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ABSTRACT: Organic semiconductors are indispensable for today’s display
technologies in the form of organic light-emitting diodes (OLEDs) and
further optoelectronic applications. However, organic materials do not reach
the same charge carrier mobility as inorganic semiconductors, limiting the
efficiency of devices. To find or even design new organic semiconductors with
higher charge carrier mobility, computational approaches, in particular
multiscale models, are becoming increasingly important. However, such
models are computationally very costly, especially when large systems and
long timescales are required, which is the case to compute static and dynamic
energy disorder, i.e., the dominant factor to determine charge transport. Here,
we overcome this drawback by integrating machine learning models into
multiscale simulations. This allows us to obtain unprecedented insight into relevant microscopic materials properties, in particular
static and dynamic disorder contributions for a series of application-relevant molecules. We find that static disorder and thus the
distribution of shallow traps are highly asymmetrical for many materials, impacting widely considered Gaussian disorder models. We
furthermore analyze characteristic energy level fluctuation times and compare them to typical hopping rates to evaluate the
importance of dynamic disorder for charge transport. We hope that our findings will significantly improve the accuracy of
computational methods used to predict application-relevant materials properties of organic semiconductors and thus make these
methods applicable for virtual materials design.

■ INTRODUCTION
Motivation. Organic semiconductors have been success-

fully integrated into many commercially relevant electronic
devices such as in organic light-emitting diodes (OLEDs),1

organic photovoltaics (OPV),2 organic lasers,3 and organic
transistors (OFETs).4 Their optoelectronic properties and
potential flexibility, role-to-role manufacturing,5 or biocompat-
ibility6 open many interesting applications. However, concern-
ing charge carrier transport and mobility, organic semi-
conductors still fall short behind their inorganic counterparts.
Electrochemical doping of organic semiconductors significantly
increases conductivity as well as charge carrier injection but
can reduce long-term stability and efficiency due to drift and
diffusion of dopants.7−10 Although organic crystals achieve
high mobilities in the range of 1−100 cm2/(V s),11,12 they are
usually not used in OLEDs. An OLED made from a single
crystalline layer will likely suffer from charge carrier injection
and recombination imbalances.13 To achieve isotropic light
emission and homogeneous layer thickness in device stacks
with multiple layers, amorphous or semicrystalline materials
are required, having significantly lower charge carrier
mobilities. Consequently, it is crucial to understand and to
improve charge transport, in particular charge mobility, for
common OLED and OPV materials, which is determined
primarily by the width of the disorder distribution, as shown by
Bas̈sler and Köhler.14−16 The enormous suppression of the

mobility with increasing disorder is largely responsible for the
poor performance of amorphous organic semiconductors with
respect to mobility. Multiscale modeling methods had large
success in ab initio mobility prediction for various materials
and therefore serve as a screening tool for new or modified
molecules.7,17−24 In most of the models, charge transport is
described as a sequence of hopping processes, i.e., thermally
assisted tunneling of localized polarons between neighboring
molecules.25 Hopping rates can be estimated based on the
Miller−Abrahams model and Marcus theory,26,27 which
require reorganization energies and transition matrix elements
from ab initio DFT calculations, as well as the spatial
distribution of molecular energy levels. The hopping rates
can then be inserted into master equations,28−30 Monte Carlo
simulations,31 or mean field theories32 to determine the carrier
mobility of interest.33,34

Presently, most of the quantitative models for the mobility
assume a static picture with frozen molecules and thus time-
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independent energy levels, although molecular morphologies
are often created by dynamics simulations.21,35,36 This is partly
due to the numerical effort of electronic structure methods,
such as DFT, which precludes their use in large systems with
full dynamics. For this reason, the role of dynamic disorder is
presently not well-understood.
Static and Dynamic Disorder. In amorphous molecular

solids, at any given point in time, the distribution of orbital
energies across all molecules in the system is typically
estimated to be Gaussian with a material-dependent standard
deviation, which is referred to as (global) energy disorder in
the Gaussian disorder model.14 The disorder parameter σ
constitutes a sensitive factor for mobility prediction:

e C kT( / )2
μ ∝ σ− . However, due to thermal vibrations around
the individual (and potentially different) equilibrium con-
formations of each molecule in the amorphous matrix, these
energy levels are fluctuating in time. The thermally driven
conformational disorder can include methyl rotations,37 pedal
motions,38 resonances in hydrogen bonds,39 or dipole
orientational40 disorder.41,42 This fluctuation is referred to as
dynamic disorder,43−45 which is related to electron−phonon
interactions, which cause a spread of energy levels. If all
molecules had the same equilibrium conformation, all time-
averaged energy levels would be equal. However, in most of
the amorphous materials, the molecules are constrained in
individual equilibrium structures, leading to a spread of the
time-averaged energy levels, which is referred to as static
disorder.46 It will depend on the size and flexibility of the
molecules, on the response of energy levels to conformational
changes, on the degree of crystallinity, and on possible
additives such as dopants.47 The effective energy landscape and
energy disorder experienced by the charge carriers thus depend
on the typical residence time of charge carriers,48,49 i.e.,
electrons and holes localized on a single molecule. In case that
the residence time is much smaller than the fluctuation time of
energy levels (high electronic coupling between molecules),
the dynamic disorder has to be taken into account, and the
total disorder becomes an upper bound of the energy disorder.
However, in case of lower hopping rates, each charge carrier
will experience a fluctuating energy landscape potentially with
multiple resonances with neighboring energy levels, leaving the
static disorder as a lower bound.48 As a consequence, the
thermal energy fluctuations and the resulting dynamic disorder
can be beneficial or detrimental to charge transport. This will

depend on whether the charge transport is limited by either
static disorder or electronic couplings between neighboring
molecules, where the transfer integral is influenced by
orientation and distance as well. Additionally, electrostatic
interaction will modify the energy landscape, as soon as a
charge is moving in the system. Depending on the transport
model, the energy distribution integrated over in percolation
path theory for mobility prediction or used in Monte Carlo
simulations to initialize site energies is often assumed to be
static. However, the disorder is commonly estimated by the
total disorder, or the morphologies are generated by dynamics
simulations only, because of the computational cost of energy
calculations.21,33,35,36,50

Therefore, we incorporated faster machine learning (ML)51

models to upscale energy predictions on long trajectories with
thousands of molecules in order to obtain insights into the
dynamics of disorder effects and to distinguish static and
dynamic disorder contributions.43,44,52−54

This Work. In a recent proof of principle study, we showed
that energy level fluctuations in PEDOT:PSS can be evaluated
using machine learning models, enabling the calculation of
dynamic and static disorder in PEDOT oligomers.55 In this
paper, we present an extended study of static and dynamic
disorder, evaluated using ML models for OLED and OPV
application-relevant materials (depicted in Scheme 1). For this
study, we focus on conformational disorder and evaluate
vacuum single-point energies for isolated molecules from DFT
reference calculations to train the ML models. Electrostatic
disorder due to the electrostatic potential of neighboring
molecules as well as additional electrons and holes is neglected
here but plays an important role to quantify charge carrier
mobility in amorphous organic semiconductors.21,34,56 We
show that machine learning models can be trained to reliably
predict orbital energies with a limited number of DFT
calculations and subsequently used to compute static and
dynamic disorder on the full set of MD trajectories. Thereby,
we obtain good statistics for a comprehensive analysis of
energy disorder as a function of time and position. This
enables us to compare dynamic energy changes between
neighboring molecules with typical hopping rates of charge
carriers. In this work, we have succeeded in separating the
static disorder from the dynamic disorder, which is often larger
than the former. The comparison of hopping and energy level
fluctuation rates is required to verify the static disorder being

Scheme 1. Moleculesa

aStructure for all molecules investigated in this study. They can be categorized into p-type and n-type semiconductors. P-type: α-NPD, NPB, Spiro-
TAD, Spiro-OMeTAD, TCTA, BPD, and mCP. N-type: B4PyPPM, B4PyMPM, TPBi, and TPyQB.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00191
J. Chem. Theory Comput. 2021, 17, 3750−3759

3751

https://pubs.acs.org/doi/10.1021/acs.jctc.1c00191?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00191?fig=sch1&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00191?rel=cite-as&ref=PDF&jav=VoR


used for multiscale models. Nonetheless, we discuss that for a
certain parameter range, the dynamic disorder could become
relevant to more accurately predict the charge carrier mobility
of amorphous organic semiconductors. We expect that our
method will enable accurate prediction of the charge carrier
mobility in amorphous organic semiconductors, paving the
way to a reliable virtual design of high-mobility amorphous
organic semiconductors.

■ METHODS

The workflow used in this study consists of the parameter-
ization of molecule-specific classical force fields (FF),
molecular dynamics simulations (MD) of the amorphous
solid, DFT calculations on individual snapshots to generate a
sufficiently large dataset of HOMO energy levels, training of
machine learning models, in particular neural networks (NN),
to predict energy levels as a function of the conformation of a
molecule, and finally energetics prediction on the full MD
trajectories using the ML model instead of expensive DFT
calculations. The individual steps of the workflow are depicted
in a schematic overview of Figure 1. In the following, we will
give information on each step and their mutual relation. With
this procedure, all molecules in Scheme 1 have been
investigated.
Molecular Dynamics. For each molecule, the geometry is

initially optimized with a conformer search using the
submodule CREST of the semiempirical program package
XTB57−59 to find the minimum energy conformation. The
resulting structure is submitted to the online platform
ATB,60,61 which automatically assigns GROMOS force field
parameters and partial charges.62 For the simulation of the
melt structures, we use the molecular dynamics (MD) code
LAMMPS.63 Throughout this work, we use a time step of 1 fs
and a cutoff of 14 Å for short-range interactions in
combination with the PPPM long-range solver for electro-
statics and Nose−́Hoover style thermostating and barostating.
The MD simulation is initialized by placing randomly rotated
molecules on a grid followed by a cascade of NPT runs to
equilibrate the density. During an initial pressure ramp from 10
to 1 atm and at a temperature of 300 K, the loose initial
structure is condensed into a solid over a period of 200 ps.
Then, the long-range solver is activated followed by an
additional run of 200 ps at the final pressure of 1 atm. In order
to further equilibrate the density, the system is heated from
300 to 700 K and subsequently cooled back to 300 K, in each
case as linear ramps of 200 ps. At the final conditions of 300 K
and 1 atm, the system is equilibrated for another 500 ps.
Finally, in the production runs, we extract snapshots in an
interval of 1 ps over a period of 5 ns and in an interval of 1 fs
over a period of 1 ps. A typical example for the development of

the mass density during the equilibration and production runs
is shown in Figure S13 of the Supporting Information.

DFT. In order to generate a suitable conformer-energy
dataset to train machine learning models, we performed
density functional theory (DFT) calculations with the
Turbomole 7.4 software package on randomly sampled
conformers.64 We used the resolution of identity approx-
imation with a def2-SV(P) basis set on an M3 grid and the B3-
LYP functional.65 We extracted the total energy as well as
vacuum HOMO and LUMO energy levels from DFT single-
point energy calculations. We simply used the last 20−100
snapshots of the MD trajectories with large time steps, which
leads to a set of less correlated conformers compared to the
trajectories with a smaller time step. Each snapshot has 512
molecules (mCP has 1000 molecules), which leads to
approximately 10,000−50,000 conformers and corresponding
energy levels of each material for training. Additionally, we
randomly picked 6 molecules in each simulation box and
calculated DFT energies for the full trajectories from 0 to 5000
ps with a total of approximately 30,000 conformational
energies, which serves as an additional test set and to estimate
approximate DFT-based disorder values. Moreover, we
calculated energy levels using DFT along 6 trajectories for
the small time step MD trajectories of randomly selected
molecules. We further experimented with different basis set
and grid options (see the Supporting Information for details).
There is a small dependence of the DFT results on the basis set
size, which likely improves going to def2-TZVP and def2-
QZVP, at the cost of a significant increase in computational
effort, which makes a DFT reference uncertainty of a few meV
seem acceptable.

ML. For our machine learning model, we chose a fully
connected feed-forward neural network (NN) of 3 layers with
a leaky RELU activation function (α = 0.05) followed by a
single linear classification layer. We trained a separate NN for
each material on the respective DFT energy dataset generated
in the previous step. As input features, we used rotationally
invariant, geometry-derived descriptors, such as inverse
distances and bond and dihedral angles. Because of the large
size of some organic semiconductors in this study, we further
restricted the number of inverse distances to a set of close
neighbors per atom (including hydrogens). The input features
were subsequently concatenated and standardized. The NNs
were trained using the Adam optimizer with a learning rate
decreasing from 5 × 10−4 to 1 × 10−5 over 400 epochs. We
found a good convergence for a broad set of hyperparameters
and selected an NN with 3 hidden layers of 1000 neurons
before the final regression layer. To prevent overfitting, we
applied L1 regularization for kernel and bias (10−6−10−7).
Note, an exhaustive hyperparameter optimization was not

Figure 1. Computational workflow. The full workflow can be divided into (a) conformer search and force field parameterization (FF), (b)
molecular dynamics simulation (MD), (c) density functional theory (DFT) calculations, (d) machine learning model (ML) generation, and (f)
final energetics analysis of the full trajectories to estimate disorder.
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found to be necessary, which is why only the regularization
parameters were tuned. For evaluation, we choose a validation
training set split ratio of 0.1.
Dynamic Disorder. As mentioned in the Introduction, the

conformational energy disorder of molecular solids has
dynamic and static contributions. Combined with electrostatic
contributions, which are described in more detail in prior
work,21,34,66 they add up to the total distribution of energy
levels. Provided that the energy Ui(t) is given for each
molecule i at every point in time by our ML model, the
conformational disorder components can be separated as
shown in Figure 3. This is done by evaluating either the
variance of energy levels for a single molecule with time or the
distribution of time-averaged energies within the ensemble.

The dynamic disorder is characterized by the expectation value
of the variance of energy fluctuations of each molecule with
time

U tE Var ( )i t id
2σ = [ [ ]] (1)

Here, Vart/i represents the variance and Et/i denotes the
expectation value with respect to time t or ensemble average i,
respectively. Correspondingly, the static disorder is defined by
the variance of the time-averaged expectation values of the
energy levels of each molecule

U tVar E ( )i t is
2σ = [ [ ]] (2)

Figure 2. Machine learning. We trained an NN for all molecules in Scheme 1 to predict HOMO and LUMO levels. (a) Scatterplot of DFT
reference values versus the predicted validation set for NPB. (c) Validation trajectory comparing the DFT reference with ML-predicted trajectory
for NPB. (b) Learning curve for NPD, p-BPD, NPB, Spiro-TAD, and mCP, which shows the mean absolute error (MAE) as a function of training
data for a 10-fold cross-validation. (d) Zoom into an oscillation of (b).

Figure 3. Definition of disorder. The analysis of static and dynamic energy disorder is illustrated by the example of NPB. (a) Heat map of all NN
predictions, where time flows in the y-direction. (b) One out of 512 trajectories. (c) Single snapshot out of 5001 at a specific time showing all
molecules. (d) Probability density function (PDF) plot of the distribution of all the trajectories’ mean value representing the static disorder
distribution. (e) Dynamic contribution of the trajectories. The fluctuations of all trajectories centered to their respective mean value. (f) Total
conformational disorder distribution from averaged snapshots, which is composed of a convolution of the static and dynamic distributions, i.e., the
squared sum of dynamic and static disorder.
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If both distributions can be approximated independently by
normal distributions, then the total conformational disorder

U tVar ( )i tt
2

,σ = [ ] is given by the quadratic sum of dynamic
and static disorder

t
2

d
2

s
2σ σ σ= + (3)

We note that in the following discussion, we neglect the
electrostatic contribution56 and focus solely on conformational
disorder.

■ RESULTS AND DISCUSSION
We trained our machine learning model on the DFT-generated
HOMO-conformer dataset for each relevant molecule in
Figure 2. HOMO/LUMO energy levels are used here as a
proxy for the IP/EA levels, which are relevant for charge
transport. However, as we do not take polarization effects into
account, explicit polarons and thus IP/EA levels are not
required in this discussion. The dependence on the number of
training samples can be seen from the learning curve in Figure
2b, yielding an exponential reduction of the mean absolute
validation error on the training set size. For all molecules, a
validation error of 1 kcal/mol or lower is achieved with 10,000
random conformers from the large time step trajectories. The
ML-predicted HOMO energies are plotted versus the ground
truth of the DFT HOMO levels in a scatterplot for NPB in
Figure 2a. Here, we achieve a mean absolute error (MAE) of
15 meV with an r2 score of 0.97, which is well below chemical
precision and the estimated disorder values. We find that NNs
trained on ensembles of molecules from only a few snapshots
as for NPB nicely generalize the test trajectories of single
molecules for longer timescales (r2 score of 0.96). However,
the opposite is not true as NNs trained solely on a few
trajectories do not correctly predict other trajectories or
snapshots (for NPB, only an r2 score of 0.6). This is most likely
due to the fact that for a single trajectory, all reachable
dynamic conformations are confined around their positional
dependent mean and do not visit the full conformational space.
The models trained on random snapshots from the large time
step dataset adequately predict the small time step trajectory,

which is depicted in Figure 2c for NPB. The small time step
MD simulation is used to investigate oscillations and hopping
timescales in Figure 5.
Applying the trained machine learning model on the full MD

trajectories, all conformational energies are predicted, illus-
trated in Figure 3a with NPB as an example. Looking at
snapshots in Figure 3c, i.e., at all molecules at a specific time,
the total conformational disorder can be determined based on
the HOMO level distribution and its standard deviation in
Figure 3f. The total conformational disorder is approximately
Gaussian. The HOMO and LUMO level distribution for all
molecules is further evaluated directly from DFT reference
calculations in Figures S1 and S2. Although the total
conformational disorder can be directly inferred from DFT
data, a distinction between static and dynamic contributions
requires complete trajectories as in Figure 3b. In the image of
Figure 3a, trajectories can be seen as vertical slices along the
time axis. The distribution of their mean values is plotted in
blue in Figure 3d, whereas the scattering around their
respective mean values is depicted in Figure 3e. Importantly,
the machine learning model provides enough trajectories to
properly represent the distribution of time-averaged energy
levels and their fluctuations. Therefore, the standard deviation
of the distributions in Figure 3d and Figure 3e can be taken as
an estimate for the static and dynamic disorder following eqs 2
and 1, respectively. Additionally, we approximated the static
and dynamic disorder based on DFT reference values from six
test trajectories in Tables S1 and S2.
Following this data analysis, we determine disorder

components for the HOMO level of all p-type molecules
and for the LUMO level of all n-type molecules in Scheme 1.
The individual disorder values are depicted in Figure 4 and
listed in Tables S3 and S4 together with the ML validation
error and the squared sum of dynamic and static disorder. We
find an overall very good agreement of the squared sum with
the total conformational disorder value, showing that the
disorder is composed of a convolution of independent dynamic
and static disorder contributions, which cannot be concluded

Figure 4. Disorder components and (a)symmetry. Energy disorder broken down into dynamic and static parts as illustrated in Figure 3. The
LUMO level for all n-type molecules and the HOMO level for all p-type molecules are plotted (see Scheme 1). All 38.3 million energy levels
required for this analysis are generated by our machine learning models. All ML estimates of HOMO and LUMO disorder are given in Tables S3
and S4 and Figures S8 and S9. The corresponding values obtained from DFT reference trajectories with significantly smaller statistics are given in
Tables S1 and S2 for comparison. The lower panels show a measure of skewness of the static, dynamic, and total energy level distributions. In
particular, for the static energy level distributions, we find substantial deviations from symmetrical Gaussian distributions.
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from the six DFT reference trajectories alone due to limited
statistics.
In general, we find a notable contribution of the dynamic

part to the total conformational disorder. As discussed later,
the dynamic disorder has the potential to hinder charge
transport.67 The static disorder seems to be larger for
molecules with long rotatable aromatic groups such as
TCTA, where the vacuum HOMO level is delocalized and
can localize inside groups depending on the conformation (see
Figure S5). Also, in direct comparison of m-BPD and p-BPD
with o-BPD, the more compact and sterically locked ortho
position shows the smallest static disorder. Similarly, with the
addition of methyl groups in the backbone of NPB (yielding α-
NPD), static disorder decreases, and the ratio between static
and dynamic disorder is altered. However, the reduction in
static disorder of methyl-substituted α-NPD is compensated by
an increase in dynamic disorder.
While the total and dynamic disorder can be well-described

with a Gaussian distribution, the static disorder is often slightly
asymmetric (see Figure 3b, the lower panel in Figure 4, and the
Supporting Information). Electrons and holes with hopping
rates that are lower than the typical fluctuation time of the
dynamic disorder will thus experience an asymmetrical
distribution of energy levels. Depending on the type of
asymmetry, this might lead to a decrease or increase in the
concentration of tail states/shallow traps. In the example
illustrated in Figure 3d, the holes traveling through NPB are in
a skewed HOMO distribution that shows more tail states and
thus hole traps than what would be expected from a Gaussian
distribution of energy levels with the same standard deviation.
The opposite behavior was observed in Friederich et al.55 for
hole transport in PEDOT oligomers, where the distribution of
HOMO levels showed an extended tail toward lower HOMO
energy levels and a sharp edge toward more shallow HOMO
energies. One possible explanation of this behavior might be

the correlation between total energy and HOMO energy close
to the equilibrium conformation. In case of a positive
correlation, the HOMO distribution has a global minimum,
leading to a distribution as shown in Figure 3d, whereas in case
of a negative correlation, the opposite asymmetry is observed.
This can be seen in the example of PEDOT and in various
cases in Figure 4, especially for distributions of static LUMO
energy levels and for the distribution of static HOMO energy
levels of Spiro-TAD.
Depending on the theoretical model used to describe charge

transport, also, the structurally resolved energy levels of the
surroundings of a molecule can be required. For example, in
kinetic Monte Carlo simulations, charge transport is modeled
as stochastic charge transfer between different sites subject to
an external electric field. With our machine learning model, the
time-resolved energetic neighborhood to a molecule can be
explored.
In the following, we will analyze the time-resolved energy

difference between neighboring molecules at the examples of a
small NPB cluster and compare it to typical hopping rates. The
power spectrum of the energy level fluctuations of NBP
molecules (see Figure 5d) shows an approximate 1/f noise-like
background, reaching down to a few THz. In addition, we find
distinct vibrational modes leading to oscillations with a
frequency of ∼17 THz (59 fs), which corresponds to the
more pronounced oscillations plotted in Figure 5b. Further-
more, we find additional frequency components at ∼37 and
∼51 THz (59 and 27 fs, respectively), corresponding to weaker
fluctuations that are modulated on the main fluctuations in
Figure 5b. The frequency of energy level resonances (in terms
of Marcus theory,27 i.e., taking into account the reorganization
energy, see eq 4) between neighboring molecules is analyzed in
Figure 5c. We find resonances with average occurrence rates of
∼56, ∼90, and ∼120 THz (18, 11, and 8 fs, respectively),

Figure 5. Hopping rate and energy matching. (a) Radial distribution or pair correlation function for NPB obtained from averaged MD morphology.
The inset shows the stacking of NPB molecules in the amorphous phase with two common length scales as an example arrangement. (b) ML
prediction of energies of a random NPB molecule (red) and selected neighboring molecules in blue and cyan at ca. 4 and 11 Å distance. (c)
Absolute energy differences, including reorganization energy λ, of the central molecule to the 3, 5, and 7 nearest neighbors in shades of blue and
their minimum in black and resonances in red. (d) Averaged power spectrum of NPB from FFT of ML-predicted trajectories. (e) Trajectory of the
molecule in (b) with low-pass filtered frequency components in orange.
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when computing the resonances between an NPB molecule
and its nearest 3, 5, and 7 neighbors.
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To compare these characteristic fluctuation and resonance
times to typical hopping rates, we have to take into account the
electronic coupling between NPB molecules, which quantifies
the prefactor of the Marcus hopping rate and which can be
interpreted as a hopping attempt frequency. The electronic
coupling strongly depends on the intermolecular distance (see
Figure S6). The pair correlation function of NPB (Figure 5a)
shows that a substantial amount of NPB molecules have their
nearest neighbor at center-of-mass distances between 3 and 8
Å (with a stacking motive in which two NPB molecules are
situated in close proximity and rotated approximately 90°
relative to each other). The next nearest neighbors that are still
in direct contact, thus allowing for nonvanishing electronic
coupling matrix elements, are located at distances between 9
and 10 Å.
Electronic couplings Jij and reorganization energies are

typically obtained from quantum chemical calculations.68 For
NPB, we obtain Jij = 0.01 eV at a distance of ∼5 Å and a
reorganization energy λ = 0.16 eV, leading to a maximum
hopping rate of 4.2 THz for Marcus theory, assuming that the
resonance condition is fulfilled, i.e., for Ej − Ei + λ = 0. This
translates to a residence time 1/Wij of 238 fs, which suggests
that the oscillations visible in Figure 5b appear averaged for
most of the charge carriers. When taking into account larger
hopping distances, the mean electronic coupling is substan-
tially lower, allowing the assumption that the energy levels
appear time-averaged. This means that the resulting mean
energy levels of molecules should be drawn from the static
disorder distribution. If we were to remove the distinct
oscillations from the frequency spectrum (filter out frequencies
higher than 10 THz), then the dynamic disorder would shrink
by 22 meV from 84 to 62 meV, but the average resonance
occurrence time increases from 11 to 67 fs for 5 neighbors
considered.
Nonetheless, we also note that in case of molecules with

higher mean electronic couplings than NPB (e.g., Jij of ∼0.1 eV,
corresponding to a prefactor of the Marcus rate of 418 THz or
2 fs in resonance conditions), even distinct dynamic
oscillations become comparable or slower than typical hopping
rates, leading to a significantly increased effective disorder
experienced by charge carriers in a classical description.
Although this is a classical picture and the analogue is not
strictly true, the fast distinct oscillations in Figure 5b may be
regarded as a way to bring neighboring energy levels into
resonance or as phonons being absorbed to facilitate hopping
as in Marcus theory. We would like to point out that with an
ML model introduced into atomistic charge transport models,
these relative contributions could be captured and quantified
by introducing the time-dependent energy levels.
For example, a larger grid of realistic time-dependent energy

sites could in principle be generated for Monte Carlo
simulations. Also, in extensive 3D morphologies, a joint
energetic and geometric representation will also reveal possible
percolation pathways (see Figure S4). Further properties, like
the electronic couplings between two molecules (see Figure
S18) and electrostatic effects of charges, can be learned and

added to an ML model. This could be explored in future work,
integrating ML models in charge transport simulations.69−71

To arrive at a static disorder, which can be used in
mesoscopic models, e.g., in kinetic Monte Carlo simulations,
the static conformational disorder computed in this work has
to be complemented with the electrostatic disorder σp, which
can be contributed to intermolecular electrostatic interactions,
e.g., molecular dipole moments. The electrostatic disorder for
the morphologies in this work can be calculated with the
QuantumPatch method,21,34 which yields σp = 83 meV for
NPB. Assuming that electrostatic and static conformational
disorders are not correlated, the total static disorder is equal to

98 meVs
2

p
2σ σ+ = . This is close to the disorder parameter

(87 meV) used in mesoscopic models of charge transport72−74

that is used by a top-down approach to reproduce the
experimentally observed hole mobility of NPB. Moreover, the
hole mobility of NPB computed with the kMC model with a
realistic morphology and assuming a disorder parameter 0.93
eV yields a hole mobility of 2 × 10−3 cm2/(V s)75 close to the
experimental value (between 2 × 10−3 and 3 × 10−3 cm2/(V s)
according to Chen et al.76 and Tse et al.77). However, a direct
comparison with experimental values for the disorder is
difficult as most of the measurements are based on the
Gaussian disorder model (GDM) or the correlated disorder
model (CDM) evaluating the field and temperature depend-
encies of the mobility and indirectly retrieving the disorder
parameter. For small molecules, the measured disorder values
will also be composed of contributions of the reorganization
energy λ and are not directly comparable with the conforma-
tional disorder calculated here. Moreover, the GDM used in
experimental work assumes a strictly Gaussian disorder,
whereas the simulated static disorder deviates from a Gaussian
distribution. With this caveat in mind, we compare the
calculated values to a selection of experimental values from the
literature in Table S5 and find an overall reasonable agreement.
Additionally, we note that the morphologies evaluated in this
work are thermodynamically assembled and annealed
structures. Distinct (anisotropic) stacking patterns of mole-
cules during film growth influence the effective disorder
observed in experiments, which currently cannot be fully
observed in simulations. This can potentially explain
discrepancies in the predicted disorder of , e .g . ,
B4PyMPM78,79 (see Table S5).

■ CONCLUSIONS

In summary, we have investigated static and dynamic
conformational disorder for various device-relevant organic
semiconductors by using machine learning models integrated
in multiscale modeling simulations. The ML models were
trained using DFT energies to predict the time- and space-
resolved energy level distribution of complete MD trajectories
of disordered thin films. Thereby, static and dynamic disorder
contributions were analyzed using ∼38 million energy level
predictions by the ML model, a number that would not have
been feasible using quantum mechanical calculations.
We first find that static disorder distributions of multiple

relevant materials are highly asymmetrical. Consequently, the
density of states either shows deep tail states in the HOMO−
LUMO gap, which is unfavorable for charge transport (e.g., the
HOMO distribution of NPB and TPBi), or it shows a steep
decline toward the HOMO−LUMO gap, which avoids
trapping and thus favors charge transport (e.g., the HOMO
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distribution of Spiro-TAD). We suspect that the underlying
mechanism is related to the HOMO energy surface close to the
local minima of the potential energy surface. A closer study of
this mechanism might lead to new molecular design principles.
Second, we find that characteristic oscillation times of

molecular energy levels are below maximally possible Marcus
hopping rates in disordered materials like NPB, suggesting that
dynamic disorder averages out at typical electronic couplings of
disordered materials, leaving static disorder as the key
contribution to charge transport. Third, we observed that the
amount of static disorder is likely correlated to the size and the
amount of rotatable side groups (e.g., TCTA and BPD),
provided that the respective molecular energy level is
sufficiently delocalized over the molecule and therefore
affected by conformational changes. This effect offers the
opportunity to be used as a design rule for future organic
semiconductors.
In summary, we showed that the integration of ML models

as fast and accurate predictors in multiscale modeling
workflows offers the opportunity to study a wide range of
interesting and application-relevant phenomena, e.g., time-
resolved energy level fluctuations, dynamic disorder, and
asymmetries in static energy level distributions, which were not
accessible before due to prohibitively high computational costs.
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