

Karlsruher Institut für Technologie

Institute of Process Engineering in Life Sciences Chair of Food Process Engineering Kaiserstr. 12, 76131 Karlsruhe Head: Prof. Dr.-Ing. Heike P. Karbstein Contact person: miguel.ballesteros@partner.kit.edu

Modelling and Analysis of the Effect of Process and Geometry **Parameters on Multiphase Flow Formation in ACLR Atomizers** Miguel Ballesteros Martinez, Felix Ellwanger, Marc Wittner, Volker Gaukel

Motivation

Spray drying:

Widely used process for the production of powders from liquid feeds

	50
core	id rin
Jas (iqu

Process function of ACLR atomizer?

Relation between operating conditions, geometry parameters, internal flow and spraying performance

Air-Core-Liquid-Ring (ACLR) atomizers:

Suitable for atomization of highly viscous feeds

Outlet channel

Background

A vertical annular flow, with a thin liquid lamella, is formed inside the system. The lamella breaks into droplets after exiting the nozzle

↓ Energy consumption: Low air flow and pressures (0.3-1 MPa) mean less energy input.

↑ Viscous feeds:

High solid contents makes drying more efficient.

Materials & Methods

Results I

Mesh independence tests performed, to ensure that it would not affect results. Regions of interest meshed with polyhedra; while inlets are meshed with prisms.

Results II

- Similar average lamella thickness between experiments (0.25 mm) and simulations (0.2 mm) ≈ 16% Error
- Small difference between experimental (2.7%) and computational (3.6%) air-toliquid ratios.
- Using fixed mass flows caused over prediction of required pressure of up to 150%.

Atomization rig (0.3 - 1 MPa):

 Inline measurement of liquid lamella thickness with high speed video camera (Integrated Design Tools Inc., 10-20 kHz), and image grey scale gradient analysis.

ACLR Nozzle:

• In-house designed geometries, printed in steel and PMMA. Dimensions are parameters of interest.

B: Mixing length C: Outlet length D: Outlet diameter

↑ number of cells → average lamella thickness stabilizes, but ↑ CPU time. Mesh density should be in plateau region

- **Turbulence model**: The k-ω SST model is the best RANS option. LES must still
- **Experimental validation:** Flow stabilizes in simulations but not in experiments.

--EXP

-CFD

4.5 5.0

3.5

4.0

Conclusions & Future Work

- The proposed mesh can represent the system without affecting the simulation.
- LES has yet to be evaluated for calculation of vortices and turbulence.
- The stabilization observed in high viscosity feeds in the simulation needs to be studied, to see if it comes from numerical artifacts or predicts how a

perfectly controlled system should operate.

More experiments with different viscosities should be performed, to better validate the CFD model.

The effect of nozzle geometry must be studied.

Miguel Ángel Ballesteros Martínez	Gotthard-Franz-Str. 3, 76131 Karlsruhe	Tel.: +49 (0)721 608 43608
E-mail: miguel.ballesteros@partner.kit.edu	Geb. 50.31, 4. OG, Raum 404	Homepage: http://lvt.blt.kit.edu

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

