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Mesh independence tests performed, to 

ensure that it would not affect results. 

Regions of interest meshed with polyhedra; 

while inlets are meshed with prisms.

↑ number of cells  average lamella 

thickness stabilizes, but ↑ CPU time. 

Mesh density should be in plateau region

• Turbulence model: The k-ω SST model

is the best RANS option. LES must still 

be checked.

• Experimental validation: Flow stabilizes  

in simulations but not in experiments.
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Motivation 

Background

• The proposed mesh can represent the 

system without affecting the simulation.

• LES has yet to be evaluated for 

calculation of vortices and turbulence.

• The stabilization observed in high 

viscosity feeds in the simulation needs to 

be studied, to see if it comes from 

numerical artifacts or predicts how a 

perfectly controlled system should 

operate.

• More experiments with different 

viscosities should be performed, to 

better validate the CFD model.

• The effect of nozzle geometry must be 

studied.

Results I Results II 

Conclusions & Future Work

Process function of 

ACLR atomizer?

Spray drying:

Widely used process for the 

production of powders from liquid 

feeds
Relation between operating 

conditions, geometry 

parameters, internal flow 

and spraying performance

Air-Core-Liquid-Ring (ACLR) 

atomizers:

Suitable for atomization of highly 

viscous feeds

Materials & Methods

Atomization rig (0.3 - 1 MPa):

• Inline measurement of liquid lamella 

thickness with high speed video camera 

(Integrated Design Tools Inc., 10-20 

kHz), and image grey scale gradient 

analysis.

• Similar average lamella thickness 

between experiments (0.25 mm) and 

simulations (0.2 mm) ≈ 16% Error 

• Small difference between experimental 

(2.7%) and computational (3.6%) air-to-

liquid ratios. 

• Using fixed mass flows caused over 

prediction of required pressure of up to 

150%.

Stabilization of flow could be caused by 

incorrect prediction of viscosity in the 

simulations. Low viscosity flows have the 

expected instability.

A vertical annular flow, with a thin liquid 

lamella, is formed inside the system. The 

lamella breaks into droplets after exiting 

the nozzle

↓ Energy consumption: Low air flow 

and pressures (0.3-1 MPa) mean less 

energy input.

↑ Viscous feeds: 

High solid contents makes drying more 

efficient.

Mixing chamber

Outlet channel
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ACLR Nozzle:

• In-house designed geometries, printed 

in steel and PMMA. Dimensions are 

parameters of interest.

A: Gas core diameter

B: Mixing length

C: Outlet length

D: Outlet diameter

Physic models of simulation:

• Volume Of Fluid (VOF) model to 

represent multiphase flow, with 

compressible gas phase and 

incompressible non-Newtonian liquid.

• Fixed liquid mass flow. Fixed inlet gas 

pressure. Quarter of nozzle for mesh 

analysis.

0

1000

2000

3000

4000

5000

6000

7000

8000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

300 350 400 450 500 550 600

C
P

U
 T

im
e

 (
h

)

L
a
m

e
ll
a
 t

h
ic

k
n

e
s
s
 (

m
m

)

Number of cells for ¼ nozzle (103)

Meshing region

Miguel Ángel Ballesteros Martínez 

E-mail: miguel.ballesteros@partner.kit.edu
Gotthard-Franz-Str. 3, 76131 Karlsruhe

Geb. 50.31, 4. OG, Raum 404

Tel.: +49 (0)721 608 43608

Homepage: http://lvt.blt.kit.edu

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

L
a
m

e
ll
a

th
ic

k
n

e
s
s

(m
m

)

Time (ms)

390 mPa•s

10 mPa•s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

L
a
m

e
ll
a
 t

h
ic

k
n

e
s
s
 (

m
m

)

Time (ms)

EXP

CFD


