyTorch.

Details on the structure of the CNN are given in Section A.5 in the appendix.
The averaged mean squared error of both time instants was used as loss function

lossscaleNet =
1
N ∑

N
i=1(ls,i− ys,i)

2 + 1
N ∑

N
i=1(le,i− ye,i)

2

2
, (10.1)

where ys,i (ye,i) is the estimated start (end), ls,i (le,i) is the known label for start (end) from
one focus simulation and N is the number of evaluated samples.
The minimum and maximum learning rate was obtained from test runs with the training
dataset. Therefore, a learning rate sweep was performed for every batch during one epoch
varying the learning rate between 10−5 and 10−2. The loss (mean squared training error) was
calculated for the different learning rates (blue line in Figure 10.7). The result was smoothed
in a logarithmic scale (red line in Figure 10.7) obtaining a sigmoid-like shape. With the help
of a method similar to the L-curve method presented in [98] and used in Section 6.3.1.2, first
the upper bound was found using the maximum of the curvature of the smoothed loss (green
line in Figure 10.7). Afterwards, the preceding minimum was determined as lower bound for
the learning rate. The applied cyclic learning rate is visualized in Figure 10.8.

10.3.2 LocaNets - Localization of Ectopic Foci

Three further CNNs (LocaNets) were designed: one performing a fuzzy classification with
the 303 fuzzy classes introduced in Section 10.2.3 (in the following FuzzyNet303), another
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Figure 10.7: Loss for different learning rates in logarithmic scale (blue) and the respective smoothed
loss curve (red). Two points were detected as the lower (blue) and upper (red) bound for the cyclic
learning rate during training using the curvature of the smoothed loss (green).
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Figure 10.8: Change of the learning rate over the epochs due to the implementation of the cyclic
learning rate.

performing the classification of the reduced 91 fuzzy classes (Section 10.2.3) plus two binary
classifications for the endo-/epicardium and for the left/right ventricle (in the following
FuzzyNet93). The third network directly estimated the ventricular coordinates as regression
task (in the following RegressionNet).
All networks used the same input and therefore input layers: With the results of ScaleNet, the
signals were cropped and resampled to obtain a constant temporal length of 125. Therefore,
the inputs for the networks were two dimensional images of the size 224x125. The output
layers were adjusted according to the respective LocaNet. The detailed structures are given
in Section A.5 in the appendix.
The loss functions varied between the networks. For RegressionNet, a combination of mean
squared error for the rotational (rt_cos and rt_sin) and apicobasal (ab) coordinates, and binary
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cross entropy for transventricular and transmural coordinate was used as loss function

LRegressionNet = mseab +msert_cos +msert_sin + ltm log(σ(ytm))+(1− ltm) log(1−σ(ytm))

+ ltv log(σ(ytv))+(1− ltv) log(1−σ(ytv)) . (10.2)

y denotes the predictions and l the labels. σ is a sigmoid function preventing the argument of
the logarithm from becoming zero. The mean squared errors of the non-binary coordinates
were defined as

mseab =
1
N

N

∑
n=1

(2.5ln,ab−2.5yn,ab)
2 , (10.3)
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1
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msert_cos =
1
N

N

∑
n=1

(
√

ln,abln,rt_cos−
√
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2 . (10.5)

The errors of the rotational coordinates were weighted with the labels of the apicobasal
coordinate since the rotation is undefined on the apex. As well, a rotational coordinate
change is differently scaled in the Euclidean space dependent on the apicobasal position. As
there are two rotational coordinates and rotational and apicobasal step size are differently
scaled in the Euclidean space, the apicobasal error is weighted with 2.52.
For the fuzzy classification problems, categorical cross entropy was used. The loss function
for FuzzyNet303 was

LFuzzyNet303 =
303

∑
n=1

ln log

(
eyn

∑
303
j=1 ey j

)
, (10.6)

where N is the number of classes. For FuzzyNet93, the loss was

LFuzzyNet93 =
93

∑
n=1

ln log

(
eyn

∑
93
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)
+ ltm log(σ(ytm))+(1− ltm) log(1−σ(ytm))

+ ltv log(σ(ytv))+(1− ltv) log(1−σ(ytv)) . (10.7)

This is basically the loss from FuzzyNet303 with an added binary cross entropy loss for the
transmural (tm, endo-/epicardium) and transventricular (tv, left/right) classification.
The hyperparameters for training were similar to the ones from ScaleNet except those given
in Table 10.1.
To be able to quantify and compare the performance of the approaches, the localization
error in millimeter was calculated. For RegressionNet, the ventricular coordinates were
mapped back to the Euclidean space and the geodesic distance on the patient-specific heart
mesh between label and prediction was computed. For the FuzzyNets, the classification
results could be used to identify the segment where the activation started. The predicted
fuzzy class values were assigned to the respective vertices visualized in Figure 10.5(d).
The triangle with the largest sum of vertex values was identified as the source segment.
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Table 10.1: Hyperparameters for the LocaNets that were different from those from ScaleNet. Max/Min
LR is the maximum/minimum learning rate used for the application of cyclic learning rate.

Network Min LR Max LR Batch size Training time
FuzzyNet93 0.0008701 0.007409 1800 48 hours
FuzzyNet303 0.00101 0.006638 1860 48 hours
RegressionNet 0.0004909 0.003229 1800 48 hours

Subsequently, the position of the focus could be localized using the predicted class values
(vertex values) as barycentric coordinates (Figure 10.5(d)). Afterwards, the geodesic distance
using the individual heart mesh could be calculated as with RegressionNet. In the case of
FuzzyNet93, the binary classification results had to be used to determine the transventricular
and transmural position of the source triangle before determining the focus position in the
triangle. For both FuzzyNets, multiple solutions could be determined. Instead of taking
the triangle with the largest sum of vertex values, the second, third, etc. largest could be
visualized, too. Hence, it was possible to calculate e.g. the top-two errors.

10.4 Results

10.4.1 ScaleNet

During the training time of 90 hours, ScaleNet was trained on four Nvidia Tesla V100
GPUs for 39 epochs. At epoch 32, the validation error was minimal (Figure 10.9). So, the
calculated weights from this epoch were chosen for the evaluation and further steps. The
means, medians, standard deviations and interquartile ranges of the detection errors of start
and end of the ventricular depolarization are given in Table 10.2 for training, validation, and
test dataset. It gets apparent, that the estimation of the end seemed to be more difficult than
of the start as standard deviations were larger. However, all parameters stayed below one
sample. Figure 10.10 visualizes the errors as boxplot. Most outliers stayed below 10 samples
which corresponds to 20 ms. The largest absolute errors were 15.9 samples (31.8 ms) for the
start and 16.8 samples (33.6 ms) for the end. Histograms of the errors are additionally given
in Figures A.11 and A.12 in the appendix.

Table 10.2: Errors for the detection of activation start and end with ScaleNet are given as mean (m) and
standard deviation (std) for the signed (sig) and unsigned (usig) errors. Furthermore, median (med) and
the interquartile range (iqr) for the signed errors are given. Training (train.), validation (val.), and test
dataset were analyzed separately. All values are in samples. The sampling rate was 500Hz.

Measure Train. start Val. start Test start Train end Val. end Test end
sig m±std 0.06±0.35 -0.06±0.40 -0.06±0.40 0.03±0.48 0.04±0.68 0.04±0.67
med±iqr 0.06±0.42 -0.06±0.45 -0.06±0.45 0.01±0.54 0.01±0.60 0.01±0.60
usig m±std 0.27±0.23 0.30±0.28 0.29±0.28 0.35±0.32 0.44±0.52 0.44±0.51
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Figure 10.9: Progression of the loss on the training and validation dataset during training. At epoch 32,
the validation loss is minimal.
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Figure 10.10: Boxplot of the errors of ScaleNet. Start and end detection errors are given for training
(train.), validation (val.) and test data.

10.4.2 LocaNets

The networks were all trained for 48 hours, each on four Nvidia Tesla V100 GPUs. This
yielded in different total numbers of epochs for the approaches: FuzzyNet303 had 40 epochs,
FuzzyNet93 had 44, and RegressionNet was trained for 46 epochs. Hence, computational
complexity seemed to increase between the RegressionNet and the FuzzyNets. For evaluation,
the epoch with the lowest validation error was considered. This was epoch 15/27/39 for
FuzzyNet303/FuzzyNet93/RegressionNet.
Instead of evaluating the used loss values (see Equation (10.2), Equation (10.6), and Equa-
tion (10.7)) on the test dataset which are hard to compare, the localization errors of the
three approaches are displayed in Table 10.3. FuzzyNet303 performed best regarding all
measures, second best was FuzzyNet93 regarding the test localization errors. RegressionNet
performed worst. This also reflects in the boxplots of the localization errors (Figure 10.11):
RegressionNet showed the largest outliers of all methods in the test dataset. For a more
detailed comparison of the error distribution, error histograms are shown in Figures A.13,
A.14, and A.15 for all approaches in the appendix. There was no correlation found between
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the region (segment) of the focus origin and the error value. As visible in Table 10.4, there
was no coordinate with an extraordinary high error compared to the others on the test dataset.

Table 10.3: Localization errors (geodesic distance between prediction and label) as mean (m) and stan-
dard deviation (std), and as median (med) and interquartile range (iqr). Training, validation (val.) and test
dataset were analyzed separately. All values are in mm.

Method Measure Training Val. Test
FuzzyNet303 m±std 1.09±0.73 1.67±1.14 1.67±1.11
FuzzyNet93 m±std 1.28±0.82 1.81±1.20 1.82±1.19
RegressionNet m±std 2.48±1.50 2.59±1.62 2.57±1.56
FuzzyNet303 med±iqr 0.94±0.83 1.52±1.33 1.54±1.34
FuzzyNet93 med±iqr 1.05±0.96 1.65±1.50 1.66±1.51
RegressionNet med±iqr 2.23±1.83 2.34±1.91 2.33±1.90
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Figure 10.11: Boxplot of the errors (geodesic distance between prediction and label) of the LocaNets
for each dataset partition (training (train.), validation (val.) and test).

10.5 Application to Clinical Data

To proof the applicability of the network to patient data, ScaleNet and LocaNets were used on
patient data without training on patient data. 67 BSPM recordings (Amycard 01C EP system,
EP Solutions SA, Switzerland) from 37 patients with implanted biventricular pacemakers
were used to evaluate the methods. Data were already partly utilized in [124] and in [125].
The pacemakers were programmed to pace from the left (epicardial) or right (endocardial)
ventricular stimulus electrode. The location of the stimulus electrode was known from a
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Table 10.4: Coordinate test errors as mean (m) and standard deviation (std), and as median (med) and
interquartile range (iqr) for apicobasal and rotational coordinates. For the binary transventricular and
transmural coordinates, the error rate (erate) is given. All values are calculated on the test set and are
given in percent.

Coordinate Measure FuzzyNet303 FuzzyNet93 RegressionNet
apicobasal m±std 0.01±1.35 -0.03±1.44 0.09 ±1.97
rotational m±std -0.02±1.56 -0.01±1.69 -0.02±2.02
apicobasal med±iqr -0.02±1.45 -0.05±1.58 0.11±2.35
rotational med±iqr -0.02±0.80 -0.02±0.88 -0.02±1.29
transventricular erate 0.02 0.03 0.02
transmural erate 0.22 0.23 0.25

computer tomography scan and taken as the ground truth excitation origin in the following.
This study was approved by the institutional ethical board of the respective hospital (see
[124]). Written informed consent was obtained from each patient.
The spatially Laplace interpolated pacemaker patient BSPMs of size 224x350 were presented
to ScaleNet. Start and end of the ventricular depolarization were detected, signals were cut
and re-sampled as with the simulated data. These BSPMs were again interpreted as images
(two examples are shown in Figure 10.12) as before and were used as inputs for all LocaNets.
The results are visualized in Figure 10.13 and summarized in Table 10.5. Compared to the
errors from Table 10.3, localization errors are increased by more than 30 times. In contrast to
the simulated results, RegressionNet performed best whereas FuzzyNet303 performed worst.
Results for the single patients are shown in Table A.3. The single methods perform differently
well on the single patient signals (Table A.3). This might speak for different features obtained
from the input BSPMs. Two exemplary results of FuzzyNet303 and the respective ground
truth are visualized in Figure 10.15: 007_LV performed bad with a localization error of
102 mm, 002_RV performed better with an error of 6 mm. The maximum value (coloring of
the triangles) in 007_LV is smaller than in 002_RV. This could reflect an “uncertainty” of the
network.

(a) Patient ID 1 (b) Patient ID 6

Figure 10.12: ScaleNet applied to patient data. Estimated start and end are shown as red horizontal
lines. The signals were padded at the beginning and the end. The blue lines determine the bounds for
an introduced padding as the signals were already cropped by clinicians.
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Table 10.5: Localization errors (geodesic distance between prediction and label) as mean (m) and stan-
dard deviation (std), and as median (med) and interquartile range (iqr). All values are in mm.

Measure FuzzyNet303 FuzzyNet93 RegressionNet
m±std 52.55±31.25 47.67±29.01 38.39±21.00
med±iqr 47.04±53.71 40.98±41.17 37.00±31.04
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Figure 10.13: Boxplot of the errors (geodesic distance between prediction and label) of the LocaNets.
The circles visualize the single errors.

FuzzyNet303 and FuzzyNet93 output a class prediction for each class. Thus, it is possible to
calculate the top-three errors as the two networks output multiple possible solutions. The
statistics of the top-three localization errors for the two FuzzyNets are shown in Table 10.6.
The second/third most probable solution comes from the triangle with the largest sum of
vertex values that is not connected to the first/second selected solution. Results generally
improve, in the case of FuzzyNet93, the median drops down to 26 mm. The resulting boxplots
are given in Figure 10.14.

Table 10.6: Top-three localization errors (geodesic distance between prediction and label) as mean (m)
and standard deviation (std), and as median (med) and interquartile range (iqr). All values are in mm.

Measure FuzzyNet303 FuzzyNet93
m±std 37.45±25.42 31.66±22.35
med±iqr 30.43±38.81 26.04±22.96
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Figure 10.14: Boxplot of the top-three errors (geodesic distance between prediction and label) of the
FuzzyNets. The circles visualize the single errors.



104 Chapter 10. Deep Learning Approach

(a) 007_LV prediction (b) 007_LV ground truth

(c) 002_RV prediction (d) 002_RV ground truth

Figure 10.15: Two examplary results from the patient dataset obtained with FuzzyNet303. Besides the
prediction, the ground truth is shown. Results are visualized on a general classes geometry. Triangles
are colored according to the sum of vertex values. The triangle with the largest sum was used for the
calculation of the coordinates of the excitation origin.
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10.6 Discussion

10.6.1 Data Generation

For this study, approximately 1.8 million BSPMs were generated. For being able to perform
such a big number of simulations, less detailed modeling was requisite. Eikonal simu-
lations paired with the boundary element method for forward calculation decreased the
computational costs enormously compared to monodomain simulations with finite element
method-based forward calculations. In contrast to the methodology used in Section 5.4,
an optimization of the trigger points respectively the gKs gradient was not necessary since
ectopic foci were simulated with only one triggering source and T waves were not evalu-
ated. Although the QRS complex was expected to include most of the information of the
location of triggering source, it cannot be excluded that the T wave does not contain any
valuable information. Nevertheless, including the simulation of a realistic T wave would
have consequenced in increased computational costs. The same holds for the introduction of
an inhomogeneous torso. As already stated in Section 5.4, this would increase computational
costs and also cause the problem of adequately choosing the conductivities of the different
organs. Furthermore, it is not clear if the introduction of inhomogenities really leads to more
realistic BSPMs [126]. The main advantage of the selected torso model, i.e. torso with
ventricles and blood, was the easy introduction of different heart geometries into the same
torso. This enabled a rotation and translation of the heart geometries without the need to
adjust the surrounding compartments. Further variations have been introduced which will be
discussed in the following: Conduction velocity of the ventricular tissue was varied between
every BSPM. Therefore, the underlying activation time sequence from the Eikonal simulation
was temporally scaled. This delivers the same results as changing the conduction velocity in
the Eikonal simulations, namely changing the width of the QRS complex. Moreover, in this
study, two unpublished algorithms were used: an adjusted method for the determination of
ventricular fibers and a new formulation of ventricular coordinates. In empirical studies, they
showed more consistent results. Nevertheless, the advantage of those still needs to be proven
in systematic comparative studies. Next, the ventricular shape model is expected to cover
most of the variations that can be observed in humans. Of course, it cannot be guaranteed
that these cover all variation in a clinical setting which are needed for the training of a
generalizing machine learning method. For example, the created heart geometries always
had a right ventricular wall thickness of 2 mm which does not reflect the variation in reality.
It might be that certain variations that would be important for the training of the learning
algorithm were not taken into account. This is also valid for torso variations. In this study,
one torso was used to generate all BSPMs. Although this might seem to be a problem,
different other studies confirmed that the influence of the exact torso geometry is negligible
compared to the variations of the heart geometry [127].
Last, the preparation of the data for the different learning methods will be discussed. Data
was subdivided into training, validation and test dataset using 1000 geometrical variations
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of the ventricles. This should guarantee the independence of training and test data. The
extracted 200 lead BSPMs were interpolated to a 224 lead BSPMs obtaining a symmetrical
grid of electrodes. This does not deliver any new information, however, facilitates the
generation of symmetrical BSPM images. Apart from this interpolation, the introduction of
the classes describing the excitation origin was a step during data preparation. The ventricular
surfaces were subdivided into 560 triangles whose vertices formed 303 classes. The fuzzy
class weights describing the position of the focus were obtained with the help of barycentric
coordinates. This allows the description of each position on the ventricular surface. The
number of classes was arbitrarily set to 303 which is not guaranteed to be optimal. Other
numbers could be evaluated to decrease the number of parameters in the neural network and
increase the training speed.

10.6.2 ScaleNet

The proposed method proved to be able to estimate the start and the end of a depolarization
with a mean absolute error (on the test data) of 0.29 ms and 0.44 ms respectively. How-
ever, different aspects need further discussion: First, although the network selection was
well-thought-out, it was not compared against other architectures. ResNets (and therefore
ResNeXt), were designed to be able to overcome the problem of vanishing gradients in deep
neural networks, which leads to a failure in learning, by introducing skipping layers [128].
Nevertheless, there are further architectures that might be appropriate and could deliver
better results. The same holds for the choice of the hyperparameters which were chosen with
special carefulness. Especially the learning rate is known to have a huge impact on the result.
Although it was tried to use a reasonable learning rate strategy, it is not clear if this is the
optimal choice. However, the optimization of the hyperparameters for CNNs, which is still
a relevant research topic, often follows a trial-and-error procedure. Although, frameworks
for the automatic optimization of hyperparameters exist [129], this is still computationally
costly and therefore very time consuming. Consequently, the hyperparameter optimization
needed to be constrained due to time constraints.
Moreover, the influence of the shape of the input data was not evaluated. It might be that
a three dimensional input shape (i.e. not going around the torso spirally but preserving
the arrangement of the electrodes in two dimensions and adding time in a third dimension)
might deliver better results. Adding one dimension goes however hand in hand with an
increase of complexity as the filter kernels are three dimensional (when preserving the size
of the original two dimensional kernel). Nevertheless, this could deliver a better result [89].
Furthermore, long short-term memory (LSTM) networks [130] which treat the temporal
dimension in a special way, could help to improve results.
Third, it was not possible to systematically evaluate the performance of the network on
patient data as the ground truth for the real start and end of the depolarization can hardly be
determined and these data were not available.
Apart from these points, ScaleNet was only designed to deliver results that are useful for the
following LocaNet. Instead of using the whole BSPM beat for the localization of the ectopic
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foci in LocaNet, ScaleNet was introduced to be able to add a-priori knowledge to LocaNet.
The information about the excitation origin is likely located in the QRS complex and the
simulated repolarization wave was not realistic (as mentioned above), so ScaleNet helped
to reduce the information to the depolarization. Hence, the complexity of the task for the
following LocaNets should be reduced, too.
Finally and in spite of all these points, ScaleNet could be rated as a success since the
LocaNets were successfully applied to the problem.

10.6.3 LocaNets

All LocaNets showed median localization errors from 1.5 mm to 2.5 mm on simulated test
data. Against the background of the huge geometrical variations, the achieved errors are
noteworthy and this approach can be rated as a precise localization method. The results could
further lead to the conclusion that the information of the patient geometry is not needed.
Alternatively, the geometry information might be only necessary for the application of the
method to pathological BSPMs as the results on clinical data might indicate. During this
project, it was not possible to finally answer this question.
As already in the case of ScaleNet, the choice of the network architecture, the exact learning
rate strategy and the influence of the input shape were not compared against other approaches.
FuzzyNet303 performed best in the case of simulated signals. This might be related to the
loss function. During the optimization, FuzzyNet303 uses only one kind of categorical cross
entropy. With RegressionNet and FuzzyNet93, however, a combination of mean squared
error and binary cross entropy, respectively a combination of binary and categorical cross
entropy was used. It could be necessary to optimize the weighting of these different loss
terms (mean squared error, cross entropy) which was not done in this project.
The application of the FuzzyNets provided the possibility of visualizing different solutions as
with classical ECG imaging (ECGI)-based methods. Therefore, the ventricular surface was
subdivided into 560 triangles whose 303 vertices were used as classes. The class weights
came from the barycentric coordinates describing the focus in the respective triangle. This
enabled the combination of regression and classification. Nevertheless, it was not proved if
the choice of 303 triangles was optimal for this learning task. Results could improve if the
number of classes (and thus the dimension of the optimization problem) was changed.

10.6.4 Application to Clinical Data

ScaleNet and LocaNets were applied to patient data without any adaption. Hence, the
networks were never trained with a patient signal. Keeping this in mind, the median
localization error of 37 mm to 47 mm is already noteworthy. Considering the top-three
estimated excitation origins with the FuzzyNets, the median errors went down to 26 mm
and 30 mm, repsectively. These errors were achieved without a patient-specific geometry,
any patient-specific adjustments or similar steps that are common when applying ECGI
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for the localization of the excitation origin. Including all this information, the ECGI-based
estimation achieves median localization errors in the range of 5 mm to more than 30 mm [124],
but evaluating only 10 patients. Unfortunately, it is not known which patients were selected.
Even works utilizing CNNs use the patient geometries to evaluate their results on clinical
data [112, 113]. To the best knowledge of the author, this was the first time, a CNN for the
localization of the excitation origin was trained only on simulated data and then directly
applied to patient data.
As shown in Figure 10.13, in some clinical examples, errors could be up to 120 mm. It is not
finally clear, why the networks failed to predict the excitation origin in these cases. Problems
could be related to the prediction of ScaleNet which could not be evaluated on clinical data,
to a design error in the LocaNets, or to a problem with the patient data. A design error of the
LocaNets is however unlikely since they performed well on simulated data, whereas there
was one big issue that was present in the dataset: The BSPM data were already cropped by
clinicians. They usually determine QRS onset and offset and shorten the signal using these
points. This could lead to missing information. Actually, in some cases, ScaleNet detected
the start of the depolarization before the signal started. This might indicate wrong cropping.
Moreover, the data pre-processing could alter the results. As with the simulated data, the
BSPMs of the patient dataset were normalized lead-wise. Thus, noise is amplified. Although
the results on simulated data which were artificially disturbed with measured noise, suggest
that this should not be a problem. Nevertheless, this influence on the results cannot be totally
excluded.
Furthermore, it should be emphasized that the pacemaker electrodes were naturally not
equidistantly distributed over the ventricles but often located in the same region which might
add a bias to the results. Additionally, the pacemaker data were obtained from sick patients,
otherwise they would not have an implanted pacemaker. The possible underlying structural
heart tissue changes (e.g. areas of infarction scar) were not included in the simulations.
These, however, can lead to altered signal morphologies. One possiblity to compensate this
is a further cropping of the signals as e.g. done in [112, 113]. Nevertheless, this means the
reduction of information presented to the network. A better trade-off between these facts
could lead to better results.
Last, the training of the LocaNets was stopped after 48 hours. Although results on simulated
data were in the range of 1 mm to 3 mm, this might be too short to use the networks on
clinical data. It might be that the LocaNets continue learning to better extract the needed
information from noisy input data.

10.7 Outlook

There are a couple of open points arising from these results. The most promising will be
listed here to give a roadmap for further steps. They are mainly related to the identification
of the reasons for the errors during the application to clinical data. One possible problem
can be tackled by continuing the training of the single LocaNets. This could lead to further
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improvements in the results. Moreover, another input shape of the BSPMs, e.g. a three-
dimensionally arranged input array, might deliver better results as already shown in [89].
Furthermore, the design of the classes and therefore the learning tasks could be changed: 303
classes on the epicardial and endocardial surface might be too many outputs for a successful
training during the given time. This is substantiated by the fact that RegressionNet with
five outputs showed the most robust results on the clinical dataset. A successive merging of
the 303/91 triangles could lead to better results. An alternative explanation might be that
the models are too overfitted to simulated data. Lower SNR values in the dataset, missing
electrodes, wrongly cropped BSPMs, and further real-world problems could be introduced
into the simulated dataset and therefore into the training.
Last, the training of the networks should be resumed with patient data. It might be that just a
few epochs improve the results dramatically as the networks learn to analyze patient data,
too. A publication of the most important algorithms as in Part IV is planned.





Chapter 11
Conclusion

In this part, a proof of concept study based on one patient geometry motivated the application
of supervised learning strategies to the problem of the localization of the excitation origin
in the ventricles. In a next step, convolutional neural networks (CNNs) were applied to
localize the source in the ventricles based on an extended dataset of simulated body surface
potential maps (BSPMs) extracted from 1.8 million different heart geometries with different
orientations in the torso. The median localization errors on simulated but noisy data were
below 2.5 mm. This approach could be applied to patient data without additional training
on patient data. Although median estimation errors were between 37 mm and 47 mm (top-
three median error 26 mm to 37 mm), the results can be compared with those from ECG
imaging (ECGI)-based methods. Only trained with simulated data, without the use of patient-
specific information, and without any further optimization of the methods to better work
on the clinical signals, these results underline the potential of the method. With additional
optimized network structures, learning (optimization) strategies, and clinical data inputs, the
results are likely to further improve. This yields a generally applicable method being able
to accelerate the ectopic foci localization procedure during a catheter lab intervention and
thereby decrease the intervention time.
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PART IV

OPEN SOURCE PROJECTS





Chapter 12
Introduction to the Topic

It is very common to publish research results in scientific journals or present them at
conferences. This opens the possibility to present the findings to a greater audience.
Nevertheless, especially in the biomedical sector, many studies depend on patient or experi-
mental data and therefore, the results cannot always be reproduced [131]. Furthermore, it
is not uncommon that published studies lack a complete description of the methodology
which hinders a repetition of the study. These two points are usually embraced by the
terms “reproduction crisis” or “replication crisis” [132]. Although it is nearly impossible
to guarantee the reproducibility during data acquisition in a clinical environment, an ade-
quate description of the computational methods is possible. Nevertheless, the danger of
unintentionally leaving out information important for the implementation remains [133].
Publishing the (source) code helps to overcome this issue. Alongside, the code can be
reviewed by the research community and even be evaluated on further data. All these points
are encouraging arguments to publish the source code for the main parts of this thesis in
public repositories, e.g. on github. In this part, two open source projects born out of this
thesis will be presented. The methodology behind this projects was mainly described before
in this or in other articles [134–138]. However, the performance of the published algorithms
will be evaluated. Moreover, the impact and uniqueness of the projects will be described in
this chapter.
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Chapter 13
ECGdeli - ECG Delineation

Algorithms

13.1 Introduction

In recent years, the amount of collected medical data has been increasing significantly. This
phenomenon holds for the electrocardiogram (ECG) as well. The analysis of these signals
is commonly done automatically to avoid time consuming manual work for physicians
and to increase the capacity in the clinics. Moreover, a retrospective review allows for
optimizing diagnosis, treatment, drug development, and the development/validation of new
ECG processing methods as in this work [139–144]. Usually, these automatic approaches
rely on the detection of the wave types (P waves, QRS complexes, and T waves) and their
boundaries in the ECG which is often referred to as ECG delineation. The calculation of
simple but clinically important temporal parameters like QT intervals, RR intervals, etc. as
well as advanced features like slopes, heart rate variability, etc. use the detected points as
input. This was also the case for the methods used in the studies presented in part II.
The algorithms for ECG processing and wave detection were developed and improved during
this and a preceeding [145] project. The step towards reproducible scientific results suggests
publishing these algorithms as the results presented in this thesis depend on these algorithms.
Hence, a toolbox for MATLAB was published under the open source license GPLv3 on
github containing the ECG delineation algorithms. This package is called ECGdeli.
ECGdeli is not the only freely available ECG processing toolbox. Two further implemen-
tations available on PhysioNet are ecg-kit [146] and ecgpuwave [147]. In contrast to these
software packages, ECGdeli offers a highly modular structure and focuses on a concrete
purpose: ECG delineation. File input/output, feature extraction and further post processing is
intentionally skipped or outsourced into other projects to keep the project as lean as possible.
In the following, ECGdeli and its performance will be presented and compared to existing
implementations. The impact of this software package will be explained.
This project was published in [148]. The repository was furthermore published on the open
source platform zenodo [149] and is accessible on github.
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13.2 Performance

ECGdeli contains filtering algorithms and wave delineation algorithms for the QRS complex,
the P wave, and the T wave. Furthermore, a voting algorithm can be used to align the
results for single leads and get a multi-lead delineation result. The performance was rated
using the QT database [120, 150]. The QT database consists of 105 ECG recordings with
two leads each. Beat annotations by clinicians for P waves, QRS complexes and T waves
were extracted from the files with the suffix *.q1c and *.q2c. Detection errors, i.e.
the temporal difference between detection and annotation, were calculated for both leads
separately. Afterwards, for each annotation, the best result (lowest error) was chosen. As the
clinicians had always both leads by hand during annotation, it was not possible to determine
on which lead the physician’s decision was based on. Therefore, this seemed to be the most
objective way to evaluate the results.
The performance of ECGdeli was compared to ecg-kit [146] (version 1.0, Commit c8e3de4
on github) and ecgpuwave [147] (version downloaded on 01/08/2020 from physionet). Ecg-
kit offers different methods for wave delineation. The option wavedet was selected to
obtain the peaks and wave boundaries for P waves, QRS complexes, and T waves. It should
be emphasized that the exact same way of calculating the errors was applied for all methods.
For comparison, mean (absolute) errors, their standard deviation and median errors and the
interquartile ranges of the errors were determined. The scripts for error calculation were
published in a CodeOcean project (doi 10.24433/CO.9115981.v1) to allow the reproduction
of the results and evaluation code review.
Table 13.1 shows the results of this evaluation. Errors of all approaches are in a comparable
range. Dependent on the statistical measure, one method outperforms another. No consistent
trend was visible. For T waves, ECGdeli performs better regarding the interquartile range
and most of the other measures, but for QRS complexes, the other methods outperform
ECGdeli. A first assumption that ECGdeli might deliver better results when less annotations
are considered could not be confirmed. When considering only the points found by all three
methods, results do not change a lot (Table A.2). Nevertheless, the errors of ECGdeli might
also be related to the missing detection of biphasic and M-shaped P and T waves. ECGdeli
always detects a monophasic P and T waves. This classification could be performed in a post
processing step and further improve results.

13.3 Impact

Publishing the ECG delineation algorithms in the open source package ECGdeli meets
several needs. First, several published studies used the algorithms in the current or slightly
different form [134–138]. Furthermore, ECGdeli was used in this work to find the wave
boundaries important for template generation and single lead processing. Releasing the
algorithms, is an important step towards reproducibility of the studies presented here.
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Second, ECGdeli can now be used as a method for comparing new or closed source al-
gorithms. This can always be done even without an open source package by calculating
the errors on standard databases like the QT database and comparing them to given values
in the respective publications, e.g. from [151, 152]. However, slight differences in error
calculation can influence the results making them in practice hardly comparable. Moreover,
standard databases might be biased not representing pathologies that could be relevant for a
desired application and should be considered for an evaluation, too. This is why releasing
the benchmark algorithms is surely a crucial step towards better comparability. Alternatively,
at least the methods for calculating the errors can be released. Both was done with ECGdeli.
Finally, the simple and modular structure of ECGdeli promotes a possible incorporation of
the algorithms into existing projects. This is admitted by releasing the code under the GNU
Public Licence (GPLv3) allowing adaption, modification and redistribution as long as the
code is shared again.
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Table 13.1: Detection errors of ECGdeli, ecg-kit and ecgpuwave compared to manual expert annota-
tions in samples as well as number of detected points/available annotations. The number of detected
points refers to the number of waves that were also annotated, so it can be maximum the number
of annotations. med: median, iqr: half interquartile range, m: mean, std: standard deviation, signed:
signed errors, abs: absolute errors.

P Onset P Peak P Offset
med±iqr ECGdeli 2.00±3.00 1.00±2.00 3.00±4.00
m±std abs ECGdeli 3.87±6.14 2.46±5.70 4.17±6.38
m±std signed ECGdeli -1.51±7.10 0.65±6.18 2.26±7.27
med±iqr ecg-kit 2.00±4.00 1.00±2.00 2.00±3.00
m±std abs ecg-kit 3.33±6.66 2.71±6.57 3.30±5.64
m±std signed ecg-kit -1.10±7.36 -1.17±7.01 -2.18±6.15
med±iqr ecgpuwave 3.00±5.00 2.00±2.00 2.00±4.00
m±std abs ecgpuwave 4.52±6.05 2.96±4.62 3.89±4.91
m±std signed ecgpuwave 3.33±6.78 -0.24±5.48 -1.23±6.14
detected points ECGdeli 3194 3194 3194
detected points ecg-kit 3096 3096 3096
detected points ecgpuwave 2127 2127 2127
number of clinical annotations 3194 3194 3194

QRS Onset QRS Peak QRS Offset
med±iqr ECGdeli 2.00±4.00 1.00±1.00 3.00±4.00
m±std abs ECGdeli 4.01±8.50 2.46±8.46 4.39±8.53
m±std signed ECGdeli -1.31±9.30 -0.60±8.79 2.19±9.34
med±iqr ecg-kit 1.00±4.00 2.00±2.00 1.00±3.00
m±std abs ecg-kit 1.66±2.14 3.36±4.37 1.91±2.40
m±std signed ecg-kit 0.54±2.65 -3.13±4.54 -0.46±3.04
med±iqr ecgpuwave 2.00±4.00 3.00±2.00 2.00±3.00
m±std abs ecgpuwave 3.46±3.55 3.54±4.32 3.51±5.48
m±std signed ecgpuwave -1.61±4.69 -1.71±5.31 -0.38±6.49
detected points ECGdeli 4019 4019 4019
detected points ecg-kit 4019 4013 4018
detected points ecgpuwave 4018 4019 4017
number of clinical annotations 4019 4019 4019

T Onset T Peak T Offset
med±iqr ECGdeli 5.00±9.00 2.00±3.00 3.00±7.00
m±std abs ECGdeli 8.86±9.98 6.24±12.29 7.18±11.24
m±std signed ECGdeli -3.65±12.84 -0.72±13.76 -1.92±13.20
med±iqr ecg-kit 5.00±14.00 1.00±14.00 3.00±11.00
m±std abs ecg-kit 9.82±13.43 4.62±12.24 6.67±14.38
m±std signed ecg-kit -1.11±16.60 -2.18±12.90 -2.81±15.60
med±iqr ecgpuwave 8.00±14.00 2.00±14.00 6.00±11.00
m±std abs ecgpuwave 13.10±13.98 10.50±17.66 11.57±16.56
m±std signed ecgpuwave 9.96±16.37 7.51±19.12 3.86±19.84
detected points ECGdeli 1414 3936 3936
detected points ecg-kit 1332 3801 3812
detected points ecgpuwave 1315 3865 3864
number of clinical annotations 1414 3936 3936



Chapter 14
ECGfeat - ECG Feature Extraction

Algorithms

14.1 Introduction

As already stated in Chapter 13, the automatic analysis of the electrocardiogram (ECG)
is crucial for tackling the problem of analyzing the increasing amount of available health
data. Next to ECG delinetion, ECG feature extraction is the base of many ECG processing
studies. These can comprise the classification of ventricular extra beats [73], the estimation
of the potassium concentration [56, 57], the assessment of mental workload [153], and
many more topics. However, underlying feature extraction algorithms are commonly neither
published nor evaluated regarding their robustness. To allow the adaption of the algorithms
to similar problems, both a transparent description and an evaluation of the robustness are
crucial. This is why the feature extraction algorithms used in this work were evaluated
similarly to Section 5.2.1 regarding their robustness against noise and published online on
github under the GPLv3 license. This allows a reproduction of the results presented in
this work as well as benchmarking new algorithms with the proposed published evaluation
strategy and data. Furthermore, the proposed methods can be adapted to new problems. In
addition to all mentioned advantages, a possibly missing description of important details in
the implementation is intrinsically excluded.
In the following, the contents of the github repository will be explained. Moreover, the impact
of this repository is reviewed. The methodological description of the feature calculation will
be skipped as this was already done in Section 5.2.1.
Besides the algorithms presented here, further feature extraction techniques were added to
the repository described and presented in [145]. They were not benchmarked regarding their
robustness, neither in this nor in a preceding work.
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14.2 Contents

The repository contains a function for artifact detection artifact_detection.m, a
function for ECG beat template generation template_generation.m and a feature
extraction algorithm feature_extraction.m calculating the features presented in
Section 5.2.1. Furthermore, two examples are included: first, the source code from the
evaluation presented in the next section. Second, an example with a clinical signal from the
PTB database [93, 120] showing one possible workflow using ECGdeli and ECGfeat.
The following features can be calculated:

F1 first statistical moment of the T wave distribution
F2 second statistical moment of the T wave distribution
F3 third statistical moment of the T wave distribution
F4 fourth statistical moment of the T wave distribution
F5 RT distance (R peak to T peak)
F6 RT mid distance - in the case of biphasic waves
F7 peakedness of the T wave
F8 T wave amplitude
F9 slope of the ascending part of the T wave

F10 slope of the descending part of the T wave
F11 ratio of first half T wave energy and whole T wave energy
F12 ratio of second half T wave energy and whole T wave energy
F13 R peak amplitude
F14 R peak energy
F15 ratio R peak energy and R peak amplitude
F16 ST segment change (elevation or depression)
F17 flag for biphasic T waves (0: monophasic, 1: biphasic)
F18 R peak area under curve

In the following, the abbreviations F1-F18 will be used. The repository is available under
https://github.com/KIT-IBT/ECGfeat.

14.3 Pre-processing Recommendation and
Robustness Evaluation

The simulated noise-free 12-lead ECG signals introduced in Section 5.2.1 were filtered with
a phase-free Butterworth filter of fourth order (available in ECGdeli) with different cut-off
frequencies for high-pass (0.05 Hz to 0.5 Hz) and low-pass (20 Hz to 250 Hz). By doing so,
recommendations for the pre-processing could be determined as described in the following:
All features were calculated on the filtered noise-free signals and the unfiltered noise-free
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signals without any averaging of the single beats. If the filtering does not influence feature
extraction, these two feature value sets must be equal, so the relative deviation of both should
be minimal. Hence, the maximum mean absolute deviation of the two feature sets among all
leads was calculated to find the “worst case lead”. Deviations were normalized to the feature
value from the unfiltered dataset. This is formulated in the following equation

devi = max
l

1
N

N

∑
n=1

|( fi,l, f ilt(n)− fi,l,un f ilt(n))|
fi,l,un f ilt(n)

, (14.1)

where devi is the deviation for feature i, l is a specific lead, N is the number of signals,
fi,l,un f ilt / fi,l, f ilt is the feature value of i in l from the unfiltered/filtered ECG signal. The
lowest (low-pass) or highest (high-pass) frequency with a maximum devi of 5% devi,5% was
selected as the respective filter bound. As F17 is the result of a binary classification, devi was
replaced by the minimum of the accuracy which determines a change of the classification
result.
As expected, cut-off frequencies for features calculated from the QRS complex (F13-15,
F18) showed higher cut-off frequencies for both filters (Table 14.1) as the spectrum of the
QRS complex is located at higher frequencies [154].

Table 14.1: Recommendations for the cutoff frequencies (cf) of a low-pass (LP) and high-pass (HP) filter.
Furthermore, devi,5%is given for each feature and filter type in percent. For F17, the accuracy (Acc) is
given in percent.

F1 F2 F3 F4 F5 F6 F7 F8 F9
LP cf 20 40 40 40 20 20 40 40 40
LP devi,5% 3.81 0.37 0.45 0.52 1.68 1.87 0.75 2.18 0.76
HP cf 0.05 0.10 0.10 0.10 0.05 0.05 0.10 0.10 0.10
HP devi,5% 3.81 0.37 0.45 0.52 1.68 1.87 0.75 2.18 0.76

F10 F11 F12 F13 F14 F15 F16 F17 F18
LP cf 40 40 60 70 50 60 40 40 50
LP devi,5%/Acc 0.74 0.61 3.22 4.12 3.76 4.37 1.41 1.00 3.04
HP cf 0.10 0.10 0.30 0.40 0.20 0.30 0.10 0.05 0.20
HP devi,5%/Acc 0.74 0.61 3.22 4.12 3.76 4.37 1.41 1.00 3.04

For the assessment of the robustness, noisy ECG signals were generated by adding white
Gaussian noise to the noise-free simulated ECGs used before obtaining a signal to noise ratio
(SNR) of 10 dB, 20 dB, or 30 dB. This was repeated 50 times per SNR introducing different
realizations of the noise. Features were extracted from the noisy signals after filtering with
the filter boundaries from Table 14.1. Normalized deviations of feature values of the noisy
filtered fi,l,noisy from the unfiltered signal were calculated using

devi,l(n) =
|( fi,l,noisy(n)− fi,l,un f ilt(n))|

fi,l,un f ilt(n)
. (14.2)

Medians and interquartile ranges of all n = 1, ...,N deviations were evaluated considering all
leads l. As Table 14.2 shows, the error change from 10 dB to 20 dB is larger than from 20 dB
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to 30 dB for almost every feature. This suggests that the user should aim at achieving an SNR
of at least 20 dB for better results. Although the slope features (F9-F10) were designed to
deliver higher robustness through the polynomial fit (Section 5.2.1), the deviations (regarding
the interquantile range which considers 50% of the deviation values around the median)
could be still as high as 22.9% to 38.3% for 30 dB. It should be emphasized that this error
can be reduced dramatically by averaging over the feature values from the 50 noisy ECGs.
For F9, for example, an error of 1.1%±1.2% could be achieved. As expected, the robustness
increases for a repeated measurement and should therefore be implemented. Besides feature
averaging, other techniques to increase the SNR, e.g. beat averaging or lead reduction, can
increase the robustness as well (Section 5.2.1).

Table 14.2: Relative errors in percent between the features from the noisy filtered signals and the
features from the noise-free unfiltered signals over all realizations. The binary F17 was evaluated by
calculating the accuracy in percent. Values are given as median±half interquartile range.

F1 F2 F3 F4 F5 F6
10dB 4.7±3.5 7.7±5.4 11.1±7.7 15.4±11.3 11.9±7.2 11.8±7.1
20dB 4.0±3.1 6.1±4.2 8.2±5.5 10.0±6.7 11.8±7.1 11.7±7.1
30dB 3.9±3.1 6.0±4.2 8.1±5.4 9.9±6.5 11.8±7.1 11.7±7.1

F7 F8 F9 F10 F11 F12
10dB 13.6±8.8 10.4±7.4 28.8±19.4 17.8±14.1 11.4±8.0 52.7±64.6
20dB 10.2±6.5 8.4±6.3 23.6±16.5 12.6±11.3 9.3±6.3 34.7±44.5
30dB 9.6±6.2 8.3±6.2 22.5±15.8 11.9±11.0 9.1±6.2 33.0±42.9

F13 F14 F15 F16 F17 F18
10dB 4.5±2.9 7.8±5.8 5.4±4.9 23.6±18.1 1.0±0.0 19.2±14.1
20dB 4.0±2.6 7.0±5.4 4.8±4.7 18.4±15.9 1.0±0.0 16.0±12.5
30dB 3.9±2.6 6.9±5.3 4.8±4.7 17.8±15.8 1.0±0.0 15.2±11.9

14.4 Impact

Known to the author, this is the first morphological ECG feature extraction toolbox evaluated
regarding its robustness and providing recommendations for the application of bandpass
filtering. Furthermore, it seems to be the first toolbox written in MATLAB for morphological
ECG feature extraction available on github. The provided results inherently and transparently
reveal the benefits and shortcomings of the approaches. This is particularly important if other
algorithms depend on the results of the feature extraction. In these situations, an unexpected
result can be traced back to errors during feature extraction. The evaluation method and the
simulated ECG signals are provided in the repository enabling the repetition of the study.
Furthermore and for the first time, a comparison of different methods for feature extraction is
possible (as done in Section 5.2.1) using the published performance assessment algorithms.
Moreover, this can be used as a test environment to assess changes in the methodology and
reject them if they deliver worse results.
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Publishing the presented feature extraction algorithms under the GPLv3 license on github
enables the use, adaption and improvement of the algorithms by the community. Furthermore,
a step towards reproducible scientific results from this and recent works [145] is taken.





Chapter 15
ECGconc - ECG Concentration

Estimation Algorithms

15.1 Introduction

In a final open source project, the proposed concentration estimation algorithms were
uploaded to a github repository. Although the underlying electrocardiogram (ECG) data
could not be uploaded to the repository, a final global estimation model fitted on all patients
could. This embraces all necessary sources and variables to apply the model. Furthermore,
all sources used to parameterize the model were added to the repository. As the algorithms
were extensively described in Chapter 6, the description will be skipped here. The source
code in the repository is published under the GPLv3 license.

15.2 Contents

All scripts necessary to follow the workflow from ECG recordings to estimated concentration
values were published in the ECGconc repository. In a first step, ECG templates were built
and features were calculated in the script Prepare_Data.m: ECGdeli was applied to
the signals to find P waves, QRS complexes and T wave positions in the signal. After-
wards, the signal was split into four minute segments around predefined evaluation points.
These segments were further analyzed with the function Artifact_Detection.m

to find artifacts in the signal that were omitted during template generation
(Create_Templates_Class.m). For each lead, an ECG template was generated. The
lead templates were subsequently reduced to one lead using maximum amplitude transform
(Lead_Transform.m). The resulting single lead template was analyzed with ECGfeat
and results were saved. In a second step, the parameterized concentration model could
be applied (Apply_Conc_Model.m) to the found features. The user should keep in
mind that the model still needs concentration measurements from a blood test to apply the
patient-specific correction.
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Apart from this workflow for the application of the global model, the code for the generation
of the patient-specific Find_Conc_Model_Pat.m and the global model
Find_Conc_Model_Global.m was also added to the repository. The repository is
available under https://github.com/KIT-IBT/ECGconc.

15.3 Impact

For the first time, an ion concentration estimation pipeline was published under an open
source license. ECGconc contains all information to apply both presented approaches from
Chapter 6. The step of publishing the results is mainly owing to a conclusion from [60]:
All existing published approaches for concentration estimation (see Table 4.1 in Chapter 4)
rely on non-public datasets. Thus, an exact comparison between the approaches is hardly
possible. By releasing ECGconc under GPLv3 license, the burden of an application by data
holders has now been lowered significantly. The existing approaches in ECGconc can simply
be applied and no implementation work has to be done. If this happens, the methods from
this work developed on the dataset coming from the University of Bologna could be applied
to totally new data which could confirm or disprove the effectiveness of the proposed method.
Depending on the dataset, a further effect might be that the algorithms could be applied to
data by patient groups other than hemodialysis patients. This is extremely important for
a further evaluation since it is not clear if the features useful in dialysis patients also fit to
patients from other groups (Section 6.5). Moreover, the performance of new and existing
approaches could be compared to ECGconc. This might also strengthen collaboration
between the relatively small community doing research on concentration estimation from
the ECG. Last, the release of this approach could encourage others to follow the example of
ECGconc making the approaches publicly accessible.
As already ECGdeli and ECGfeat, ECGconc and the chosen license GPLv3 allows the
adaption and improvement of the approaches in future work. On the long run, this might
help to bring ECG-based concentration estimation into clinical practice.



Chapter 16
Summary and Conclusion

Using source code from the studies presented in this thesis, three repositories could be
published on github providing all details on the essential algorithms necessary for calculating
the results. The first project is ECGdeli, containing all the electrocardiogram (ECG) filtering
and delineation algorithms used in this work. As other open source delineation projects
existed, they were compared to the presented one. It could be proven that ECGdeli at its
current state delivers comparable results to the existing methods although there was no
rejection criterion for leaving out single waves. This could further improve the results. The
ECGdeli project was previously released and shows already 94 views of the repository and
7 clones in two weeks (11/23/2020 to 12/06/2020). This underlines the acceptance of the
project.
The follow-up project ECGfeat includes morphological feature extraction algorithms com-
patible with the simple data structure introduced with ECGdeli. Algorithms are transparently
assessed regarding their robustness against noise. Furthermore, recommendations for an
adequate bandpass filtering not disturbing the feature values is given. These two points
characterize this project as unique. Moreover, to the best knowledge of the author, this is the
first toolbox for morphological feature extraction written in MATLAB available on github.
Finally, the algorithms in the repository ECGconc include the algorithms of the proposed
potassium concentration estimation method. This is the first time, the source code for the
whole concentration estimation pipeline was published as open source project.
By publishing the algorithms on github under the open source license GPLv3, the test of
the reproducibility of the results presented in this thesis is facilitated. Furthermore, the
algorithms can be reviewed, adapted to new problems, and used as basis for follow-up studies
or as benchmark for comparison.
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FINAL REMARKS





Chapter 17
Conclusion

In this thesis, two major studies were presented. In both, simulated electrocardiogram (ECG)
signals helped to develop methods applicable to patient data. These optimized methods
enabled the extraction of the following health information from the ECG: blood potassium
concentration ([K+]b) and the position of an ectopic focus in the ventricles. The underlying
algorithms were discussed and compared to existing approaches in detail in Parts II and III.
In the following, a top-level view on the projects will be given with respect to the general
aims of this thesis which were to support and accelerate making diagnoses to improve the
patient outcome by using knowledge from data and simulations.
In the first presented project, a quick and reliable quantification of dyskalemia was desired
for preventing cardiovascular events that are connected to pathological [K+]b [60]. It was
shown how simulations can help to detect possible problems that need to be considered
during method development. These findings were subsequently incorporated into improved
signal processing methods. Two workflows for [K+]b concentration estimation, involving
the optimized algorithms and for the first time published as open source projects, were
developed achieving results as good as or better than proposals from literature. For the first
time, the distribution of concentrations in the dataset was considered allowing an unbiased
view on the results. With these powerful ECG-based algorithms for a quick non-invasive
[K+]b concentration estimation, the secondary prevention of cardiovascular events can be
facilitated.
The automatic localization of ectopic foci with the ECG can help to decrease the intervention
time by supporting the cardiologist in finding ectopic foci in the ventricles that need to be
ablated. Again, ECG simulations were utilized. The presented deep learning approach was
trained only with simulated data and successfully applied to patient data. This approach
allows not only to localize the position of the ectopic focus but also to visualize localization
uncertainties of the algorithm which can be highly beneficial during an intervention in the
catheter lab.
In conclusion, ECG simulations paired with ECG signal processing can be utilized to
deliver diagnosis support. Especially when using simple techniques for parameter estimation
like linear regression, patient-specific variations cannot be compensated easily. Under the
constraint in biomedical engineering of a large inter-patient variation and the lack of data, the

133



134 Chapter 17. Conclusion

solution must be the application of a patient-specific approach. Alternatively, as shown in the
second project, the generation of a simulated dataset containing millions of data representing
a large variety of patients and the application of a complex estimation method can help to
account for the large inter-patient variations which makes the method appropriate for the use
with patient data.



Chapter 18
Ideas for Future Projects

In this final chapter of this thesis, ideas for future projects will be collected reflecting the
findings from this thesis. Moreover, further topics being part of my research will be discussed
using results not presented in this thesis.

18.1 Machine Learning and ECG Signal
Processing

Especially convolutional neural networks (CNNs) are becoming more and more popular in
electrocardiogram (ECG) processing, e.g. for arrhythmia classification [155], dyskalemia
classification [107] or the detection of myocardial infarction[156]. The obtained results
often outperform classical approaches. Instead of directly exploiting this technique for a
classification task, CNNs could be used for the correction of patient-specific influences on
the signal by finding patient specific correction values straight from the ECG. As shown
in Chapter 10, the CNN should be able to compensate for the influences of different heart
geometries, orientations, conduction velocities, fiber orientations etc. since results were
good on the test dataset with other realizations of all these parameters. If this compensation
could be used directly, a standardized ECG could be constructed and subsequently used with
traditional methods. This could be for example the global concentration estimation technique
presented in Chapter 6. Alternatively, a feature correction or an unbiased feature extraction
could be imaginable with CNNs. In contrast to the meta features extracted by a CNN during
training before the fully connected layer, this should of course comprise features that can be
understood by humans.
This last point is closely connected with the problem of explainable artificial intelligence.
Especially in the medical sector, the problem of not knowing the influences on the result of a
CNN is severe. Robustness of the algorithms is an important point since. This is why there
have been studies within this work together with Maike Rees and Steffen Schuler regarding
the explainability of the algorithms presented in Part III. The question about the importance
of certain parts of the ECG signal for the CNN to solve a specific task arose. With the help
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Figure 18.1: Importance map (saliency map [157]) of the body surface potential map. Temporal pro-
gression is visualized row-wise (n is the time step) and continued column-wise. The single pictures
consist of two halves: torso front (left) and torso back (right). The right half of the picture was flipped
to guarantee a continuous transition from front to back. Higher value represent higher importance.

of explainability algorithms, it was possible to start investigating on the importance of single
electrodes for single tasks. This was exemplary done for a CNN classifying whether the
activation started from the right or left ventricle (Figure 18.1). Electrodes on the torso front
seem to be more important than on the back. Furthermore a diagonal “double-belt” (e.g. in
timestep 16) is visible. This might be connected to the asymmetric location of the ventricles
in the torso (the right ventricle partially covers the left in the anterior view). If the CNN
wants to “see” also the left ventricle, it has to “look” from the electrodes labeled in red.
Those are suspected to be the ones, for which the left ventricle is not covered by the right
and are at the same time near the heart.
The explainability approaches could also be used to solve further problems regarding ECG
signal processing, e.g. to determine the optimal number of leads and their placement on the
torso for a specific task. This was already investigated with simulations for an optimal detec-
tion of myocardial ischemia [158]. However, a data-driven approach could be imaginable
and beneficial for clinical acceptance.
In general, CNNs could be utilized to directly solve tasks that need several steps. One
example apart from the localization of ectopic foci could be the estimation of activation
times of the heart. A visualization of the direction of the excitation spread might deliver
further information about the electrical activity of the heart. Most importantly but also most
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challenging, an adequate underlying dataset showing the variations that need to be detected
is the basis for a successful training of a CNN. Such a dataset could be generated with
simulations following the results from Part III. Another possible application could be the
determination of flutter mechanisms from P waves as done in the supervised work by Moritz
Lindner [159]. Instead using recurrence plot analysis as in [127], the application of a CNN
on the signals delivered first encouraging results. Nevertheless, the question remains open
how flutter mechanisms can be grouped and if the classes introduced in [127] are optimal for
this task.

18.2 Intracardiac Signal Processing

The measurement of signals from the atrial endocardium with a dedicated catheter is a
common practice. During these diagnostic treatments, a multilead measurement of the
excitation of the cardiac tissue can be performed. The interpretation of the signals which
can usually be as many as 64 at a time is hard and the cardiologist needs experience and
technical assistance. This is why intracardiac signal processing is one research topic at the
Institute of Biomedical Engineering. During this PhD project, several projects related to
intracardiac signal processing were started. As they were not described in this thesis, they
will be mentioned here summarizing the ideas and possible follow-up projects.
The adequate pre-processing of intracardiac signals leaves space for improvement. Advanced
techniques, like the proposed 3D Gaussian filter for the spatio-temporal filtering of opti-
cal mapping signals presented in [160] or the patented algorithm for ventricular far field
compensation [161], could be applied. Furthermore, as shown in Chapter 14, the optimal
filtering strongly depends on the used algorithms. A determination of filter parameters for
the common algorithms applied in intracardiac signal processing seems to be relevant and
could improve the obtained results.
The phase (angle) is a mathematical description of a periodic event. As certain atrial
arrhythmias are characterized by periodic processes, the calculation of the phase is a standard
technique to describe these recurrent processes. Different methods have been proposed, e.g.
in [162, 163]. However, their robustness was never evaluated. In a study with Simon Süß, it
was shown that most of the proposed methods do not deliver robust results when introducing
small jitters in the periodicity, noise, and amplitude changes of the analyzed signals [164].
The calculation of a pseudo phase based on the maxima in the signal delivered the most
robust results. The findings underline that the calculation of phase angles is inappropriate for
the analysis of these periodic events since they usually show jitters, noise, etc. Similar studies
regarding other standard processing techniques could be designed. This holds especially for
local activation time detection which is the base of many follow-up steps in an intracardiac
signal processing pipeline.
One example for the use of local activation times is the calculation of the conduction velocity
on the atrial tissue. Typically, the proposed methods rely on the local activation times
determined with a preceeding algorithm. Regarding this, two projects together with Laura
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Unger, Claudia Nagel and Jeanne Koch were completed. It was shown that most of the
existing conduction velocity estimation methods inherently cannot deal with either wrongly
annotated local activation times or local changes in conduction velocity [165]. This is
why a-priori knowledge needs to be introduced and as expected, results in better velocity
estimations [165, 166]. Analyzing the raw intracardiac electrogram signals, this knowledge
can be presented and considered in the algorithms. Instead of only relying on precalculated
local activation times [167], it was shown how to use the intracardiac signals to sort out
inadequate local activation time estimates and consequently improve conduction velocity
estimations. Nevertheless, further tissue properties like fibrosis, lines of block etc. need
to be detected to further enhance conduction velocity estimation. Especially fibrosis is
characterized by fractionated, i.e. chaotic, signal courses and a pathological conduction
velocity. This complicates local activation time determination as there is no consistent
definition of an activation time in these cases. This usually results in inconsistent activation
times. The use of measures for describing the signal “complexity”, e.g. entropy measures,
could help to introduce the needed a-priory knowledge to the conduction velocity estimation
algorithm. These algorithms were utilized in the student research project of Rafi Beinhorn,
in [168], and in [169]. The last step could be the incorporation of the conduction velocity
estimation results into the virtual reality environment proposed in [170] for an appealing
visualization.
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A.1 Himeno et al. Whole Heart Simulations

TableA.1: List of the performed simulationswith theHimeno et al. model. The ID is an internal identifier
for the respective simulation.

ID [K+]o [Ca2+]o [Na+]o ID [K+]o [Ca2+]o [Na+]o
1 4.5 1.0 140 425 5.5 2.2 140
2 4.5 1.4 140 426 5.5 2.6 140
3 4.5 1.8 140 427 5.5 3.0 140
4 4.5 2.2 140 428 6.7 0.6 140
5 4.5 2.6 140 429 6.7 1.0 140
6 4.5 3.0 140 430 6.7 1.4 140
7 4.5 0.6 140 431 6.7 1.8 140
8 4.5 0.7 140 432 6.7 2.2 140
9 4.5 0.8 140 433 6.7 2.6 140
10 4.5 0.9 140 434 6.7 3.0 140
11 4.5 1.1 140 506 4.2 0.8 140
12 4.5 1.2 140 507 4.2 1.2 140
13 4.5 1.3 140 508 4.2 1.6 140
14 4.5 1.5 140 509 4.2 2.0 140
15 4.5 1.6 140 510 4.2 2.4 140
16 4.5 1.7 140 511 4.2 2.8 140
17 4.5 1.9 140 512 5.1 0.8 140
18 4.5 2.0 140 513 5.1 1.2 140
19 4.5 2.1 140 514 5.1 1.6 140
20 4.5 2.3 140 515 5.1 2.0 140
22 4.5 2.5 140 516 5.1 2.4 140
23 4.5 2.7 140 517 5.1 2.8 140
24 4.5 2.8 140 518 5.4 0.8 140
407 3.8 0.6 140 519 5.4 1.2 140
408 3.8 1.0 140 520 5.4 1.6 140
409 3.8 1.4 140 521 5.4 2.0 140
410 3.8 1.8 140 522 5.4 2.4 140
411 3.8 2.2 140 523 5.4 2.8 140
412 3.8 2.6 140 524 6.1 0.8 140
413 3.8 3.0 140 525 6.1 1.2 140
414 4.7 0.6 140 526 6.1 1.6 140
415 4.7 1.0 140 527 6.1 2.0 140
416 4.7 1.4 140 528 6.1 2.4 140
417 4.7 1.8 140 529 6.1 2.8 140
418 4.7 2.2 140 530 7.3 0.8 140
419 4.7 2.6 140 531 7.3 1.2 140
420 4.7 3.0 140 532 7.3 1.6 140
421 5.5 0.6 140 533 7.3 2.0 140
422 5.5 1.0 140 534 7.3 2.4 140
423 5.5 1.4 140 535 7.3 2.8 140
424 5.5 1.8 140
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A.2 Influence of Filtering on Feature Extraction
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Figure A.1: Relative errors of T wave feature extraction algorithms for selected low-pass cut-off fre-
quencies for a signal to noise ratio (SNR) of 0 dB. The algorithms were applied on the noisy filtered
data and compared with the features extracted from the unfiltered noise-free data. The lines represent
the median values of the relative errors, the bars visualize the interquartile ranges. HP: high-pass, LP:
low-pass; all values on the x-axis are cut-off frequencies in Hz. The red dashed lines mark errors of
±5%.
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Figure A.2: Relative errors of T wave feature extraction algorithms for selected high-pass cut-off fre-
quencies for an signal to noise ratio (SNR) of 0 dB. The algorithms were applied on the noisy filtered
data and compared with the features extracted from the unfiltered noise-free data. The lines represent
the median values of the relative errors, the bars visualize the interquartile ranges. HP: high-pass, LP:
low-pass; all values on the x-axis are cut-off frequencies in Hz. The red dashed lines mark errors of
±5%.
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Figure A.3: Relative errors of T wave feature extraction algorithms for selected low-pass cut-off fre-
quencies for an signal to noise ratio (SNR) of 3 dB. The algorithms were applied on the noisy filtered
data and compared with the features extracted from the unfiltered noise-free data. The lines represent
the median values of the relative errors, the bars visualize the interquartile ranges. HP: high-pass, LP:
low-pass; all values on the x-axis are cut-off frequencies in Hz. The red dashed lines mark errors of
±5%.
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Figure A.4: Relative errors of T wave feature extraction algorithms for selected high-pass cut-off fre-
quencies for an signal to noise ratio (SNR) of 3 dB. The algorithms were applied on the noisy filtered
data and compared with the features extracted from the unfiltered noise-free data. The lines represent
the median values of the relative errors, the bars visualize the interquartile ranges. HP: high-pass, LP:
low-pass; all values on the x-axis are cut-off frequencies in Hz. The red dashed lines mark errors of
±5%.
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Figure A.5: Relative errors of T wave feature extraction algorithms for selected low-pass cut-off fre-
quencies for an signal to noise ratio (SNR) of 10 dB. The algorithms were applied on the noisy filtered
data and compared with the features extracted from the unfiltered noise-free data. The lines represent
the median values of the relative errors, the bars visualize the interquartile ranges. HP: high-pass, LP:
low-pass; all values on the x-axis are cut-off frequencies in Hz. The red dashed lines mark errors of
±5%.
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Figure A.6: Relative errors of T wave feature extraction algorithms for selected high-pass cut-off fre-
quencies for an signal to noise ratio (SNR) of 10 dB. The algorithms were applied on the noisy filtered
data and compared with the features extracted from the unfiltered noise-free data. The lines represent
the median values of the relative errors, the bars visualize the interquartile ranges. HP: high-pass, LP:
low-pass; all values on the x-axis are cut-off frequencies in Hz. The red dashed lines mark errors of
±5%.
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Figure A.7: Relative errors of T wave feature extraction algorithms for selected low-pass cut-off fre-
quencies for an signal to noise ratio (SNR) of 30 dB. The algorithms were applied on the noisy filtered
data and compared with the features extracted from the unfiltered noise-free data. The lines represent
the median values of the relative errors, the bars visualize the interquartile ranges. HP: high-pass, LP:
low-pass; all values on the x-axis are cut-off frequencies in Hz. The red dashed lines mark errors of
±5%.
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Figure A.8: Relative errors of T wave feature extraction algorithms for selected high-pass cut-off fre-
quencies for an signal to noise ratio (SNR) of 30 dB. The algorithms were applied on the noisy filtered
data and compared with the features extracted from the unfiltered noise-free data. The lines represent
the median values of the relative errors, the bars visualize the interquartile ranges. HP: high-pass, LP:
low-pass; all values on the x-axis are cut-off frequencies in Hz. The red dashed lines mark errors of
±5%.
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A.3 Influence of Patient Geometry
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Figure A.9: Feature changes dependent on γpitch for the three geometries for the default concentration
of the Himeno et al. model.
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Figure A.10: Feature changes dependent on γyaw for the three geometries for the default concentration
of the Himeno et al. model.
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A.4 ECGdeli - ECG Delineation Algorithms

Table A.2: Detection errors of ECGdeli, ecg-kit and ecgpuwave compared to manual expert annota-
tions in samples for those annotations that were found by all three methods. The number of detected
points refers to the number of waves that were also annotated, so it can be maximum the number of
annotations. med: median, iqr: interquartile range, m: mean, std: standard deviation, signed: signed
errors, abs: absolute errors.

P Onset P Peak P Offset
med±iqr ECGdeli 2.00±3.00 1.00±2.00 3.00±3.00
m±std abs ECGdeli 3.61±6.08 2.18±5.45 3.75±6.21
m±std signed ECGdeli -1.54±6.90 0.65±5.83 2.21±6.91
med±iqr ECGKit 2.00±4.00 1.00±2.00 2.00±3.00
m±std abs ECGKit 2.91±4.99 2.43±4.83 2.96±3.66
m±std signed ECGKit -1.10±5.68 -1.09±5.30 -2.13±4.20
med±iqr ecgpu 3.00±4.00 2.00±2.00 2.00±3.00
m±std abs ecgpu 4.26±5.22 2.74±3.90 3.75±4.63
m±std signed ecgpu 3.05±6.00 -0.50±4.75 -1.39±5.80
Analyzed annotations 2096 2096 2096

QRS Onset QRS Peak QRS Offset
med±iqr ECGdeli 2.00±4.00 1.00±1.00 3.00±4.00
m±std abs ECGdeli 3.96±7.99 2.46±8.46 4.35±8.13
m±std signed ECGdeli -1.36±8.81 -0.60±8.79 2.15±8.97
med±iqr ECGKit 1.00±4.00 2.00±2.00 1.00±3.00
m±std abs ECGKit 1.66±2.14 3.36±4.37 1.91±2.40
m±std signed ECGKit 0.54±2.65 -3.13±4.54 -0.46±3.04
med±iqr ecgpu 2.00±4.00 3.00±2.00 2.00±3.00
m±std abs ecgpu 3.46±3.55 3.54±4.32 3.50±5.47
m±std signed ecgpu -1.61±4.69 -1.72±5.32 -0.38±6.48
Analyzed annotations 4018 4013 4016

T Onset T Peak T Offset
med±iqr ECGdeli 5.00±9.00 2.00±3.00 3.00±6.00
m±std abs ECGdeli 8.36±9.17 5.78±11.80 6.79±10.84
m±std signed ECGdeli -2.97±12.05 -0.19±13.14 -1.47±12.71
med±iqr ECGKit 5.00±14.00 1.00±14.00 2.00±11.00
m±std abs ECGKit 9.92±13.58 4.49±12.18 6.60±14.42
m±std signed ECGKit -1.10±16.78 -2.17±12.80 -2.88±15.59
med±iqr ecgpu 8.00±14.00 2.00±14.00 5.00±11.00
m±std abs ecgpu 12.80±13.53 10.49±17.49 11.52±16.55
m±std signed ecgpu 9.65±15.94 7.45±18.98 3.90±19.78
Analyzed annotations 1237 3731 3741
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A.5 Convolutional Neural Network Structures

A.5.1 ScaleNet

ResNet (
( conv1 ) : Conv2d ( 1 , 64 , k e r n e l _ s i z e = (5 , 5 ) , s t r i d e = (2 , 2 ) , padd ing = (3 ,

3 ) , b i a s = F a l s e )
( bn1 ) : BatchNorm2d ( 6 4 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,

t r a c k _ r u n n i n g _ s t a t s =True )
( r e l u ) : ReLU( i n p l a c e =True )
( maxpool ) : MaxPool2d ( k e r n e l _ s i z e =3 , s t r i d e =2 , padd ing =1 , d i l a t i o n =1 ,

ce i l _mode = F a l s e )
( l a y e r 1 ) : S e q u e n t i a l (

( 0 ) : B o t t l e n e c k (
( conv1 ) : Conv2d ( 6 4 , 128 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s =

F a l s e )
( bn1 ) : BatchNorm2d ( 1 2 8 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,

t r a c k _ r u n n i n g _ s t a t s =True )
( conv2 ) : Conv2d ( 1 2 8 , 128 , k e r n e l _ s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) ,

padd ing = (1 , 1 ) , g ro ups =32 , b i a s = F a l s e )
( bn2 ) : BatchNorm2d ( 1 2 8 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,

t r a c k _ r u n n i n g _ s t a t s =True )
( conv3 ) : Conv2d ( 1 2 8 , 256 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s =

F a l s e )
( bn3 ) : BatchNorm2d ( 2 5 6 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,

t r a c k _ r u n n i n g _ s t a t s =True )
( r e l u ) : ReLU( i n p l a c e =True )
( downsample ) : S e q u e n t i a l (

( 0 ) : Conv2d ( 6 4 , 256 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s =
F a l s e )

( 1 ) : BatchNorm2d ( 2 5 6 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

)
)
( 1 ) : B o t t l e n e c k (

( conv1 ) : Conv2d ( 2 5 6 , 128 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s =
F a l s e )

( bn1 ) : BatchNorm2d ( 1 2 8 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

( conv2 ) : Conv2d ( 1 2 8 , 128 , k e r n e l _ s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) ,
padd ing = (1 , 1 ) , g ro ups =32 , b i a s = F a l s e )

( bn2 ) : BatchNorm2d ( 1 2 8 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

( conv3 ) : Conv2d ( 1 2 8 , 256 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s =
F a l s e )

( bn3 ) : BatchNorm2d ( 2 5 6 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

( r e l u ) : ReLU( i n p l a c e =True )
)
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( 2 ) : B o t t l e n e c k (
( conv1 ) : Conv2d ( 2 5 6 , 128 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s =

F a l s e )
( bn1 ) : BatchNorm2d ( 1 2 8 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,

t r a c k _ r u n n i n g _ s t a t s =True )
( conv2 ) : Conv2d ( 1 2 8 , 128 , k e r n e l _ s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) ,

padd ing = (1 , 1 ) , g ro ups =32 , b i a s = F a l s e )
( bn2 ) : BatchNorm2d ( 1 2 8 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,

t r a c k _ r u n n i n g _ s t a t s =True )
( conv3 ) : Conv2d ( 1 2 8 , 256 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s =

F a l s e )
( bn3 ) : BatchNorm2d ( 2 5 6 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,

t r a c k _ r u n n i n g _ s t a t s =True )
( r e l u ) : ReLU( i n p l a c e =True )

)
)
( l a y e r 2 ) : S e q u e n t i a l (

( 0 ) : B o t t l e n e c k (
( conv1 ) : Conv2d ( 2 5 6 , 256 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s =

F a l s e )
( bn1 ) : BatchNorm2d ( 2 5 6 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,

t r a c k _ r u n n i n g _ s t a t s =True )
( conv2 ) : Conv2d ( 2 5 6 , 256 , k e r n e l _ s i z e = (3 , 3 ) , s t r i d e = (2 , 2 ) ,

padd ing = (1 , 1 ) , g ro ups =32 , b i a s = F a l s e )
( bn2 ) : BatchNorm2d ( 2 5 6 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,

t r a c k _ r u n n i n g _ s t a t s =True )
( conv3 ) : Conv2d ( 2 5 6 , 512 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s =

F a l s e )
( bn3 ) : BatchNorm2d ( 5 1 2 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,

t r a c k _ r u n n i n g _ s t a t s =True )
( r e l u ) : ReLU( i n p l a c e =True )
( downsample ) : S e q u e n t i a l (

( 0 ) : Conv2d ( 2 5 6 , 512 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (2 , 2 ) , b i a s =
F a l s e )

( 1 ) : BatchNorm2d ( 5 1 2 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

)
)
( 1 ) : B o t t l e n e c k (

( conv1 ) : Conv2d ( 5 1 2 , 256 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s =
F a l s e )

( bn1 ) : BatchNorm2d ( 2 5 6 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

( conv2 ) : Conv2d ( 2 5 6 , 256 , k e r n e l _ s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) ,
padd ing = (1 , 1 ) , g ro ups =32 , b i a s = F a l s e )

( bn2 ) : BatchNorm2d ( 2 5 6 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

( conv3 ) : Conv2d ( 2 5 6 , 512 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s =
F a l s e )

( bn3 ) : BatchNorm2d ( 5 1 2 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

( r e l u ) : ReLU( i n p l a c e =True )
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)
( 2 ) : B o t t l e n e c k (

( conv1 ) : Conv2d ( 5 1 2 , 256 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s =
F a l s e )

( bn1 ) : BatchNorm2d ( 2 5 6 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

( conv2 ) : Conv2d ( 2 5 6 , 256 , k e r n e l _ s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) ,
padd ing = (1 , 1 ) , g ro ups =32 , b i a s = F a l s e )

( bn2 ) : BatchNorm2d ( 2 5 6 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

( conv3 ) : Conv2d ( 2 5 6 , 512 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s =
F a l s e )

( bn3 ) : BatchNorm2d ( 5 1 2 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

( r e l u ) : ReLU( i n p l a c e =True )
)
( 3 ) : B o t t l e n e c k (

( conv1 ) : Conv2d ( 5 1 2 , 256 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s =
F a l s e )

( bn1 ) : BatchNorm2d ( 2 5 6 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

( conv2 ) : Conv2d ( 2 5 6 , 256 , k e r n e l _ s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) ,
padd ing = (1 , 1 ) , g ro ups =32 , b i a s = F a l s e )

( bn2 ) : BatchNorm2d ( 2 5 6 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

( conv3 ) : Conv2d ( 2 5 6 , 512 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s =
F a l s e )

( bn3 ) : BatchNorm2d ( 5 1 2 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

( r e l u ) : ReLU( i n p l a c e =True )
)

)
( l a y e r 3 ) : S e q u e n t i a l (

( 0 ) : B o t t l e n e c k (
( conv1 ) : Conv2d ( 5 1 2 , 512 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s =

F a l s e )
( bn1 ) : BatchNorm2d ( 5 1 2 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,

t r a c k _ r u n n i n g _ s t a t s =True )
( conv2 ) : Conv2d ( 5 1 2 , 512 , k e r n e l _ s i z e = (3 , 3 ) , s t r i d e = (2 , 2 ) ,

padd ing = (1 , 1 ) , g ro ups =32 , b i a s = F a l s e )
( bn2 ) : BatchNorm2d ( 5 1 2 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,

t r a c k _ r u n n i n g _ s t a t s =True )
( conv3 ) : Conv2d ( 5 1 2 , 1024 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s =

F a l s e )
( bn3 ) : BatchNorm2d ( 1 0 2 4 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,

t r a c k _ r u n n i n g _ s t a t s =True )
( r e l u ) : ReLU( i n p l a c e =True )
( downsample ) : S e q u e n t i a l (

( 0 ) : Conv2d ( 5 1 2 , 1024 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (2 , 2 ) , b i a s =
F a l s e )

( 1 ) : BatchNorm2d ( 1 0 2 4 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )
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)
)
( 1 ) : B o t t l e n e c k (

( conv1 ) : Conv2d ( 1 0 2 4 , 512 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s =
F a l s e )

( bn1 ) : BatchNorm2d ( 5 1 2 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

( conv2 ) : Conv2d ( 5 1 2 , 512 , k e r n e l _ s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) ,
padd ing = (1 , 1 ) , g ro ups =32 , b i a s = F a l s e )

( bn2 ) : BatchNorm2d ( 5 1 2 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

( conv3 ) : Conv2d ( 5 1 2 , 1024 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s =
F a l s e )

( bn3 ) : BatchNorm2d ( 1 0 2 4 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

( r e l u ) : ReLU( i n p l a c e =True )
)
( 2 ) : B o t t l e n e c k (

( conv1 ) : Conv2d ( 1 0 2 4 , 512 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s =
F a l s e )

( bn1 ) : BatchNorm2d ( 5 1 2 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

( conv2 ) : Conv2d ( 5 1 2 , 512 , k e r n e l _ s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) ,
padd ing = (1 , 1 ) , g ro ups =32 , b i a s = F a l s e )

( bn2 ) : BatchNorm2d ( 5 1 2 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

( conv3 ) : Conv2d ( 5 1 2 , 1024 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s =
F a l s e )

( bn3 ) : BatchNorm2d ( 1 0 2 4 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

( r e l u ) : ReLU( i n p l a c e =True )
)
( 3 ) : B o t t l e n e c k (

( conv1 ) : Conv2d ( 1 0 2 4 , 512 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s =
F a l s e )

( bn1 ) : BatchNorm2d ( 5 1 2 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

( conv2 ) : Conv2d ( 5 1 2 , 512 , k e r n e l _ s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) ,
padd ing = (1 , 1 ) , g ro ups =32 , b i a s = F a l s e )

( bn2 ) : BatchNorm2d ( 5 1 2 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

( conv3 ) : Conv2d ( 5 1 2 , 1024 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s =
F a l s e )

( bn3 ) : BatchNorm2d ( 1 0 2 4 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

( r e l u ) : ReLU( i n p l a c e =True )
)
( 4 ) : B o t t l e n e c k (

( conv1 ) : Conv2d ( 1 0 2 4 , 512 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s =
F a l s e )

( bn1 ) : BatchNorm2d ( 5 1 2 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )



152 Appendix A. Appendix

( conv2 ) : Conv2d ( 5 1 2 , 512 , k e r n e l _ s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) ,
padd ing = (1 , 1 ) , g ro ups =32 , b i a s = F a l s e )

( bn2 ) : BatchNorm2d ( 5 1 2 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

( conv3 ) : Conv2d ( 5 1 2 , 1024 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s =
F a l s e )

( bn3 ) : BatchNorm2d ( 1 0 2 4 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

( r e l u ) : ReLU( i n p l a c e =True )
)
( 5 ) : B o t t l e n e c k (

( conv1 ) : Conv2d ( 1 0 2 4 , 512 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s =
F a l s e )

( bn1 ) : BatchNorm2d ( 5 1 2 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

( conv2 ) : Conv2d ( 5 1 2 , 512 , k e r n e l _ s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) ,
padd ing = (1 , 1 ) , g ro ups =32 , b i a s = F a l s e )

( bn2 ) : BatchNorm2d ( 5 1 2 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

( conv3 ) : Conv2d ( 5 1 2 , 1024 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s =
F a l s e )

( bn3 ) : BatchNorm2d ( 1 0 2 4 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

( r e l u ) : ReLU( i n p l a c e =True )
)

)
( l a y e r 4 ) : S e q u e n t i a l (

( 0 ) : B o t t l e n e c k (
( conv1 ) : Conv2d ( 1 0 2 4 , 1024 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s

= F a l s e )
( bn1 ) : BatchNorm2d ( 1 0 2 4 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,

t r a c k _ r u n n i n g _ s t a t s =True )
( conv2 ) : Conv2d ( 1 0 2 4 , 1024 , k e r n e l _ s i z e = (3 , 3 ) , s t r i d e = (2 , 2 ) ,

padd ing = (1 , 1 ) , g ro ups =32 , b i a s = F a l s e )
( bn2 ) : BatchNorm2d ( 1 0 2 4 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,

t r a c k _ r u n n i n g _ s t a t s =True )
( conv3 ) : Conv2d ( 1 0 2 4 , 2048 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s

= F a l s e )
( bn3 ) : BatchNorm2d ( 2 0 4 8 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,

t r a c k _ r u n n i n g _ s t a t s =True )
( r e l u ) : ReLU( i n p l a c e =True )
( downsample ) : S e q u e n t i a l (

( 0 ) : Conv2d ( 1 0 2 4 , 2048 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (2 , 2 ) , b i a s =
F a l s e )

( 1 ) : BatchNorm2d ( 2 0 4 8 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

)
)
( 1 ) : B o t t l e n e c k (

( conv1 ) : Conv2d ( 2 0 4 8 , 1024 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s
= F a l s e )
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( bn1 ) : BatchNorm2d ( 1 0 2 4 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

( conv2 ) : Conv2d ( 1 0 2 4 , 1024 , k e r n e l _ s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) ,
padd ing = (1 , 1 ) , g ro ups =32 , b i a s = F a l s e )

( bn2 ) : BatchNorm2d ( 1 0 2 4 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

( conv3 ) : Conv2d ( 1 0 2 4 , 2048 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s
= F a l s e )

( bn3 ) : BatchNorm2d ( 2 0 4 8 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

( r e l u ) : ReLU( i n p l a c e =True )
)
( 2 ) : B o t t l e n e c k (

( conv1 ) : Conv2d ( 2 0 4 8 , 1024 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s
= F a l s e )

( bn1 ) : BatchNorm2d ( 1 0 2 4 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

( conv2 ) : Conv2d ( 1 0 2 4 , 1024 , k e r n e l _ s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) ,
padd ing = (1 , 1 ) , g ro ups =32 , b i a s = F a l s e )

( bn2 ) : BatchNorm2d ( 1 0 2 4 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

( conv3 ) : Conv2d ( 1 0 2 4 , 2048 , k e r n e l _ s i z e = (1 , 1 ) , s t r i d e = (1 , 1 ) , b i a s
= F a l s e )

( bn3 ) : BatchNorm2d ( 2 0 4 8 , eps =1e −05 , momentum = 0 . 1 , a f f i n e =True ,
t r a c k _ r u n n i n g _ s t a t s =True )

( r e l u ) : ReLU( i n p l a c e =True )
)

)
( avgpoo l ) : Adapt iveAvgPool2d ( o u t p u t _ s i z e = (1 , 1 ) )
( f c ) : S e q u e n t i a l (

( 0 ) : L i n e a r ( i n _ f e a t u r e s =2048 , o u t _ f e a t u r e s =2 , b i a s =True )
( 1 ) : L i n e a r ( i n _ f e a t u r e s =2 , o u t _ f e a t u r e s =2 , b i a s =True )

)
)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Layer ( t y p e ) Outpu t Shape Param #

================================================================
Conv2d −1 [ −1 , 64 , 113 , 176] 1 ,600

BatchNorm2d −2 [ −1 , 64 , 113 , 176] 128
ReLU−3 [ −1 , 64 , 113 , 176] 0

MaxPool2d −4 [ −1 , 64 , 57 , 88] 0
Conv2d −5 [ −1 , 128 , 57 , 88] 8 ,192

BatchNorm2d −6 [ −1 , 128 , 57 , 88] 256
ReLU−7 [ −1 , 128 , 57 , 88] 0

Conv2d −8 [ −1 , 128 , 57 , 88] 4 ,608
BatchNorm2d −9 [ −1 , 128 , 57 , 88] 256

ReLU−10 [ −1 , 128 , 57 , 88] 0
Conv2d −11 [ −1 , 256 , 57 , 88] 32 ,768

BatchNorm2d −12 [ −1 , 256 , 57 , 88] 512
Conv2d −13 [ −1 , 256 , 57 , 88] 16 ,384

BatchNorm2d −14 [ −1 , 256 , 57 , 88] 512
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ReLU−15 [ −1 , 256 , 57 , 88] 0
B o t t l e n e c k −16 [ −1 , 256 , 57 , 88] 0

Conv2d −17 [ −1 , 128 , 57 , 88] 32 ,768
BatchNorm2d −18 [ −1 , 128 , 57 , 88] 256

ReLU−19 [ −1 , 128 , 57 , 88] 0
Conv2d −20 [ −1 , 128 , 57 , 88] 4 ,608

BatchNorm2d −21 [ −1 , 128 , 57 , 88] 256
ReLU−22 [ −1 , 128 , 57 , 88] 0

Conv2d −23 [ −1 , 256 , 57 , 88] 32 ,768
BatchNorm2d −24 [ −1 , 256 , 57 , 88] 512

ReLU−25 [ −1 , 256 , 57 , 88] 0
B o t t l e n e c k −26 [ −1 , 256 , 57 , 88] 0

Conv2d −27 [ −1 , 128 , 57 , 88] 32 ,768
BatchNorm2d −28 [ −1 , 128 , 57 , 88] 256

ReLU−29 [ −1 , 128 , 57 , 88] 0
Conv2d −30 [ −1 , 128 , 57 , 88] 4 ,608

BatchNorm2d −31 [ −1 , 128 , 57 , 88] 256
ReLU−32 [ −1 , 128 , 57 , 88] 0

Conv2d −33 [ −1 , 256 , 57 , 88] 32 ,768
BatchNorm2d −34 [ −1 , 256 , 57 , 88] 512

ReLU−35 [ −1 , 256 , 57 , 88] 0
B o t t l e n e c k −36 [ −1 , 256 , 57 , 88] 0

Conv2d −37 [ −1 , 256 , 57 , 88] 65 ,536
BatchNorm2d −38 [ −1 , 256 , 57 , 88] 512

ReLU−39 [ −1 , 256 , 57 , 88] 0
Conv2d −40 [ −1 , 256 , 29 , 44] 18 ,432

BatchNorm2d −41 [ −1 , 256 , 29 , 44] 512
ReLU−42 [ −1 , 256 , 29 , 44] 0

Conv2d −43 [ −1 , 512 , 29 , 44] 131 ,072
BatchNorm2d −44 [ −1 , 512 , 29 , 44] 1 ,024

Conv2d −45 [ −1 , 512 , 29 , 44] 131 ,072
BatchNorm2d −46 [ −1 , 512 , 29 , 44] 1 ,024

ReLU−47 [ −1 , 512 , 29 , 44] 0
B o t t l e n e c k −48 [ −1 , 512 , 29 , 44] 0

Conv2d −49 [ −1 , 256 , 29 , 44] 131 ,072
BatchNorm2d −50 [ −1 , 256 , 29 , 44] 512

ReLU−51 [ −1 , 256 , 29 , 44] 0
Conv2d −52 [ −1 , 256 , 29 , 44] 18 ,432

BatchNorm2d −53 [ −1 , 256 , 29 , 44] 512
ReLU−54 [ −1 , 256 , 29 , 44] 0

Conv2d −55 [ −1 , 512 , 29 , 44] 131 ,072
BatchNorm2d −56 [ −1 , 512 , 29 , 44] 1 ,024

ReLU−57 [ −1 , 512 , 29 , 44] 0
B o t t l e n e c k −58 [ −1 , 512 , 29 , 44] 0

Conv2d −59 [ −1 , 256 , 29 , 44] 131 ,072
BatchNorm2d −60 [ −1 , 256 , 29 , 44] 512

ReLU−61 [ −1 , 256 , 29 , 44] 0
Conv2d −62 [ −1 , 256 , 29 , 44] 18 ,432

BatchNorm2d −63 [ −1 , 256 , 29 , 44] 512
ReLU−64 [ −1 , 256 , 29 , 44] 0

Conv2d −65 [ −1 , 512 , 29 , 44] 131 ,072
BatchNorm2d −66 [ −1 , 512 , 29 , 44] 1 ,024
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ReLU−67 [ −1 , 512 , 29 , 44] 0
B o t t l e n e c k −68 [ −1 , 512 , 29 , 44] 0

Conv2d −69 [ −1 , 256 , 29 , 44] 131 ,072
BatchNorm2d −70 [ −1 , 256 , 29 , 44] 512

ReLU−71 [ −1 , 256 , 29 , 44] 0
Conv2d −72 [ −1 , 256 , 29 , 44] 18 ,432

BatchNorm2d −73 [ −1 , 256 , 29 , 44] 512
ReLU−74 [ −1 , 256 , 29 , 44] 0

Conv2d −75 [ −1 , 512 , 29 , 44] 131 ,072
BatchNorm2d −76 [ −1 , 512 , 29 , 44] 1 ,024

ReLU−77 [ −1 , 512 , 29 , 44] 0
B o t t l e n e c k −78 [ −1 , 512 , 29 , 44] 0

Conv2d −79 [ −1 , 512 , 29 , 44] 262 ,144
BatchNorm2d −80 [ −1 , 512 , 29 , 44] 1 ,024

ReLU−81 [ −1 , 512 , 29 , 44] 0
Conv2d −82 [ −1 , 512 , 15 , 22] 73 ,728

BatchNorm2d −83 [ −1 , 512 , 15 , 22] 1 ,024
ReLU−84 [ −1 , 512 , 15 , 22] 0

Conv2d −85 [ −1 , 1024 , 15 , 22] 524 ,288
BatchNorm2d −86 [ −1 , 1024 , 15 , 22] 2 ,048

Conv2d −87 [ −1 , 1024 , 15 , 22] 524 ,288
BatchNorm2d −88 [ −1 , 1024 , 15 , 22] 2 ,048

ReLU−89 [ −1 , 1024 , 15 , 22] 0
B o t t l e n e c k −90 [ −1 , 1024 , 15 , 22] 0

Conv2d −91 [ −1 , 512 , 15 , 22] 524 ,288
BatchNorm2d −92 [ −1 , 512 , 15 , 22] 1 ,024

ReLU−93 [ −1 , 512 , 15 , 22] 0
Conv2d −94 [ −1 , 512 , 15 , 22] 73 ,728

BatchNorm2d −95 [ −1 , 512 , 15 , 22] 1 ,024
ReLU−96 [ −1 , 512 , 15 , 22] 0

Conv2d −97 [ −1 , 1024 , 15 , 22] 524 ,288
BatchNorm2d −98 [ −1 , 1024 , 15 , 22] 2 ,048

ReLU−99 [ −1 , 1024 , 15 , 22] 0
B o t t l e n e c k −100 [ −1 , 1024 , 15 , 22] 0

Conv2d −101 [ −1 , 512 , 15 , 22] 524 ,288
BatchNorm2d −102 [ −1 , 512 , 15 , 22] 1 ,024

ReLU−103 [ −1 , 512 , 15 , 22] 0
Conv2d −104 [ −1 , 512 , 15 , 22] 73 ,728

BatchNorm2d −105 [ −1 , 512 , 15 , 22] 1 ,024
ReLU−106 [ −1 , 512 , 15 , 22] 0

Conv2d −107 [ −1 , 1024 , 15 , 22] 524 ,288
BatchNorm2d −108 [ −1 , 1024 , 15 , 22] 2 ,048

ReLU−109 [ −1 , 1024 , 15 , 22] 0
B o t t l e n e c k −110 [ −1 , 1024 , 15 , 22] 0

Conv2d −111 [ −1 , 512 , 15 , 22] 524 ,288
BatchNorm2d −112 [ −1 , 512 , 15 , 22] 1 ,024

ReLU−113 [ −1 , 512 , 15 , 22] 0
Conv2d −114 [ −1 , 512 , 15 , 22] 73 ,728

BatchNorm2d −115 [ −1 , 512 , 15 , 22] 1 ,024
ReLU−116 [ −1 , 512 , 15 , 22] 0

Conv2d −117 [ −1 , 1024 , 15 , 22] 524 ,288
BatchNorm2d −118 [ −1 , 1024 , 15 , 22] 2 ,048
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ReLU−119 [ −1 , 1024 , 15 , 22] 0
B o t t l e n e c k −120 [ −1 , 1024 , 15 , 22] 0

Conv2d −121 [ −1 , 512 , 15 , 22] 524 ,288
BatchNorm2d −122 [ −1 , 512 , 15 , 22] 1 ,024

ReLU−123 [ −1 , 512 , 15 , 22] 0
Conv2d −124 [ −1 , 512 , 15 , 22] 73 ,728

BatchNorm2d −125 [ −1 , 512 , 15 , 22] 1 ,024
ReLU−126 [ −1 , 512 , 15 , 22] 0

Conv2d −127 [ −1 , 1024 , 15 , 22] 524 ,288
BatchNorm2d −128 [ −1 , 1024 , 15 , 22] 2 ,048

ReLU−129 [ −1 , 1024 , 15 , 22] 0
B o t t l e n e c k −130 [ −1 , 1024 , 15 , 22] 0

Conv2d −131 [ −1 , 512 , 15 , 22] 524 ,288
BatchNorm2d −132 [ −1 , 512 , 15 , 22] 1 ,024

ReLU−133 [ −1 , 512 , 15 , 22] 0
Conv2d −134 [ −1 , 512 , 15 , 22] 73 ,728

BatchNorm2d −135 [ −1 , 512 , 15 , 22] 1 ,024
ReLU−136 [ −1 , 512 , 15 , 22] 0

Conv2d −137 [ −1 , 1024 , 15 , 22] 524 ,288
BatchNorm2d −138 [ −1 , 1024 , 15 , 22] 2 ,048

ReLU−139 [ −1 , 1024 , 15 , 22] 0
B o t t l e n e c k −140 [ −1 , 1024 , 15 , 22] 0

Conv2d −141 [ −1 , 1024 , 15 , 22] 1 ,048 ,576
BatchNorm2d −142 [ −1 , 1024 , 15 , 22] 2 ,048

ReLU−143 [ −1 , 1024 , 15 , 22] 0
Conv2d −144 [ −1 , 1024 , 8 , 11] 294 ,912

BatchNorm2d −145 [ −1 , 1024 , 8 , 11] 2 ,048
ReLU−146 [ −1 , 1024 , 8 , 11] 0

Conv2d −147 [ −1 , 2048 , 8 , 11] 2 ,097 ,152
BatchNorm2d −148 [ −1 , 2048 , 8 , 11] 4 ,096

Conv2d −149 [ −1 , 2048 , 8 , 11] 2 ,097 ,152
BatchNorm2d −150 [ −1 , 2048 , 8 , 11] 4 ,096

ReLU−151 [ −1 , 2048 , 8 , 11] 0
B o t t l e n e c k −152 [ −1 , 2048 , 8 , 11] 0

Conv2d −153 [ −1 , 1024 , 8 , 11] 2 ,097 ,152
BatchNorm2d −154 [ −1 , 1024 , 8 , 11] 2 ,048

ReLU−155 [ −1 , 1024 , 8 , 11] 0
Conv2d −156 [ −1 , 1024 , 8 , 11] 294 ,912

BatchNorm2d −157 [ −1 , 1024 , 8 , 11] 2 ,048
ReLU−158 [ −1 , 1024 , 8 , 11] 0

Conv2d −159 [ −1 , 2048 , 8 , 11] 2 ,097 ,152
BatchNorm2d −160 [ −1 , 2048 , 8 , 11] 4 ,096

ReLU−161 [ −1 , 2048 , 8 , 11] 0
B o t t l e n e c k −162 [ −1 , 2048 , 8 , 11] 0

Conv2d −163 [ −1 , 1024 , 8 , 11] 2 ,097 ,152
BatchNorm2d −164 [ −1 , 1024 , 8 , 11] 2 ,048

ReLU−165 [ −1 , 1024 , 8 , 11] 0
Conv2d −166 [ −1 , 1024 , 8 , 11] 294 ,912

BatchNorm2d −167 [ −1 , 1024 , 8 , 11] 2 ,048
ReLU−168 [ −1 , 1024 , 8 , 11] 0

Conv2d −169 [ −1 , 2048 , 8 , 11] 2 ,097 ,152
BatchNorm2d −170 [ −1 , 2048 , 8 , 11] 4 ,096
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ReLU−171 [ −1 , 2048 , 8 , 11] 0
B o t t l e n e c k −172 [ −1 , 2048 , 8 , 11] 0

Adapt iveAvgPool2d −173 [ −1 , 2048 , 1 , 1 ] 0
L inea r −174 [ −1 , 2 ] 4 ,098
L inea r −175 [ −1 , 2 ] 6

================================================================
T o t a l params : 22 ,976 ,200
T r a i n a b l e params : 22 ,976 ,200
Non− t r a i n a b l e params : 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
I n p u t s i z e (MB) : 0 . 3 0
Forward / backward p a s s s i z e (MB) : 590 .19
Params s i z e (MB) : 87 .65
E s t i m a t e d T o t a l S i z e (MB) : 678 .14
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A.5.2 LocaNets

The fully connected layers from ScaleNet were changed from

. . .
( avgpoo l ) : Adapt iveAvgPool2d ( o u t p u t _ s i z e = (1 , 1 ) )
( f c ) : S e q u e n t i a l (

( 0 ) : L i n e a r ( i n _ f e a t u r e s =2048 , o u t _ f e a t u r e s =2 , b i a s =True )
( 1 ) : L i n e a r ( i n _ f e a t u r e s =2 , o u t _ f e a t u r e s =2 , b i a s =True )

)

for FuzzyNet93 to:

. . .
( avgpoo l ) : Adapt iveAvgPool2d ( o u t p u t _ s i z e = (1 , 1 ) )
( f c ) : S e q u e n t i a l (

( 0 ) : Dropout ( p = 0 . 2 , i n p l a c e = F a l s e )
( 1 ) : L i n e a r ( i n _ f e a t u r e s =2048 , o u t _ f e a t u r e s =2048 , b i a s =True )
( 2 ) : Dropout ( p = 0 . 2 , i n p l a c e = F a l s e )
( 3 ) : L i n e a r ( i n _ f e a t u r e s =2048 , o u t _ f e a t u r e s =93 , b i a s =True )

)

for FuzzyNet303 to:

. . .
( avgpoo l ) : Adapt iveAvgPool2d ( o u t p u t _ s i z e = (1 , 1 ) )
( f c ) : S e q u e n t i a l (

( 0 ) : Dropout ( p = 0 . 2 , i n p l a c e = F a l s e )
( 1 ) : L i n e a r ( i n _ f e a t u r e s =2048 , o u t _ f e a t u r e s =2048 , b i a s =True )
( 2 ) : Dropout ( p = 0 . 2 , i n p l a c e = F a l s e )
( 3 ) : L i n e a r ( i n _ f e a t u r e s =2048 , o u t _ f e a t u r e s =303 , b i a s =True )

)

and for RegressionNet to:

. . .
( avgpoo l ) : Adapt iveAvgPool2d ( o u t p u t _ s i z e = (1 , 1 ) )
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( f c ) : S e q u e n t i a l (
( 0 ) : Dropout ( p = 0 . 2 , i n p l a c e = F a l s e )
( 1 ) : L i n e a r ( i n _ f e a t u r e s =2048 , o u t _ f e a t u r e s =2048 , b i a s =True )
( 2 ) : Dropout ( p = 0 . 2 , i n p l a c e = F a l s e )
( 3 ) : L i n e a r ( i n _ f e a t u r e s =2048 , o u t _ f e a t u r e s =5 , b i a s =True )

)

The structure and parameter listings as shown for ScaleNet change from

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Layer ( t y p e ) Outpu t Shape Param #

================================================================
Conv2d −1 [ −1 , 64 , 113 , 176] 1 ,600
. . .
. . .

Adapt iveAvgPool2d −173 [ −1 , 2048 , 1 , 1 ] 0
L inea r −174 [ −1 , 2 ] 4 ,098
L inea r −175 [ −1 , 2 ] 6

================================================================
T o t a l params : 22 ,976 ,200
T r a i n a b l e params : 22 ,976 ,200
Non− t r a i n a b l e params : 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
I n p u t s i z e (MB) : 0 . 3 0
Forward / backward p a s s s i z e (MB) : 590 .19
Params s i z e (MB) : 87 .65
E s t i m a t e d T o t a l S i z e (MB) : 678 .14
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

for FuzzyNet93 to:

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Layer ( t y p e ) Outpu t Shape Param #

================================================================
Conv2d −1 [ −1 , 64 , 113 , 64] 1 ,600

. . .

. . .
Adapt iveAvgPool2d −173 [ −1 , 2048 , 1 , 1 ] 0

Dropout −174 [ −1 , 2048] 0
L inea r −175 [ −1 , 2048] 4 ,196 ,352

Dropout −176 [ −1 , 2048] 0
L inea r −177 [ −1 , 93] 190 ,557

================================================================
T o t a l params : 27 ,359 ,005
T r a i n a b l e params : 27 ,359 ,005
Non− t r a i n a b l e params : 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
I n p u t s i z e (MB) : 0 . 1 1
Forward / backward p a s s s i z e (MB) : 214 .67
Params s i z e (MB) : 104 .37
E s t i m a t e d T o t a l S i z e (MB) : 319 .15
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



A.5. Convolutional Neural Network Structures 159

for FuzzyNet303 to:

Adapt iveAvgPool2d −173 [ −1 , 2048 , 1 , 1 ] 0
Dropout −174 [ −1 , 2048] 0

L inea r −175 [ −1 , 2048] 4 ,196 ,352
Dropout −176 [ −1 , 2048] 0

L inea r −177 [ −1 , 303] 620 ,847
================================================================
T o t a l params : 27 ,789 ,295
T r a i n a b l e params : 27 ,789 ,295
Non− t r a i n a b l e params : 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
I n p u t s i z e (MB) : 0 . 1 1
Forward / backward p a s s s i z e (MB) : 214 .67
Params s i z e (MB) : 106 .01
E s t i m a t e d T o t a l S i z e (MB) : 320 .79
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

and for RegressionNet to:

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Layer ( t y p e ) Outpu t Shape Param #

================================================================
Conv2d −1 [ −1 , 64 , 113 , 64] 1 ,600

. . .

. . .
Adapt iveAvgPool2d −173 [ −1 , 2048 , 1 , 1 ] 0

Dropout −174 [ −1 , 2048] 0
L inea r −175 [ −1 , 2048] 4 ,196 ,352

Dropout −176 [ −1 , 2048] 0
L inea r −177 [ −1 , 5 ] 10 ,245

================================================================
T o t a l params : 27 ,178 ,693
T r a i n a b l e params : 27 ,178 ,693
Non− t r a i n a b l e params : 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
I n p u t s i z e (MB) : 0 . 1 1
Forward / backward p a s s s i z e (MB) : 214 .67
Params s i z e (MB) : 103 .68
E s t i m a t e d T o t a l S i z e (MB) : 318 .46
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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A.6 ScaleNet Error Histograms
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Figure A.11: Error histograms for the detection of the depolarization start with ScaleNet. The his-
tograms are given for each data partition.
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Figure A.12: Error histograms for the detection of the depolarization end with ScaleNet. The his-
tograms are given for each data partition.
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A.7 LocaNet Error Histograms
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Figure A.13: Histogram of the localization error for FuzzyNet303. The histograms are given for each
data partition.
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Figure A.14: Histogram of the localization error for FuzzyNet93. The histograms are given for each
data partition.
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Figure A.15: Histogram of the localization error for the regression network. The histograms are given
for each data partition.
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A.8 Results on Clinical Data

Table A.3: Localization errors (geodesic distance between prediction and label) in mm for each sample
in the clinical dataset. The suffix LV/RV in Patient ID depicts the respective ventricular half where the
excitation was triggered.

Patient ID 002_RV 003_RV 004_LV 004_RV 005_LV 005_RV 006_LV 006_RV
FuzzyNet303 6 49 78 22 21 21 81 19
FuzzyNet93 5 40 71 15 26 23 95 48
RegressionNet 9 64 57 16 28 8 81 40
Patient ID 007_LV 007_RV 008_LV 008_RV 009_LV 009_RV 010_RV 011_RV
FuzzyNet303 102 37 64 12 91 21 12 32
FuzzyNet93 110 23 41 29 85 28 6 24
RegressionNet 73 28 8 23 54 40 10 28
Patient ID 012_LV 012_RV 013_RV 014_LV 014_RV 015_LV 015_RV 016_LV
FuzzyNet303 107 74 28 33 35 68 18 62
FuzzyNet93 49 66 29 45 36 95 9 78
RegressionNet 80 35 21 43 42 85 13 20
Patient ID 016_RV 017_LV 017_RV 018_LV 018_RV 019_LV 019_RV 020_LV
FuzzyNet303 14 83 55 55 28 57 10 69
FuzzyNet93 31 91 24 117 38 62 42 82
RegressionNet 17 45 24 20 47 21 42 102
Patient ID 020_RV 021_LV 021_RV 022_RV 023_LV 023_RV 024_LV 024_RV
FuzzyNet303 30 71 35 31 45 42 95 12
FuzzyNet93 19 46 54 12 96 39 81 41
RegressionNet 20 11 30 32 25 38 66 61
Patient ID 025_LV 025_RV 026_LV 026_RV 027_LV 027_RV 028_LV 028_RV
FuzzyNet303 81 82 101 104 86 26 104 27
FuzzyNet93 65 9 54 39 72 25 67 45
RegressionNet 27 13 73 57 50 17 22 40
Patient ID 029_LV 029_RV 030_LV 030_RV 031_LV 031_RV 032_LV 032_RV
FuzzyNet303 83 38 112 35 80 47 47 104
FuzzyNet93 46 38 125 38 80 12 53 22
RegressionNet 51 43 61 37 37 39 29 48
Patient ID 033_LV 033_RV 034_LV 034_RV 035_LV 035_RV 036_LV 036_RV
FuzzyNet303 79 7 76 30 32 13 50 5
FuzzyNet93 53 13 59 37 82 15 34 4
RegressionNet 34 53 41 51 52 19 55 10
Patient ID 037_LV 037_RV 038_RV
FuzzyNet303 89 92 65
FuzzyNet93 75 28 55
RegressionNet 20 27 56
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