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Abstract The paper deals with the analysis of hyperbolicity of the dynamic equations for plastic solids,
including one-phase solids and porous fluid-saturated solids with zero and nonzero permeability. Hyperbolicity
defined as diagonalizability of the matrix of the system is necessary for the boundary value problems to be well
posed. The difference between the system of equations for a plastic solid and the system for an elastic solid is
that the former contains additional evolution equations for the dependent variables involved in the plasticity
model. It is shown that the two systems agree with each other from the viewpoint of hyperbolicity: they are
either both hyperbolic or both non-hyperbolic. Another issue addressed in the paper is the relation between
hyperbolicity and the properties of the acoustic tensor (matrix). It remained unproved whether the condition
for the eigenvalues of the acoustic matrix to be real and positive is not only necessary but also sufficient for
hyperbolicity. It is proved in the paper that the equations are hyperbolic if and only if the eigenvalues of the
acoustic matrix are real and positive with a complete set of eigenvectors. The analysis of the whole system
of equations for a plastic solid can thus be reduced to the analysis of the acoustic matrix. The results are not
restricted to a particular plasticity model but applicable to a wide class of models.

Keywords Hyperbolicity · Plasticity · Fluid-saturated solid · Acoustic tensor

1 Introduction

An important question arising in connection with any boundary value problem is whether the problem is well
posed. Well-posedness is defined as the existence of a unique solution which depends continuously on the
initial and boundary data. Well-posedness of dynamic problems for solids with rate-independent constitutive
behaviour requires the system of the governing equations to be hyperbolic. This concerns both one-phase solids
and porous fluid-saturated solids (with exceptions mentioned in Sect. 2.4). Whereas well-posedness may be
difficult to prove even for relatively simple problems, hyperbolicity as a necessary condition for well-posedness
can be verified numerically in many cases without considerable difficulties.

In relation to systems of first-order partial differential equations considered in this paper, the requirement
for a system to be hyperbolic imposes conditions on the eigenvalues and eigenvectors of the matrix of the
system. The eigenvalues (the characteristic speeds) must be real with a complete set of eigenvectors (the exact
definition is given in Sect. 2.1). The equations of motion for the velocities and stresses as unknown functions
and the stress–strain relations in rate form constitute a closed system of first-order equations from which the
characteristic speeds can be found. The stiffness tensor in the stress–strain relations can be either constant, if the
solid is elastic, or obtained from the plasticitymodel employed. A possible loss of hyperbolicity due to complex
characteristic speeds and the resulting ill-posedness of the problem may have different interpretations. Purely
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imaginary characteristic speeds may reflect the real behaviour of the solid (the localization of deformation)
and thus be physically justified [1,2]. In contrast, complex conjugate speeds leading to ‘flutter instability’ [2]
should most probably be regarded as a consequence of incorrect constitutive modelling, as there has been no
physical justification for this case so far.

The present paper addresses hyperbolicity of three systems of dynamic equations: for one-phase solids,
for fluid-saturated solids with zero permeability and for fluid-saturated solids with nonzero permeability.
Previous studies on hyperbolicity of the dynamic equations for plastic one-phase and fluid-saturated solids
were restricted to the analysis of the characteristic speeds without considering the eigenvectors of the matrix of
the system [3–9]. Owing to this restriction, two issues concerning hyperbolicity remained unresolved. They are
considered in the present paper. The first one is the influence of the plastic behaviour. Finding the characteristic
speeds for a plastic solid actually reduces to the analysis of an elastic solid whose stiffness tensor is the same
as the current stiffness tensor of the plasticity model, taking into account loading and unloading when dealing
with elasto-plasticity. However, in the case of a plastic solid the equations of motion and the stress–strain
relations are only part of the whole system. Plasticity models typically involve additional dependent variables
such as plastic strains and hardening parameters with their own evolution equations. Any additional equations
increase the size of the eigenvectors and the number or multiplicity of the eigenvalues. It was not analysed
rigorously whether hyperbolicity of the reduced system that includes only the equations of motion and the
stress–strain relations is always in agreement with hyperbolicity of the extended system that also includes the
additional evolution equations.

A proposition proved in Sect. 3 establishes the equivalence between the reduced and extended systems from
the viewpoint of hyperbolicity. It is shown that the systems are either both hyperbolic or both non-hyperbolic.
The analysis is not restricted to a particular plasticity model. The additional dependent variables and their
evolution equations responsible for the plastic behaviour are introduced on rather general assumptions which
conform with the majority of plasticity models, thus enabling a wide range of applications.

The second issue addressed in the paper is the connection between hyperbolicity and the properties of
the acoustic tensor (one-phase solids) or the ‘acoustic matrix’ (fluid-saturated solids). It is known that the
characteristic speeds are real if the eigenvalues of the acoustic matrix are real and positive. The eigenvalues
of the acoustic matrix allow us to find the characteristic speeds, but it is not evident that the real and positive
eigenvalues of the acousticmatrix guarantee the existence of a complete set of linearly independent eigenvectors
of the matrix of the system. This latter matrix is larger in size than the acoustic matrix and has additional zero
eigenvalues. A proposition proved in Sect. 4 establishes the required connection between the acoustic matrix
and the matrix of the system.

The two propositions applied together show that the properties of the acoustic matrix fully determine
hyperbolicity of the whole system of equations for a plastic solid. The equations are hyperbolic if and only if
the eigenvalues of the acoustic matrix are real and positive with a complete set of eigenvectors.

2 Dynamic equations

2.1 Definition of hyperbolicity

The equations studied in this paper are systems of first-order partial differential equations

∂ui
∂t

+
3∑

k=1

M (k)
i j

∂u j

∂xk
= Fi , i = 1, ..., N , (1)

where u1, ..., uN are functions of Cartesian coordinates x1, x2, x3 and time t and M (k)
i j are the components of

real N × N matrices M (k), k = 1, 2, 3. The summation convention for repeated indices is used throughout
the paper. The matrices M (k) and the right-hand sides Fi may be functions of the dependent and independent
variables.

Definition (hyperbolicity) System (1) is called hyperbolic if for any real n1, n2, n3 the matrix M =∑3
k=1 nkM

(k) is diagonalizable by a real matrix ([10], Sect. 7.3.1).



On hyperbolicity of the dynamic equations for plastic fluid-saturated solids

Equivalently, the system is called hyperbolic if for any real n1, n2, n3 the matrix M has N linearly independent
real eigenvectors. The verification of hyperbolicity amounts to the analysis of the eigenvalue problem

Mi ju
0
j = cu0i , i = 1, ..., N , (2)

where Mi j are the components of the matrix M and u0i are the components of an eigenvector associated with
an eigenvalue c. Without loss of generality, the factors n1, n2, n3 in the definition of the matrix M will be
taken to be the components of a unit vector n. In this case, the eigenvalues c are referred to as the characteristic
speeds since they coincide with the speeds of plane waves that propagate in the direction n and are solutions
to a homogeneous system (1) with constant coefficients.

Note that hyperbolicity is sometimes defined in a weaker sense with the only requirement that the eigenval-
ues of the matrix M be real, without imposing the condition of the existence of a complete set of eigenvectors.
(Systems whose matrix has real eigenvalues and fewer than N linearly independent eigenvectors are classified
by some authors as parabolic, see e.g. [11], Sect. 3.3.) Note also that the conditions of strict hyperbolicity,
when the eigenvalues of the matrix M must be not only real but also all different, are too strong and a priori
not satisfied by the equations studied here. Even in the simplest case of an isotropic solid in three-dimensional
problems, the matrix M has a double eigenvalue that corresponds to transverse waves. Moreover, there always
exists a multiple eigenvalue equal to zero.

2.2 One-phase solids

The dynamic equations written in a Cartesian coordinate system (x1, x2, x3) for the velocities and stresses as
dependent variables are first-order equations of the form (1). In the following, the material time derivatives in
the equations will be replaced with the partial time derivatives neglecting the convective terms. The system of
equations for a one-phase solid includes the equations of motion,

∂σ j i

∂x j
= �

∂vi

∂t
, (3)

and the constitutive equations in rate form,

∂σ j i

∂t
= C jikl

∂vk

∂xl
, (4)

where vi , σ j i and C jikl are, respectively, the Cartesian components of the velocity vector, the stress tensor
and the stiffness tensor, and � is the density. For a porous solid, � = (1 − n)�s , where n is the porosity and
�s is the density of the solid phase. System (3), (4) with constant coefficients for the functions vi , σ j i (where
σ j i = σi j ) describes the dynamic deformation of a linearly elastic solid.

The eigenvalue problem (2) obtained from system (3), (4) is

− 1

�
n jσ

0
j i = cv0i , (5)

−C jiklnlv
0
k = cσ 0

j i , (6)

where v0i , σ
0
j i are the components of an eigenvector. If the components are ordered as

(v01, v
0
2, v

0
3︸ ︷︷ ︸

N1

, σ 0
11, σ

0
12, σ

0
13, σ

0
22, σ

0
33, σ

0
23︸ ︷︷ ︸

N2

)T , (7)

then the matrix in (5), (6), denoted by R, has the structure

RN×N =
(
0N1×N1 YN1×N2

XN2×N1 0N2×N2

)
, N = N1 + N2, N1 ≤ N2, (8)

where 0N1×N1, 0N2×N2 are zero matrices and XN2×N1, YN1×N2 are nonzero matrices.
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The matrix R determined by (5), (6) always has a zero eigenvalue with at least three linearly independent
eigenvectors. Let n be given and si , qi , i = 1, 2, 3, be the components of two unit vectors s,q orthogonal to
each other and to the vector n. It can be verified directly that the three vectors

v0i = 0, σ 0
j i = s j si , (9)

v0i = 0, σ 0
j i = q jqi , (10)

v0i = 0, σ 0
j i = s jqi + siq j (11)

are solutions to (5), (6) with c = 0. To see that the three eigenvectors (9–11) are linearly independent,
extend the 9-component vectors (7) to 12-component ones by adding the components σ 0

21, σ
0
31, σ

0
32. If three

12-component vectors obtained in such a way are linearly independent, then the corresponding 9-component
vectors are linearly independent as well. It is readily seen that the three eigenvectors (9–11) treated as 12-
component vectors are mutually orthogonal and therefore linearly independent.

System (3), (4) with constant coefficients which describes an elastic solid will be referred to as the reduced
system and the corresponding matrix R of the eigenvalue problem (5), (6) as the reduced matrix.

Nowassume that the solid undergoes plastic deformation.The incremental constitutive response in plasticity
models is typically piecewise linear with two or more constitutive cones with different stiffness tensors.
Hyperbolicity should be verified separately for each constitutive cone. Equations (3), (4) remain valid for
plastic solids but are only part of the governing equations. In order to extend the analysis to plastic solids
without considering particular plasticity models, assume that

(i) the velocities and stresses are supplemented with additional dependent variables ψ1, ..., ψL , which may
be scalars or components of tensors,

(ii) the evolution of the additional dependent variables is determined by the deformation of the solid and is
governed by equations of the form

∂ψi

∂t
+

3∑

k=1

S(k)
i j

∂v j

∂xk
= 0, i = 1, ..., L , (12)

where S(k)
i j are the components of L × 3 matrices S(k), k = 1, 2, 3,

(iii) the coefficients in the equations may be functions of the dependent variables including ψ1, ..., ψL .

The reduced system supplemented with the new functions and equations according to the assumptions
(i–iii) will be referred to as the extended system and its matrix as the extended matrix. The assumptions (i–
iii) cover a wide class of plasticity models with rate-independent constitutive behaviour. In elasto-plasticity,
the dependent variables ψi may represent plastic strains and hardening parameters, e.g. plastic work or back
stresses. The present analysis is also valid for rate-dependent visco-plasticity models of the Perzyna type [12]
which contain additional functions of the dependent variables in equations (4), (12). Such terms do not involve
derivatives of the dependent variables and therefore have no effect on hyperbolicity.

The eigenvalue problem (5), (6) of the reduced system is supplemented with the new equations

3∑

k=1

nk S
(k)
i j v0j = cψ0

i , i = 1, ..., L , (13)

where ψ0
i are the additional components of the eigenvectors. If the components are ordered as

(v01, v
0
2, v

0
3︸ ︷︷ ︸

N1

, σ 0
11, σ

0
12, σ

0
13, σ

0
22, σ

0
33, σ

0
23︸ ︷︷ ︸

N2

, ψ0
1 , ..., ψ0

L)T , (14)

then the extended matrix, denoted by E , has the structure

E(N+L)×(N+L) =
⎛

⎝
0N1×N1 YN1×N2 0N1×L
XN2×N1 0N2×N2 0N2×L
ZL×N1 0L×N2 0L×L

⎞

⎠ , N = N1 + N2, N1 ≤ N2, (15)

where ZL×N1 is a nonzero matrix. For equations (12), (13), ZL×3 = ∑3
k=1 nk S

(k).
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2.3 Fluid-saturated solids with zero permeability

Considering porous fluid-saturated solids, we assume that the solid skeleton as a whole is much more com-
pressible than the solid phase itself. This assumption is usually formulated as incompressibility of the solid
phase and is justified, for instance, for soils. The constitutive equations (4) for a dry solid skeleton remain valid
for the same but saturated skeleton. They relate the rate of the skeleton deformation to the rate of the effective
stresses σ j i . For a porous medium with an incompressible solid phase, the effective stresses are

σ j i = σ total
j i + p f δ j i , (16)

where σ total
j i are the total stresses, p f is the pore pressure (positive for compression) and δ j i is the Kronecker

delta.
For zero skeleton permeability (locally undrained conditions), the velocity field is common to both the

skeleton and the fluid. The equations of motion are written for the total stress:

∂σ total
j i

∂x j
= �

∂vi

∂t
, (17)

where

� = (1 − n)�s + n� f (18)

is the density of the medium, �s and � f are the densities of the solid and fluid phases and n is the skeleton
porosity. Changes in the pore pressure are determined by the evolution equation

∂p f

∂t
= −K f

n

∂vk

∂xk
, (19)

where K f is the pore fluid bulk modulus [13]. Equations (4), (16), (19) yield the constitutive relations for the
total stress

∂σ total
j i

∂t
=

(
C jikl + K f

n
δ j iδkl

)
∂vk

∂xl
. (20)

Equations (17), (20)with constant coefficients for the functions vi , σ
total
j i describe the dynamic deformation

of a saturated solidwith an elastic skeleton. The governing equations and the corresponding eigenvalue problem
are similar to those for a one-phase solid. Equations (5) of the eigenvalue problem remain unchanged, and
equations (6) become

−
(
C jikl + K f

n
δ j iδkl

)
nlv

0
k = cσ 0

j i , (21)

where σ 0
j i now stands for the total stress components. If the dependent variables are ordered as in (7), the

matrix of the system has the structure (8). The matrix has the same three linearly independent eigenvectors
(9–11) associated with the zero eigenvalue.

For the plastic behaviour of the skeleton, we make the same assumptions (i–iii) of Sect. 2.2 to obtain an
extended system and an extended matrix (15). The stiffness of a plastic skeleton usually depends, among other
quantities, on the effective stresses, which are not available in Eqs. (17), (20). The simplest way to gain the
effective stresses is to introduce the pore pressure p f as a new dependent variable ψi with the evolution Eq.
(19) which conforms with (12). The pore pressure as a separate dependent variable may also be needed if, for
instance, the pore fluid consists of water and a small amount of free (undissolved) gas. Such a medium may
still be modelled as a two-phase medium if the gaseous phase is not continuous but is in the form of separate
inclusions (bubbles) in the liquid phase. The free gas makes the pore fluid bulk modulus K f strongly pore
pressure dependent [14].
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2.4 Fluid-saturated solids with nonzero permeability

In a fluid-saturated solid with nonzero permeability (locally drained conditions), the solid skeleton and the
pore fluid have in general different velocities. The velocity components for the solid and fluid phases will be
denoted, respectively, by vsi and v f i , where the first subscript stands for the phase and the second one indicates
the Cartesian component. The effective stresses σ j i are defined by (16) on the assumption that the solid phase
is incompressible. The equations of motion are written separately for the solid and fluid phases [13]:

∂σ j i

∂x j
− (1 − n)

∂p f

∂xi
+ � f gn2

k
(v f i − vsi ) = (1 − n)�s

∂vsi

∂t
, (22)

−n
∂p f

∂xi
− � f gn2

k
(v f i − vsi ) = n� f

∂v f i

∂t
, (23)

where k is the skeleton permeability (m/s) and g is the acceleration due to gravity. The constitutive relations (4)
for a dry skeleton remain valid for the effective stresses but are now written in terms of the skeleton velocity:

∂σ j i

∂t
= C jikl

∂vsk

∂xl
. (24)

The evolution equation for the pore pressure reads [13]

∂p f

∂t
= −K f

n

[
(1 − n)

∂vsk

∂xk
+ n

∂v f k

∂xk
+ (v f k − vsk)

∂n

∂xk

]
. (25)

If the skeleton stiffness tensor and the pore fluid bulk modulus do not change with the deformation and
temporal changes in the porosity are neglected, then Eqs. (22–25) for the unknown functions vsi , v f i , σ j i , p f
describe the dynamic deformation of a saturated solid with an elastic skeleton.

In connection with the dynamic equations for fluid-saturated solids, note that there are two cases to
which the subsequent analysis does not apply: the case of incompressible constituents and the so-called
u-p-approximation. If both the solid and fluid phases are assumed to be incompressible, then Eq. (25) with
K f → ∞ becomes the incompressibility condition for the two velocity fields. This condition does not contain
any time derivative and is not in the form (1). In the u-p-approximation used for sufficiently slow processes
such as earthquake-induced deformation [13], the solid and fluid phases are assumed to have the same acceler-
ation, so that the fluid acceleration ∂v f i/∂t in the equation of motion (23) for the fluid phase is replaced with
the acceleration of the solid phase ∂vsi/∂t . As a consequence, there are two equations, (22) and (23), with the
acceleration of the solid and no equation with the acceleration of the fluid, and the system is again not in the
form (1).

The eigenvalue problem obtained from Eqs. (22–25) is

1

(1 − n)�s

[
−n jσ

0
j i + (1 − n)ni p

0
f

]
= cv0si , (26)

1

� f
ni p

0
f = cv0f i , (27)

−C jiklnlv
0
sk = cσ 0

j i , (28)

K f

(
1 − n

n

)
nkv

0
sk + K f nkv

0
f k = cp0f , (29)

where v0si , v
0
f i , σ

0
j i , p

0
f are the components of an eigenvector. If the components are ordered as

(v0s1, v
0
s2, v

0
s3, v

0
f 1, v

0
f 2, v

0
f 3︸ ︷︷ ︸

N1

, σ 0
11, σ

0
12, σ

0
13, σ

0
22, σ

0
33, σ

0
23, p

0
f︸ ︷︷ ︸

N2

)T , (30)

then the matrix of the system has the structure (8).
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The eigenvalue problem (26–29) yields a zero eigenvalue with at least 5 linearly independent eigenvectors.
Let s,q be two unit vectors orthogonal to each other and to the vector n. It can be verified directly that the
following 5 vectors are solutions to (26–29) with c = 0:

v0si = 0, v0f i = 0, σ 0
j i = s j si , p0f = 0, (31)

v0si = 0, v0f i = 0, σ 0
j i = q jqi , p0f = 0, (32)

v0si = 0, v0f i = 0, σ 0
j i = s jqi + siq j , p0f = 0, (33)

v0si = 0, v0f i = si , σ 0
j i = 0, p0f = 0, (34)

v0si = 0, v0f i = qi , σ 0
j i = 0, p0f = 0. (35)

The proof that the eigenvectors (31–35) are linearly independent is in essence the same as for the eigenvectors
(9–11).

For plastic deformation, we may slightly generalize the assumption (ii) of Sect. 2.2 and assume that the
evolution of the additional functions ψi may depend not only on the strain rate of the skeleton but also on the
volumetric strain rate of the pore fluid. Equations (12) take the form

∂ψi

∂t
+

3∑

k=1

S(k)
i j

∂vs j

∂xk
+ βi

∂v f j

∂x j
= 0, i = 1, ..., L , (36)

with additional coefficients βi . The eigenvalue problem (26–29) is supplemented with the equations

3∑

k=1

nk S
(k)
i j v0s j + βi n jv

0
f j = cψ0

i , i = 1, ..., L . (37)

If the vector components in the eigenvalue problem are ordered as

(v0s1, v
0
s2, v

0
s3, v

0
f 1, v

0
f 2, v

0
f 3︸ ︷︷ ︸

N1

, σ 0
11, σ

0
12, σ

0
13, σ

0
22, σ

0
33, σ

0
23, p

0
f︸ ︷︷ ︸

N2

, ψ0
1 , ..., ψ0

L)T , (38)

then the extended matrix E has the structure (15) with

ZL×6 =
(
SL×3 BL×3

)
, (39)

where the matrices S and B have the components

Si j =
3∑

k=1

nk S
(k)
i j , Bi j = βi n j . (40)

Special remarks should be made about the porosity n in the case of nonzero permeability considered in
this section. The proof of a proposition in Sect. 3 will be based on the fact that the matrices R and E have
the special structures (8), (15). The last term in the evolution equation (25) for the pore pressure contains the
porosity gradient. If the porosity is treated as a constant field, as was assumed in the elastic case, the term with
the porosity gradient in (25) belongs to the right-hand side of the system (in the notations of (1)) and has no
effect on the matrices R and E . If the porosity appears as a dependent variable ψi in a plasticity model, its
changes are determined, for an incompressible solid phase, by the evolution equation

∂n

∂t
= (1 − n)

∂vs j

∂x j
. (41)

Although Eq. (41) conforms with (36), the consequence of including the porosity in the set of dependent
variables is that the term with the porosity gradient in (25) moves to the left-hand side of the system and
breaks the structure of the matrix E shown in (15). Such cases are not considered in this paper. Neglecting the
last term in (25) with the porosity gradient makes the results applicable to plasticity models with the variable
porosity described by Eq. (41).

The equations of Sects. 2.2–2.4 are summarized in Table 1.
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Table 1 Equations of the reduced and extended systems (elastic and plastic solids, respectively)

Governing equations Eigenvalue problem Eigenvectors associated with c = 0

I One-phase solid
(a) elastic (3),(4) (5),(6) (9)–(11)
(b) plastic (3),(4),(12) (5),(6),(13) (57),(61),(62)

II Saturated solid with zero permeability
(a) elastic (17),(20) (5),(6) (9)–(11)
(b) plastic (17),(20),(12) (5),(6),(13) (57),(61),(62)

III Saturated solid with nonzero permeability
(a) elastic (22)–(25) (26)–(29) (31)–(35)
(b) plastic (22)–(25),(36) (26)–(29),(37) (57),(61),(62)

3 Hyperbolicity of the reduced and extended systems

For the proof of hyperbolicity, we first need a lemma. In the following, dim ker(A) denotes the dimension of
the nullspace (the kernel) of a matrix A, and algmultA(λ) denotes the algebraic multiplicity of the eigenvalue
λ of a matrix A.

Lemma If a square matrix R of the form (8) is such that

dim ker(R) = algmultR(0), (42)

then
dim ker(R) = 2 dim ker(Y ) − N2 + N1. (43)

Proof For any square matrix R,
algmultR(0) = algmultR2(0). (44)

For a matrix R of the form (8),

R2
N×N =

(
Y XN1×N1 0N1×N2

0N2×N1 XYN2×N2

)
, (45)

algmultR2(0) = algmultY X (0) + algmultXY (0). (46)

Due to the special structure (8) of the matrix R,

dim ker(R) = dim ker(X) + dim ker(Y ). (47)

Equations (47), (42), (44), (46) used successively lead to

dim ker(X) + dim ker(Y ) = algmultY X (0) + algmultXY (0). (48)

As follows from the general inequalities

dim ker(X) ≤ dim ker(Y X) ≤ algmultY X (0), (49)

dim ker(Y ) ≤ dim ker(XY ) ≤ algmultXY (0), (50)

equality (48) is possible only if

dim ker(X) = algmultY X (0), (51)

dim ker(Y ) = algmultXY (0). (52)

Taking into account the relation

algmultXY (0) = algmultY X (0) + N2 − N1 (53)

([15], p. 53, [16], Exercise 6.2.16), we obtain

dim ker(Y ) = dim ker(X) + N2 − N1. (54)

Equality (43) follows from (47) and (54). ��
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The next objective is to show the equivalence between the reduced and extended systems with respect to
hyperbolicity. It is seen from (8), (15) that for a given n the reduced and extended matrices have the same
eigenvalues because

det(E − cIE ) = (−c)Ldet(R − cIR), (55)

where IE , IR are the (L + N ) × (L + N ) and N × N unit matrices, respectively. This property would suffice
for the equivalence of the two systems if hyperbolicity were defined in the weak sense mentioned in Sect. 2.1.
For the definition adopted here, the identity of the spectra that follows from (55) does not suffice as it does not
provide the required information about the eigenvectors of the matrices. The equivalence is established by the
following proposition valid for the reduced and extended systems I–III listed in Table 1. See also the remarks
about the porosity at the end of Sect. 2.4.

Proposition 1 A reduced system and the corresponding extended system are either both hyperbolic or both
non-hyperbolic.

Proof For a given n, let
(u01, ..., u

0
N )T (56)

denote an eigenvector of the reduced matrix. Suppose that the reduced matrix has a complete set of linearly
independent eigenvectors. If (56) is an eigenvector associated with c �= 0, then c is also an eigenvalue of the
extended matrix with the eigenvector

(u01, ..., u
0
N , ψ0

1 , ..., ψ0
L)T , (57)

where u01, ..., u
0
N are the same as in (56) and ψ0

i are determined by (13) or (37). The eigenvectors of the
extended matrix obtained in this way from a set of linearly independent eigenvectors of the reduced matrix are
linearly independent as well. The eigenvectors of the reduced matrices associated with c = 0 are determined
by the equations listed in the last column of Table 1. A key question is whether, for each reduced matrix, the
eigenvectors determined by those equations span the entire nullspace of the matrix or only a subspace of the
nullspace. The question can be answered with the help of the lemma proved above. For the use of the lemma,
we need to know the ranks of the matrices Y contained in R. For systems I,II, the matrix Y determined by (5)
is

Y3×6 = − 1

�

⎛

⎝
n1 n2 n3 0 0 0
0 n1 0 n2 0 n3
0 0 n1 0 n3 n2

⎞

⎠ . (58)

The rank of this matrix is 3 for any n. For system III, the matrix Y determined by (26), (27) is

Y6×7 = − 1

(1 − n)�s

⎛

⎜⎜⎜⎜⎜⎝

n1 n2 n3 0 0 0 −(1 − n)n1
0 n1 0 n2 0 n3 −(1 − n)n2
0 0 n1 0 n3 n2 −(1 − n)n3
0 0 0 0 0 0 −(1 − n)�sn1/� f
0 0 0 0 0 0 −(1 − n)�sn2/� f
0 0 0 0 0 0 −(1 − n)�sn3/� f

⎞

⎟⎟⎟⎟⎟⎠
. (59)

The rank of this matrix is 4 for any n. To show this, assume without loss of generality that n1 �= 0 and make the
5th and 6th rows zero with the help of the 4th row. Having found the ranks of the two matrices Y , we obtain,
using the rank–nullity theorem,

dim ker(Y ) = 3 (60)

for both matrices. If the reduced matrix R has a complete set of eigenvectors, it obeys the condition (42) of
the lemma, and (43), (60) give dim ker(R) = 3 for systems I,II and dim ker(R) = 5 for system III. Hence, the
three eigenvectors (9–11) and the five eigenvectors (31–35) span the entire nullspaces of the corresponding
matrices R.

Let (56) be a vector in the nullspace of the reduced matrix, that is, a linear combination of eigenvectors
(9–11) or (31–35). It is easy to verify that

(u01, ..., u
0
N , 0, ..., 0︸ ︷︷ ︸

L

)T (61)
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substituted into (13) or, correspondingly, (37) yields zero, so (61) is an eigenvector of the extended matrix
associated with c = 0. In addition to (61), the extended matrix has L linearly independent eigenvectors
associated with c = 0 of the form

(0, ..., 0︸ ︷︷ ︸
N

, ψ0
1 , ..., ψ0

L)T . (62)

Thus, it is shown that if the reduced matrix has N linearly independent eigenvectors (56) associated with both
c �= 0 and c = 0, then the extended matrix has N + L linearly independent eigenvectors (57), (61), (62).

Now suppose that the extended matrix has a set of N + L linearly independent eigenvectors. Without
loss of generality, it may be assumed that this set contains L vectors of the form (62) and N vectors of the
general form (57). Let (56) denote the first N components of (57). Each (N + L)-component vector is a linear
combination of the N + L vectors (57), (62). Since the first N components of the vectors (62) are zero, each
N -component vector is a linear combination of the N vectors (56). Therefore, these N vectors form a basis
for RN and are linearly independent. At the same time, they are eigenvectors of the reduced matrix: it is easy
to check that any nonzero part (56) of the eigenvector (57) of the extended matrix is an eigenvector of the
reduced matrix associated with the same c. ��

4 Hyperbolicity and the acoustic matrix

The implication of Proposition 1 is that information about hyperbolicity of the reduced system is sufficient
to draw a conclusion about hyperbolicity of the extended system. The verification of hyperbolicity can be
simplified further using the fact that the reduced matrix has the block structure (8) and a known nullspace.

For a nonzero eigenvalue of the reduced matrix of system I, substituting σ 0
j i from (6) into (5) shows that

the components v0i satisfy the system

1

�
Aikv

0
k = c2v0i , i = 1, 2, 3, (63)

where
Aik = C jikln j nl (64)

are the components of the acoustic tensor. To ensure that (63) constitutes an eigenvalue problem and c2 is
therefore an eigenvalue of the matrix Aik/�, we need to show that the components v0i in the eigenvector of
the original matrix are not all zero. To see that this is indeed the case, substitute v0i = 0 into (6) to obtain
σ 0
j i = 0. The equalities v0i = 0 and σ 0

j i = 0 together are impossible because v0i , σ
0
j i are the components of an

eigenvector.
Similarly to system I, substituting σ 0

j i from (21) into (5) for system II with c �= 0 yields the eigenvalue
problem (63) with the acoustic tensor

Aik =
(
C jikl + K f

n
δ j iδkl

)
n jnl . (65)

For system III with c �= 0, we write, according to (27), v0f i = w0
1ni with a new single component w0

1

instead of v0f 1, v
0
f 2, v

0
f 3, and eliminate σ 0

j i , p
0
f from (26–29), which yields an eigenvalue problem for the

components v0s1, v
0
s2, v

0
s3, w

0
1:

[
1

(1 − n)�s
C jikln j nl + K f (1 − n)

n�s
ni nk

]
v0sk + K f

�s
niw

0
1 = c2v0si , i = 1, 2, 3, (66)

K f (1 − n)

n� f
nkv

0
sk + K f

� f
w0
1 = c2w0

1 . (67)

The 4×4matrix of the eigenvalue problem (66), (67)will be referred to as the acousticmatrix. For convenience,
the matrix with the components Aik/� for systems I,II will also be called the acoustic matrix.

Equations (63–67) lead to the well-known conclusion that the squared characteristic speeds are the eigen-
values of the acoustic matrix. Notice that, strictly speaking, this statement concerns only nonzero characteristic



On hyperbolicity of the dynamic equations for plastic fluid-saturated solids

speeds, because there always exists a zero characteristic speed which need not be an eigenvalue of the acoustic
matrix. The converse formulation is correct without restrictions: if c2 is an eigenvalue of the acoustic matrix,
then ±c are the characteristic speeds. Consequently, the dynamic equations lose hyperbolicity if an eigenvalue
of the acoustic matrix becomes negative or complex.

The acoustic matrix allows us to find the characteristic speeds but does not immediately reveal whether
the original matrix of the system is diagonalizable or not. In particular, it still remains unclear what happens if
the acoustic matrix has a multiple positive eigenvalue or if one eigenvalue becomes zero while the others are
real and positive. The answers are given by the following proposition which establishes a connection between
the acoustic matrix and the diagonalizability of the original matrix. The proposition is valid for the reduced
systems I–III of Table 1 with the acoustic tensors (64), (65) and the acoustic matrix of (66), (67).

Proposition 2 A reduced system is hyperbolic if and only if for each n the eigenvalues of the acoustic matrix
are real and positive with a complete set of eigenvectors.

Proof First consider in more detail the transition from the reduced matrix of system III to the acoustic matrix
determined by (66), (67). For a given n, introduce new components w0

1, w
0
2, w

0
3 instead of v0f 1, v

0
f 2, v

0
f 3 with

the relations
⎛

⎜⎝
w0
1

w0
2

w0
3

⎞

⎟⎠ =
⎛

⎝
n1 n2 n3
s1 s2 s3
q1 q2 q3

⎞

⎠

⎛

⎜⎝

v0f 1

v0f 2

v0f 3

⎞

⎟⎠ ,

⎛

⎜⎝

v0f 1

v0f 2

v0f 3

⎞

⎟⎠ =
⎛

⎝
n1 s1 q1
n2 s2 q2
n3 s3 q3

⎞

⎠

⎛

⎜⎝
w0
1

w0
2

w0
3

⎞

⎟⎠ , (68)

where si , qi are the components of the unit vectors s,q orthogonal to each other and to the vector n. Three
equations (27), which contain v0f i , yield three equations with w0

i :

1

� f
p0f = cw0

1, 0 = cw0
2, 0 = cw0

3 . (69)

Equation (29) becomes

K f

(
1 − n

n

)
nkv

0
sk + K f w

0
1 = cp0f . (70)

Divide the vector components into two groups, but differently from (30):

(v0s1, v
0
s2, v

0
s3, w

0
1︸ ︷︷ ︸

N1

, w0
2, w

0
3, σ

0
11, σ

0
12, σ

0
13, σ

0
22, σ

0
33, σ

0
23, p

0
f︸ ︷︷ ︸

N2

)T . (71)

The matrix R of the new system (26), (28), (69), (70) has the structure (8) and is connected with the old
matrix by a similarity transformation. Since similarity preserves diagonalizability, the new matrix R will be
considered hereafter instead of the original reduced matrix of system III. The new matrix R has 5 linearly
independent eigenvectors associated with c = 0 similar to (31–35):

v0si = 0, w0
i = 0, σ 0

j i = s j si , p0f = 0, (72)

v0si = 0, w0
i = 0, σ 0

j i = q jqi , p0f = 0, (73)

v0si = 0, w0
i = 0, σ 0

j i = s jqi + siq j , p0f = 0, (74)

v0si = 0, w0
1 = 0, w0

2 = 1, w0
3 = 0, σ 0

j i = 0, p0f = 0, (75)

v0si = 0, w0
1 = 0, w0

2 = 0, w0
3 = 1, σ 0

j i = 0, p0f = 0. (76)

The submatrix Y of the new matrix R is

Y4×9 = − 1

(1 − n)�s

⎛

⎜⎝

0 0 n1 n2 n3 0 0 0 −(1 − n)n1
0 0 0 n1 0 n2 0 n3 −(1 − n)n2
0 0 0 0 n1 0 n3 n2 −(1 − n)n3
0 0 0 0 0 0 0 0 −(1 − n)�s/� f

⎞

⎟⎠ . (77)

The rank of the matrix (77) is 4 for any n.
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It was shown in the proof of Proposition 1 of Sect. 3 that if the reduced matrix R of system I or II has a
complete set of eigenvectors, then dim ker(R) = 3, and the three eigenvectors (9–11) span the entire nullspace
of R. For the new matrix R of system III, the same argument gives dim ker(R) = 5, so the five eigenvectors
(72–76) also span the entire nullspace of R.

Let a = (a1, ..., aN1)
T , b = (b1, ..., bN2)

T denote two vectors which form an eigenvector u of the matrix
R:

u = (a1, ..., aN1, b1, ..., bN2)
T , (78)

where N1 = 3, N2 = 6 for systems I,II and N1 = 4, N2 = 9 for system III. The eigenvalue problem Ru = cu
can be written as two systems:

Xa = cb, Yb = ca. (79)

Suppose that the matrix R has N real linearly independent eigenvectors u with subvectors a, b. Then each
N1-component vector is a linear combination of the vectors a. The eigenvectors (9–11) and (72–76), which
span the nullspaces, reveal that the vectors a associated with c = 0 are zero, so each N1-component vector is
actually a linear combination of the vectors a associated with nonzero eigenvalues. This set of vectors a must
therefore contain a basis forRN1 . At the same time, equations (79) show that each vector a satisfies the system
Y Xa = c2a. It is easy to verify that the N1 × N1 matrix Y X is the acoustic matrix. Hence, the acoustic matrix
has a complete set of eigenvectors associated with real positive eigenvalues.

Now suppose that the eigenvalues c2 of the acoustic matrix are real and positive and there exists a complete
set of eigenvectors a. As follows from (79), setting b = Xa/(±c) for each pair c2, a makes (78) an eigenvector
of R associated with ±c. If the N1 eigenvalues c2 are different, then the 2N1 eigenvectors u are linearly
independent because they are associated with the different eigenvalues ±c. If there is a multiple eigenvalue
c2 of the acoustic matrix, we should take linearly independent eigenvectors a associated with that c2 to have
linearly independent eigenvectors u. In any case, there exist 2N1 linearly independent eigenvectors u of R
associated with c �= 0. As we already know, the matrix R has N − 2N1 linearly independent eigenvectors
associatedwith c = 0 (3 for systems I,II and 5 for system III), whichmakes N linearly independent eigenvectors
altogether. ��

5 Concluding remarks

The two propositions of the paper applied successively reduce the verification of hyperbolicity for a plastic
solid to the solution of the eigenvalue problem for the corresponding acoustic matrix. This result is not only of
theoretical interest but is also useful for numerical applications, as the acoustic matrix is smaller than the whole
matrix of the system. What is needed is only to check that the plasticity model conforms with the assumptions
(i–iii) of Sect. 2.2 and with equations (12), (36).

As follows from Proposition 2, if the eigenvalues of the acoustic matrix are positive and different, then the
equations are hyperbolic. A multiple positive eigenvalue per se does not cause a loss of hyperbolicity if there
still exists a complete set of eigenvectors. Another corollary of Proposition 2 is that the equations cannot be
hyperbolic if the acoustic matrix is singular. In this case, as seen from the proof, the matrix of the system does
not have a complete set of eigenvectors (it is defective).

A further problem of interest is to investigate the relation between hyperbolicity of the equations for a
dry porous solid and hyperbolicity for the same but fluid-saturated solid. Since the equations for zero and
nonzero permeability for a saturated solid are different, there are three systems of equations to be compared.
According to the effective stress principle, the constitutive description of the solid in all three cases involves
the same stiffness tensor of the skeleton, C jikl . Nevertheless, the three systems in general do not agree with
each other from the viewpoint of hyperbolicity. It is shown in [9] that the equations for a saturated solid may
lose hyperbolicity while the equations for the same but dry solid remain hyperbolic. Hence, the conditions of
Proposition 2 for the acoustic tensor Aik of the dry solid to have real positive eigenvalues and a complete set of
eigenvectors do not ensure hyperbolicity in the saturated case. Stronger conditions sufficient for hyperbolicity
for the saturated solid are the symmetry and positive definiteness of the acoustic tensor of the skeleton. This
issue is considered in [17].
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