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Abstract

This thesis deals with the mathematical theory and numerical approximation of the
Landau–Lifshitz–Gilbert equation coupled to the Maxwell equations without artificial
boundary conditions.

As a starting point, the physical equations are stated on the unbounded three di-
mensional space and reformulated in a mathematically precise way to a coupled partial
differential – boundary integral system.
We derive a weak form of the whole coupled system, state the relation to the strong

form and show uniqueness of the Maxwell part of the solution. A numerical algorithm is
proposed based on the tangent plane scheme for the LLG part and using a finite element
and boundary element coupling as spatial discretization and the backward Euler method
and Convolution Quadrature as time discretization for the interior Maxwell part and the
boundary, respectively. Under minimal assumptions on the regularity of solutions, we
present well-posedness and convergence of the numerical algorithm.
For the pure Maxwell equations without the coupling to the LLG equation, we are

able to show stronger results than in the coupled case. We derive a weak form for the
Maxwell transmission problem and demonstrate existence and uniqueness of the weak
solutions as well as equivalence with a strong solution. The proposed algorithm of finite-
element/boundary-element coupling via Convolution Quadrature converges with only
minimal assumptions on the regularity of the input data.
Again for the full Maxwell–LLG system, we show a-priori error bounds in the situation

of a sufficiently regular solution. This is done by a combination of the known linearly im-
plicit backward difference formula time discretizations with higher order non-conforming
finite element space discretizations for the LLG equation and the leapfrog and Convolu-
tion Quadrature time discretization with higher order discontinuous Galerkin elements
and continuous boundary elements for the boundary integral formulation of Maxwell’s
equations. The precise method of coupling allows us to solve the system at the cost of the
individual parts, with the same convergence rates under the same regularity assumptions
and the same CFL conditions as for an uncoupled examination.
Numerical experiments illustrate and expand on the theoretical results and demon-

strate the applicability of the methods.
For the formulation of the boundary integral equations, the study of the Laplace

transform is inevitable. We collect and extend the properties of the Laplace transform
from literature. In the suitable functional analytic setting, we give extensive proofs in a
self contained way of all the required properties.
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1. Introduction

1.1. Motivation
The understanding of magnetization dynamics is overly important for various current
technical developments: Magnetization phenomena occur, e.g., in magnetic sensors, gen-
erators, electric motors or magnetic storage devices. In a magnetic storage device, for
example the magnet stripe of a common credit card, a hard drive disk of a personal com-
puter or a magnetic tape storage (used for long time storage in data in archives [124, 136],
or big data centers (e.g. in the project CASTOR at CERN [50])) the encoding of the
data is achieved via the direction of the magnetization.

Figure 1.1.1.: Perpendicular recording: Writing head on a hard disk from [49].

Figure 1.1.1 depicts how a magnetic storage device is working: The electromagnet
(“writing head”) introduces a magnetic field and therefore the magnetization in the
actual storage cell in the recording layer gets aligned to the intended direction. Whether
the magnetization is pointing upwards or downwards, the block encodes a ”1” or a ”0”,
so each cell corresponds to one bit.
For the practical relevance, several aspects come into place: The smaller each of the

tiny cells can be chosen (without influencing the neighboring bits during the writing
process), the higher is the storage capacity of the device. The time it takes to align
a bit is directly related to the writing speed. Further aspects comprise the energy
efficiency of the writing process, the possibility and speed of reading the data and the
manufacturing costs (e.g. due to the used materials). For the long time safety of the data
it is important how stable the writing procedure is, especially with respect to exterior
impacts like external (earth) magnetic fields or physical effects like hits or heat.
Effects like these can be simulated with the algorithms and models considered in this

thesis, but also with reduced models, see e.g. [55, 141, 64].
In the development of even smaller, faster and more efficient devices, also cutting

edge writing techniques are explored: The control of magnetization by optical means
[31], especially using circularly polarized light seems to be a promising ansatz [147]. In
this emerging field of research, femtosecond laser pulses are used to switch the magne-
tization of ferromagnetic materials in order to improve the speed, density, and stability
of magnetic hard drives, with possible implications for the field of spintronics [75].
To cover all those physical aspects, it is essential to consider the coupling to the full

Maxwell system, like we do it in this thesis in contrast to earlier approaches (e.g. [63, 104,
105]), which deal with a quasi static approximation of Maxwell’s equations. Yet another

1



1. Introduction 2

application that is being considered is the production of radiation from a magnetic
material. The interest comes from the observation that one can build THz emitters in
this way, which are otherwise hard to achieve [129]. Such THz emitters are important
for a broad range of technical applications ranging from chemistry and medicine to
physics and material sciences [120, 150]: information and communications technology,
spectroscopy and imaging, nondestructive evaluation (material and circuitry diagnosis),
security (detection of drugs and explosives), global environmental monitoring, ultrafast
computing and astrophysics. Despite all that, the THz region of the electromagnetic
spectrum is still an comparatively unexplored region due to the lack of strong and
broadband THz emission sources and sensitive detectors.
Altogether, scientific research and industrial application require a deep understanding

of the physical ongoings in the technical devices and further this is demanded for different
materials, different shapes (of parts) of the devices and their respective arrangement. A
very helpful approach for this understanding is the numerical simulation for visualization
and for computing concrete figures (that otherwise would have to be measured in a
physical experiment).
This dissertation considers the analysis of algorithms for the Maxwell–Landau–Lifshitz–

Gilbert system in two complementary attempts: We propose algorithms that, almost
independent of the regularity of the solution, give reliable approximations. On the other
hand, if the problem is good-natured in a way (the solution is regular enough), we show
that the approximation and exact solution only differ by an a-prioiri known tolerance,
and that we can predict how the error reduces in terms of the discretization parameters.

1.2. Physical Derivation
In this section we want to introduce the Maxwell–Landau–Lifshitz–Gilbert system from
a physical point of view. This section is based on [141], [121] and [106].

1.2.1. The Landau–Lifshitz–Gilbert equation
Micromagnetism describes the study of magnetic phenomena on a length scale from a few
nanometers up to several micrometers. The scale is large enough to consider continuous
quantities above the atomic structures but small enough to observe magnetic structures
like domain walls or vortices. We consider the situation of a ferromagnetic body whose
volume is described by the three dimensional domain Ω ⊂ R3. The physical quantity
of magnetization is described in every point x ∈ Ω (and at time t ∈ R) by a three
dimensional vector M(t, x) ∈ R3 that represents the magnetic moment per unit volume.
As long as the temperature stays constant and sufficiently low, the absolute value of the
magnetization remains constant (see [141]), i.e.

|M | = MS > 0,

where MS is called saturation magnetization.

Static micromagnetics

Following the micromagnetic theory, the magnetization always aligns itself such that a
state of minimum energy is reached. This means that the final state is a minimizer of
the so-called total magnetic Gibbs free energy, which comprises many individual energy
contributions. For simplicity however, we consider only a simplified model in this thesis,
we refer to [141] for a more detailed presentation and to Section 7.2 for the extensibility
of the mathematical results to cover further physical effects.
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Due to quantummechanical effects, neighboring magnetic moments strive to be aligned
in the same direction. Therefore, the exchange energy includes the term

Eex(M) = A

M2
S

∫
Ω
|∇M |2 dx

which penalizes unequal directions in the magnetic field. Here A > 0 denotes the ex-
change stiffness constant.
If an external magnetic field H is applied, the magnetization aligns with it. Accord-

ingly, Zeeman’s energy penalizes deviations of the magnetization from this direction,
i.e.

Eze(M) = −
∫

Ω
µH ·M dx.

For simplicity we assume in this section that the magnetic permeability µ ∈ R+ is scalar
and constant, see Section 7.2 for a discussion.
Taken together, for the energy E(M) = Eex(M)+Eze(M), we consider the minimization

problem
min
|M |=MS

E(M).

If we define the effective magnetic field as

µHeff = − ∂E
∂M

= 2A
M2
S

∆M + µH,

the corresponding Euler Lagrange equations can be derived as

m×Heff = 0 in Ω,
∂nM = 0 on ∂Ω.

Therefore a minimizer of the energy is aligned parallel to the effective field.

Dynamic micromagnetics

We will now study the physical equations that deal with how the magnetization aligns
itself from an unstable initial state to the final static state.
In [103], the physicists Lew Dawidowitsch Landau (1908–1968) and Jewgeni Michailow-

itsch Lifschitz (1915–1985) proposed the phenomenological model

∂tM = −γ0M ×Heff −
γ0λ

MS
M × (M ×Heff), (1.1)

with damping parameter λ > 0 and the (rescaled) gyromagnetic ratio γ0. This de-
scribes the motion as a damped precision, i.e. the magnetization rotates around while
simultaneously being damped towards the effective field.
In [69], Thomas Lewis Gilbert (born 1922) proposed to add a different damping term,

resulting in
∂tM = −γ0M ×Heff −

α

MS
M × ∂tM (1.2)

with the (dimensionless) Gilbert damping parameter α > 0. Up to rescaling of the
constants, the equations (1.1) and (1.2) are equivalent, see Section 2.1.1. We restate
(1.2) as the Landau–Lifshitz–Gilbert (LLG) equation

∂tM = − γ0
1 + α2M ×Heff −

αγ0
(1 + α2)MS

M × (M ×Heff). (1.3)

This equation is equipped with initial data M(0) = M0 and we use the boundary
condition from the static case ∂nM = 0, see [133] for a justification.
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Taking the scalar product with M in (1.3), we obtain

∂t|M |2 = 2∂tM ·M = 0, (1.4)

i.e. the modulus of the magnetization stays constant, |M | = MS is contained in the LLG
equation as long as this is fulfilled for the initial data.

1.2.2. The Maxwell equations
In [117], James Clerk Maxwell (1831–1879) collected a set of partly experimentally known
laws and put them together in a coherent set of differential equations: Maxwell’s equa-
tions. They describe the phenomena of classical electrodynamics and therefore form the
theoretical basis of optics and electrical engineering. The four Maxwell equations read:
Gauss’s law: The charge ρ is the source of the electric displacement field D.

∇ ·D = ρ. (1.5)

Gauss’s magnetic law: The magnetic flux density B has no sources: Magnetic mono-
poles do not exist.

∇ ·B = 0. (1.6)

Faraday’s law: Changes in magnetic flux density lead to an electric vortex field E.

∂tB = −∇× E. (1.7)

Ampères law: Electric currents Je, including the displacement current ∂tD, lead to a
magnetic vortex field H.

Je + ∂tD = ∇×H. (1.8)

Simplification

With the conservation law of the electric charge,

∂tρ+∇ · Je = 0, (1.9)

we see that Gauss’s law (1.5) and Gauss’s magnetic law (1.6) are true at any time, as
far as they are satisfied at a particular time point t0, i.e.

(∇ ·B)(t0) = 0 and (∇ ·D)(t0) = ρ(t0)

imply
(∇ ·B)(t) = 0 and (∇ ·D)(t) = ρ(t)

for any time t by taking the divergence in (1.8) and (1.7), respectively, and noting that
the divergence of the curl is always zero.

Constitutive equations

In the case of linear materials, the magnetic flux density and the magnetic field, and the
electric displacement field and the electric field, respectively are linked by the constitutive
relations

D = εE and B = µ(H +M) (1.10)

with the electric and magnetic permeabilities ε, µ ∈ R3×3 (uniformly positive definite
and symmetric matrices).
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In vacuum, the permeabilities are positive constants, i.e. it holds ε = ε0Id, µ = µ0Id
with Id the 3 × 3 unit matrix and the magnetic and electric vacuum permeabilitiees
ε0, µ0 ∈ R+.
In the case of a conductive material, Ohm’s law says

Je = σE + J

for the conductivity σ ∈ R3×3 and the applied current J .

Body surrounded by vacuum

The above equations hold in the full space, i.e. in the whole R3. We consider the situation
of a bounded body surrounded by vacuum, e.g. the magnet, the magnetic storage device,
the generator. We assume that the volume of the body defines the domain Ω ⊂ R3.
Therefore, electric current, the conductivity and charge are supported inside of Ω and in
the exterior domain R3 \Ω, the electric and magnetic permeabilites are positive scalars.
Furthermore, we assume that at starting time t = 0 electric and magnetic field are
supported inside of Ω, i.e.

H(0, x) = E(0, x) = 0 for all x ∈ R3 \ Ω. (1.11)

This corresponds to the situation, when at the beginning of the experiment everything
is at rest in the exterior domain, compare Section 7.2.

Transmission conditions

The above setting can be translated to a coupled problem with interface conditions on
∂Ω, also see [121, Section 1.2.2] and Remark 2.32. On the boundary of the magnetic
body Ω, with possibly jumping material parameters ε+, µ+ inside and ε−, µ− outside,
Maxwell’s equations do not hold in classical form: As either εE or E are not continuous
over the boundary (except E = 0), ∇ · (εE) or ∇ × E are not defined in the classical
sense. To have the respective differential operators well-defined at least in a weak sense,
we require

n× E+ = n× E− and n · (µ+H+) = n · (µ−H−),

where n is the exterior normal vector on the boundary of Ω. For the remaining boundary
conditions, we have to take the equations (1.5) and (1.8) into account. Again with some
formal arguments, considering the equations on an arbitrary domain covering a part of
the boundary, integrating over the respective domain, we obtain by Stokes’ theorem

n× (H+ −H−) = JS and n · (µ+H+ − µ−H−) = ρS ,

with the surface current density JS and the surface charge density ρS . In most instances,
(except having strongly growing singularities towards the boundary), those are negligible
and we can assume that JS = 0 and ρS = 0.
Altogether, after a suitable non-dimensionalization (see [141, Section 3.1] for the de-

tails, defining m = M/MS which yields |m| = 1), we obtain the following system.

1.3. The Maxwell–Landau–Lifshitz–Gilbert System
Let Ω ⊂ R3 not necessarily convex be a bounded, connected, open and Lipschitz domain
with connected, piecewise smooth boundary Γ (or a finite collection of such domains).
By S2 we denote the unit sphere in R3, and by T > 0 we denote the final time. We denote
the space-time cylinders by ΩT := (0, T ) × Ω, Ωc

T := (0, T ) × Ωc and ΓT := [0, T ] × Γ .
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We will often refer to Ω as the interior domain, and to Ωc as the exterior domain. We
seek a magnetization

m : [0, T ]× Ω→ S2

and electric and magnetic fields

E,H : [0, T ]× R3 → R3

that satisfy the Maxwell–Landau–Lifshitz–Gilbert (MLLG) equations: in the interior
domain

∂tm = −m×Heff − αm× (m×Heff) in ΩT , (1.12a)
ε∂tE = ∇×H − (σE + J) in ΩT , (1.12b)
µ∂tH = −∇× E − µ∂tm in ΩT , (1.12c)

with Heff = 1
1+α2 (Ce∆m+H) and in the exterior domain

ε0∂tE = ∇×H in Ωc
T , (1.12d)

µ0∂tH = −∇× E in Ωc
T , (1.12e)

with the boundary condition for the magnetization

∂nm = 0 on ΓT , (1.12f)

the transmission conditions (for n being the outward pointing normal vector to ∂Ω)

Eint × n = Eext × n and H int × n = Hext × n on ΓT , (1.12g)

and the initial conditions

m(0) = m0, E(0) = E0, H(0) = H0 in Ω, (1.12h)

and
E(0) = 0, H(0) = 0 in Ωc

. (1.12i)

The applied current density J : [0, T ]×Ω→ R3, the electric and magnetic permeability
matrices ε, µ : Ω→ R3×3 and the conductivity of the ferromagnetic domain σ : Ω→ R3×3

are considered given data. The damping parameter α and the exchange constant Ce are
positive constants. Outside of the domain Ω, the material parameters are assumed to
be scalar and constant:

µ = µ0, ε = ε0, σ = 0.

We assume the given initial data satisfies

|m0| = 1, div(µH0 + µm0) = 0 and div(εE0) = ρ(0) in Ω,

therefore (1.4) implies |m(t, ·)| = 1 for all 0 ≤ t ≤ T and (1.9) yields div(µH(t) +
µm(t)) = 0 and div(εE(t)) = ρ(t) in Ω and div(H) = div(E) = 0 in Ωc for all time
0 ≤ t ≤ T . The transmission condition and consistency with the exterior initial data
demand γTE0 = γTH

0 = 0.
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1.4. Literature Overview
The LLG equation serves as an important practical tool and as a valid model for
micromagnetic phenomena occurring in, e.g., magnetic sensors, recording heads, and
magneto-resistive storage devices [69, 103, 132]. Classical results concerning existence
and non-uniqueness of solutions can be found in [17, 153]. In a ferro-magnetic material,
magnetization is created or affected by external electro-magnetic fields. It is therefore
necessary to augment the LLG equations with the Maxwell system, see e.g. [55, 100, 153].
Existence, regularity and local uniqueness for the MLLG equations are studied in [54, 47].
While in many applications, the quasi-static approximation of the Maxwell system,

i.e. the eddy-current equations yield sufficiently accurate results, recent breakthroughs
in ultrafast magnetism will require the full Maxwell system to be modeled correctly
[31, 147, 129].
Numerical approximation methods are known for many variants of simpler versions of

the MLLG system, i.e. for the LLG, ELLG (eddy-current LLG) equations [14, 16, 15,
29, 30, 55, 104, 105] (the list is not exhaustive), and even with the full Maxwell system
on bounded domains [24, 25].
There is a rich literature on numerical methods for the Landau–Lifshitz(–Gilbert)

equations, for the numerical literature up to 2007 we refer to the review [55]. Linear finite
element discretizations in space and linearly implicit backward Euler in time for the LLG
equation are proposed in [14, 15] and, using a discrete energy inequality and compactness
arguments, the convergence without rates towards nonsmooth weak solutions is proved.
Convergence of this type was previously shown in [30] for fully implicit methods that
are based on the Landau–Lifshitz equation. In [16], convergence without rates towards
weak solutions is shown for a method (formally) of “almost” second order in time, for
the LLG equation with a more general type of the effective magnetic field.
For the ELLG system, originating from the seminal work [14], the recent works [104,

105] consider a similar numeric integrator for a bounded domain. While the numerical in-
tegrator of [105] treats LLG and eddy current simultaneously per time step, [104] adapts
an idea of [25] and decouples the time-steps for LLG and the eddy current equation. The
recent work [63] considers a finite element/boundary element coupling discretization for
the full space ELLG system and even derives strong error estimates additionally to the
weak convergence of the approximations.
In this thesis we study the full MLLG equations on the whole R3. In Chapter 3, we

build on the tangent plane scheme introduced in [14] to propose a numerical algorithm
which couples finite elements in the magnetic domain with Convolution Quadrature
boundary elements for the unbounded exterior domain. This is inspired by [25] and the
work [99], which derives a coupling based on Convolution Quadrature in the exterior
domain for the Maxwell equations.
The heart of Chapter 3 is to show that Convolution Quadrature coupled to the non-

linear LLG equations can be reformulated in a weak sense with minimal assumptions
on the regularity of the data. This inspires a numerical algorithm which is shown to
converge towards a weak solution in a weak sense.
In Chapter 4, we concentrate on the Maxwell equations on the whole three-dimensional

space without the coupling to the LLG equation.
As in [99], we use the discretization via finite element/boundary element coupling

which has the advantage that there are minimal restrictions on the shape of the interior
domain (especially convexity is not needed). Other methods such as nonlocal bound-
ary conditions on balls [76, 77], local absorbing boundary conditions [61, 78], perfectly
matched layers [32], need particular geometries, e.g., because waves may leave and re-
enter a non-convex domain. The inclusion of a non-convex domain in a larger convex
domain is computationally undesirable in situations such as a cavity or an antenna-like
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structure or a far-spread non-connected collection of small domains.
With the reformulation of Chapter 2, this leads to transparent boundary conditions,

which yield the restriction of the solution to the domain and which are integral equa-
tions in space and time. The coercivity of the arising Calderon operator for Maxwell’s
equations is proven in [99]: The continuous-time and discrete-time coercivity is obtained
from the Laplace-domain coercivity using the (operator valued) Herglotz theorem [81]
from [27] and the properties of Convolution Quadrature [113, 114, 116] (see also [119],
where Convolution Quadrature is analyzed in the time-domain in a variational setting).
In Chapter 4, we remove the quite extensive regularity assumptions posed on the exact

solution from [99] and show existence of a unique weak solution of the reformulated
system. As a byproduct, we obtain a numerical algorithm which converges weakly to
the weak solution.
In Chapter 5, we show that the algorithms also exhibit strong convergence behavior

with a-priori known higher order error rates in the case of sufficiently regular solutions
for the full MLLG system. Furthermore, these methods satisfy an energy inequality irre-
spective of the solution regularity, which is an important robustness factor, see Chapter 3.
This is based on recent higher order convergence results for the LLG equations from [4]

and the Maxwell system from [99]. In [99], second order in time and first order in space
results for the full space Maxwell system are considered. Based on linearly implicit BDF-
methods [5, 6, 57], [4] supplies up to 5-th order in time and arbitrary order in space
convergence methods for the LLG equation. Up to this work, so far only first order
schemes or higher order schemes without rigorous convergence proof were considered
in the literature: A first-order error bound for a linearly implicit time discretization
of the Landau–Lifshitz equation was proved in [52] and for the eddy current Maxwell–
LLG system in [53]. Optimal-order error bounds for linearly implicit time discretizations
based on the backward Euler and Crank–Nicolson methods combined with finite element
full discretizations for a different version of the Landau–Lifshitz equation were obtained
under sufficient regularity assumptions in [67] and [18], respectively. In contrast to
[14, 15, 16, 30], these methods do not satisfy an energy inequality irrespective of the
solution regularity.
Numerical discretizations for the coupled system of the LLG equation with the eddy

current approximation of the Maxwell equations are studied in [63], with first-order error
bounds in space and time under sufficient regularity assumptions.
There are several methods for the LLG equations that are of formal order 2 in time

(though only of order 1 in space), e.g., [130, 16, 58], but none of them comes with an
error analysis. Fully implicit BDF time discretizations for LLG equations have been
used successfully in the computational physics literature [148], though without giving
any error analysis.

We summarize with the classification of this thesis in the most closely related literature
context in Table 1.4.

weak convergence convergence with rates
LLG Alouges in [14] Akrivis et al. in [4] (higher order)
full space Maxwell Chapter 4 Kovács & Lubich in [99] (higher order)
bounded domain MLLG Banas et al. in [25]
full space ELLG Feischl & Tran in [63] Feischl & Tran in [63] (first order)
full space MLLG Chapter 3 Chapter 5 (higher order)

Table 1.4.1.: Overview of the results of the dissertation in the literature context.
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1.5. Contributions and Outline of the Dissertation
In Chapter 2, the system on the unbounded domain is rewritten into a coupled interior
– boundary integral system. At first, this is done in a formal, motivating way and
thereafter the precise dependency between the solutions of the two systems is investigated
(similar formal derivations may be found, e.g. in [99, 22]; rigorous results which do
not depend on additional regularity assumptions seem to be unavailable in literature;
related considerations can be found in [149, 143]). This includes the precise definitions of
solutions to the respective systems and the study of the time harmonic systems combined
with the properties of the Laplace transform.
For the numerical treatment of the LLG equation, there are typically two approaches:
1) Weak convergence: Under low regularity assumptions on the input data (initial

data, external fields), we show the existence of a weak solution and the weak convergence
of subsequences towards the solution(s).
2) Convergence with rates: Under the assumption of sufficiently smooth solutions, we

show the convergence with rates of the approximations.
We proceed in a similar way in this thesis:
In Chapter 3, the weak convergence of the MLLG system is treated. We use the corre-

sponding results for the MLLG system on bounded domains (cf. [25]) and combine them
with the new results from the boundary integral Maxwell system from Chapter 4. Suit-
able notions of solutions are introduced, that especially guarantee the well-definedness of
traces and the boundary integral operator. Equivalence between the solution that arises
from the boundary integral formulation and the weak solution one actually obtains
convergence towards is shown. Therefore the projection property of the time harmonic
Calderon operator together with careful applications of the Laplace transform properties
are employed. Furthermore uniqueness of the system is discussed. We propose an algo-
rithm (based on [25] and [99]) and show boundedness of the approximations. Therefore
weakly convergent subsequences can be extracted and their limit functions are identified
as weak solutions of the MLLG system.
In Chapter 4 we propose a similar program as in Chapter 3 for the full space Maxwell

system without the coupling to the LLG equation, i.e. we consider a weak convergence
version of [99]. In comparison to Chapter 3, we are able to introduce stronger notions
of solutions. We propose a non-symmetric algorithm with favorable properties in com-
parison to the symmetric approach. The weak convergence of the approximations is
shown for the whole sequence (and not only subsequences) and to a solution that can
be extended to the infinite time interval [0,∞).
In Chapter 5, we combine and extend the convergence results with rates for the LLG

equation from [4] with the results for the boundary integral Maxwell system from [99] to
obtain convergence with rates for the coupled MLLG system. Despite the coupling, the
precise method allows us to solve the system at the cost of the individual parts. Further-
more the same convergence rates are obtained under the same regularity assumptions
and the same CFL conditions as in the uncoupled case. Also a discrete energy inequality
remains true independently of the solution regularity.
The proposed algorithms are implemented in FEniCS [8] and Bempp [145] and nu-

merical results that confirm the theoretical findings can be found in Chapter 6.
For the relations between the different notions of solutions of the MLLG system, the

study of the (vector valued) Laplace transform is inevitable. The required properties are
derived in a suitable functional analytic setting in Chapter B in the Appendix. In the
literature, similar results without proof can be found in [115], a few results in a more
general setting in [19] and for the setting with vector valued distributions, see [143].
We conclude the thesis with an outlook in Chapter 7.
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1.6. Notation
Before turning to the main part of the dissertation, we give a few notes on the used
notation and a list of symbols in this section.
For a function f : R → R, x 7→ f(x) (and also more generally for other functions)

we write f(x) for simplicity, although we consider the mapping (x 7→ f(x)) and not the
evaluation at x ∈ R. Especially when dealing with the Laplace transform L, it is more
convenient to write L(f(x)) (also for more complex examples) instead of L(x 7→ f(x)) .
For a function E depending on space and time, we write (for a time point t) E(t) in

place of the space-dependent function E(t, ·) : x 7→ E(t, x).
When dealing with Convolution Quadrature, we do not consistently distinguish be-

tween a sequence and the evaluation of a (time dependent) function on the time grid
points. Given a step size τ > 0 and sequence (ϕi)i∈N0 , we write (for ti = iτ) φ(ti) instead
of φi and vice versa.
Norms in function spaces are denoted by ‖ · ‖ and the absolute value (of finite dimen-

sional vectors) by | · |.

List of Symbols
Reformulation and function spaces

γT tangential trace operator
S(s), D(s) time harmonic electric single and double layer potentials
B(s), B(∂t) time harmonic and time domain Calderon operator
Lp(D) Lebesgue spaces for p ∈ [0,∞] on domain D
Hk(D) space of k-times weakly differentiable functions in L2(D)

H(curl,Ω) space of functions with existing curl in L2(D)
H(∂t, curl,ΩT ) space of functions with existing time derivative and curl in space in

L2(D)
H(curl,ΩT ) space of functions with existing curl in space in L2(D)
Hk

0,∗([0, T ]) spaces of k times weakly differentiable functions in L2(D) with vanish-
ing initial condition, respectively

Hk
∗,0([0, T ]) spaces of k times weakly differentiable functions in L2(D) with vanish-

ing end condition, respectively
C∞(D) space of infinitely differentiable functions
HΓ trace space
∂−1
t integration in time operator

L, L−1 (inverse) Laplace transform
Bm inverse Laplace transform of B(s)s−m

[·, ·]X Hilbert space scalar product on Hilbert space X
[·, ·]D L2(D) scalar product for domain D
〈·, ·〉Γ anti symmetric pairing on HΓ
[·, ·]HΓ Hilbert space scalar product on HΓ
[·, ·]Γ L2(Γ ) scalar product
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Weak convergence for the MLLG system
ϕ trace variable for µ0γTH
ψ trace variable for −γTE
τ , h time step size and mesh width
S1(Th) P1-FEM space of globally continuous and piecewise affine functions
IShu interpolation onto S1(Th)
Kmh discrete, nodewise tangent space
Xh Nédélec’s H(curl,Ω)-conforming ansatz space
IXh interpolation onto Xh
PXh L2-projection onto Xh

Weak convergence for the pure Maxwell system
Yh approximation space of piecewise constant functions
IYh interpolation onto Yh

Convergence with rates for the MLLG system
P(m) continuous orthogonal projection onto the tangent plane at m
T (m) continuous tangent space at m
Srh Lagrange finite element space of continuous, piecewise polynomial func-

tions of degree r
Rh Ritz projection onto Srh
Th(m) discrete tangent space at m
Ph(m) L2(Ω)-projection onto the discrete tangent space at m
Wr
h discontinuous Galerkin space of elementwise polynomial functions of

degree r
IWh finite element interpolation onto Srh
Ψr
h boundary element space of continuous, piecewise polynomial functions

of degree r
IΨh boundary element interpolation onto Ψr

h

ṁn
h time derivative approximation at tn

m̂n
h normalized extrapolation at tn

Numerics
E(Vh) Coefficient vector of Eh in the basis of Vh
φ(Vh) Vector of basis functions of Vh
Xh, N1 first order Nédélec space
Yh, N0 piecewise constant space

S1(Th,R), S1(Th,R3), S1 space of (vector valued) linear elements
VRTh , RT Raviart–Thomas space
VNCh , NC Nédélec space
VRWG
h , RWG Rao–Wilton–Glisson space (scaled RT space)
VSNCh , SNC scaled Nédélec space

BRT,BNC,BRWG,BSNC spaces of barycentrically refined grid functions
VBCh , BC Buffa–Christiansen space
VRBCh , RBC rotated Buffa–Christiansen space

φ|φj=0 sequence with the j-th entry set to zero
(B(∂̃τt )φ) approximated Convolution Quadrature operator
DSRSFDS weak form of F
FDS→RS strong form of F
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The Laplace transform
Scalar valued Laplace transform and differential operators

L,L−1 (inverse) Laplace transform
F ,F−1 (inverse) Fourier transform
L2
c [0,∞) e−ct-weighted L2[0,∞) spaces for c ∈ R

L2
∗[0,∞) union of L2

c [0,∞) spaces
H(σ0) Hardy space on {<s > σ0} for σ0 ∈ R
H union of H(σ0) spaces

B(∂t)f Laplace differential operator on [0,∞) defined as L−1(B(s)L(f)(s))
Hm

0,c[0,∞) exponentially weighted spaces with zero condition at t = 0 for c ∈ R
Hm

0,∗[0,∞) union of Hm
0,c[0,∞) spaces

C∞(0,∞) smooth and compactly supported functions on (0,∞)
Hm(σ0) space of analytic and by sm bounded functions on {<s > σ0}
Hm union of Hm(σ0) spaces
A ∗ b convolution between functions A and b
B(∂t)f Laplace differential operator on [0, T ] defined for suitable m ∈ N as

∂mt L−1(B(s)s−mL(f)(s))
Hm

0,∗[0, T ] space of m-times differentiable functions with initial condition zero
Hm
∗,0[0, T ] space of m-times differentiable functions with end condition zero

Vector valued Laplace transform and differential operators

L,L−1 vector valued (inverse) Laplace transform
F ,F−1 vector valued (inverse) Fourier transform
X, [ · , · ]X Hilbert space and Hilbert space scalar product
L(X) space of linear, bounded operators X → X

L2
c([0,∞), X) Hilbert space valued e−ct-weighted L2[0,∞) space

L2
∗([0,∞), X) union of L2

c([0,∞), X) spaces
H(σ0, X) Hilbert space valued Hardy space on {<s > σ0}
H(X) union of H(σ0, X) spaces
B(∂t)f Laplace differential operator on [0,∞) defined as L−1(B(s)L(f)(s))

Hm
0,c([0,∞), X) exponentially weighted spaces with homogeneous initial condition

Hm
0,∗([0,∞), X) union of Hm

0,c([0,∞), X) spaces
Hm(σ0) space of analytic and by sm bounded operators X → X on {<s > σ0}
Hm union of Hm(σ0) spaces
A ∗ b convolution of operator family A(t) ∈ L(X) with b(t) ∈ X

L1
c([0,∞), X) exponentially weighted L1([0,∞), X) space

L∞c ([0,∞), X) exponentially weighted L∞([0,∞), X) space
B(∂t)f Laplace differential operator on [0, T ] defined for suitable m ∈ N as

∂mt L−1(B(s)s−mL(f)(s))
Hm

0,∗([0, T ], X) space of m-times differentiable functions with initial condition zero
Hm
∗,0([0, T ], X) space of m-times differentiable functions with end condition zero



2. Reformulation and Function Spaces

In this chapter, we reformulate the Maxwell–LLG system (1.12) into a system that has
advantageous properties concerning numerical approximation and analytic considera-
tions. Related studies for the acoustic wave equation can be found in [143, 101] and for
the Maxwell equations in [149] and [143, Appendix A]. We start with a formal derivation
in Section 2.1, introduce the relevant function spaces and operators in Section 2.2 and
Section 2.3 and consider precise arguments in Section 2.4.

2.1. Reformulation of the System
Let us recall the Maxwell–LLG system (1.12). The interior problem reads as :

∂tm = −m×Heff − αm× (m×Heff) in ΩT ,

ε∂tE = ∇×H − (σE + J) in ΩT ,

µ∂tH = −∇× E − µ∂tm in ΩT ,

with Heff = 1
1+α2 (Ce∆m+H), while the exterior problem reads as

ε0∂tE = ∇×H in Ωc
T ,

µ0∂tH = −∇× E in Ωc
T ,

coupled by the transmission conditions

γTE
int = γTE

ext and γTH
int = γTH

ext on [0, T ]× Γ,

where the tangential trace operator is given by γTu = u × n for the outward pointing
normal vector n. Note that the notation Eint, Eext means that the function (or the limit
to the boundary) from the inside or the outside, respectively, is taken, but n always
points from the interior domain to the exterior domain. The initial data and boundary
condition for the LLG equation stay the same as in (1.12).
While the interior Maxwell equations remains unchanged, we present different versions

of the LLG equation in Subsection 2.1.1, and in Subsection 2.1.2 the exterior Maxwell
equations are rewritten into an integral equation on the boundary. At the end of the
section, using this coupled formulation, the whole Maxwell–LLG system is rewritten.
Most of the analysis is presented in a fairly formal way, while rigorous arguments can
be found in Section 2.4.

2.1.1. Reformulation of the LLG equation
In this section we present the different versions of the LLG equation. We start with the
formulation arising from the physical modeling, the so-called Landau–Lifshitz form

∂tm = − 1
1 + α2m× heff −

α

1 + α2m× (m× heff), (2.1)

with heff = Ce∆m+H. By scalar product with m, we obtain ∂tm ·m = 0, i.e. ∂t|m|2 =
2∂tm · m = 0, so the absolute value of the magnetization stays constant. Due to the

13
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property of the initial condition |m0(x)| = 1, we obtain |m(t, x)| = 1 for all time and
space points.
Application of m× ( · ) to (2.1) and using the vector identity for a, b, c ∈ R3

a× (b× c) = (a · c)b− (a · b)c (2.2)

gives together with |m| = 1 that

m× ∂tm = − 1
1 + α2m× (m× heff) + α

1 + α2m× heff.

Multiplying this outcome with α and subtracting it from (2.1), yields the Gilbert form

∂tm− αm× ∂tm = −m× heff. (2.3)

The Gilbert form will be used in the definition of the weak solution of the MLLG system
in Chapter 3.
In Chapter 5 and for the approximation of the LLG equation, the following alternative

form plays a crucial role. By applying m×· to (2.3), again with the vector identity (2.2)
and |m| = 1 we obtain

α∂tm+m× ∂tm = heff − (m · heff)m. (2.4)

Under the condition |m| = 1, all of the versions (2.1), (2.3) and (2.4) are equivalent. For
the Landau–Lifshitz and the Gilbert form, |m| = 1 already follows, if the initial data
fulfills |m0| = 1. Similar considerations and a more detailed proof of the equivalence can
be found in [141, Proposition 3.1.1] and [72, Lemma 1.2.1], respectively.

2.1.2. Reformulation of the exterior Maxwell equations
In this section we present the reformulation of the exterior Maxwell equations to a
boundary integral equation in a formal way.

As the Maxwell equations are formulated on the whole space R3, we are not able
to apply a standard finite element discretization to discretize the problem in space.
Similarly to [99, Section 2 and 4.2], we transform the interior–exterior Maxwell equations
with the transmission conditions into a boundary integral equation on the boundary Γ
coupled to the Maxwell equations in Ω.
We start with a formal derivation and return to the precise smoothness requirements

later in Section 2.4. All identities below can be shown to hold true in a reasonable
sense for functions that are smooth enough and the functions and there derivatives are
integrable enough.
As the reformulation is independent of what happens in the interior, we only consider

the exterior problem, where we assume to have given boundary values γTEint, γTH int

from inside. The problem is considered on the time interval [0,∞) instead of [0, T ].
Given the exterior part E,H : [0,∞)× Ωc → R3 of a solution of (1.12),

ε0∂tE −∇×H = 0 in (0,∞)× Ωc
,

µ0∂tH +∇× E = 0 in (0,∞)× Ωc
,

E(0) = 0 in Ωc
,

H(0) = 0 in Ωc
,

γTE = γTE
int in [0,∞)× Γ,

γTH = γTH
int in [0,∞)× Γ,
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we differentiate the first equation in time and eliminate the magnetic field variable H
by inserting the second equation. We therefore obtain the second order problem

ε0µ0∂
2
tE +∇× (∇× E) = 0 in (0,∞)× Ωc

,

E(0) = 0 in Ωc
,

∂tE(0) = 0 in Ωc
,

γTE = γTE
int in [0,∞)× Γ,∫ t

0
γT (∇× E)(r, ·) dr = −µ0γTH

int(t, ·) in [0,∞)× Γ.

The next step is to apply the Laplace transform L to this system. We set U := L(E),
where L is the Laplace transform given by

V (s) := L(v)(s) :=
∫ ∞

0
v(t)e−st dt, for s ∈ C.

For suitable functions, the Laplace transform L is invertible by the inverse Laplace
transform defined for any ε > 0 as

L−1(V )(t) := 1
2πi

∫ ε+i∞

ε−i∞
estV (s)ds = v(t), for t ∈ [0,∞).

One can show that the definition of the inverse Laplace transform does not depend on
the parameter ε > 0 (cf. Lemma B.53).

With the properties of the Laplace transform from Example B.61, we have for a
function v with v(0) = 0 that L(∂tv)(s) = sL(v)(s), i.e. derivative in time on v transforms
to multiplication with s of V . Similarly, L(

∫ t
0 v(r) dr)(s) = (1/s)L(v)(s), i.e. integration

of v over time corresponds to a multiplication with 1/s of V . We set(
∂−1
t E

)
(t) :=

∫ t

0
E(r) dr = L−1

(1
s

(LE)(s)
)

(t).

With the differential properties of the Laplace transform and the initial conditions for
E, we obtain L(∂2

tE)(s) = s2L(E)(s) and the equation for U = LE reads

ε0µ0s
2U(s) +∇×∇× U(s) = 0 in Ωc for s ∈ C,

L−1(U)(0) = 0 in Ωc
,

∂tL−1(U)(0) = 0 in Ωc
,

γTU(s) = L(γTEint)(s) in Γ for s ∈ C,
1
s
γT (∇× U(s)) = −µ0L(γTH int)(s) in Γ for s ∈ C.

We fix s ∈ C and look at the corresponding time-harmonic equation for U , i.e.

ε0µ0s
2U +∇×∇× U = 0 in Ωc

,

γTU = AT in Γ,
γNU = AN in Γ,

(2.5)

with the Neumann trace operator γNU := s−1γT (∇ × U) and the abbreviations AT =
L(γTEint) and AN = L(−µ0γTH

int). This problem can be solved analytically. There is a
representation formula for the solution U which will hold under a compatibility condition
on the traces AT and AN . Conversely, this compatibility condition is equivalent to the
solvability of the problem. To state the result, we introduce the following operators: For
x ∈ R3 \ Γ , the electric single layer potential is given by

(S(s)ϕ) (x) := s

∫
Γ
G(s, x− y)ϕ(y)dy − s−1 1

ε0µ0
∇
∫
Γ
G(s, x− y)divΓϕ(y)dy
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and the electric double layer potential, for x ∈ R3 \ Γ , by

(D(s)ϕ)(x) = ∇×
∫
Γ
G(s, x− y)ϕ(y) dy,

see [46] for more details, where the fundamental solution G(s, z) is given for z ∈ R3\{0},
as

G(s, z) = e−s
√
ε0µ0|z|

4π|z| .

We use the Calderon operator B(s), cf. [99, Section 3],

B(s) := µ−1
0

(
(i√µ0ε0)−1V (s) K(s)

−K(s) −i√µ0ε0V (s)

)
(2.6)

with the boundary integral operators (cf. [46, Equation (30)] for the identities)

V (s) = i
√
µ0ε0{{γT ◦ S(s)}} = (i√µ0ε0)−1{{γN ◦ D(s)}},

K(s) = {{γT ◦ D(s)}} = {{γN ◦ S(s)}},
(2.7)

where {{ · }} denotes the average

{{γTu}} := γTu
int + γTu

ext

2 .

With these operators, we are able to rephrase (2.5).
The result [46, Theorem 8] shows that U is a solution to (2.5) (that fulfills the Silver–

Müller radiation condition (see (2.18) for the definition)) if and only if

B(s)
(
−AN
−AT

)
= 1

2µ0

(
AT
−AN

)
(2.8a)

and

U = S(s)(−AN ) +D(s)(−AT ). (2.8b)

Equation (2.8a) corresponds to a compatibility condition for the traces AT , AN and in
the case this compatibility condition is fulfilled, we may represent the solution of (2.5)
with equation (2.8b). Conversely, every solution of (2.5) can be represented by its traces
with (2.8b) and its traces fulfill the compatibility condition (2.8a).
With this result, the time harmonic problem is solved, we can replace the exterior

problem by the compatibility condition and to get back to a problem in space and time,
we apply the inverse Laplace transform.
Applying the inverse Laplace transform to (2.8), and inserting AT = L(γTEint), AN =
L(−µ0γTH

int), we obtain that (E,H) is the exterior part of a solution of (1.12) if and
only if

E = S(∂t)(µ0γTH
int) +D(∂t)(−γTEint) in (0,∞)× Ωc

,

H = − 1
µ0
∂−1
t ∇× E in (0,∞)× Ωc

,

B(∂t)
(
µ0γTH

int

−γTEint

)
= 1

2µ0

(
γTE

int

µ0γTH int

)
in [0,∞)× Γ.

(2.9)

Here S(∂t), D(∂t), B(∂t) are defined via

B(∂t)u := L−1(B(s)Lu) := L−1(s 7→ B(s)L(u)(s)
)
.
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Note that the first two formulas in (2.9) are representation formulas for the exterior
solution and the last one is a compatibility condition for γTEint and γTH

int. Consis-
tency with the exterior solution of (1.12) demands γTEint(0, x) = γTE

ext(0, x) = 0 and
γTH

int(0, x) = γTH
ext(0, x) = 0 for all x ∈ Γ .

The derivation so far showed how we can replace the exterior equations by the compat-
ibility condition for the boundary functions and how we obtain the new system. Before
restating the full MLLG system, we consider the operator B(∂t) in more detail. The
following questions may be posed.
1) How can we define B(∂t) without deeper knowledge of the Laplace transform, and

for which classes of functions is it defined?
2) The Laplace transform as well as the inverse Laplace transform act on functions

that are defined on the whole positive line or an unbounded complex line, respectively.
So the obtained boundary integral equation is now on the bounded set Γ in space, but
in time, the integration is performed at least over the whole unbounded line R+, which
still poses problems in numerical approximations. How can we come back to a problem
that is posed on the finite time interval [0, T ]?

The answers to these questions will be given in the following:
Step 1: The properties of the Laplace transform (Lemma B.22) show for a family of

analytic and suitably bounded operators A(s) and functions φ

L−1 (A(s)Lφ) = L−1(A(s)) ∗ φ, (2.10)

where ∗ denotes convolution

(C ∗ w)(t) :=
∫ t

0
C(r)w(t− r) dr =

∫ t

0
C(t− r)w(r) dr.

Step 2: As we only have ‖B(s)‖ ≤ Cs2 (cf. Lemma 2.13), we cannot conclude that
L−1(B(s)) exists. However for m > 3,

Bm(t) := L−1(B(s)s−m)(t) = 1
2πi

∫ ε+i∞

ε−i∞
ests−mB(s)ds

exists for all t ≥ 0 and is a continuous and bounded function on [0, T ] (cf. Lemma B.66).
For m ∈ N and φ ∈ Cm([0,∞),H2

Γ ) with φ(0) = ∂tφ(0) = · · · = ∂m−1
t φ(0) = 0 we have

L−1(smL(φ)(s)) = ∂mt φ.

Step 3: Altogether, it holds for m ∈ N, m > 3,

(B(∂t)φ)(t) = L−1(B(s)L(φ)(s))(t)
= L−1(B(s)s−msmL(φ)(s))(t)

=
(
L−1(B(s)s−m) ∗ L−1(L(φ)(s)sm)

)
(t)

=
∫ t

0
Bm(r)(∂mt φ)(t− r) dr

= −Bm(t)∂m−1
t φ(0) + ∂t

∫ t

0
Bm(r)∂m−1

t (φ(t− r)) dr

= ∂t

∫ t

0
Bm(r)∂m−1

t (φ(t− r)) dr

= · · · = ∂mt

∫ t

0
Bm(r)φ(t− r) dr,

which states
B(∂t)φ = ∂mt (Bm ∗ φ). (2.11)



2. Reformulation and Function Spaces 18

From this formula we can see that B(∂t)φ(t) only depends on φ(t) for 0 ≤ t ≤ t, which
is also known as Causality. This is why we can drop the unbounded time interval [0,∞)
and deal with [0, T ]. Furthermore the above formula shows that we can define B(∂t)φ
even for functions φ ∈ L2([0, T ]), at least as long as Bm ∗ φ is m times differentiable in
time. With this, we obtain the final formulation of the MLLG system. As in Chapter B
we define the convolution operator B(∂t) following 2.11 as B(∂t) · = ∂mt (Bm ∗ · ), as long
as we work on finite time intervals. In the following, m ∈ N, m > 3 shall be fixed. As
in Section B.1.3, we show that the definition does not depend on the choice of m ∈ N.
Hopefully, the reader might not get confused because of the naming of the variable m,
as it stays on the one hand for the magnetization m : [0, T ]× Ω→ R3 and on the other
hand for the natural number m ∈ N in the definition of the Calderon operator.
We summarize the reformulation in the following subsection.

2.1.3. The resulting system
The coupled Maxwell–Landau–Lifshitz–Gilbert equation (1.12) is rewritten into the fol-
lowing system only in the interior domain Ω and on its boundary Γ. Find the functions
m, E and H : [0, T ]×Ω→ R3 which satisfy the following coupled system: in the interior
domain

∂tm− αm× ∂tm = −m× (Ce∆m+H) in ΩT , (2.12a)
ε∂tE −∇×H = − (J + σE) in ΩT , (2.12b)
µ∂tH +∇× E = − µ∂tm in ΩT , (2.12c)

coupled to the boundary integral equations

B(∂t)
(
µ0γTH

−γTE

)
= 1

2

(
µ−1

0 γTE

γTH

)
on [0, T ]× ∂Ω, (2.12d)

and where m satisfies the boundary condition as before

∂nm = 0 on [0, T ]× ∂Ω, (2.12e)

and with the same initial conditions for the problems in Ω as in (1.12)

m(0) = m0, E(0) = E0, H(0) = H0 in Ω. (2.12f)

2.2. Function Spaces
In this section we introduce all the needed function spaces. We recall that Ω ⊂ R3 is a
Lipschitz domain, and T > 0.

2.2.1. Lebesgue and Sobolev spaces
We shortly repeat the definitions of the most important function spaces required in the
following. Let D ⊂ Rn and m,n ∈ N. We define the Lebesgue spaces for p ∈ [1,∞] as

Lp(D) := Lp(D,Cm) :=
{
v : D → Cm

∣∣ v measurable and
∫
D
|v(x)|p dx <∞

}
,

together with the norm

‖v‖Lp(D) =
{

(
∫
D |v(x)|p dx)1/p , for p ∈ [1,∞)

ess supx∈D|v(x)|, for p =∞
.
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For p = 2, the L2(Ω)-space is a Hilbert space together with the scalar product

[u, v]L2(D) =
∫
D
u(x) · v(x) dx.

We conterminously write ‖ · ‖L2 , ‖ · ‖D, [·, ·]L2 or [·, ·]D for the L2(D)-norms and L2(D)-
products, if the domain or p = 2 are clear from the context. For k ∈ N we define the
space of k-times weakly differentiable functions Hk(D) via

Hk(D) =
{
v ∈ L2(D)

∣∣ ∂αx v ∈ L2(D) for all multiindices |α|1 ≤ k
}
.

This is a Hilbert space with respect to the scalar product

[u, v]Hk(D) =
∑

α∈Nn0 ,|α|1≤k
[∂αxu, ∂αx v]L2(D)

and the induced norm ‖v‖2
Hk(D) = [v, v]Hk(D). For the Maxwell equations in three

dimensions (so m = n = 3), the natural space contains functions with weak curl, we
define

H(curl,Ω) =
{
v ∈ L2(Ω)

∣∣∇× v ∈ L2(Ω)
}
,

which is a Hilbert space with the scalar product

[u, v]H(curl,Ω) = [u, v]L2(Ω) + [∇× u,∇× v]L2(Ω)

and the induced norm ‖v‖2H(curl,Ω) = [v, v]H(curl,Ω). For space and time dependent func-
tions, we may consider ΩT ⊂ R4 as four dimensional domain and the above definitions
cover, e.g. the definition of the spaces L2(ΩT ) and H1(ΩT ). We define the anisotropic
Hilbert spaces for k, l ∈ N0

Hk,l(ΩT ) :=
{
v ∈ L2(ΩT )

∣∣ ∂itv, ∂αx v ∈ L2(ΩT ) for all 0 ≤ i ≤ k and all |α|1 ≤ l
}

and

H1,curl(ΩT ) = H(∂t, curl,ΩT ) =
{
v ∈ L2(ΩT )

∣∣ ∂tv,∇x × v ∈ L2(ΩT )
}
,

H0,curl(ΩT ) = H(curl,ΩT ) =
{
v ∈ L2(ΩT )

∣∣∇x × v ∈ L2(ΩT )
}
.

Again, those spaces are Hilbert spaces with their standard norms and inner products. For
k ∈ N and φ ∈ Hk([0, T ]), the traces φ(0), . . . , φk−1(0) and φ(T ), . . . , φk−1(T ) are well
defined, so we may define the spaces with vanishing initial condition or end condition,
respectively, as

Hk
0,∗([0, T ]) :=

{
ϕ ∈ Hk([0, T ])

∣∣ϕ(0) = · · · = ∂k−1
t ϕ(0) = 0

}
and

Hk
∗,0([0, T ]) :=

{
ϕ ∈ Hk([0, T ])

∣∣ϕ(T ) = · · · = ∂k−1
t ϕ(T ) = 0

}
.

As closed subspaces of the Hilbert space Hk([0, T ]), those are Hilbert spaces, too. In
Subsection 2.2.4, the definitions will be generalized to Hilbert space valued functions
ϕ : [0, T ]→ X for a Hilbert space X.

For s ∈ (0, 1) we define the interpolation spaces Hs(D) := {L2(D), H1(D)}s as enclo-
sure of C∞(D) (space of infinitely differentiable functions) with respect to the norm

‖u‖2{L2(D),H1(D)}s :=
∫ ∞

0
t−2s−1 inf

v∈H1(D)
(‖u− v‖L2(D) + t‖v‖H1(D))2 dt.

Similarly on the boundary ∂D, denoting H1(∂D) the functions with existing surface
gradient in L2(∂D), we define by interpolation H1/2(∂D) := {L2(D∂), H1(∂D)}1/2. As
dual space with respect to the [ · , · ]∂D-product, we denote H−1/2(∂D) := (H1/2(∂D))′.
Those spaces are Hilbert spaces and the trace operator γ : L2(D) → H−1/2(∂D) is
continuous. We refer to [137, Section 2.3] for an overview and the references given
therein for the details.
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2.2.2. Hilbert spaces
In this section we collect properties of Hilbert spaces as needed in the following chapters
based on [154]. Let K ∈ {R,C}.

Definition 2.1. A K-vector space X with a scalar product [·, ·]X : X ×X → K is called
Hilbert space if X is complete with respect to the norm ‖ · ‖X = ([·, ·]X)1/2.

Lemma 2.2 (Fréchet–Riesz representation theorem). We denote the dual space of X
by X ′, i.e. the space of linear, continuous mappings X → K, endowed with the usual
supremum norm ‖ · ‖X′. For every x′ ∈ X ′ there exists exactly one y ∈ X such that
x′(x) = [x, y]X for all x ∈ X and it holds ‖x′‖X′ = ‖y‖X .

Lemma 2.3. If X is a separable Hilbert space, there exists a orthonormal basis B
satisfying for each x ∈ X

x =
∑
e∈B

[x, e]Xe and ‖x‖2X =
∑
e∈B
|[e, x]X |2.

Definition 2.4. For a sequence (vn)n∈N ⊂ X we say vn converges weakly to v ∈ HΓ
with respect to a pairing 〈·, ·〉X ,

vn ⇀ v w.r.t. 〈·, ·〉X ,

if and only if
〈vn, u〉X → 〈v, u〉X for all u ∈ X.

The following Lemma will be central in the subsequent chapters.

Lemma 2.5. Let X be an Hilbert space. Let (vn)n∈N ⊂ X be a bounded sequence in X.
Then there exists a subsequence (nj)j∈N ⊂ N and a limit function v ∈ X such that vn
converges weakly to v with respect to the Hilbert space product, i.e.

vnj ⇀ v w.r.t. [·, ·]X , for j →∞.

We also write vn
sub
⇀ v in that case.

2.2.3. The trace space for boundary integral formulation
For the boundary integral formulation and the positivity of the Calderon operator, we
require a particular trace space from [99, Section 2.1], for more details we refer to
[46, 43, 44, 45]. We keep the formal definition short and focus on the properties.
We recall the definition of the tangential trace on the boundary Γ for w ∈ C(Ω) as

γTw = w × n,

where n is the outward pointing normal vector on Γ. Note that this definition can be
extended continuously to H(curl,Ω) via the formula

[∇× v, w]Ω − [v,∇× w]Ω =
∫
Γ

(w × n) · v dσ.

The actual image space HΓ of γT : H(curl,Ω)→ HΓ is introduced in the following, for
a more detailed overview we refer to [46, Section 2.2]. If Ω has smooth boundary, we
introduce the differential surface operator divΓ using local charts and transformations,
see, e.g., [123, Section 2.5.2] or [121, Section 3.4]. In the case of piecewise smooth
boundary, the definition is more involved, yielding a piecewise definition inside and with
distributional jumps across the smooth boundary segments, see [46, Section 2.2]. In both
cases the following properties hold true, where we refer to [123, Section 5.4.1] and [121,
Section 3.5] for the smooth case and [43, 44, 45] for the piecewise smooth or Lipschitz
case.
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Definition 2.6 (Trace space, [45]). The trace space is given by

HΓ :=
{
w ∈ γT (H1(Ω))′

∣∣ divΓw ∈ H−1/2(Γ )
}

with the norm
‖w‖2HΓ = ‖w‖2γT (H1(Ω))′ + ‖divΓw‖2H−1/2(Γ ).

The following properties hold true.

• The trace operator γT : H(curl,Ω) → HΓ is continuous and surjective, see [45,
Theorem 4.1].

• The anti-symmetric pairing

〈w, v〉Γ :=
∫
Γ

(w × n) · v dσ =
∫
Γ
−(w × v) · n dσ

for w, v ∈ L2(Γ )3 can be extended to a continuous, anti-symmetric bilinear form
on HΓ . The boundary space HΓ is its own dual with respect to 〈·, ·〉Γ , see [46,
Theorem 2].

• For w, v ∈ H(curl,Ω) Green’s formula holds

[∇× v, w]Ω − [v,∇× w]Ω = −〈γT v, γTw〉Γ . (2.13)

Proof. The proofs can be found in the respective references cited above. We only show
the validity of Green’s formula. For v, w ∈ C∞(Ω), we see with integration by parts

[∇× v, w]Ω = [v,∇× w]Ω − 〈v, w〉Γ .

By using the identity for vectors a, b, n ∈ R3 with |n| = 1(
(a× n)× (b× n)

)
·n =

(
a× b

)
·n,

we obtain
〈v, w〉Γ = 〈γT v, γTw〉Γ .

The facts that C∞(Ω) is dense inH(curl,Ω) and that γT : H(curl,Ω)→ HΓ is continuous
conclude the assertion.

Note that the anti-symmetric pairing 〈·, ·〉Γ is not the Hilbert space scalar product on
HΓ , which we denote by [·, ·]HΓ (compare also the L2(Γ )-product [·, ·]Γ ). However we
may define the corresponding adjoint T ∗ of an operator T : HΓ → HΓ as well as weak
convergence with respect to 〈·, ·〉Γ (which coincides with ordinary weak convergence in
HΓ ). This is proven by the following lemmas.
We have that HΓ is its own dual with respect to 〈·, ·〉Γ , so the operator

Φ : HΓ → HΓ ′, v 7→ 〈v, ·〉Γ

is continuous and continuously invertible. By Hilbert space theory, we have that

Ψ : HΓ → HΓ ′, v 7→ [v, ·]HΓ
is an isometric isomorphism, where [·, ·]HΓ denotes the Hilbert space scalar product. By
use of these isomorphisms, we are able to prove the following lemmas.

Definition 2.7. For a sequence (vn)n∈N ⊂ HΓ we say vn converges weakly to v ∈ HΓ
with respect to 〈·, ·〉Γ ,

vn ⇀ v w.r.t. 〈·, ·〉Γ ,
if and only if

〈vn, u〉Γ → 〈v, u〉Γ for all u ∈ HΓ .



2. Reformulation and Function Spaces 22

Lemma 2.8. For a sequence (vn)n∈N ⊂ HΓ , it holds

vn ⇀ v w.r.t. [·, ·]HΓ ⇐⇒ vn ⇀ v w.r.t. 〈·, ·〉Γ .

Proof. Let (vn)n∈N ⊂ HΓ with vn ⇀ v w.r.t. [·, ·]HΓ . As Ψ−1Φ is a bounded operator,
we have Ψ−1Φ(vn) ⇀ Ψ−1Φ(vn) =: ṽ with respect to [·, ·]HΓ . For arbitrary w ∈ HΓ it
holds

〈vn, w〉Γ = Φ(vn)(w)
= [Ψ−1Φ(vn), w]HΓ
→ [ṽ, w]HΓ
= Ψ(ṽ)(w)
= 〈Φ−1Ψṽ, w〉Γ .

Thus vn ⇀ Φ−1(Ψṽ) = v with respect to the anti-symmetric pairing 〈·, ·〉Γ .
Conversely, choose an arbitrary sequence (vn)n∈N ⊂ HΓ with vn ⇀ v w.r.t. 〈·, ·〉Γ .

With the same computations as above, we obtain for arbitrary w ∈ HΓ

[Ψ−1Φ(vn), w]HΓ = 〈vn, w〉Γ → 〈v, w〉Γ = [Ψ−1Φ(v), w]HΓ .

Thus Ψ−1Φ(vn) ⇀ Ψ−1Φ(v) w.r.t. [·, ·]HΓ , and as Φ−1Ψ is a bounded operator, we
conclude vn ⇀ v w.r.t. [·, ·]HΓ .

In the following lemma, we show that we can define for an operator T : HΓ → HΓ the
〈·, ·〉Γ -adjoint operator T ∗ completely analogous to the adjoint operator with respect to
the Hilbert space scalar product on HΓ .

Lemma 2.9. For a continuous linear operator T : HΓ → HΓ there exists a unique linear
continuous operator T ∗ : HΓ → HΓ that satisfies

〈T ∗v, w〉Γ = 〈v, Tw〉Γ for all w, v ∈ HΓ .

Moreover it holds (T ∗)∗ = T and there exist constants c, C > 0 independent of T such
that

c‖T‖ ≤ ‖T ∗‖ ≤ C‖T‖.

Proof. We set B = Ψ−1Φ satisfying

〈v, w〉Γ = [Bv,w]HΓ .

Then we define T ∗ := B−1T ′B, where T ′ denotes the adjoint of T with respect to [·, ·]HΓ .
Therefore it holds

〈T ∗v, w〉Γ = [T ′Bv,w]HΓ
= [Bv, Tw]HΓ
= 〈v, Tw〉Γ .

Continuity and uniqueness of T ∗ follow from the continuity and uniqueness of T and
B.

Remark 2.10. It holds ‖T‖Γ = ‖T ∗‖Γ with respect to the (equivalent) operator norm

‖T‖Γ = sup
v,w∈HΓ

|〈Tv,w〉Γ |
‖v‖HΓ ‖w‖HΓ

.
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2.2.4. Bochner spaces
For functions depending on space and time, we need to introduce the following function
spaces mapping into Banach or Hilbert spaces. The precise definitions of these spaces
and the proofs of the properties can be found, e.g. in [19, 62, 88].
For a Banach space X and an interval I ⊂ R, we define the Bochner-Lebesgue spaces

for p ∈ [1,∞] as

Lp(I,X) =
{
v : I → X

∣∣ v measurable and
∫
I
‖v(x)‖pX dx <∞

}
,

together with the norm

‖v‖Lp(I,X) =
{

(
∫
D ‖v(x)‖pX dx)1/p

, for p ∈ [1,∞),
ess supx∈D‖v(x)‖X , for p =∞.

For p = 2 and if X is a Hilbert space, this is a Hilbert space together with the scalar
product

[u, v]L2(D,X) =
∫
D

[u(x), v(x)]X dx.

For k ∈ N we define the space of k- times weakly differentiable functions Hk(I,X) via
Hk(I,X) =

{
v ∈ L2(I,X)

∣∣ ∂jt v ∈ L2(I,X) for 1 ≤ j ≤ k
}
.

If X is a Hilbert space, this is again a Hilbert space with respect to the scalar product
[u, v]Hk(I,X) =

∑
0≤j≤k

[∂jt u, ∂
j
t v]L2(I,X).

For k ∈ N and φ ∈ Hk([0, T ], X), the traces φ(0), . . . , φk−1(0) and φ(T ), . . . , φk−1(T ) are
well defined, and we define the spaces with vanishing initial condition or end condition,
respectively, as

Hk
0,∗([0, T ], X) =

{
ϕ ∈ Hk([0, T ], X)

∣∣ϕ(0) = · · · = ∂k−1
t ϕ(0) = 0

}
(2.14)

and
Hk
∗,0([0, T ], X) =

{
ϕ ∈ Hk([0, T ], X)

∣∣ϕ(T ) = · · · = ∂k−1
t ϕ(T ) = 0

}
. (2.15)

Similarly, we define the spaces of vector valued functions depending continuously on
time, i.e.

C(I,X) =
{
v : I → X

∣∣ v is continuous
}
,

Ck(I,X) =
{
v : I → X

∣∣ ∂jt v exists and is continuous for 0 ≤ j ≤ k
}
,

Ck0,∗([0, T ], X) =
{
ϕ ∈ Ck([0, T ], X)

∣∣ϕ(0) = · · · = ∂k−1
t ϕ(0) = 0

}
Ck∗,0([0, T ], X) =

{
ϕ ∈ Ck([0, T ], X)

∣∣ϕ(T ) = · · · = ∂k−1
t ϕ(T ) = 0

}
.

endowed with the corresponding supremum norms over the time interval.
We proof the following assertion that will be crucial in the following chapters. We

introduce the anti-symmetric pairing in L2([0, T ],HΓ ) as

〈ϕ,ψ〉ΓT =
∫ T

0
〈ϕ(t), ψ(t)〉Γ dt.

Lemma 2.11. Let (φn)n∈N be a bounded sequence in L2([0, T ],HΓ ). Then there exists a
subsequence (nj)j∈N ⊂ N and a limit function φ ∈ L2([0, T ],HΓ ), such that φnj converges
weakly to φ with respect to the anti-symmetric pairing 〈·, ·〉ΓT .
Proof. As L2([0, T ],HΓ ) is an Hilbert space, there exists a φ ∈ L2([0, T ],HΓ ) and
a subsequence (nj)j∈N with φnj ⇀ φ in L2([0, T ],HΓ ) for j → ∞. For any w ∈
L2([0, T ],HΓ ) the mapping 〈 · , w〉ΓT : L2([0, T ],HΓ ) → R is continuous and therefore
it holds 〈φnj , w〉ΓT⇀〈φ,w〉ΓT in R. This is equivalent to 〈φnj , w〉ΓT → 〈φ,w〉ΓT , which
concludes the assertion as w ∈ L2([0, T ],HΓ ) was chosen arbitrarily.



2. Reformulation and Function Spaces 24

2.3. The Calderon Operator
2.3.1. The time harmonic Calderon operator
We collect three of the most important properties of the time harmonic Calderon op-
erator in this section. We consider the coercivity, the boundedness and the projection
property of the operator. As we will see in the following section, these properties can
be transferred to the space and time dependent Calderon operator B(∂t) in an adequate
way.
We recall the definition of the Calderon operator from (2.6), (also compare Section

A.3 in the appendix)

B(s) = µ−1
0

(
(i√µ0ε0)−1V (s) K(s)

−K(s) −i√µ0ε0V (s)

)

with the boundary integral operators

V (s) = i
√
µ0ε0{{γT ◦ S(s)}} = (i√µ0ε0)−1{{γN ◦ D(s)}},

K(s) = {{γT ◦ D(s)}} = {{γN ◦ S(s)}},

with the single layer potential S(s) and the double layer potential S(s).
In (numerical) analysis of PDEs, it is very useful to deal with a coercive and continuous

bilinear form. In the following chapters, the coercivity of the Calderon operator with
respect to 〈·, ·〉Γ will play a crucial role. The coercivity is, e.g. used for the energy
estimates of the MLLG system, the uniqueness of the Maxwell part of the solutions
and in combination with Convolution Quadrature it is preserved for the time discretized
operators.

Lemma 2.12 (Coercivity Lemma, cf. [99, Lemma 3.1]). There exists β > 0 such that
the Calderon operator satisfies

<
〈(

ϕ

ψ

)
, B(s)

(
ϕ

ψ

)〉
Γ

≥ βg(s)
(
(ε0µ0)−1‖s−1ϕ‖2HΓ + ‖s−1ψ‖2HΓ

)
for <s > 0 and all ϕ,ψ ∈ HΓ , with g(s) = min(1, |s|2ε0µ0)<s.

The Calderon operator is a bounded operator and therefore the above bilinear form
is well defined indeed for ϕ,ψ ∈ HΓ . For better readability we write HΓ instead of
H2
Γ := (HΓ )2 := HΓ ×HΓ .

Lemma 2.13 (Boundedness, cf. [99, Lemma 2.3]). For <(s) ≥ ε > 0 the Calderon
operator

B(s) : (HΓ )2 → (HΓ )2

satisfies
‖B(s)φ‖HΓ ≤ C(ε)

∥∥∥s2φ
∥∥∥
HΓ

for φ ∈ H2
Γ .

Another important property of the Calderon operator is the following projection iden-
tity. Suitable arrangement of the building blocks of the Calderon operator results in a
projection. From this projection property we deduce that the image of this projection
is the space of suitable exterior data. The Calderon operator considered here is a linear
transformation of its building blocks and therefore this property stays valid in a certain
manner. This plays an important role in the equivalence of solutions. Without that
property, one would obtain convergence to a solution which would not correspond any
more to the solution of the original system.
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Lemma 2.14 (Projection property, cf. [46, Equation (35)]). The operator

1
2 −

(
K(s) V (s)
V (s) K(s)

)

is a projection, the so-called projection on suitable exterior data.

Remark 2.15. The operator

1
2 +

(
K(s) V (s)
V (s) K(s)

)

is a projection, the so-called projection on suitable interior data.

2.3.2. The time dependent Calderon operator
As already introduced in Section 2.1.2, we will use the notation for Laplace differential
operators, see Chapter B:

B(∂t)w = ∂mt (L−1(B(s)s−m) ∗ w), (2.16)

where L−1 is the inverse Laplace transform.
With this definition at hand, the above lemmas for the time harmonic Calderon op-

erator translate to the time domain operator as well. For the coercivity, this yields the
following result.

Lemma 2.16 (Time domain coercivity, cf. [99, Lemma 4.2]). For arbitrary T > 0 and
all ϕ,ψ ∈ H2

0,∗([0, T ],HΓ ) we have that

∫ T

0
e−2t/T

〈(
ϕ(t)
ψ(t)

)
, B(∂t)

(
ϕ(t)
ψ(t)

)〉
Γ

dt

≥ c
∫ T

0
e−2t/T

(
‖∂−1

t ϕ(t)‖2HΓ + ‖∂−1
t ψ(t)‖2HΓ

)
dt,

where the constant c > 0 only depends on T (and on β > 0 from Lemma 2.12). Further-
more it holds ∫ T

0

〈(
ϕ(t)
ψ(t)

)
, B(∂t)

(
ϕ(t)
ψ(t)

)〉
Γ

dt ≥ 0.

Proof. The first assertion follows with the operator valued Herglotz Theorem B.83 (with
σ = τ/T ), where, in contrast to [99, Lemma 4.2], an additional density argument is
applied to reduce the regularity assumptions on the functions. The second assertion
follows similarly considering the limit σ, σ0 → 0 in Theorem B.83.

Similarly, the boundedness of the time harmonic Calderon operator can be transferred
to the time dependent case.

Lemma 2.17 (Time domain boundedness, cf. [99, Lemma 6.5]). For φ ∈ H2
0,∗([0, T ],HΓ )

it holds
‖B(∂t)φ‖H2

0,∗([0,T ],HΓ ) ≤ C‖φ‖L2([0,T ],HΓ ),

where the constant C > 0 depends on T .

Proof. As in [99, Lemma 6.5], this follows from the time harmonic estimate from Lemma
2.13, and Causality (and Plancherel’s formula combined with density arguments, see
Chapter B) concludes the assertion (compare Remark B.41).



2. Reformulation and Function Spaces 26

With
B̂(s) =

(
K(s) V (s)
V (s) K(s)

)
,

the previous lemma suggests that P = (1/2 Id − B̂(∂t)) can be defined as an operator
from Hm

0,∗([0, T ],HΓ ) to L2([0, T ],HΓ ). If the projection property can be transferred to
time dependent operators, at first sight, P 2φ = Pφ would be only valid for functions
φ ∈ H2m

0,∗ ([0, T ],HΓ ). Due to the refined analysis developed in Lemma 3.6 and Theorem
B.81, it can be shown that P 2φ = Pφ even is valid for functions φ ∈ L2([0, T ],HΓ ), as
long as Pφ exists.

Lemma 2.18 (Time domain projection property). For φ ∈ L2([0, T ],HΓ ) such that
(1/2 Id− B̂(∂t))φ exists, it holds(1

2Id− B̂(∂t)
)2
φ =

(1
2Id− B̂(∂t)

)
φ.

Proof. Similar techniques are applied in Lemma 3.6 to show the equivalence between
the considered solutions without additional regularity requirements.

2.4. Rigorous Reformulation
In this section, we want to carry out the formal reformulation from Section 2.1 in a
mathematically rigorous way. First of all, we define in a precise way, what we understand
as solutions of the MLLG system on the whole space (1.12) and of the reformulated
boundary integral MLLG system (2.12). Then we show the connection between the two
systems: If the solutions are smooth enough (and extendable to the whole time interval
[0,∞) in the exterior/on the boundary), then the solutions coincide.

Before being able to consider equivalence of the systems, we need some properties of
the time harmonic Maxwell system which we derive in the following section.

2.4.1. The time harmonic Maxwell system
The time harmonic Maxwell equations arise out of applying the Laplace transform to the
time dependent Maxwell system as in Section 2.1.2, or out of inserting a time harmonic
ansatz E(t, x) = eiωtÊ(x), H(t, x) = eiωtĤ(x) in the time dependent Maxwell system.
We consider two systems and the possibilities to solve them from literature, i.e. the
version from [46] and the version from [152, Section 3.4]. We show that, under certain
conditions, their solutions coincide and therefore we can use all the properties that were
shown for the systems independently of each other.
The systems read:

• (THME,a): In [46], we find the following problem:
Find e, h ∈ Hloc(curl,Ω

c) that fulfill the Silver-Müller radiation condition (2.18)
and

−ε0iωe+∇× h = 0 in Ωc
,

µ0iωh+∇× e = 0 in Ωc
,

γT (e) = γT e
int on Γ,

γT (h) = γTh
int on Γ,

where (γT eint, µ0γTh
int) ∈ HΓ ×HΓ are suitable exterior data and =ω > 0.

We say that (a, b) ∈ HΓ × HΓ is suitable exterior data if and only if the traces
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fulfill
B(−iω)

(
−b
−a

)
= 1

2µ0

(
a

−b

)
, (2.17)

where B is the Calderon operator. We also write (a, b, ω) suitable, to indicate the
dependency on ω, if this is not clear from the context.

• (THME,b): In [152, Section 3.4] we find the following problem:
Find e, h ∈ H(curl,Ωc) that fulfill

−ε0iωe+∇× h = 0 in Ωc
,

µ0iωh+∇× e = 0 in Ωc
,

γT (e) = n× eint on Γ,

where eint ∈ H−1/2(curlΓ , Γ ) and =ω < 0.

Remark 2.19. For (THME,a) the Silver-Müller radiation conditions are imposed at∞,
i.e. it holds ∫

∂Br
|√µ0γTh× n+√ε0γe|2 dσ → 0 for r →∞. (2.18)

Remark 2.20. The restriction on =ω > 0 in (THME,a) says, how the Silver-Müller
radiation condition (2.18) and the compatibility condition (2.17) are understood, in fact
with respect to ω such that =ω > 0. If =ω < 0, we may interchange e and h, formulate
the Silver-Müller radiation (2.18) and the compatibility condition (2.17) with respect to
−ω and obtain uniqueness and existence. How this can be done in detail is presented in
the following paragraphs.
In (THME,b) the restriction =ω < 0 can be weakened to =ω 6= 0, as we will see in

Lemma 2.23.

Existence

In this paragraph, we rephrase the existence results of the problems from the underlying
papers.

Lemma 2.21. For γT eint, γThint ∈ HΓ , if (γT eint, µ0γTh
int, ω) is suitable and =ω > 0,

we set s := −iω, and the solution of problem (THME,a) is given via

e = D(s)(−γT eint) + S(s)(−µ0γTh
int),

h = 1
−iωµ0

∇× e = S(s)(ε0γT e
int) +D(s)(−γThint)

(2.19)

and e, h fulfill the Silver-Müller radiation condition.
Conversely, if we have such a solution, then (γT eint, µ0γTh

int) is suitable exterior data.

Proof. In [46] originally the second order formulation of (THME,a) is considered. By
rewriting this as a first order system, we directly obtain from [46, Definition 3 and
Theorem 8] the following statement (also compare Section A.3): If (a, b, ω) is suitable,
the problem

−ε0µ0iωA+∇×B = 0 in Ωc
,

iωB +∇×A = 0 in Ωc
,

γT (A) = a on Γ,
γT (B) = b on Γ
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has a unique solution (A,B) that fulfills the Silver-Müller radiation condition.
Conversely, if we have such a solution (A,B), then (γTA, γTB) = (a, b) is suitable

exterior data.
Furthermore, there is the representation formula (2.19) given for the solution.
Attention has to be paid, because the definition of the integral operators in this

manuscript differs from the ones used in [46] by a multiplicative factor. (This is also
mentioned in the Erratum [125] and we refer to an overview of the different rescalings
in Section A.3 in the Appendix.) If we denote by S̃, D̃, the single and double layer po-
tentials from [46] and by γ̃N the Neumann trace operator from [46], then the following
relations hold for κ = ω

√
µ0ε0, s = −iω,

1
i
√
µ0ε0

S̃(κ) = S(s),

D̃(κ) = D(s),
i
√
µ0ε0γ̃N = γN .

Now we can apply [46, Theorem 8] and obtain in terms of the operators used in this
manuscript that

A = D(s)(−a) + S(s)(−b),

B = 1
−iω
∇×A

= −ε0µ0S(s)(−a) +D(s)(−b).

Similarly, the property that traces (a, b) are suitable is rewritten with the operators used
in this manuscript as

B(−iω)
(
−b
−a

)
= 1

2µ0

(
a

−b

)
.

Now we insert A = e, B = µ0h, a = γT e
int and b = µ0γTh

int in those formulas and
obtain all the assertions in the statement of this lemma.

Remark 2.22. (THME,b) in [152, Section 3.4] is originally formulated for smooth Ω,
and not for piecewise smooth or Lipschitz Ω as we use it in this section. Nevertheless, in
the suitable functional analytic setting, the properties of the system (the system we have
after applying Lemma 2.23) that we use from [152, Section 3.4] can also be proven for
piecewise smooth or Lipschitz Ω. This is due to the results from [43, 44, 45] introducing
the Maxwell trace spaces on non-smooth boundaries. Related arguments can be found in
[143, Section A.2].
Without using the claim that the results from [152, Section 3.4] stay valid, the results

of this section nevertheless hold true for smoothly bounded Ωc.

Lemma 2.23. The second version of the time harmonic Maxwell equations (THME,b)
is uniquely solvable for =ω 6= 0. Additionally, the boundary condition

γT (e) = n× eint for eint ∈ H−1/2(curlΓ , Γ ) (2.20)

can be exchanged by the boundary condition

γT (e) = γT e
int for γT eint ∈ HΓ , (2.21)

i.e. the first assertion in this lemma and also Lemma 2.27 stay valid with (2.21) instead
of (2.20).
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Proof. If =ω < 0, the problem is uniquely solvable due to [152, Section 3.4]. If we have
=ω > 0, we again state the corresponding system

−ε0iωe+∇× h = 0 in Ωc
,

µ0iωh+∇× e = 0 in Ωc
,

γT (e) = n× eint on Γ.

We may multiply the first equation by −1 and rearrange the formulas as

−ε0i(−ω)e+∇× (−h) = 0 in Ωc
,

µ0i(−ω)(−h) +∇× e = 0 in Ωc
,

γT (e) = n× eint on Γ.

So we see that (e,−h,−ω) solves (THME,b) with =(−ω) < 0 and therefore its existence
and uniqueness is satisfied.
Concerning the boundary condition, if Ωc is a smoothly bounded domain, the following

arguments show that the spaces n×H−1/2(curlΓ , Γ ) and HΓ coincide. As stated in [152,
Section 3.4] and [123], every eint ∈ H−1/2(curlΓ , Γ ) can be lifted to H(curl,Ωc), i.e. there
exists ẽint ∈ H(curl,Ωc) with γẽint = eint on the boundary. As γT : H(curl,Ωc) → HΓ
is continuous, it follows γT ẽint = n × γẽint ∈ HΓ . The reverse direction follows as
γT : H(curl,Ωc)→ HΓ is surjective and γ : H(curl,Ωc)→ H−1/2(curlΓ , Γ ) is continuous
(cf. [152, Theorem 3.1] or [123]).
If Ωc is not smoothly bounded, but only piecewise smooth or Lipschitz bounded, we

refer to Remark 2.22. In this case, we have to formulate (THME,b) directly with the
boundary condition γT (e) = γT e

int for γT eint ∈ HΓ and repeat the proofs from [152,
Section 3.4]. All used statements can be transferred and stay valid. Similar arguments
are also considered in [143, Section A.2].

Properties

In the following, we collect some properties of the problems (THME,a) and (THME,b)
that are shown in the references [46] and [152, Section 3.4].

Lemma 2.24. Let α, ω ∈ C, =ω > 0 and a, b, c, d ∈ HΓ . If (a, b, ω) and (c, d, ω) are
suitable exterior data then also (a+ αc, b+ αd, ω) is suitable exterior data and

(a, b, ω) suitable ⇔ (−b, µ0ε0a, ω) suitable⇔ (−µ−1
0 b, ε0a, ω) suitable.

Proof. Suitability is a linear property, as the set of suitable functions is the kernel of a
linear operator, i.e. if (a, b, ω) and (c, d, ω) are suitable exterior data and α ∈ C, then
also (a+ αc, b+ αd, ω) is suitable exterior data and

(−b, µ0ε0a, ω) suitable⇔ (−µ−1
0 b, ε0a, ω) suitable.

Moreover, by inserting the formulas

B(s) = µ−1
0

(
(i√µ0ε0)−1V (s) K(s)

−K(s) −i√µ0ε0V (s)

)
,

we compute

(a, b, ω) suitable⇔ B(s)
(
−b
−a

)
= 1

2µ0

(
a

−b

)

⇔
(
−(i√µ0ε0)−1V (s)b−K(s)a
K(s)b+ i

√
µ0ε0V (s)a

)
= 1

2

(
a

−b

)
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and

(−µ−1
0 b, ε0a, ω) suitable ⇔ B(s)

(
−ε0a

µ−1
0 b

)
= 1

2µ0

(
−µ−1

0 b

−ε0a

)

⇔
(
−(i√µ0ε0)−1V (s)ε0a+K(s)µ−1

0 b

K(s)ε0a− i
√
µ0ε0V (s)µ−1

0 b

)
= 1

2

(
−µ−1

0 b

−ε0a

)
.

Multiplying the first line of the last expression with µ0 and by dividing the second line
by −ε0, yields (a, b, ω) suitable ⇔ (−µ−1

0 b, ε0a, ω) suitable.

The following remark may not be needed directly in the following but explains some
connections between the Maxwell equations and the compatibility condition.

Remark 2.25 (Consistency with respect to rearrangement). By various transforma-
tions, the system (THME,a) may be rearranged into a new system, that is again similar
to the old one just with permuted variables (e.g. interchange the roles of e and h). The
previous lemma shows, that suitability is a consistent property under such transforma-
tions. We may rearrange

−ε0µ0iωA+∇×B = 0 in Ωc
,

iωB +∇×A = 0 in Ωc
,

γT (A) = a on Γ,
γT (B) = b on Γ,

by a multiplication with ε0µ0 in the second line as

−ε0µ0iω(−B) +∇× (ε0µ0A) = 0 in Ωc
,

iω(ε0µ0A) +∇× (−B) = 0 in Ωc
,

γT (−B) = −b on Γ,
γT (ε0µ0A) = ε0µ0a on Γ.

Both versions differ just by A replaced with −B and B replaced with ε0µ0A. But, as
seen in the above Lemma, suitability is preserved similarly: For a suitable data set (a, b),
also (−b, ε0µ0a) is suitable and vice versa. We do not discuss further rearrangements
like changing the roles of ε0 and µ0, scaling the wave number or further manipulations,
here.

Remark 2.26. In terms of traces γT eint, γThint the above statements take the form

(γT eint, µ0γTh
int) suitable ⇔ (−γThint, ε0γT e

int) suitable.

The precise equations are

B(−iω)
(
−µ0γTh

int

−γT eint

)
= 1

2µ0

(
γT e

int

−µ0γThint

)
⇔

B(−iω)
(
−ε0γT e

int

γThint

)
= 1

2µ0

(
−γThint

−ε0γT eint

)
.

This equivalence corresponds to the rewrite of

−ε0iωe+∇× h = 0 in Ωc
,

µ0iωh+∇× e = 0 in Ωc
,

γT (e) = γT e
int on Γ,

γT (h) = γTh
int on Γ,
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as

−ε0iω(−h) +∇× (ε0µ
−1
0 e) = 0 in Ωc

,

µ0iω(ε0µ
−1
0 e) +∇× (−h) = 0 in Ωc

,

γT (−h) = −γThint on Γ,
γT (ε0µ

−1
0 e) = ε0µ

−1
0 γT e

int on Γ.

It is (γT eint, µ0γTh
int) suitable if and only if the pair of traces (−γThint, µ0ε0µ

−1
0 γT e

int) =
(−γThint, ε0γT e

int) is suitable. This again illustrates the symmetry between E and H in
the Maxwell equations. We do not discuss further rearrangements like changing the roles
of ε0 and µ0, scaling the wave number or further manipulations, here.

Lemma 2.27. For the solution of (THME,b) it holds for s = −iω, with <(s) ≥ σ0 > 0

‖∇ × e‖Ωc + |s|‖e‖Ωc ≤ C(Γ, µ0, ε0, σ0)|s|2‖γT eint‖HΓ

and similarly

‖∇ × h‖Ωc + |s|‖h‖Ωc ≤ C(Γ, µ0, ε0, σ0)|s|2‖γTh‖HΓ .

Proof. This can be proven by using [46, Theorem 1], to reformulate the statements of
[152, Theorem 3.1, Corollary 3.2, Lemma 3.3] for functions in HΓ = H

−1/2
× (divΓ , Γ ) for

Lipschitz or piecewise continuous domains instead for functions in H−1/2(curlΓ , Γ ) on
smooth domains. All proofs hold in an analogous way (compare Remark 2.22). Similar
arguments can be found in [143, Proposistion A.3.1]. The assertion for h then follows
by interchanging the roles of e and h.

Equivalence

In this paragraph we show that the solutions of both problems coincide (for =ω > 0),
thus a solution of (THME,a) is a solution of (THME,b) and vice versa. Therefore all
the properties stated in the previous paragraph are fulfilled for both solutions.

Lemma 2.28. Let =ω > 0 and given boundary data γT e
int ∈ HΓ . The solutions of

(THME,a) and (THME,b) exist and they coincide.

Proof. The proof follows the following strategy. By Lemma 2.23, we obtain a solution
(e, h) of (THME,b). With the Dirichlet-to-Neumann operator from [46, Section 10], we
obtain boundary data µ0γT h̃ that together with γT eint fulfills the compatibility condition
(2.17), i.e. (γT eint, µ0γT h̃) is suitable exterior data. Therefore we can define a solution
(ẽ, h̃) of (THME,a). The last step is to show that (ẽ, h̃) solves (THME,b). As γT ẽ =
γT e

int is fulfilled by the above construction, it remains to show the regularity assumptions
of (THME,b), i.e. that ẽ, h̃ ∈ H(curl,Ωc). Then, by the unique solvability of (THME,b)
it follows that (e, h) = (ẽ, h̃).

To show that ẽ, h̃ ∈ H(curl,Ωc), we show that the solution of problem (THME,a)
(and its curl) decreases exponentially for |x| → ∞. We therefore adapt the proofs of
[22, Theorem 4.4 (c)] and [26, Lemma 7]. Together with ẽ, h̃ ∈ Hloc(curl,Ωc) this then
concludes the assertion.
For the convenience of the reader, we repeat the definitions of the integral operators.

The electric single layer potential is given, for x ∈ R3 \ Γ , by

(S(s)ϕ) (x) := s

∫
Γ
G(s, x− y)ϕ(y)dy − 1

ε0µ0s
∇
∫
Γ
G(s, x− y)divΓϕ(y)dy
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and the electric double layer potential, for x ∈ R3 \ Γ ,

(D(s)ϕ)(x) = ∇×
∫
Γ
G(s, x− y)ϕ(y) dy,

where the fundamental solution G(s, z) is given for z ∈ R3\{0}, as

G(s, z) = e−s
√
ε0µ0|z|

4π|z| .

In the following, we will derive suitable bounds on |(S(s)ϕ)(x)| and |(D(s)ϕ)(x)| for
ϕ ∈ HΓ .
As HΓ is its own dual and as γT : H(curl,Ω) → HΓ is surjective and continuous, we

have for v ∈ HΓ , the existence of a ṽ ∈ H(curl,Ω) with γT ṽ = v and therefore

‖v‖γT (H1(Ω))′ = sup
φ∈H1(Ω)

〈v, γTφ〉Γ
(‖φ‖2Ω + ‖∇φ‖2Ω)1/2

= sup
φ∈C∞(Ω)

[n× ṽ, n× n× φ]Γ
(‖φ‖2Ω + ‖∇φ‖2Ω)1/2

= sup
φ∈C∞(Ω)

[n× ṽ, φ]Γ
(‖φ‖2Ω + ‖∇φ‖2Ω)1/2

= ‖v‖H−1/2(Γ ).

From this, we immediately infer

‖v‖2HΓ = ‖v‖2γT (H1(Ω))′ + ‖divΓ v‖2H−1/2(Γ ) ≥ ‖v‖
2
H−1/2(Γ ). (2.22)

The next step is to choose a suitably big ball BR, such that Ω ⊂ BR/2. For values in the
complement R3 \ BR, we are then able to suitably bound the fundamental solution G
and then obtain the desired bounds on the integral operators. We have for x ∈ R3 \BR,
Ω ⊂ BR/2, s = −iω, <s ≥ σ0 > 0 , y ∈ Ω

|x− y| ≥ |x| − |y| ≥ |x| −R/2 ≥ R/2

and therefore using |x− y| ≥ |x| −R/2 and |x− y| ≥ R/2 we obtain

‖G(s, x− ·)‖H1/2(Γ ) ≤
∥∥∥∥∥e−s

√
ε0µ0|x−·|

4π|x− ·|

∥∥∥∥∥
H1(Ω)

≤ C(ε0, µ0)
∥∥∥∥∥
(

1 + |s|+ 1
|x− ·|

)
e−s
√
ε0µ0|x−·|

4π|x− ·|

∥∥∥∥∥
L2(Ω)

≤ C(s, ε0, µ0, R, |Ω|) sup
y∈Ω

e−<s
√
ε0µ0|x−y|

≤ C(s, ε0, µ0, R) sup
y∈Ω

e−σ0
√
ε0µ0|x−y|

≤ C(s, ε0, µ0, R, σ0)e−σ0
√
ε0µ0|x|.

(2.23)

Similarly, one estimates

‖∇G(s, x− ·)‖H1/2(Γ ) ≤ C(s, ε0, µ0, R, σ0)e−σ0
√
ε0µ0|x|. (2.24)

Using (2.22), (2.23) and (2.24), we get for v ∈ HΓ , |x| ≥ R,

|(S(s)v)(x)| ≤ C(s)‖G(s, x− ·)‖H1/2(Γ )‖v‖H−1/2(Γ )

+ C(s, µ0, ε0)‖∇G(s, x− ·)‖H1/2(Γ )‖divΓ v‖H−1/2(Γ )

≤ C(ε0, µ0, R, σ0)e−σ0
√
ε0µ0|x|‖v‖HΓ .
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By the definition of the single layer potential and analogical estimates for ∇G we have

|(∇× S(s)v)(x)| ≤ C(s, ε0, µ0)|(D(s)v)(x)|
≤ ‖∇G(s, x− ·)‖H1/2(Γ )‖v‖H−1/2(Γ )

≤ C(ε0, µ0, R, σ0)e−σ0
√
ε0µ0|x|‖v‖HΓ .

Similarly, we obtain bounds

|(D(s)v)(x)| ≤ C(ε0, µ0, R, σ0)e−σ0
√
ε0µ0|x|‖v‖HΓ

and using |∇ × (D(s)v)(x)| ≤ C(s, ε0, µ0)|(S(s)v)(x)| (cf. [46, Lemma 5])

|(∇×D(s)v)(x)| ≤ C(ε0, µ0, R, σ0)e−σ0
√
ε0µ0|x|‖v‖HΓ .

Thus, the solution is in H(curl, Bc
R) for a large enough ball BR containing Ω. By [46],

it is in Hloc(curl,Ωc) (in the sense that for every bounded set B, the functions are in
H(curl, B), cf. [46, Section 2]), so it is in H(curl, BR \ Ω). Altogether, the solution of
problem (THME,a) is in H(curl,Ωc), fulfills the regularity assumptions of (THME,b)
and therefore is a solution of (THME,b). By unique solvability of (THME,b) the two
solutions coincide.

Remark 2.29. In [46], existence and uniqueness is also shown for =ω = 0, ω > 0.
Lemma 2.21 can be shown to hold analogously, but in the proof of Lemma 2.28 we need
=ω > 0 to show exponential decay of the solution for |x| → ∞. Thus we are not able to
show with these arguments, that the solution is in H(curl,Ωc). This also indicates the
reason why (THME,b) is only formulated for =ω 6= 0, as it gives solutions in H(curl,Ωc)
which may not occur for =ω = 0.

For the well-definiteness of the inverse Laplace transform, we need complex differen-
tiable functions. In the following lemma we state that this is fulfilled for the integral
operators.

Lemma 2.30. For s ∈ C, <s > 0, the family of single layer operators S(s) : HΓ →
H(curl,Ωc), the family of double layer potentials D(s) : HΓ → H(curl,Ωc) and the family
of the Calderon operators B(s) : HΓ ×HΓ → HΓ ×HΓ are complex differentiable in the
sense of Definition B.49.

Proof. The proof is sketched roughly, see [143] for similar arguments for the wave equa-
tion. We only consider the single layer potential S(s), the proof for the double layer
potentials D(s) proceeds similarly and the assertion for the Calderon operators B(s) fol-
lows by its definition as the composition of traces and averages of the single and double
layer potentials.
For simplicity, we only look at a part of the first term in the definition of the single

layer potential, i.e.
(S1(s)ϕ) (x) :=

∫
Γ
G(s, x− y)ϕ(y)dy.

The second term and the multiplication with s may be treated analogously. As the
fundamental solution G(s, z) = e−s

√
ε0µ0|z|

4π|z| is analytic and uniformly bounded for |z| ≥
c > 0, we see for fixed x /∈ Γ and fixed ϕ, that

|S1(s+ h)ϕ− S1(s)ϕ− h∂sS1(s)ϕ| ≤ C(x, ϕ)h,

i.e. s 7→ (S1(s)ϕ) (x) is complex differentiable.
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By similar arguments as in the previous Lemma, as the potential decays exponentially
for |x| → ∞ (and the constants there depend in a “harmless” way on s), we may obtain
for a big enough ball BR for h→ 0

‖S1(s+ h)ϕ− S1(s)ϕ− h∂sS1(s)ϕ‖H(curl,R3\BR) ≤ C(R)h‖ϕ‖HΓ .

This concludes the complex differentiability on H(curl,R3 \BR).
For the bounded domain BR \ Ω (and similarly for the bounded domain Ω), we note

that the symbol of (S1(s+ h)ϕ− S1(s)ϕ− h∂sS1(s)ϕ)(x) is

G(s+ h, z)−G(s, z)− h∂sG(s, z)

=
e−(s+h)√ε0µ0|z| − e−s

√
ε0µ0|z| + h

√
ε0µ0|z|e−s

√
ε0µ0|z|

4π|z| .

The denominator can be bounded by Ch uniformly for |z| ≤ R for a constant C > 0.
Then the bound follows similarly as the bound in the proof of the continuity of S1(s) :
HΓ → H(curl, BR \ Ω). This concludes, together with a more concrete formulation of
the arguments, the proof.

Preparations

In this paragraph, we rewrite the system such that the results obtained so far can be
directly applied in the following sections.

Applying the Laplace transform to the time dependent Maxwell equations, we obtain
for <s > 0

ε0sÊ −∇× Ĥ = 0 in Ωc
,

µ0sĤ +∇× Ê = 0 in Ωc
,

γT (Ê) = γT Ê on Γ,
γT (Ĥ) = γT Ĥ on Γ.

(2.25)

With s = −iω it is =ω > 0 and we rewrite the system as

ε0 − iωÊ +∇× (−Ĥ = 0) in Ωc
,

µ0iω(−Ĥ) +∇× Ê = 0 in Ωc
,

γT (Ê) = γT Ê on Γ,
γT (−Ĥ) = −γT Ĥ on Γ.

Thus, (γT Ê,−µ0γT Ĥ, ω) is suitable exterior data, i.e. we obtain (see Remark 2.26 with
h replaced by −Ĥ)

B(−iω)
(
µ0γT Ĥ

−γT Ê

)
= 1

2µ0

(
γT Ê

µ0γT Ĥ

)
. (2.26)

Conversely, if (γT Ê,−µ0γT Ĥ, ω) is suitable exterior data, we may represent the solu-
tion via

e = D(s)(−γT Ê) + S(s)(µ0γT Ĥ),

−h = 1
−iωµ0

∇× e

= S(s)(ε0γT Ê) +D(s)(γT Ĥ).
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2.4.2. Definition of solutions
In this section we define solutions of the MLLG system posed on the full space (1.12)
and the reformulated MLLG system (2.12).
Definition 2.31. We call (m,E,H) a solution of the MLLG system (1.12), if :

• The regularity assumptions for the magnetization
m ∈ L2([0, T ], H2(Ω)) ∩H1([0, T ], L2(Ω))

and for the electric and magnetic field
E,H ∈ L2([0, T ], H(curl,R3 \ Γ )) ∩H1([0, T ], L2(R3))

are fulfilled.

• It holds |m| = 1 almost everywhere in ΩT .
The following equations hold:

• The LLG equation (1.12a) in L2([0, T ]× Ω),

• the interior Maxwell equations (1.12b)–(1.12c) in L2([0, T ]× Ω),

• the exterior Maxwell equations in (1.12d)–(1.12e) in L2([0, T ]× Ωc),

• the boundary condition (1.12f) in L2([0, T ], H1/2(Γ )),

• the transmission condition (1.12g) in L2([0, T ], HΓ ),

• the initial data (1.12h)–(1.12i) in the sense of traces in L2(R3).
Remark 2.32. The regularity assumption E ∈ L2([0, T ], H(curl,R3 \ Γ )) together with
the transmission condition γTE

int = γTE
ext in L2([0, T ], HΓ ) is equivalent to the regu-

larity assumption E ∈ L2([0, T ], H(curl,R3)).
Definition 2.33. We call (m,E,H) a solution of the MLLG system (2.12), if :

• The regularity assumptions for the magnetization
m ∈ L2([0, T ], H2(Ω)) ∩H1([0, T ], L2(Ω))

and for the electric and magnetic field
E,H ∈ H(∂t, curl,ΩT )

are fulfilled.

• It holds |m| = 1 almost everywhere in ΩT .
The following equations hold:

• The LLG equation (2.12a) in L2([0, T ]× Ω),

• the Maxwell equations (2.12b)–(2.12c) in L2([0, T ]× Ω),

• the boundary integral equation (2.12d) in L2([0, T ], HΓ ) in the sense that Bm ∗(µ0γT (H)
−γT (E)

)
∈ Hm

0,∗([0, T ],HΓ ) and

∂mt Bm ∗
(
µ0γTH

−γTE

)
= 1

2µ0

(
γTE

µ0γTH

)
in L2([0, T ],HΓ ),

• the boundary condition (2.12e) in L2([0, T ], H1/2(Γ )),

• the initial data (2.12f) in the sense of traces in L2(Ω).
Remark 2.34. The condition |m| = 1 almost everywhere in ΩT may be removed in both
definitions as long as the initial data fulfills |m0| = 1 almost everywhere in Ω. In this
case, for both definitions one can show that |m| = 1 is satisfied for all times.
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2.4.3. Equivalence of the solutions
In this section we establish an equivalence between the exterior Maxwell system and
the system on the boundary, in the sense that if the solutions are smooth enough (and
extendable to the time interval [0,∞) in the exterior domain or on the boundary), they
coincide.

Theorem 2.35. A solution (m,E,H) in the sense of Definition 2.31, that

• can be extended to the time interval [0,∞) on the exterior domain, i.e. there exists
a constant c > 0, such that

(e−ctẼ, e−ctH̃) ∈ L2([0,∞), H(curl,Ωc)) ∩H1([0,∞), L2(Ωc))

with
(Ẽ, H̃) = (E,H) in L2([0, T ],Ωc)

and (Ẽ, H̃) fulfills the exterior Maxwell equations (1.12d)–(1.12e) in an e−ct-weighted
L2([0,∞) × Ωc) sense (i.e. (1.12d)–(1.12e) multiplied by e−ct hold in L2([0,∞) ×
Ωc)),

is a solution in the sense of Definition 2.33.
Let (m,E,H) be a solution in the sense of Definition 2.33, that

• satisfies the regularity assumptions of Definition 2.31 in Ω and

• the traces γTE, γTH are in H2
0,∗([0, T ],HΓ ) and

• can be extended to the time interval [0,∞) on the boundary, i.e. there exists a
constant c > 0 such that

e−ctγT Ẽ, e
−ctγT H̃ ∈ H2

0,∗([0,∞),HΓ )

with
(γT Ẽ, γT H̃) = (γTE, γTH) in L2([0, T ],HΓ )

and (γT Ẽ, γT H̃) fulfill the boundary integral equation (2.12d) in an e−ct-weighted
L2([0,∞),HΓ ) sense (i.e. (2.12d) multiplied by e−ct holds in L2([0,∞),HΓ )).

Then

(E,H) :=
{

(E,H) in Ω,
(S(∂t)µ0γTH −D(∂t)γTE,−S(∂t)ε0γTE −D(∂t)γTH) in Ωc

,
(2.27)

is a solution in the sense of Definition 2.31. The existence of the convolution operators
in the second line of (2.27) holds in a matrix vector multiplication sense, see Remark
2.37.

Proof. The equivalence in the LLG-part can be shown exactly as in Section 2.1.1. As
|m| = 1 is satisfied almost everywhere, the applications of m × · are transformations
from L2(ΩT )→ L2(ΩT ).
Concerning the interior Maxwell part, the equations and regularity assumptions are

the same in both defintions, so there is nothing to show and all we have to consider are
the equations in the exterior domain or the boundary integral equations, respectively.
Let (m,E,H) be a solution in the sense of Definition 2.31 that can be extended to

[0,∞) on the exterior domain as stated in the theorem. We denote the extension by
(Ẽ, H̃).
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We apply the vector valued Laplace transform from Section B.2 (with respect to the
Hilbert space L2(Ωc)) to the on [0,∞) extended version of (1.12d)–(1.12e). Due to
Ẽ(0) = E(0) = 0 we have L∂tẼ = sLẼ and by interchanging the Laplace transform and
space (differential) operators (see Lemma B.54 that this is possible) we obtain

ε0sLẼ −∇× LH̃ = 0 in Ωc
,

µ0sLH̃ +∇×LẼ = 0 in Ωc
,

γT (LẼ) = LγT Ẽ on Γ,
γT (LH̃) = LγT H̃ on Γ,

for s ∈ C with <s ≥ for c > 0. Thus (LE,LH) solve the time harmonic Maxwell
equations (THME). More precisely, with s = −iω it is =ω > 0 and they solve the system
(2.25). Therefore the traces are suitable exterior data and we have

B(s)L
(
µ0γT H̃

−γT Ẽ

)
= 1

2µ0
L
(
γT Ẽ

µ0γT H̃

)
. (2.28)

The inverse Laplace transform of the right-hand side exists, thus the one of the left-hand
side, too, so we obtain

B(∂t)
(
µ0γT H̃

−γT Ẽ

)
= 1

2µ0

(
γT Ẽ

µ0γT H̃

)
.

As B(s) is a family of analytic operators (see Lemma 2.30) and ‖B(s)‖ ≤ Cs2 (see
Lemma 2.13), it holds for m ∈ N, m > 3

∂−mt B(∂t)
(
µ0γT H̃

−γT Ẽ

)
= Bm ∗

(
µ0γT H̃

−γT Ẽ

)
.

and
B(∂t)

(
µ0γT H̃

−γT Ẽ

)
= ∂mt ∂

−m
t B(∂t)

(
µ0γT H̃

−γT Ẽ

)
= ∂mt Bm ∗

(
µ0γT H̃

−γT Ẽ

)
.

So we have Bm ∗
(µ0γT (H̃)
−γT (Ẽ)

)
∈ Hm

0,∗([0, T ],HΓ ) and

∂mt Bm ∗
(
µ0γT H̃

−γT Ẽ

)
= 1

2µ0

(
γT Ẽ

µ0γT H̃

)
.

By the Causality of ∂mt Bm∗, it is immediate that Bm ∗
(µ0γT (H)
−γT (E)

)
∈ Hm

0,∗([0, T ],HΓ ) and

∂mt Bm ∗
(
µ0γTH

−γTE

)
= 1

2µ0

(
γTE

µ0γTH

)
in L2([0, T ],HΓ ).

So we have a solution in the sense of Definition 2.33. (Furthermore it can be continued
to [0,∞) on the boundary in a e−ct-weighted L2([0,∞),HΓ )-sense.)

Now, let (E,H) be a solution in the sense of Definition 2.33 with all the properties
stated in the theorem. We consider the boundary equation for the extensions γT H̃, γT Ẽ.
We integrate the boundary equation m-times in time, and as e−ctBm ∗

(µ0γT H̃

−γT Ẽ
)
∈

Hm
0,∗([0,∞),HΓ ), we obtain

Bm ∗
(
µ0γT H̃

−γT Ẽ

)
= 1

2µ0
∂−mt

(
γT Ẽ

µ0γT H̃

)
. (2.29)
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We apply the vector valued Laplace transform from Section B.2 (with respect to the
Hilbert space HΓ ) to equation (2.29) which results in

s−mB(s)L
(
µ0γT H̃

−γT Ẽ

)
= 1

2µ0
s−mL

(
γT Ẽ

µ0γT H̃

)

for <s > 0. Multiplying the outcome by sm and setting s = −iω, we obtain suitable
exterior data like stated in (2.26). The latter can therefore be represented as

h = S(s)L(−ε0γT Ẽ) +D(s)L(−γT H̃),

e = 1
−iωε0

∇× h = S(s)(µ0γT H̃) +D(s)L(−γT Ẽ).

By Lemma 2.27, we obtain

‖∇ × h‖Ωc + |s|‖h‖Ωc ≤ C(Γ, µ0, ε0, σ0)|s|2‖L(γT H̃)‖HΓ

for <(s) ≥ σ0 > 0 and similarly

‖∇ × e‖Ωc + |s|‖e‖Ωc ≤ C(Γ, µ0, ε0, σ0)|s|2‖L(γT Ẽ)‖HΓ .

Due to the regularity assumption of the extension, we have that s2L(γT H̃), s2L(γT Ẽ)
are uniquely square integrable over each vertical line <s ≥ c > 0 and as S, D are
both families of analytic operators (see Lemma 2.30), we have that e and h are suit-
ably bounded and analytic. Therefore the inverse Laplace transform exists (cf. Defini-
tion B.55) and on Ωc we define

H := L−1h, E := L−1e,

which satisfy the regularity assumptions of Definition 2.31 in [0, T ] and are a extension
to [0,∞) on Ωc.
The initial conditionH(0) = 0 is fulfilled, as L−1(sh(s)) exists, thusH = ∂−1

t L−1(sh(s)),
which gives H(0) = 0. Similar arguments for E conclude E(0) = 0.
The transmission condition γTEint = γTE

ext, γTH int = γTH
ext in L2([0, T ], HΓ ) follows

by the properties of the time harmonic operators (as all traces are suitable) and by
interchanging the tangential trace operator and the Laplace transform.

Remark 2.36. Let us summarize: To get from Definition 2.31 to Definition 2.33, we
only need extendability on the exterior domain. To get back, we need extendability on
the boundary and we need additional regularity, in particular the traces have to be two
times differentiable in time with vanishing derivatives at t = 0. The reason is that the
single and double layer potentials are second order operators in time (see e.g. Lemma
2.27) and we need the regularity of the traces to ensure that they exist.
The Calderon operator is a second order differential operator in time, too, neverthe-

less we do not need the additional regularity to get from Definition 2.31 to Definition
2.33. The existence of the inverse Laplace transform is inherently guaranteed by equation
(2.28).

Remark 2.37. The statement in the equation (2.27) of this theorem should be read with
care. In the previous proof, we only showed that L−1h (and similar statements for L−1e)
exists, i.e.

L−1 (S(s)L(−ε0γTE) +D(s)L(−γTH))
exists. This means that in a matrix vector multiplication sense(

S D
−1/µ0D ε0S

)
(∂t)

(
µ0γTH

−γTE

)
= (S(∂t)µ0γTH−D(∂t)γTE,−S(∂t)ε0γTE−D(∂t)γTH)
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exists. We did not show that S(∂t)(−ε0γTE) = L−1(S(s)L(−ε0γTE)) and D(∂t)(−γTH) =
L−1(D(s)L(−γTH)) exist themselves. This might be possible to show under suitable
bounds ‖S(s)‖ ≤ Cs2, ‖D(s)‖ ≤ Cs2. A comparable bound for the single layer can be
found in [143, Section A.4]. This is shown by using similar estimates as in Lemma 2.27
and inserting special traces such that D(s)γTH vanishes. Due to the refined analysis
of the Laplace differential operators in Chapter B, we need less time regularity than in
[143, Section A.4].

Remark 2.38. In the pure Maxwell case, i.e. without the LLG equation, under the
assumptions of Chapter 4, a continuation of γTE, γTH in a e−ct-weighted L2([0,∞),HΓ )
sense can be shown to exist due our later result, Theorem 4.28, as the energy norm only
grows polynomially in T and J can be extended to [0,∞) in a smooth way such that
J(t) = 0, t > 2T .

Remark 2.39. If γTE, γTH are sufficiently smooth, a continuation in H2
0,∗([0,∞),HΓ )

can be shown to exist. The idea is to extend the functions to [0,∞) in a smooth enough
way. Therefore, they may not any more fulfill the boundary integral equation for t > T ,
but if we apply the projection on suitable exterior data, the boundary integral equation
again is fulfilled on [0,∞). As the projection operator is a second order differential
operator in time, we need the functions to be four times differentiable in time to get an
extension in H2

0,∗([0,∞),HΓ ).
For γTE, γTH ∈ H4

0,∗([0, T ],HΓ ), we set(
γT Ẽ

µ0γT H̃

)
:=
(

1
2 +B(∂t)µ0

(
0 1
−1 0

))
∂−4
t 1[0,T ]∂

4
t

(
γTE

µ0γTH

)
.

We now want to show, that, indeed, γT Ẽ, γT H̃ is a continuation in H2
0,∗([0,∞),HΓ ). It

is clear, that for every c > 0,

e−ct∂−4
t 1[0,T ]∂

4
t

(
µ0γTH

γTE

)
∈ H4

0,∗([0,∞),HΓ ).

For U : [0, T ]→ HΓ this is the Taylor polynomial continuation for t > T by

∂−4
t 1[0,T ]∂

4
t U(t) = U(T ) + (t− T )U ′(T ) + · · ·+ (t− T )3

3! U (3)(T ).

As ‖B(s)‖ ≤ C|s|2, it follows from the properties of the Laplace transform that

e−ctγT H̃, e
−ctγT Ẽ ∈ H2

0,∗([0,∞),HΓ )

for every c > 0. Furthermore, (γT Ẽ, γT H̃) fulfills the boundary integral equation (2.12d)
in an e−ct-weighted L2([0,∞),HΓ ) sense by the projection property of the Calderon op-
erator (see Lemma 2.14 and apply the same arguments as in the proof of Theorem 4.3).
By (2.12d) and by the Causality property of B(∂t), it holds

(γT Ẽ, γT H̃) = (γTE, γTH)

on [0, T ].





3. Weak Convergence for the MLLG
System

In this chapter, we consider weak convergence of the approximations towards the exact
solution of the boundary integral Maxwell–LLG system. In Section 3.1, we introduce
suitable notions of solutions and discuss the connection with the ones from Section 2.4
(see Remark 3.5). In Section 3.2, we present the approximation scheme. Finally, in
Section 3.3, we show that the approximations converge (in a weak-subsequence sense)
towards the exact solutions from Section 3.1.

3.1. Weak Solutions, Equivalence and Uniqueness
In this section we consider the boundary integral MLLG system. We introduce a reduced
regularity and a weak solution (for an overview see Remark 3.5) and show equivalence
and uniqueness of (a part of) these solutions.

3.1.1. Definition of a reduced regularity solution
Originating from the boundary integral MLLG system (2.12), we define a suitable solu-
tion that needs lower regularity assumptions for its definition than the one from Defini-
tion 2.33. Given sufficient regularity, both solutions coincide.

For the convenience of the reader, we repeat the MLLG system (2.12). We seek
functions m, E and H : [0, T ]× Ω→ R3 which satisfy: in the interior domain

∂tm− αm× ∂tm = −m× (Ce∆m+H) in ΩT , (3.1a)
ε∂tE −∇×H = − (J + σE) in ΩT , (3.1b)
µ∂tH +∇× E = − µ∂tm in ΩT , (3.1c)

coupled to the boundary integral equations

B(∂t)
(
µ0γTH

−γTE

)
= 1

2

(
µ−1

0 γTE

γTH

)
on [0, T ]× ∂Ω, (3.1d)

where m satisfies the boundary condition

∂nm = 0 on [0, T ]× ∂Ω, (3.1e)

and with the initial conditions

m(0) = m0, E(0) = E0, H(0) = H0 in Ω. (3.1f)

We multiply the LLG equation (3.1a) with a smooth test function ρ and use ∂nm = 0
on Γ to obtain for the Laplace term

[∆m×m, ρ]Ω = [∇m× ρ,∇m]Ω − [∇m×m,∇ρ]Ω + [m× ρ, ∂nm]Γ
= −[∇m×m,∇ρ]Ω.

41
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For the Maxwell part, we integrate equation (3.1b) and (3.1c) once in time. We recall
the operator

(∂−1
t v)(t) = L−1

(
s−1L(v)

)
(t) =

∫ t

0
v(s) ds = (1 ∗ v)(t)

and apply it to the equations (3.1b)–(3.1c). For a function G ∈ C1[0, T ] it holds

∂−1
t ∂tG(t) =

∫ t

0
∂tG(τ) dτ = G(t)−G(0).

Similarly, the boundary integral equation is integrated once in time. From Lemma B.82,
we obtain that the operator ∂−1

t commutes with B(∂t) for suitable functions φ (smooth
enough with vanishing derivatives at t = 0) in the sense

∂−1
t ∂mt Bm ∗ φ = ∂mt ∂

−1
t Bm ∗ φ = ∂mt Bm ∗ ∂−1

t φ.

We apply the stated modifications to the MLLG system (3.1) and arrive at the following
definition.
The LLG part is given in weak form tested with smooth functions, while the Maxwell

and boundary part are integrated once in time and given in strong form, i.e. without
test functions.

Definition 3.1. We consider a solution of the MLLG equations, i.e. (m,E,H) that
satisfies

• m ∈ H1(ΩT ) with |m| = 1 almost everywhere, m(0) = m0 in the sense of traces,
and for all ρ ∈ C∞(ΩT ) we have

[∂tm, ρ]ΩT − α[m× ∂tm, ρ]ΩT = −Ce[∇m×m,∇ρ]ΩT + [H ×m, ρ]ΩT .

• E,H ∈ L2(ΩT ) such that ∂−1
t E, ∂−1

t H ∈ H(curl,ΩT ) and

ε(E − E0)−∇× (∂−1
t H) + σ∂−1

t E = −∂−1
t J in L2(ΩT ),

µ(H −H0) +∇× (∂−1
t E) = −µ(m−m0) in L2(ΩT ),

as well as Bm ∗
(µ0γT (∂−1

t H)
−γT (∂−1

t E)
)
∈ Hm

0,∗([0, T ],HΓ ) with

∂mt Bm ∗
(
µ0γT (∂−1

t H)
−γT (∂−1

t E)

)
= 1

2µ0

(
γT (∂−1

t E)
µ0γT (∂−1

t H)

)
in L2([0, T ],HΓ ).

Given sufficient regularity, the solutions in Definition 3.1 and Definition 2.33 coincide.

Theorem 3.2. Every solution in the sense of Definition 2.33 is a solution in the sense
of Definition 3.1. Conversely, a solution in the sense of Definition 3.1, that fulfills the
regularity assumptions of Definition 2.33, is a solution in the sense of Definition 2.33.

Proof. To get from Definition 2.33 to Definition 3.1, we apply the above modifications
that hold under the stated regularity. Especially for the boundary integral equation,
we refine the arguments (the regularity for φ from above is not needed). We note that
Bm∗ and ∂−1

t commute as they are smoothing operators in time, see Lemma B.82. As
Bm ∗

(µ0γTH
−γTE

)
∈ Hm

0,∗([0, T ],HΓ ), the operators ∂−1
t and ∂mt commute and it is

∂−1
t ∂mt Bm ∗

(
µ0γTH

−γTE

)
= ∂mt ∂

−1
t Bm ∗

(
µ0γTH

−γTE

)
= ∂mt Bm ∗ ∂−1

t

(
µ0γTH

−γTE

)
.
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To get from Definition 3.1 to Definition 2.33, assuming the regularity assumptions from
Definition 2.33, we proceed in a similar way to reverse the modifications. For the LLG
equation, integration by parts shows

[∇m×m,∇ρ]ΩT = −[∆m×m, ρ]ΩT + [m× ρ, ∂nm]ΓT ,

and by the use of cut off functions (as all the other terms in the LLG equation are
bounded in L2(ΩT )) we obtain

[∂nm×m, ρ]ΓT = 0,

i.e. ∂nm ×m = 0 on ΓT . By |m| = 1 almost everywhere, we deduce m · ∂nm = 0 and
finally conclude

∂nm = 0.

For the interior Maxwell part, (formally) inserting t = 0 into the equation gives E(0) =
E0 and H(0) = H0 (note (∂−1

t G)(0) = 0 for any function G) and due to the given
regularity assumptions, rigorous arguments similarly show that E(0) = E0 and H(0) =
H0 hold in the sense of traces. The differential equations from Definition 3.1 follow by
deriving in time and noting that ∂t∂−1

t G = G applies for any function G.
For the boundary integral equation, under the stated regularity assumptions, ∂mt Bm∗

and ∂−1
t commute as above, which together with deriving the equation in time, concludes

the proof.

3.1.2. Definition of a weak solution
In this section, we motivate the definition of a weak solution of the MLLG system
(3.1). In the following sections, we will show that such a solution exists and that the
approximations converge (in a weak subsequence sense) towards that solution.

We recall the notations for the scalar products

〈ϕ,ψ〉ΓT =
∫ T

0
〈ϕ,ψ〉Γ dt

and
[v, w]ΩT =

∫ T

0

∫
Ω
v · w dx dt,

for suitable functions ϕ,ψ, v, w.
For the LLG part, we apply the same modifications as in Section 3.1.1 and therefore

this part remains unchanged in comparison to Definition 3.1.
The Maxwell equations (3.1b)–(3.1c) are multiplied by smooth test functions ζE , ζH

and the resulting equations are integrated over ΩT . We state the following version of
the integration by parts formula, for a, b ∈ C1([0, T ]) it holds∫ T

0
a(t)b(t) dt = (∂−1

t a)(T )b(T )−
∫ T

0
(∂−1
t a)(t)∂tb(t) dt.

Assuming ζE(T ) = 0 and using the integration by parts formula, we obtain

[∇× E, ζE ]ΩT = −[∇× (∂−1
t E), ∂tζE ]ΩT .

Similarly, it holds with integration by parts and ζE(T ) = 0

[∂tE, ζE ]ΩT = −[E, ∂tζE ]ΩT − [E(0), ζE(0)]Ω.
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For the boundary equation, we similarly multiply (3.1d) by smooth test functions and
integrate over the respective space time domains (such that we obtain the anti-symmetric
pairing, see Definition 2.6). For the left hand side, we use integration by parts yielding

〈v, γTE〉ΓT = −〈γT (∂−1
t E), ∂tγT ζ〉ΓT .

We introduce the abbreviations ψ̃ := −γT (∂−1
t E) and ϕ̃ := µ0γT (∂−1

t H) and rewrite

γT (∂−1
t E) = 2γT (∂−1

t E) + ψ̃ and µ0γT (∂−1
t H) = 2µ0γT (∂−1

t H)− ϕ̃.

For the Calderon operator on the right hand side, we note for φ ∈ Cm([0,∞),H2
Γ )

with φ(0) = ∂tφ(0) = · · · = ∂m−1
t φ(0) = 0, that φ̃ := ∂−1

t φ ∈ Cm+1([0,∞),H2
Γ ) and

φ̃(0) = · · · = ∂mt φ̃(0) = 0. Furthermore it is L−1(L(φ)sm) = L−1(L(φ̃)sm+1) and

(B(∂t)φ)(t) = L−1(B(s)L(φ)(s))(t)

=
(
L−1(B(s)s−m) ∗ L−1(L(φ̃)(s)sm+1)

)
(t)

= ∂m+1
t (Bm ∗ φ̃)(t)

and
(Bm ∗ φ̃)(0) = · · · = ∂mt (Bm ∗ φ̃)(0) = 0.

We therefore obtain for v ∈ Cm+1([0, T ],H2
Γ ) with v(T ) = ∂tv(T ) = · · · = ∂mt v(T ) = 0,

by integrating m+ 1 times by parts in time, that

〈v, ∂mt (Bm ∗ φ)〉ΓT =
〈
v, ∂m+1

t (Bm ∗ φ̃)
〉
ΓT

= −
〈
∂tv, ∂

m
t (Bm ∗ φ̃)

〉
ΓT

+
[〈
v, ∂mt (Bm ∗ φ̃)

〉
Γ

]T
0

= −
〈
∂tv, ∂

m
t (Bm ∗ φ̃)

〉
ΓT

= · · · = (−1)m+1
〈
∂m+1
t v,Bm ∗ φ̃

〉
ΓT
.

The term on the right hand side is well defined for smooth v and for only (square)
integrable φ̃ (in time).
In conclusion, we multiply the system (3.1) with suitable testfunctions, apply the

above manipulations to the respective terms and end up with the definition of a weak
solution.

Definition 3.3. The functions (m,E,H, ϕ̃, ψ̃) are a weak solution of the MLLG equation
if:

• m ∈ H1(ΩT ) with |m| = 1 almost everywhere in ΩT , E,H ∈ L2(ΩT ) such that
∂−1
t E, ∂−1

t H ∈ H(curl,ΩT ) and ϕ̃, ψ̃ ∈ L2([0, T ],HΓ ).

• For all ρ ∈ C∞(ΩT ), all ζE , ζH ∈ C∞(ΩT ) with ζE(T ) = ζH(T ) = 0 and all
v, w ∈ γT (C∞(ΩT )) ∩Hm+1

∗,0 ([0, T ],HΓ ) we have

[∂tm, ρ]ΩT − α[m× ∂tm, ρ]ΩT = −Ce[∇m×m,∇ρ]ΩT + [H ×m, ρ]ΩT ,
−[εE, ∂tζE ]ΩT − [εE0, ζE(0)]Ω = −[∇× (∂−1

t H), ∂tζE ]ΩT − [σE + J, ζE ]ΩT ,
−[µH, ∂tζH ]ΩT − [µH0, ζH(0)]Ω = [∇× (∂−1

t E), ∂tζH ]ΩT − [µ∂tm, ζH ]ΩT ,

(−1)m+1
〈
∂m+1
t

(
v

w

)
, Bm ∗

(
ϕ̃

ψ̃

)〉
ΓT

= − 1
2µ0

〈(
∂tv

∂tw

)
,

(
2γT (∂−1

t E) + ψ̃

2µ0γT (∂−1
t H)− ϕ̃

)〉
ΓT

.

(3.2)
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• It holds m(0) = m0 in the sense of traces.

Definition 3.4. We say a solution of the MLLG system has bounded energy, if for
almost all t ∈ [0, T ]

‖∇m(t)‖2L2(Ω) +
∫ t

0
‖∂tm(s)‖2L2(Ω) ds+ ‖H(t)‖2L2(Ω) + ‖E(t)‖2L2(Ω) ≤ C,

where C > 0 is independent of t.

Remark 3.5 (Overview of the solutions.). So far, we considered four different definitions
of solutions to the Maxwell–LLG system.
We started with the strong solution on the full space in Definition 2.31, which is the

mathematical rigorous formulation of the MLLG system that arises from the physical
derivation (1.12).
Given sufficient smoothness (and extensibility to the time interval [0,∞)), Theo-

rem 2.35 shows that the full space solution is equivalent to the boundary integral solution
introduced in Definition 2.33.
In Section 3.1.1, we considered in Definition 3.1 a version of the boundary integral

solution that needs lower regularity for its definition. Again, given sufficient regularity,
it is equivalent to the boundary integral solution from Definition 2.33.
Finally, in this section, we introduced a weak solution in Definition 3.3. This is the

solution for which we construct in Section 3.3 converging approximations. To close the
gap between the reduced-regularity solution and the weak solution, we show in Theorem
3.6 in the following that they are equivalent (in some sense).

3.1.3. Equivalence of the solutions
In this section we show equivalence of the solutions from Definition 3.1 and Definition
3.3.

Theorem 3.6. If (m,E,H) is a solution in the sense of Definition 3.1, then

(m,E,H, µ0γT∂
−1
t H,−γT∂−1

t E)

is a solution in the sense of Definition 3.3. If (m,E,H, ϕ̃, ψ̃) is a solution in the sense
of Definition 3.3, then (m,E,H) is a solution in the sense of Definition 3.1.

Proof. Step 1: Let (m,E,H) be a solution in the sense of Definition 3.1. We multiply
the Maxwell part of Definition 3.1 with the respective test functions of Definition 3.3.
Integration by parts in time shows

[ε(E − E0),−∂tξ]ΩT = −[εE, ∂tξ]ΩT − [εE0, ξ(0)]Ω

and yields the equations stated in Definition 3.3.
We introduce the variable ϕ̃ = µ0γT∂

−1
t H for the tangential trace of H as well as

ψ̃ = −γT∂−1
t E for the tangential trace of E. For b = −∂t

(v
w

)
∈ Hm

∗,0([0, T ],H2
Γ ) we

integrate by parts m times in time to obtain with a =
(ϕ̃
ψ̃

)
〈b, ∂mt (Bm ∗ a)〉ΓT = −

〈
∂tb, ∂

m−1
t (Bm ∗ a)

〉
ΓT

+
[〈
b, ∂m−1

t (Bm ∗ a)
〉
Γ

]T
0

= −
〈
∂tb, ∂

m−1
t (Bm ∗ a)

〉
ΓT

= · · · = (−1)m 〈∂mt b, (Bm ∗ a)〉ΓT .

Thus we have a solution in the sense of Definition 3.3.
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Step 2: Now let (m,E,H, ϕ̃, ψ̃) be a solution in the sense of Definition 3.3. The inte-
rior Maxwell parts of the Definition 3.3 and Definition 3.1 are equivalent via integration
by parts in time. We will prove below that the operator

Q(∂t) :=
(

1
2µ0

(
0 −∂−mt

∂−mt 0

)
+Bm∗

)

is almost a projection in the sense

Q(∂t)
(
v

w

)
= 1
µ0
∂−mt

(
−w
v

)
(3.3)

for all v, w ∈ L2([0, T ],HΓ ) such that there exist v′, w′ ∈ L2([0, T ],HΓ ) with

1
µ0

(
−w
v

)
= Q(∂t)

(
v′

w′

)
. (3.4)

Integration by parts in the last equation of Definition 3.3 shows that

(−1)m+1
〈
∂m+1
t

(
v

w

)
, Bm ∗

(
ϕ̃

ψ̃

)〉
ΓT

= (−1)m+1

2µ0

〈(
∂m+1
t v

∂m+1
t w

)
, ∂−mt

(
2γT (∂−1

t E) + ψ̃

2µ0γT (∂−1
t H)− ϕ̃

)〉
ΓT

,

i.e. 1
µ0
∂−mt

( γT ∂
−1
t E

µ0γT ∂
−1
t H

)
is in the range of Q(∂t). Hence (3.3) implies

1
µ0
∂−2m
t

(
γT∂

−1
t E

µ0γT∂
−1
t H

)
= Q(∂t)∂−mt

(
µ0γT∂

−1
t H

−γT∂−1
t E

)

= 1
2µ0

∂−2m
t

(
γT∂

−1
t E

µ0γT∂
−1
t H

)
+Bm ∗ ∂−mt

(
µ0γT∂

−1
t H

−γT∂−1
t E

)
.

This shows Bm ∗
(µ0γT (∂−1

t H)
−γT (∂−1

t E)
)
∈ Hm

0,∗([0, T ],HΓ ) and further differentiation in time leads
to the boundary integral equation in Definition 3.1.
It remains to show (3.3). To that end, we use the definition of Q and obtain for v, w ∈
L2([0, T ],HΓ ) and ω := √µ0ε0

Q(∂t)
(
v

w

)
= L−1

(
1

2µ0

(
0 −1
1 0

)
s−m + s−mB(s)

)(
Lv(s)
Lw(s)

)

= L−1
(

1
2µ0

(
0 −1
1 0

)
s−m + s−mµ−1

0

(
(iω)−1V (s) K(s)
−K(s) −iωV (s)

))(
Lv(s)
Lw(s)

)

= L−1 1
µ0sm

(
1
2

(
0 −1
iω 0

)
+
(

0 1
−iω 0

)(
K(s) V (s)
V (s) K(s)

))(
(iω)−1Lv(s)
Lw(s)

)

= 1
µ0

(
0 −1
iω 0

)
L−1 1

sm

(
1
2 −

(
K(s) V (s)
V (s) K(s)

))(
(iω)−1 0

0 1

)(
Lv(s)
Lw(s)

)
.

In [46, Equation (35)] it is shown that

1
2 −

(
K(s) V (s)
V (s) K(s)

)

is a projection. Hence, the above together with the properties of the Laplace transform
from Lemma B.79 and Lemma B.82 show (3.3). This concludes the proof.
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Remark 3.7 (Summary). The difference between Definition 3.1 and Definition 3.3 is
mainly (up to multiplication with test functions and integration by parts in the interior)
in the formulation of the boundary integral equation. There are two main differences.
1) We define the (non-modified) time harmonic Calderon operator (compare Lemma 2.14)

B̂(s) =
(
K(s) V (s)
V (s) K(s)

)
.

Ignoring time integration and the modification of B, the boundary integral equation in
Definition 3.1 corresponds to (see Lemma 2.14 and (THME,a) in Section 2.4.1)

− B̂(s)
(
γT ê

γT ĥ

)
= 1

2

(
γT ê

γT ĥ

)
, (3.5)

i.e. γT ê, γT ĥ are suitable exterior data. The boundary integral equation in Definition
3.3 corresponds to (1

2 − B̂(s)
)(

ψ̂

φ̂

)
=
(
γT ê

γT ĥ

)
, (3.6)

i.e. γT ê, γT ĥ is in the image of 1
2 −B(s). By Lemma 2.14, we have that P := 1

2 −B(s)
is a projection, and applying it to (3.6) gives

P

(
γT ê

γT ĥ

)
= P 2

(
ψ̂

φ̂

)
= P

(
ψ̂

φ̂

)
=
(
γT ê

γT ĥ

)
.

Thus γT ê, γT ĥ are suitable exterior data. It needs a careful analysis of the Laplace
differential operators on [0, T ] (like it is presented in Section B.2.3), to show that these
arguments can be applied in a similar way to the respective time differential operators.
2) Concerning the time integration, the boundary integral equation from Definition 3.3

is given in weak form, i.e. in the term 〈∂m+1
t w,Bm ∗ φ̃〉ΓT , all derivatives in time are

with respect to the smooth test function, such that φ̃ ∈ L2([0, T ],HΓ ) suffices. Under
consideration of the right hand side of that equation, we obtain for f ∈ L2([0, T ],HΓ )

Bm ∗ φ̃ = ∂−mt f.

Thus we can conclude, that Bm ∗ φ̃ ∈ Hm
0,∗([0, T ],HΓ ) and m derivatives in time exist

on both sides. Hence, the weak formulation of the boundary integral equation in Defini-
tion 3.3, inherently includes regularity.

3.1.4. Uniqueness of the solutions
In this section, we consider uniqueness of the interior Maxwell part of the MLLG sys-
tem. Uniqueness of all components only holds under additional regularity assumptions,
compare Remark 3.9.

Theorem 3.8. The interior Maxwell components of a solution in the sense of Defini-
tion 3.3 are unique, i.e. if there is a magnetization m such that (m,E1, H1, ϕ̃1, ψ̃1) and
(m,E2, H2, ϕ̃2, ψ̃2) are both solutions in the sense of Definition 3.3, then it holds

(E1, H1) = (E2, H2).

Proof. Assume, that there exist two solutions in the sense of Definition 3.3 as stated
in the theorem. By Theorem 3.6, we have that (m,E1, H1, µ0γT∂

−1
t H1,−γT∂−1

t E1) and
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(m,E2, H2, µ0γT∂
−1
t H2, −γT∂−1

t E2) are solutions in the sense of Definition 3.3. The
difference U := ∂−1

t (E1 − E2), V := ∂−1
t (H1 −H2) satisfies

(U, V ) ∈ H1(curl,ΩT )×H1(curl,ΩT )

and for all
ζE , ζH ∈ C∞(ΩT ) with ζE(T ) = ζH(T ) = 0

and all
v, w ∈ γT (C∞(ΩT ) ∩Hm+1

∗,0 ([0, T ],HΓ )

it holds (using E1(0) = E2(0) and H1(0) = H2(0))

[ε∂tU, ∂tζE ]ΩT + [µ∂tV, ∂tζH ]ΩT + (−1)m+1
〈(

∂m+1
t v

∂m+1
t w

)
, Bm ∗

(
µ0γTV

−γTU

)〉
ΓT

= [∇× V, ∂tζE ]ΩT − [σU, ∂tζE ]ΩT − [∇× U, ∂tζH ]ΩT −
1

2µ0

〈(
∂tv

∂tw

)
,

(
γTU

µ0γTV

)〉
ΓT

.

(3.7)

Moreover it is U(0) = 0 and V (0) = 0 in L2(Ω) in the sense of traces. By a density/limit
argument, since all quantities are bounded in L2(ΩT ) or L2([0, T ],HΓ ), respectively, we
can weaken the C∞-regularity assumptions for the test functions to “smooth enough”
functions. We are able to test with

∂tζE := (∂t)−mζ̂E , ∂tζH := (∂t)−mζ̂H , ∂tv := (∂t)−mv̂, ∂tw := (∂t)−mŵ,
(3.8)

where
(∂t)−1g(s) :=

∫ T

s
g(r) dr

for
(ζ̂E , ζ̂H , v̂, ŵ) ∈ L2(ΩT )× L2(ΩT )× L2([0, T ],HΓ )× L2([0, T ],HΓ ).

For g ∈ L2([0, T ]) it holds (∂t)−mg ∈ Hm
∗,0([0, T ]) and it holds for f ∈ L2(0, T )

[f, ∂−1
t g](0,T ) =

∫ T

0
f(s)

∫ T

s
g(r) dr ds

=
∫ T

0

∫ r

0
f(s)g(r) ds dr

= [∂−1
t f, g](0,T ).

(3.9)

Using the indicator function

1[0,r](t) =
{

1, t ∈ [0, r]
0, else,

we test (3.7) according to (3.8) with

ζ̂E := 1[0,r]∂
−m
t U, ζ̂H := 1[0,r]∂

−m
t V, v̂ := −µ01[0,r]∂

−m
t γTV, ŵ := 1[0,r]∂

−m
t γTU

for arbitrary 0 ≤ r ≤ T . We obtain for

Ũ := ∂−mt U, Ṽ := ∂−mt V,
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by the use of integration by parts 2.13 (with Ωr = (0, r)× Ω and Γr = [0, r]× Γ )

[ε∂tŨ ,Ũ ]Ωr + [µ∂tṼ , Ṽ ]Ωr +
〈(

µ0γT Ṽ

−γT Ũ

)
, Bm ∗

(
µ0γTV

−γTU

)〉
Γr

= [∇× V, Ũ ]Ωr − [σŨ, Ũ ]Ωr − [∇× Ũ , Ṽ ]Ωr + 1
2µ0

〈(
µ0γT Ṽ

−γT Ũ

)
,

(
γT Ũ

µ0γT Ṽ

)〉
Γr

= −[σŨ, Ũ ]Ωr + [∇× Ṽ , Ũ ]Ωr − [∇× Ũ , Ṽ ]Ωr + 〈γT Ṽ , γT Ũ〉Γr
= −[σŨ, Ũ ]Ωr .

By the positivity of the Calderon operator, (compare Lemma 2.16, i.e. using (2.11),
Lemma 2.12 and considering the limit σ, σ0 → 0 in Lemma B.83) we have〈(

µ0γT Ṽ

−γT Ũ

)
, Bm ∗

(
µ0γTV

−γTU

)〉
Γr

=
〈(

µ0γT Ṽ

−γT Ũ

)
, B(∂t)

(
µ0γT Ṽ

−γT Ũ

)〉
Γr

≥ 0

and therefore

0 ≤ ε

2‖Ũ(r)‖2Ω + µ

2 ‖Ṽ (r)‖2Ω ≤ [ε∂tŨ , Ũ ]Ωr + [µ∂tṼ , Ṽ ]Ωr

+
〈(

µ0γT Ṽ

−γT (Ũ)

)
, Bm ∗

(
µ0γTV

−γTU

)〉
Γr

+ [σŨ, Ũ ]Ωr = 0.

We conclude Ũ = U = Ṽ = V = 0, which gives the desired result.

Remark 3.9. Under the stated regularity assumptions, uniqueness in the magnetization
m is unclear and not expected in the literature. Assuming more regularity for the magne-
tization (see, e.g. [4, Lemma 4.2]), one can show uniqueness of (m,E,H) (see Lemma
5.16 for similar arguments for the MLLG system).
The uniqueness with respect to ϕ̃, ψ̃ is not true, as we ask that the projection on suitable

exterior data applied to ϕ̃, ψ̃ gives γT∂−1
t H, γT∂

−1
t E. The projection on suitable exterior

data is not injective, so the variables ϕ̃, ψ̃ are only unique up to a difference of elements
in the kernel of the projection, so by suitable interior data (cf. Lemma 2.14 and [46,
Theorem 8]).
However, with any solution (m,E,H, ϕ̃, ψ̃) in the sense of Definition 3.3, we have that
also the functions (m,E,H, µ0γT∂

−1
t H,−γT∂−1

t E) form a solution. Hence, in this sense,
the last four components are unique.

3.2. Approximation
In this section, we illustrate the approximation scheme for the MLLG system. After
giving some basic definitions concerning space and time discretization in Section 3.2.1, we
present the tangent plane scheme used for the LLG part, the implicit Euler discretization
for the interior Maxwell part and the Convolution Quadrature for the boundary integral
equation. We conclude with the coupled algorithm in Section 3.2.7.

3.2.1. Preliminaries
In this section we present the basic definitions and spaces for the approximation.
For the time discretization we use a constant time step size τ := T/N for N ∈ N to

approximate the solution on the time points 0 = t0, . . . , tn = T, tj = τj. We assume
that the step size is small enough, i.e. τ ≤ τ0 for some τ0 > 0.
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For the spatial discretization (cf. [25]), let Th be a regular triangulation of the polyhe-
dral bounded Lipschitz domain Ω ⊂ R3 into compact tetrahedra. By S1(Th) we denote
the standard P1-FEM space of globally continuous and piecewise affine functions from
Ω to R3

S1(Th) :=
{
φh ∈ C(Ω,R3)

∣∣φh|K ∈ P1(K) for all K ∈ Th
}
.

By Nh we denote the set of nodes of the triangulation Th. As we have |m(t, x)| = 1
almost everywhere, we define the discrete space for the magnetization by

Mh :=
{
φh ∈ S1(Th)

∣∣ |φh(γ)| = 1 for all γ ∈ Nh
}
.

By |m(t, x)| = 1 we get ∂tm(t, x) ·m(t, x) = 0 and therefore we define the ansatz space
for the time derivative of the magnetization

Kmh :=
{
φh ∈ S1(Th)

∣∣mh(γ) · φh(γ) = 0 for all γ ∈ Nh
}

for any mh ∈ Mh. We define the nodal interpolation operator for u ∈ C(Ω) (or u ∈
H3/2+ε(Ω) for ε > 0)

IShu :=
∑
γ∈Nh

u(γ)φγ ,

where φγ for γ ∈ Nh is the elementwise linear hat function with φγ(γ′) = δγ,γ′ for all
γ′ ∈ Nh.
To discretize the Maxwell system in the interior, we use Nédélec’s H(curl,Ω)-conforming
ansatz space (cf. [121]),

Xh :=
{
φh ∈ H(curl,Ω)

∣∣φh|K ∈ P1
skw(K) for all K ∈ Th

}
,

where

P1
skw(K) :=

{
v : K → R3, v(x) = a+Bx

∣∣ a ∈ R3, B ∈ R3×3, BT = −B
}
.

We define the interpolation IXh : C(Ω)→ Xh by∫
e
u(s) · τ(s) ds =

∫
e
(IXh u)(s) · τ(s) ds

for all edges e of the triangulation and corresponding tangential vector τ . Here e(s) is
a normalized path on e and τ(s) := e′(s), |τ(s)| = 1, the normalized tangential vector
on e. The interpolation IXh is well defined, there exists a basis φe of Xh satisfying∫

e
φe
′ · τ(s) ds = δee′

for all edges e, e′ of the triangulation.
For the functions on the boundary, we use the approximation space γT (Xh), which

results in the well known Raviart–Thomas space (cf. e.g. [68, Chapter 3]), together
with the interpolation γT ◦ IXh .

Lemma 3.10. The following approximation properties hold true for sufficiently smooth
functions for a constant C > 0

‖φ− IShφ‖L2(Ω) + h‖∇(φ− IShφ)‖L2(Ω) ≤ Ch2‖φ‖H2(Ω),

‖φ− IXh φ‖L2(Ω) + ‖∇ × (φ− IXh φ)‖L2(Ω) ≤ Ch(‖φ‖H1(Ω) + ‖∇ × φ‖H1(Ω)),
‖γT (φ− IXh φ)‖HΓ ≤ Ch(‖φ‖H1(Ω) + ‖∇ × φ‖H1(Ω)).

For a proof see, e.g. [39, 121] and use that γT : H(curl,Ω)→ HΓ is bounded.
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For a sequence of space-dependent approximations (Gjh)Nj=0, G
j
h : Ω→ R we define in

the following the space and time dependent functions G−τ,h, Gτ,h, G
+
τ,h : [0, T ] × Ω → R.

For t ∈ [tj , tj + 1) and x ∈ Ω we define the interval-wise constant functions

G−τ,h(t, x) := (Gjh)−τ,h(t, x) := Gjh(x), G+
τ,h(t, x) := (Gjh)+

τ,h(t, x) := Gj+1
h (x) (3.10)

and the interval-wise linear function

Gτ,h(t, x) := (Gjh)τ,h(t, x) := tj+1 − t
τ

Gjh(x) + t− tj
τ

Gj+1
h (x).

We use similar notations also for functions that are not necessarily approximations in
space or time, i.e. for J : ΩT → R the interval wise constant and interval wise linear
functions J−τ , Jτ , J+

τ : [0, T ]×Ω→ R are defined with respect to the sequence (J(tj))Nj=0.
Furthermore these notations are used for sequences (gj)Nj=0 ⊂ R and then g−τ , gτ , g

+
τ :

[0, T ]→ R form the corresponding time depended functions.

3.2.2. Convolution Quadrature
Following [99, Section 2.3] we give a short recap of Convolution Quadrature and introduce
some notation. For more details see [113, 114, 115, 116] and [27].
Convolution Quadrature (CQ) discretizes the convolution B(∂t)w(t) by the discrete

convolution
(B(∂τt )w)(nτ) =

n∑
j=0

Bτ
n−jw(jτ), (3.11)

where the weights Bn are defined as the coefficients of

B
(δ(ζ)
τ

)
=
∞∑
n=0

Bτ
nζ

n. (3.12)

In the present chapter we choose
δ(ζ) = 1− ζ,

which corresponds to the first-order backward difference formula (i.e. the implicit Euler
method).
From [115], it is known that the method is of first order, i.e.

‖(B(∂t)w)(t)− (B(∂τt )w)(t)‖ = O(τ), uniformly in t = nτ ≤ T,
for functions w that are sufficiently smooth including their extension by 0 to negative
values of t. An important property of this discretization is that it preserves the coerciv-
ity of the continuous-time convolution in the time discretization, see Lemma 3.18 and
Lemma 3.21.
Remark 3.11. We use the first order Convolution Quadrature δ(ζ) = 1−ζ. In this case
∂τt ϕ and (∂τt )−1φ can be expressed in a simple and clear way. By the Neumann series
formula we have for |ζ| < 1

1
1− ζ =

∞∑
n=0

ζn

and for the first order Convolution Quadrature scheme δ(ζ) = 1 − ζ, we obtain for a
sequence (ϕj)j (

(∂τt )−1ϕ
)

(tn) =
n∑
j=0

τϕj .

Similarly we see that

(∂τt ϕ)(tn) = ϕn − ϕn−1

τ
which allows us to use a consistent notation with regard to the implicit Euler discretisa-
tion (3.15).
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3.2.3. The discrete system
We write the MLLG system in the following form which serves as a starting point for
the discretization. For the LLG equation, we use the alternative form (2.4)

α∂tm+m× ∂tm = Ce∆m+H − (m · (Ce∆m+H))m.

By ∂tm ·m = 0, the terms on the left hand side and the right hand side are orthogonal
on m, so it suffices to multiply this equation with a test function ρ that is orthogonal on
m. Therefore the nonlinear term (m · (Ce∆m + H))m on the right hand side vanishes.
We obtain by integration by parts and by using the boundary condition ∂nm = 0 on Γ
for all testfunctions ρ with ρ ·m = 0 that

[α∂tm, ρ]Ω + [m× ∂tm, ρ]Ω = −[Ce∇m,∇ρ]Ω + [H, ρ]Ω. (3.13)

For the Maxwell part, we symmetrize the differential operators by integration by parts
in space. We introduce the variables ϕ,ψ for the traces ϕ := µ0γTH and ψ := −γTE
and obtain

[∇×H, ζE ]Ω = 1
2[∇×H, ζE ]Ω + 1

2[H,∇× ζE ]Ω −
1

2µ0
〈ϕ, γT ζE〉Γ

and
[∇× E, ζH ]Ω = 1

2[∇× E, ζH ]Ω + 1
2[E,∇× ζH ]Ω + 1

2〈ψ, γT ζH〉Γ .

Altogether, we use the system

[α∂tm, ρ]Ω + [m× ∂tm, ρ]Ω = −[Ce∇m,∇ρ]Ω + [H, ρ]Ω,

[ε∂tE, ζE ]Ω = 1
2[∇×H, ζE ]Ω + 1

2[H,∇× ζE ]Ω

− 1
2µ0
〈ϕ, γT ζE〉Γ − [σE + J, ζE ]Ω,

[µ∂tH, ζH ]Ω = −1
2[∇× E, ζH ]Ω −

1
2[E,∇× ζH ]Ω

− 1
2〈ψ, γT ζH〉Γ − [µ∂tm, ζH ]Ω,〈(

vϕ
vψ

)
, B(∂t)

(
ϕ

ψ

)〉
Γ

= 1
2

〈(
vϕ
vψ

)
,

(
µ−1

0 γTE

γTH

)〉
Γ

.

(3.14)

3.2.4. Tangent plane scheme for the LLG discretization
Using the discrete tangent space Kmh , we formulate a discrete version of (3.13): Given
an approximation to the magnetization mj

h ≈ m(tj), we seek an approximation to the
time derivative of the magnetization wjh ≈ ∂tm(tj). We define the function wjh ∈ Kmj

h

such that for all ρh ∈ Kmj
h

α[wjh, ρh]Ω +
[
mj
h × w

j
h, ρh

]
Ω

= −Ce
[
∇(mj

h + θτwjh),∇ρh
]

Ω
+
[
Hj
h, ρh

]
Ω
.

The parameter θ ∈ [0, 1] determines how “implicit” the term [∇m,∇ρ]Ω is treated. For
θ ≥ 1/2 we obtain bounded approximations, see Lemma 3.20. For θ < 1/2 one needs to
add an additional CFL condition, compare [63]. The approximation mj+1

h on the next
time step is then computed via

mj+1
h ≈ m(tj+1) ≈ m(tj) + τ∂tm(tj) ≈ mj

h + τwjh.
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To comply with |m| = 1 at least in a node wise sense, we add a normalization and define
mj+1
h by

mj+1
h (z) := mj

h(z) + τwjh(z)
|mj

h(z) + τwjh(z)|
for all nodes z ∈ Nh.

The normalization step is unconditionally well defined, since by the node wise orthogo-
nality it holds |mj

h(z) + τwjh(z)|2 = |mj
h(z)|2 + τ2|wjh(z)|2 ≥ 1 for all nodes z ∈ Nh. The

normalization step is not necessary for the convergence and could also be skipped, see
Remark 3.15.
This scheme is called tangent plane scheme due to the orthogonality condition in the

test space and was first proposed by Alouges, cf. [14].

3.2.5. Implicit Euler method for the interior Maxwell discretization
For the interior Maxwell part, we replace the continuous equations in (3.14) by finite
counterparts using the approximation spaces from Section 3.2.3. For the time discretiza-
tion, we use the finite difference

∂tG(tj+1) ≈ ∂τt Gj+1 := Gj+1 −Gj

τ
(3.15)

for G ∈ {E,H}. This is endowed with an implicit treatment of the terms on the right
hand side, i.e. we seek Ej+1

h , Hj+1
h ∈ Xh such that for all ζEh , ζHh ∈ Xh

[ε∂τt E
j+1
h , ζEh ]Ω = 1

2[∇×Hj+1
h , ζEh ]Ω + 1

2[Hj+1
h ,∇× ζEh ]Ω

− 1
2µ0
〈ϕj+1

h , γT ζ
E
h 〉Γ − [σEj+1

h + J j+1, ζEh ]Ω,

[µ∂τt H
j+1
h , ζHh ]Ω = −1

2[∇× Ej+1
h , ζHh ]Ω −

1
2[Ej+1

h ,∇× ζHh ]Ω

− 1
2〈ψ

j+1
h , γT ζ

H
h 〉Γ − [µwjh, ζ

H
h ]Ω.

This scheme results in an implicit coupling of the interior Maxwell equations to the
boundary integral equation via the terms 〈ϕj+1

h , γT ζ
E
h 〉Γ and 〈ψj+1

h , γT ζ
H
h 〉Γ (see also

boundary discretization below). The coupling with the LLG equation via the term
[µwjh, ζHh ]Ω is of explicit manner, and therefore the computations can be performed in-
dependently of each other in every time step.

3.2.6. Convolution Quadrature for the boundary discretization
For the equation on the boundary, we use a Galerkin ansatz as above and replace the
continuous equations in (3.14) by finite counterparts using the approximation spaces
from Section 3.2.3. For the Calderon term B(∂t), we use Convolution Quadrature (see
Section 3.2.2)〈(

vϕ

vψ

)
,

(
B(∂t)

(
ϕ

ψ

))
(tj+1)

〉
Γ

≈
〈(

vϕh
vψh

)
,

(
B(∂τt )

(
ϕh
ψh

))
(tj+1)

〉
Γ

together with an implicit treatment of the right hand side. Altogether we obtain: Com-
pute ϕj+1

h , ψj+1
h ∈ γT (Xh) such that for all vϕh , v

ψ
h ∈ γT (Xh)〈(

vϕh
vψh

)
,

(
B(∂τt )

(
ϕh
ψh

))
(tj+1)

〉
Γ

= 1
2
(
〈vϕh , µ

−1
0 γTE

j+1
h 〉Γ + 〈vψh , γTH

j+1
h 〉Γ

)
.

This scheme concludes the implicit coupling of the boundary integral equation to the
interior Maxwell equations via the terms 〈vϕh , µ

−1
0 γTE

j+1
h 〉Γ and 〈vψh , γTH

j+1
h 〉Γ .
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3.2.7. Algorithm
We approximate the solution of the MLLG system by the following algorithm:

Algorithm 3.12. Input: Discretized initial data m0
h, H

0
h, E0

h, ϕ0
h = 0, ψ0

h = 0 and the
parameter θ ∈ [0, 1].
For j = 0, 1, 2, . . . , N − 1 we compute

• For given mj
h, H

j
h we compute the unique solution wjh ∈ Kmj

h
such that we have

for all ρh ∈ Kmj
h

α[wjh, ρh]Ω +
[
mj
h × w

j
h, ρh

]
Ω

= −Ce
[
∇(mj

h + θτwjh),∇ρh
]

Ω
+
[
Hj
h, ρh

]
Ω
. (3.16)

• We compute Ej+1
h , Hj+1

h ∈ Xh and ϕj+1
h , ψj+1

h ∈ γT (Xh) such that we have for all
ζEh , ζ

H
h ∈ Xh and vϕh , v

ψ
h ∈ γT (Xh)

[ε∂τt E
j+1
h , ζEh ]Ω = 1

2[∇×Hj+1
h , ζEh ]Ω + 1

2[Hj+1
h ,∇× ζEh ]Ω

− 1
2µ0
〈ϕj+1

h , γT ζ
E
h 〉Γ − [σEj+1

h + J j+1, ζEh ]Ω,

(3.17)

[µ∂τt H
j+1
h , ζHh ]Ω = −1

2[∇× Ej+1
h , ζHh ]Ω −

1
2[Ej+1

h ,∇× ζHh ]Ω

− 1
2〈ψ

j+1
h , γT ζ

H
h 〉Γ − [µwjh, ζ

H
h ]Ω,

(3.18)〈(
vϕh
vψh

)
,

(
B(∂τt )

(
ϕh
ψh

))
(tj+1)

〉
Γ

= 1
2
(
〈vϕh , µ

−1
0 γTE

j+1
h 〉Γ + 〈vψh , γTH

j+1
h 〉Γ

)
.

(3.19)

• Define mj+1
h by

mj+1
h (z) := mj

h(z) + τwjh(z)
|mj

h(z) + τwjh(z)|
for all nodes z ∈ Nh. (3.20)

Output: Sequence of approximations mj
h, E

j
h, H

j
h, ϕ

j
h, ψ

j
h for j = 0, 1, 2, . . . , N .

Lemma 3.13. Algorithm 3.12 is well defined in the sense, that for every j ≥ 0, there
exist unique approximations mj+1

h , Ej+1
h , Hj+1

h , ϕj+1
h , ψj+1

h that satisfy (3.16)–(3.19).

Proof. The proof that the tangent plane scheme is well defined can be conducted as in
[14] or [25]: We define the bilinear form aj(·, ·) on K

mj
h
by

a(Φ, φ) := α[Φ, φ]Ω +
[
mj
h × Φ, φ

]
Ω

+ Ceθτ [∇Φ,∇φ]Ω (3.21)

and the linear functional Lj(·) on K
mj
h
by

Lj(φ) := −Ce
[
∇mj

h,∇φ
]

Ω
+
[
Hj
h, φ

]
Ω
. (3.22)

The equation (3.16) is equivalent to

a(wjh, φh) = Lj(φh)



3. Weak Convergence for the MLLG System 55

for all φh ∈ Kmj
h
. Furthermore it is

a(φ, φ) = α[φ, φ]Ω +
[
mj
h × φ, φ

]
Ω

+ Ceθτ [∇φ,∇φ]Ω
= α‖φ‖2Ω + Ceθτ‖∇φ‖2Ω

positive definite and therefore a unique solution wjh to (3.16) exists for all j ≥ 0.
For the Maxwell part, we define the bilinear form a(·, ·) on Xh×Xh×γT (Xh)×γT (Xh)

by

a((Φ,Ψ,Θ,Υ), (φ, ψ, θ, υ))

:= 1
τ

[εΦ, φ]Ω + 1
τ

[µΨ, ψ]Ω +
〈(

θ

υ

)
, Bτ

0

(
Θ
Υ

)〉
Γ

+ [σΦ, φ]Ω

− 1
2[Ψ,∇× φ]Ω −

1
2[∇×Ψ, φ]Ω + 1

2[Φ,∇× ψ]Ω + 1
2[∇× Φ, ψ]Ω

+ 1
2〈Υ, γTψ〉Γ + 1

2µ0
〈Θ, γTφ〉Γ −

1
2〈θ, µ

−1
0 γTΦ〉Γ −

1
2〈υ, γTΨ〉Γ

and the linear functional Lj(·) on Xh ×Xh × γT (Xh)× γT (Xh) by

Lj(φ, ψ, θ, υ) := 1
τ

[εEjh, φ]Ω + 1
τ

[µHj
h, ψ]Ω − [J j+1, φ]Ω − µ[wih, φ]Ω

−
〈(

θ

υ

)
,
j∑
l=0

Bτ
j+1−l

(
ϕlh
ψlh

)〉
Γ

.

The equations (3.17)–(3.19) are equivalent to

a((Ej+1
h , Hj+1

h , ϕj+1
h , φj+1

h ), (φ, ψ, θ, υ)) = Lj(φ, ψ, θ, υ)

for all (φ, ψ, θ, υ) ∈ Xh×Xh× γT (Xh)× γT (Xh). Next, we aim to show that the bilinear
form a(·, ·) is positive definite on Xh × Xh × γT (Xh) × γT (Xh). We have Bτ

0 = B(τ−1)
and by Lemma 2.12 for all ζ ∈ HΓ ×HΓ and s > 0

〈ζ,B(s)ζ〉Γ ≥ C(s, µ0, ε0)‖ζ‖2HΓ .

Therefore

a((Φ,Ψ,Θ,Υ), (Φ,Ψ,Θ,Υ))

= 1
τ

[εΦ,Φ]Ω + 1
τ

[µΨ,Ψ]Ω +
〈(

Θ
Υ

)
, Bτ

0

(
Θ
Υ

)〉
Γ

+ [σΦ,Φ]Ω

≥ C(τ, µ, ε)(‖Φ‖2Ω + ‖Ψ‖2Ω + ‖Θ‖2HΓ + ‖Υ‖2HΓ )

is positive definite which yields the desired result.

3.3. Convergence
In this section, we consider the convergence of the previously introduced algorithm.
The proof is divided into three parts: In Section 3.3.1 we show the boundedness of
the approximations in the respective Hilbert spaces. Therefore, we are able to extract
weakly weakly convergent subsequences in Section 3.3.2 and in Section 3.3.3, we finally
identify the limit functions as weak solutions of the MLLG system.

We collect some assumptions and general formulas, which we will need in the following.
Assumption 3.14.
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• The triangulations Th are uniformly shape regular and satisfy the angle condition∫
Ω
∇ζ(x) · ∇ξ(x) dx ≤ 0

for all linear basis functions ζ, ξ ∈ S1(Th) with ξ 6= ζ (cf. [25, (5.1)-(5.7)]).

• J±τ,h ⇀ J in L2(ΩT ).

• E0
h ⇀ E0 and H0

h ⇀ H0 in L2(Ω).

• m0
h ⇀m0 in H1(Ω).

Remark 3.15. The angle condition ensures, despite the normalization step (3.20) in
Algorithm 3.12,

‖∇mj+1
h ‖Ω ≤ ‖∇(mj

h + τwjh)‖Ω,

cf. [25, Remark 5.1]. The angle condition is fulfilled, if all dihedral angles of the tetra-
hedral mesh are smaller than or equal 90◦. Alternatively, the Algorithm 3.12 could be
formulated without the normalization step (3.20) and therefore the angle condition can
be removed. In this case only a (globally) quasi-uniform family of triangulations is nec-
essary for the convergence, see Remark 7, Lemma 8 and Theorem 9 in [2].

Remark 3.16. The propositions in the following sections hold for symmetric, coercive
and bounded material tensors

ε, µ : Ω→ R3×3

and bounded, non-negative
σ : Ω→ R3×3,

i.e. we have

• Symmetry: For arbitrary ζ, ξ ∈ L2(Ω) it holds

[ζ, µξ]Ω = [µζ, ξ]Ω

and
[ζ, εξ]Ω = [εζ, ξ]Ω.

• Coercivity: There exist constants µ−, ε− > 0 such that for arbitrary ζ ∈ L2(Ω)

µ−‖ζ‖2Ω ≤ [ζ, µζ]Ω

and
ε−‖ζ‖2Ω ≤ [ζ, εζ]Ω

and
0 ≤ [ζ, σζ]Ω.

• Boundedness: There exist constants µ+, ε+, σ+ > 0, such that for arbitrary ξ, ζ ∈
L2(Ω)

[ξ, µζ]Ω ≤ µ+‖ζ‖Ω‖ξ‖Ω
and

[ξ, εζ]Ω ≤ ε+‖ζ‖Ω‖ξ‖Ω
and

[ξ, σζ]Ω ≤ σ+‖ζ‖Ω‖ξ‖Ω.

For the ease of presentation, some of the results in the following sections are formulated
for scalar and constant material parameters ε, µ ∈ R>0 and σ ∈ R≥0.
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First, we recall the positivity of the time-discretized Calderon operator B(∂τt ), which
we will use at a later point.
Lemma 3.17 ([27, Lemma 2.3]). It holds for 0 < ρ < 1, 0 < τ ≤ 1 and sequences
(ϕi)∞i=0 and (ψi)∞i=0 in HΓ (with only finite many nonzero entries)
∞∑
n=0

ρ2n<
〈(

ϕn

ψn

)
, B (∂τt )

(
ϕ

ψ

)
(tn)

〉
Γ

≥ C min
(

1− ρ
τ

,

(1− ρ
τ

)3
) ∞∑
n=0

ρ2n
(
‖(∂τt )−1ϕ(tn)‖2HΓ + ‖(∂τt )−1ψ(tn)‖2HΓ

)
.

The constant C > 0 depends on ε0, µ0 and β > 0 from Lemma 2.12.
Proof. For 0 < ρ < 1 and |ξ| ≤ ρ we have∣∣∣∣ζ(ξ)

τ

∣∣∣∣ ≥ <(ζ(ξ)
τ

)
= <

(1− ξ
τ

)
≥ 1− ρ

τ
> 0.

Therefore we have for ϕ,ψ ∈ HΓ by Lemma 2.12

<
〈(ϕ
ψ

)
, B

(
ζ(ξ)
τ

)(
ϕ

ψ

)〉
Γ

≥ C min
(

1− ρ
τ

,

(1− ρ
τ

)3
)(
‖( ζ(ξ)τ )−1ϕ‖2HΓ + ‖( ζ(ξ)τ )−1ψ‖2HΓ

)
for |ξ| ≤ ρ. Now the assertion follows by the time-discrete operator-valued Herglotz
theorem [99, Lemma 2.1].

3.3.1. Boundedness of the approximations
In this section, we use discrete energy estimates to show the boundedness of the approx-
imations of Algorithm 3.12. We start with the non-negativity of the time discretized
Calderon operator due to Convolution Quadrature properties.
Lemma 3.18. It holds for 0 < τ ≤ 1 and tj ≤ T for arbitrary sequences (ϕi)ji=0 and
(ψi)ji=0 in HΓ

j∑
i=0

〈(
ϕi

ψi

)
,

(
B(∂τt )

(
ϕ

ψ

))
(ti)

〉
Γ

≥ 0.

Proof. The proof follows by letting ρ→ 1 for fixed τ in Lemma 3.17.

Remark 3.19. The following lemma is formulated for space dependent material para-
meters ε, µ, σ : Ω → R3×3. In this way it gets clear, where the conditions from Remark
3.16 come from and how they have to be applied. Similar arguments with scalar material
parameters can be found in the proofs of Lemma 3.22 and Lemma 4.13.
Lemma 3.20. The approximations stay bounded for θ ≥ 1/2, i.e. we have for 0 < τ ≤ τ0
and j ∈ N0 with tj ≤ T that

Ejh := µ−

2 ‖H
j
h‖

2
Ω + ε−

2 ‖E
j
h‖

2
Ω + µ+Ce

2 ‖∇m
j
h‖

2
Ω ≤ C1

and additionally
j∑
i=1
‖H i

h −H i−1
h ‖2Ω +

j∑
i=1
‖Eih − Ei−1

h ‖
2
Ω + τ

j∑
i=1
‖wi−1

h ‖
2
Ω

+
j∑
i=1

τ2(θ − 1/2)‖∇wi−1
h ‖

2
Ω + τ

j∑
i=1

〈(
ϕih
ψih

)
,

(
B(∂τt )

(
ϕh
ψh

))
(ti)

〉
Γ︸ ︷︷ ︸

≥0

≤ C2.
(3.23)
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The constants C1 and C2 depend on T , τ0, α, ε±, µ±, J and E0
h, but are independent of

h and τ .
Proof. We test in Algorithm 3.12 with ζEh = Ej+1

h , ζHh = Hj+1
h , vϕh = ϕj+1

h and vψh = ψj+1
h

and add up (3.17)–(3.19) to obtain

[ε∂τt E
j+1
h , Ej+1

h ]Ω + [µ∂τt H
j+1
h , Hj+1

h ]Ω +
〈(

ϕj+1

ψj+1

)
,

(
B(∂τt )

(
ϕh
ψh

))
(tj+1)

〉
Γ

= −[σEj+1
h + J j+1

h , Ej+1
h ]Ω − [µwjh, H

j+1
h ]Ω.

Thus we have for all i ≥ 1 (rewrite the above equation for i := j + 1)

1
τ

[Eih − Ei−1
h , εEih]Ω + 1

τ
[H i

h −H i−1
h , µH i

h]Ω +
〈(

ϕih
ψih

)
,

(
B(∂τt )

(
ϕh
ψh

))
(ti)

〉
Γ

= −[σEih + J ih, E
i
h]Ω − [µwi−1

h , H i
h]Ω.

(3.24)

To treat the terms [Eih−E
i−1
h , εEih]Ω and [H i

h−H
i−1
h , µH i

h]Ω we repeat Abel’s summation
by parts: For ui ∈ Rn and j ≥ i ≥ 1, there holds by the third binomial formula and
telescoping summation for a symmetric matrix A and u ·A v := uTAv, |u|2A := uTAv

j∑
i=1

(ui − ui−1) ·A ui = 1
2

j∑
i=1
|ui − ui−1|2A + 1

2

j∑
i=1

(ui − ui−1) ·A ui−1

+ 1
2

j∑
i=1

(ui − ui−1) ·A ui

= 1
2

j∑
i=1
|ui − ui−1|2A + 1

2

j∑
i=1
|ui|2A − |ui−1|2A

= 1
2

j∑
i=1
|ui − ui−1|2A + 1

2 |uj |
2
A −

1
2 |u0|2A.

(3.25)

Summing up the equations (3.24) for i = 1, . . . , j, multiplying by τ and applying Abel’s
summation by parts to the respective terms we obtain

µ−

2

‖Hj
h‖

2
Ω −

µ+

µ−
‖H0

h‖2Ω +
j∑
i=1
‖H i

h −H i−1
h ‖2Ω


+ε−

2

‖Ejh‖2Ω − ε+

ε−
‖E0

h‖2Ω +
j∑
i=1
‖Eih − Ei−1

h ‖
2
Ω


+ τ

j∑
i=1

〈(
ϕih
ψih

)
,

(
B(∂τt )

(
ϕh
ψh

))
(ti)

〉
Γ

= −τσ−
j∑
i=1
‖Eih‖2Ω − τ

j∑
i=1

[J ih, Eih]Ω − τ
j∑
i=1

[µwi−1
h , H i

h]Ω.

(3.26)

We test in Algorithm 3.12 with ρ = wjh for j = i− 1 and receive

α[wi−1
h , wi−1

h ]Ω = −Ce[∇(mi−1
h + θτwi−1

h ),∇wi−1
h ]Ω + [H i−1

h , wi−1
h ]Ω.

With the mesh condition (Remark 3.15) we have ‖∇mi
h‖Ω ≤ ‖∇(mi−1

h + τwi−1
h )‖Ω and

therefore get

‖∇mi
h‖2Ω ≤ ‖∇mi−1

h ‖
2
Ω + 2τ [∇mi−1

h ,∇wi−1
h ]Ω + τ2‖∇wi−1

h ‖
2
Ω

= ‖∇mi−1
h ‖

2
Ω + 2τ

Ce
(−α‖wi−1

h ‖
2
Ω + [H i−1

h , wi−1
h ]Ω)− τ2(2θ − 1)‖∇wi−1

h ‖
2
Ω.
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We rewrite this as

µ+Ce
2 ‖∇m

i
h‖2Ω + ατµ+‖wi−1

h ‖
2
Ω + Ceµ

+τ2(θ − 1/2)‖∇wi−1
h ‖

2
Ω

≤ µ+Ce
2 ‖∇m

i−1
h ‖

2
Ω + µ+τ [H i−1

h , wi−1
h ]Ω.

Summing from i = 1, . . . , j yields

µ+Ce
2 ‖∇m

j
h‖

2
Ω + ταµ+

j∑
i=1
‖wi−1

h ‖
2
Ω + Ceµ

+τ2(θ − 1/2)
j∑
i=1
‖∇wi−1

h ‖
2
Ω

≤ µ+Ce
2 ‖∇m

0
h‖2Ω + µ+τ

j∑
i=1

[H i−1
h , wi−1

h ]Ω,

and together with (3.26) finally results in

µ−

2

‖Hj
h‖

2
Ω +

j∑
i=1
‖H i

h−H i−1
h ‖2Ω

+ ε−

2

‖Ejh‖2Ω +
j∑
i=1
‖Eih−Ei−1

h ‖
2
Ω

+ τσ
j∑
i=1
‖Eih‖2Ω

+ µ+Ce
2 ‖∇m

j
h‖

2
Ω + τ

j∑
i=1

µ+α‖wi−1
h ‖

2
Ω +

j∑
i=1

Ceµ
+τ2(θ − 1/2)‖∇wi−1

h ‖
2
Ω

+ τ
j∑
i=1

〈(
ϕih
ψih

)
,

(
B(∂τt )

(
ϕh
ψh

))
(ti)

〉
Γ

≤ µ+

2 ‖H
0
h‖2Ω + ε+

2 ‖E
0
h‖2Ω + µ+Ce

2 ‖∇m
0
h‖2Ω + τ

j∑
i=1

(
−[J ih, Eih]Ω

)

+ µ+τ
j∑
i=1

[H i−1
h , wi−1

h ]Ω − τ
j∑
i=1

[H i
h, µw

i−1
h ]Ω.

We estimate the right hand side with Cauchy–Schwartz for arbitrary δ1, δ2 > 0

τ
j∑
i=1

(
−[J ih, Eih]Ω

)
+ µ+τ

j∑
i=1

[H i−1
h , wi−1

h ]Ω − τ
j∑
i=1

[H i
h, µw

i−1
h ]Ω

≤
j∑
i=1

τ

2δ1
‖J ih‖2Ω +

j∑
i=1

τδ1
2 ‖E

i
h‖2Ω +

j∑
i=1

µ+τ

2δ2
‖H i

h‖2Ω

+
j∑
i=1

µ+τ

2δ2
‖H i−1

h ‖2Ω +
j∑
i=1

µ+τδ2‖wi−1
h ‖

2
Ω.

As the ferromagnetic domain may not be conductive (i.e. σ = 0 is possible), the term∑j
i=1

τδ1
2 ‖E

i
h‖2Ω on the right hand side cannot be absorbed by the respective terms on

the left hand side. Therefore we use
j∑
i=1

τδ1
2 ‖E

i
h‖2Ω ≤

j∑
i=1

τδ1‖Eih − Ei−1
h ‖

2
Ω +

j∑
i=1

τδ1‖Ei−1
h ‖

2
Ω

and similarly
j∑
i=1

τµ+

2δ2
‖H i

h‖2Ω ≤
j∑
i=1

τµ+

δ2
‖H i

h −H i−1
h ‖2Ω +

j∑
i=1

τµ+

δ2
‖H i−1

h ‖2Ω.

We obtain with
Ejh := µ−

2 ‖H
j
h‖

2
Ω + ε−

2 ‖E
j
h‖

2
Ω + µ+Ce

2 ‖∇m
j
h‖

2
Ω
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that

Ejh+
(
µ−

2 −
τµ+

δ2

) j∑
i=1
‖H i

h −H i−1
h ‖2Ω +

(
ε−

2 −τδ1

) j∑
i=1
‖Eih − Ei−1

h ‖
2
Ω + τσ−

j∑
i=1
‖Eih‖2Ω

+ τ
j∑
i=1

µ+(α− δ2)‖wi−1
h ‖

2
Ω +

j∑
i=1

Ceµ
+τ2(θ − 1/2)‖∇wi−1

h ‖
2
Ω

+ τ
j∑
i=1

〈(
ϕih
ψih

)
,

(
B(∂τt )

(
ϕh
ψh

))
(ti)

〉
Γ

≤ max
(
µ+

µ−
,
ε+

ε−

)
E0
h +

j∑
i=1

τ

2δ1
‖J ih‖2Ω +

j∑
i=1

τδ1‖Ei−1
h ‖

2
Ω +

j∑
i=1

3τµ+

2δ2
‖H i−1

h ‖2Ω

≤ max
(
µ+

µ−
,
ε+

ε−

)
E0
h +

j∑
i=1

τ

2δ1
‖J ih‖2Ω +

(
2δ1
ε−

+ 3µ+

µ−δ2

)
τ

j∑
i=1
E i−1
h .

(3.27)

We have to ensure
µ−

2 −
τµ+

δ2
> 0, ε−

2 − τδ1 > 0 and α− δ2 > 0,

which is possible for δ1, δ2 = O(1) and for small enough τ > 0.
Moreover it holds (cf. Lemma 3.18)

j∑
i=1

〈(
ϕih
ψih

)
,

(
B(∂τt )

(
ϕh
ψh

))
(ti)

〉
Γ

≥ 0.

Thus equation (3.27) can be simplified to

E ih ≤ C + cτ
j∑
i=1
E i−1
h

and the discrete Gronwall Lemma (Lemma A.2) gives E ih ≤ C̃ for i ≤ j. Thus we have

2δ1
ε
τ

j∑
i=1
E i−1
h ≤ Ĉ,

which concludes the assertion together with (3.27).

We now look at the boundary functions. In Lemma 3.20 we used
j∑
i=1

〈(
ϕi

ψi

)
,

(
B(∂τt )

(
ϕ

ψ

))
(ti)

〉
Γ

≥ 0.

By the following result, we modify Lemma 3.20 to obtain a statement about the bound-
edness of ϕj , ψj .

Lemma 3.21 ([99, Lemma 5.3]). It holds for 0 < τ ≤ τ0 and tj ≤ T and any sequences
(ϕ(ti))ji=0 and (ψ(ti))ji=0 in HΓ

j∑
i=0

e−2ti/T
〈(

ϕi

ψi

)
,

(
B(∂τt )

(
ϕ

ψ

))
(ti)

〉
Γ

≥

C

 j∑
i=0
‖(∂τt )−1ϕ(ti)‖2HΓ + ‖(∂τt )−1ψ(ti)‖2HΓ

 .
The constant C > 0 depends on T, τ0, ε0, µ0 and β > 0 of Lemma 2.12.
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Proof. The proof proceeds analogously as the one of Lemma 3.18 by setting ρ := e−τ/T <
1 and using 1−e−x

x =
∫ 1

0 e
−xr dr ≥ e−x ≥ e−1 for x ∈ [0, 1], instead of letting ρ → 1 for

fixed τ .

The following lemma provides energy bounds for the quantities on the boundary. It
is a modification of Lemma 3.20 with the missing factors e−ti/T that show up in Lemma
3.21.

Lemma 3.22. For θ > 1/2 and 0 < τ ≤ τ0, j ∈ N0 with tj ≤ T it holds

τ
j∑
i=0

(
‖(∂τt )−1ϕ(ti, ·)‖2HΓ + ‖(∂τt )−1ψ(ti, ·)‖2HΓ

)
≤ C

for a constant C > 0 depending on T, ε, ε0, µ, µ0, β, τ0, α, J and E0
h, but independent of

h and τ .

Proof. The proof works analogously as the one of Lemma 3.20, by inserting the missing
factors e−ti/T . We test in Algorithm 3.12 with ζEh = Ej+1

h , ζHh = Hj+1
h , vϕh = ϕj+1

h and
vψh = ψj+1

h and add up (3.17)–(3.19) to obtain

ε[∂τt E
j+1
h , Ej+1

h ]Ω+µ[∂τt H
j+1
h , Hj+1

h ]Ω +
〈(

ϕj+1
h

ψj+1
h

)
,

(
B(∂τt )

(
ϕh
ψh

))
(tj+1)

〉
Γ

= −[σEj+1
h + J j+1

h , Ej+1
h ]Ω − µ[wjh, H

j+1
h ]Ω.

By rewriting the above equation for i := j + 1, multiplying it by e−2ti/T , and by using
the abbreviations

Ẽih := e−ti/TEih, H̃ i
h := e−ti/TH i

h, w̃ih := e−ti/Twih, and J̃ ih := e−ti/TJ ih,

we have for all i ≥ 1
ε

τ
[Ẽih − e−τ/T Ẽi−1

h , Ẽih]Ω + µ

τ
[H̃ i

h − e−τ/T H̃ i−1
h , H̃ i

h]Ω

+ e−2ti/T
〈(

ϕih
ψih

)
,

(
B(∂τt )

(
ϕh
ψh

))
(ti)

〉
Γ

= −[σẼih + J̃ ih, Ẽ
i
h]Ω − µ[w̃i−1

h , e−τ/T H̃ i
h]Ω.

(3.28)

To treat the terms [Ẽih− e−τ/T Ẽ
i−1
h , Ẽih]Ω and [H̃ i

h− e−τ/T H̃
i−1
h , H̃ i

h]Ω we modify Abel’s
summation by parts. For ui ∈ Rn and j ≥ i ≥ 1, there holds

j∑
i=1

(ui − e−τ/Tui−1) · ui = 1
2

j∑
i=1
|ui − e−τ/Tui−1|2 + 1

2

j∑
i=1

(ui − e−τ/Tui−1) · e−τ/Tui−1

+ 1
2

j∑
i=1

(ui − e−τ/Tui−1) · ui

= 1
2

j∑
i=1
|ui − e−τ/Tui−1|2 + 1

2

j∑
i=1
|ui|2 − e−2τ/T |ui−1|2

≥ 1
2

j∑
i=1
|ui − e−τ/Tui−1|2 + 1

2

j∑
i=1
|ui|2 − |ui−1|2

= 1
2

j∑
i=1
|ui − e−τ/Tui−1|2 + 1

2 |uj |
2 − 1

2 |u0|2.

(3.29)
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This result also stays true if we replace · by ·A and | · | by | · |A, if A is a positive
semi definite and symmetric matrix. Summing up the equations (3.28) for i = 1, . . . , j,
multiplying by τ and applying the modified summation by parts to Ẽih = e−ti/TEih and
H̃ i
h = e−ti/TH i

h we obtain

µ

2

‖H̃j
h‖

2
Ω − ‖H̃0

h‖2Ω +
j∑
i=1
‖H̃ i

h − e−τ/T H̃ i−1
h ‖2Ω


+ ε

2

‖Ẽjh‖2Ω − ‖Ẽ0
h‖2Ω +

j∑
i=1
‖Ẽih − e−τ/T Ẽi−1

h ‖
2
Ω


+ τ

j∑
i=1

e−2ti/T
〈(

ϕih
ψih

)
,

(
B(∂τt )

(
ϕh
ψh

))
(ti)

〉
Γ

+ τσ
j∑
i=1
‖Ẽih‖2Ω

≤ −τ
j∑
i=1

[J̃ ih, Ẽih]Ω − τ
j∑
i=1

µ[w̃i−1
h , e−τ/T H̃ i

h]Ω

≤

τ j∑
i=1
‖J̃ ih‖2Ω

1/2τ j∑
i=1
‖Ẽih‖2Ω

1/2

+

τ j∑
i=1
‖H̃ i

h‖2Ω

1/2τ j∑
i=1
‖µw̃ih‖2Ω

1/2

.

(3.30)

By Assumptions 3.14 and Lemma 3.20, we have

τ
j∑
i=1
‖Ẽih‖2Ω + τ

j∑
i=1
‖H̃ i

h‖2Ω + τ
j∑
i=1
‖J̃ ih‖2Ω + τ

j∑
i=1
‖w̃ih‖2Ω ≤ C.

As all other terms on the left hand side of (3.30) are positive and/or bounded, we have

τ
j∑
i=0

e−2iτ/T
〈(

ϕih
ψih

)
,

(
B(∂τt )

(
ϕh
ψh

))
(ti)

〉
Γ

≤ C.

Therefore, by Lemma 3.21 for some constants c, C > 0

τ
j∑
i=0
‖(∂τt )−1ϕih(ti)‖2HΓ + ‖(∂τt )−1ψh(ti)‖2HΓ

≤ cτ
j∑
i=0

e−2iτ/T
〈(

ϕih
ψih

)
,

(
B(∂τt )

(
ϕh
ψh

))
(ti)

〉
Γ

≤ C,

which yields the assertion.

Remark 3.23 (Alternative proof of Lemma 3.20 and Lemma 3.22). In this remark we
describe an alternative possibility to prove Lemma 3.20 and Lemma 3.22 at once.
In Lemma 3.20 we use Lemma 3.18 for the Calderon term and obtain bounds for the

quantities ‖∇mj
h‖Ω, ‖E

j
h‖Ω, and ‖H

j
h‖Ω (and some further quantities).

In Lemma 3.22 we adapt the proof of Lemma 3.20 by inserting the missing factors
e−ti/T to apply Lemma 3.21 for the Calderon term. For this purpose, we consider the
quantities m̃i

h := e−ti/Tmi
h, Ẽih := e−ti/TEih, H̃ i

h := e−ti/TH i
h. Due to Lemma 3.20 and

the estimate e−1 ≤ e−ti/T ≤ 1, these quantities are bounded and the proof of Lemma
3.22 can be concluded.
The alternative idea of proving Lemma 3.22 and Lemma 3.20 at once follows the

following lines: Instead of showing Lemma 3.20, we could also adapt the proof of Lemma
3.20 from the beginning to the end for the modified quantities and obtain the bounds

µ0
2 ‖H̃

j‖2Ω + ε0
2 ‖Ẽ

j‖2Ω + µ0
Ce
2 ‖∇m̃

j‖2Ω ≤ C
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and
j∑
i=1
‖H̃ i − e−τ/T H̃ i−1‖2Ω +

j∑
i=1
‖Ẽi − e−τ/T Ẽi−1‖2Ω + τσ

j∑
i=1
‖Ẽi‖2Ω + τ

j∑
i=1
‖w̃i−1‖2Ω

+
j∑
i=1

τ2(θ − 1/2)‖∇w̃i−1‖2Ω + τ
j∑
i=1

e−2ti/T
〈(

ϕi

ψi

)
,

(
B(∂τt )

(
ϕ

ψ

))
(ti)

〉
Γ

≤ C

Due to Lemma 3.21 and e−1 ≤ e−ti/T ≤ 1, this yields the assertions of Lemma 3.20 and
Lemma 3.22. We refer to Lemma 4.13, where this alternative way of proof is executed
in the pure Maxwell case.
Remark 3.24. In the following we use an unusual notation which we explain in this
remark. For a sequence (φj)j∈N0, we consider the sum

∑k+1
j=1 φ

j and with the discrete
time integration operator (∂τt )−1 it holds

k+1∑
j=1

φj =
k∑
j=0

φj+1 =
(
(∂τt )−1(φj+1)j∈N0

)
(tk).

If we write the sequence (((∂τt )−1(φj+1)j∈N0)(tk))k∈N0 as a time dependent function like
in (3.10), we use the notation

((∂τt )−1(φj+1)j)±τ instead of (((∂τt )−1(φj+1)j∈N0)(t))±τ .
For φ0 = 0 the above terms simplify to(

(∂τt )−1(φj+1)j∈N0

)
(tk) = ((∂τt )−1φ)(tk+1)

and
((∂τt )−1(φj+1)j)−τ = ((∂τt )−1φ)+

τ .

Let Ph be the L2-orthogonal projection on the closed (finite-dimensional) subspace
Xh, i.e.

PXh : L2(Ω)→ Xh
is linear and it holds for every v ∈ L2(Ω)

[(1− PXh )v, ξh]Ω = 0 for all ξh ∈ Xh.
We now consider boundedness of curlE and curlH. We therefore collect the corre-

sponding terms including the boundary terms on the right hand side of (3.17)–(3.18)
and integrate in time in a discrete way. We define for ξ ∈ L2(ΩT )

fτ,h(ξ) := 1
2[(∇× (∂τt )−1(Hj+1

h )j)−τ,h,P
X
h ξ]ΩT + 1

2[((∂τt )−1(Hj+1
h )j)−τ,h,∇× (PXh ξ)]ΩT

− 1
2µ0

〈
((∂τt )−1(ϕj+1

h )j)−τ,h, γT (PXh ξ)
〉
ΓT
,

gτ,h(ξ) := 1
2[(∇× (∂τt )−1(Ej+1

h )j)−τ,h,P
X
h ξ]ΩT + 1

2[((∂τt )−1(Ej+1
h )j)−τ,h,∇× (PXh ξ)]ΩT

+ 1
2
〈

((∂τt )−1(ψj+1
h )j)−τ,h, γT (PXh ξ)

〉
ΓT
.

Remark 3.25. We will need these identities in the following (see Lemma 3.30): Inte-
gration by parts shows

fτ,h(ξ) = [(∇× (∂τt )−1(Hj+1
h )j)−τ,h,P

X
h ξ]ΩT

− 1
2µ0

〈
((∂τt )−1(ϕj+1

h )j)−τ,h − µ0(γT ((∂τt )−1(Hj+1
h )j))−τ,h, γT (PXh ξ)

〉
ΓT

= [((∂τt )−1(Hj+1
h )j)−τ,k,∇× PXh ξ]ΩT

− 1
2µ0

〈
((∂τt )−1(ϕj+1

h )j)−τ,h + (µ0γT ((∂τt )−1(Hj+1
h )j))−τ,h, γT (PXh ξ)

〉
ΓT
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and

gτ,h(ξ) = [(∇× (∂τt )−1(Ej+1
h )j)−τ,h,P

X
h ξ]ΩT

+ 1
2
〈

((∂τt )−1(ψj+1
h )j)−τ,h + (γT ((∂τt )−1(Ej+1

h )j))−τ,h, γT (PXh ξ)
〉
ΓT

= [((∂τt )−1(Ej+1
h )j)−τ,k,∇× PXh ξ]ΩT

+ 1
2
〈

((∂τt )−1(ψj+1
h )j)−τ,h − (γT ((∂τt )−1(Ej+1

h )j))−τ,h, γT (PXh ξ)
〉
ΓT
.

Lemma 3.26. For ξ ∈ L2(ΩT ) it holds

|fτ,h(ξ)| ≤ C‖ξ‖ΩT

and

|gτ,h(ξ)| ≤ C‖ξ‖ΩT .

The constant C > 0 does not depend on h or τ . Therefore it is fτ,h ∈ L2(ΩT )′ and
we use the L2(ΩT ) representation fτ,h ∈ L2(ΩT ) such that fτ,h(ξ) = [fτ,h, ξ]ΩT for all
ξ ∈ L2(ΩT ). Similarly we identify gτ,h ∈ L2(ΩT ) such that gτ,h(ξ) = [gτ,h, ξ]ΩT for all
ξ ∈ L2(ΩT ). Moreover fτ,h and gτ,h are bounded uniformly with respect to τ and h.

Proof. We test equation (3.17) with ζh ∈ Xh, multiply by τ and sum over j = 0, . . . , k
to obtain

[εEk+1
h , ζh]Ω − [εE0

h, ζh]Ω

= 1
2[(∇× (∂τt )−1(Hj+1

h )j)(tk), ζh]Ω + 1
2[((∂τt )−1(Hj+1

h )j)(tk),∇× ζh]Ω

− 1
2µ0
〈((∂τt )−1(ϕj+1

h )j)(tk), γT ζh〉Γ + [((∂τt )−1(σEj+1 + J j+1)j)(tk), ζh]Ω

For ζh we insert PXh ξ(t), integrate over [tk, tk+1], sum up from k = 0, . . . , N − 1 and
obtain

fτ,h(ξ) = [E+
τ,h − E

0
h, εPXh ξ]ΩT − [((∂τt )−1(σEj+1 + J j+1)j)−τ,h,P

X
h ξ]ΩT .

With Lemma 3.20 and Assumption 3.14 we have

‖Ek+1
h ‖Ω + ‖E0

h‖Ω + ‖(∂τt )−1(σEj+1 + J j+1)j(tk)‖Ω ≤ C

and as PXh is an L2 orthogonal projection and therefore bounded, we have

|fτ,h(ξ)| ≤ C‖PXh ξ‖ΩT ≤ C‖ξ‖ΩT ,

which concludes the first assertion.
The assertion for gτ,h(ξ) follows similarly by using

‖(∂τt )−1wh(tj)‖Ω ≤ C,

which is again a consequence of Lemma 3.20.

We summarize the results of this section in the following lemma.
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Lemma 3.27. There exists a constant C > 0 independent of τ and h such that

‖mτ,h‖H1(ΩT ) + ‖m±τ,h‖L2([0,T ],H1(Ω)) ≤ C,
‖w−τ,h‖ΩT ≤ C,

‖Eτ,h‖ΩT + ‖E±τ,h‖ΩT ≤ C,
‖Hτ,h‖ΩT + ‖H±τ,h‖ΩT ≤ C,

‖((∂τt )−1ϕh)τ,h‖L2([0,T ],HΓ ) + ‖((∂τt )−1ϕh)±τ,h‖L2([0,T ],HΓ ) ≤ C,
‖((∂τt )−1ψh)τ,h‖L2([0,T ],HΓ ) + ‖((∂τt )−1ψh)±τ,h‖L2([0,T ],HΓ ) ≤ C,

‖fτ,h‖ΩT + ‖gτ,h‖ΩT ≤ C.

Proof. Most estimates follow directly from Lemmas 3.20 – 3.26. We only sketch the proof
by showing two short identities, which conclude the bounds. We have for a sequence
(φih)Ni=0

‖φτ,h‖2[0,T ] =
N−1∑
i=0

∫ ti+1

ti

∣∣∣∣ ti+1 − s
τ

φih + s− ti
τ

φi+1
h

∣∣∣∣2 dt

≤ 2
N−1∑
i=0

∫ ti+1

ti

∣∣∣∣ ti+1 − s
τ

∣∣∣∣2 |φih|2 +
∣∣∣∣s− tiτ

∣∣∣∣2 |φi+1
h |

2 dt

≤ 2‖φ+
τ,h‖

2
Ω + 2‖φ−τ,h‖

2
Ω

≤ 4τ
N∑
i=0
|φih|2.

By [72, Lemma 3.3.2] the discrete differential quotient in time of the magnetization is
bounded by the discrete derivative, i.e. it is 1

τ ‖m
j+1
h −mj

h‖Ω ≤ ‖w
j
h‖Ω and therefore

‖∂tmτ,h‖ΩT = ‖(∂τtm
j
h)+
τ,h‖ΩT ≤ ‖w

−
τ,h‖ΩT ≤ C.

3.3.2. Existence of weakly convergent subsequences
Due to the boundedness of the quantities in the respective Hilbert spaces (cf. Lemma
3.27), we are now able to extract weakly convergent subsequences (cf. Lemma 2.5).

Throughout the manuscript we do not (re-)name the sequences when passing to a
subsequence, all convergence properties only hold for subsequences. We write vτ,h

sub
⇀ v

for τ, h→ 0, to denote that for any (τn, hn)→ 0 for n→∞ there exists a subsequence
(nj)j∈N, such that vhnj ⇀ v for j →∞.

Lemma 3.28. There exist functions

(m,H,E, ϕ̃, ψ̃) ∈ H1(ΩT ,S2)× L2(ΩT )× L2(ΩT )× L2([0, T ],HΓ )× L2([0, T ],HΓ )
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such that

mτ,h
sub
⇀ m in H1(ΩT ),

mτ,h,m
±
τ,h

sub
⇀ m in L2([0, T ], H1(Ω)),

mτ,h,m
±
τ,h

sub→ m in L2(ΩT ),

w−τ,h
sub
⇀ ∂tm in L2(ΩT ),

Hτ,h, H
±
τ,h

sub
⇀ H in L2(ΩT ),

Eτ,h, E
±
τ,h

sub
⇀ E in L2(ΩT ),

((∂τt )−1ϕh)τ,h, ((∂τt )−1ϕh)±τ,h
sub
⇀ ϕ̃ in L2([0, T ],HΓ ),

((∂τt )−1ψh)τ,h, ((∂τt )−1ψh)±τ,h
sub
⇀ ψ̃ in L2([0, T ],HΓ ),

where the subsequences are successively constructed, i.e. for arbitrary time step sizes τ →
0 and mesh sizes h → 0 there exist subindices τnl , hnl for which the above convergence
properties are satisfied simultaneously.

Proof. The proof for the LLG part works analogously as in [25, Lemma 5.5, Lemma 5.6]
and we therefore only sketch it: The uniform boundedness in the respective Hilbert
spaces together with Lemma 2.5 gives weakly convergent subsequences. By the Rel-
lich–Kondrachov theorem, the convergence holds strongly in L2(ΩT ). It remains to
show that the limit functions coincide, i.e.

lim
τ,h

sub→0
mτ,h = lim

τ,h
sub→0

m+
τ,h = lim

τ,h
sub→0

m−τ,h

and
lim

τ,h
sub→0

w−τ,h = ∂tm.

For the first assertion, we refer to the arguments that are presented below for the Maxwell
and boundary part. For the second assertion, we set w := lim

τ,h
sub→0

w−τ,h (weakly in
L2(ΩT ) for a subsequence). As in [72, Lemma 3.3.13], one shows the inequality

‖∂tmτ,h − w−τ,h‖L1(ΩT ) ≤ Cτ‖w−τ,h‖
2
L2(ΩT ),

which gives together with the weak semicontinuity of the norm

‖∂tm− w‖L1(ΩT ) ≤ lim inf
t,h

sub→0
‖∂tmτ,h − w−τ,h‖L1(ΩT ) = 0,

i.e. w = ∂tm.
For the Maxwell and the boundary part, by the uniform boundedness of the approxi-

mations in the respective Hilbert spaces (cf. Lemma 3.27) and uniqueness of weak limits,
we have the existence of limit functions and the weak convergence of a (fixed) subse-
quence

(Eτ,h, Hτ,h, ((∂τt )−1ϕh)τ,h, ((∂τt )−1ψh)τ,h) sub
⇀ (E,H, ϕ̃, ψ̃) ∈ L2(ΩT )2 × L2([0, T ],HΓ )2.

It remains to show that (E±τ,h, H
±
τ,h, ((∂τt )−1ϕh)±τ,h, ((∂τt )−1ψh)±τ,h) converge to the same

limit functions. We show exemplarily that E−τ,h converges to the same limit function as
Eτ,h. The proof can then be adapted for E+

τ,h, H
±
τ,h and the functions on the boundary.
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It holds for w ∈ C1
0 (ΩT )

[Eτ,h − E−τ,h, w]ΩT =
N−1∑
j=0

∫ tj+1

tj

[Ejh + t− tj
τ

(
Ej+1
h − Ejh

)
− Ejh, w(t)]Ω dt

=
N−1∑
j=0

∫ tj+1

tj

t− tj
τ

[Ej+1
h − Ejh, w(t)]Ω dt

=
N−1∑
j=0

∫ tj+1

tj

t− tj
τ

[Ej+1
h − Ejh, w(tj)]Ω dt

+
N−1∑
j=0

∫ tj+1

tj

t− tj
τ

[Ej+1
h − Ejh, w(t)− w(tj)]Ω dt.

By w(T ) = w(0) = 0 we see

N−1∑
j=0

∫ tj+1

tj

t− tj
τ

[Ej+1
h − Ejh, w(tj)]Ω dt = τ

2

N−1∑
j=0

[Ej+1
h − Ejh, w(tj)]Ω

= −τ2

N−1∑
j=0

[Ej+1
h , w(tj+1)− w(tj)]Ω.

Therefore we have by the boundedness of E±τ,h

|[Eτ,h − E−τ,h, w]ΩT | ≤
1
2

τ N−1∑
j=0
‖Ej+1

h ‖2Ω

1/2τ N−1∑
j=0
‖w(tj+1)−w(tj)‖2Ω

1/2

+

τ N−1∑
j=0
‖Ejh−E

j+1
h ‖2Ω

1/2τ N−1∑
j=0
‖
∫ tj+1

tj

w(t)−w(tj)
τ

dt‖2Ω

1/2

≤ C‖E±τ,h‖L2(ΩT ) max
j=0,...,N−1

max
t∈[tj ,tj+1]

‖w(t)− w(tj)‖Ω → 0.

As C1
0 (ΩT ) is dense in L2(ΩT ) and E−τ,h is uniformly bounded in L2(ΩT ), it holds E−τ,h

sub
⇀

E.

Lemma 3.29. It holds

((∂τt )−1(Ej+1
h )j)−τ,h

sub
⇀ (∂t)−1E in L2(ΩT )

and
((∂τt )−1(Hj+1

h )j)−τ,h
sub
⇀ (∂t)−1H in L2(ΩT )

for h, τ → 0.

Proof. Due to ‖((∂τt )−1(Ej+1
h )j)−τ,h‖ΩT ≤ C, there exists a function Ẽ ∈ L2(ΩT ) such

that ((∂τt )−1(Ejh)j+1)−τ,h
sub
⇀ Ẽ. For v ∈ C∞(ΩT ) we have

[Ẽ, v]ΩT
sub← [((∂τt )−1(Ej+1

h )j)−τ,h, v]ΩT
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and

[((∂τt )−1(Ej+1
h )j)−τ,h, v]ΩT =

N−1∑
n=0

∫ tn+1

tn
[((∂τt )−1(Ej+1

h )j)(tn), v(t)]Ω dt

=
N−1∑
n=0

τ
n∑
j=0

[
Ej+1
h ,

∫ tn+1

tn
v(t)dt

]
Ω

=
N−1∑
j=0

τ
N−1∑
n=j

[
Ej+1
h ,

∫ tn+1

tn
v(t)dt

]
Ω

= τ
N−1∑
j=0

[
Ej+1
h ,

∫ T

tj

v(t)dt
]

Ω

=
∫ T

0

[
(E)+

τ,h(s),
∫ T

bs/τc∗τ
v(t)dt

]
Ω
ds.

By the weak convergence (E)+
τ,h(s) sub

⇀ E and Fubini’s theorem (as E ∈ L2(ΩT ), it holds
∂−1
t E ∈ L2(ΩT )) we deduce∫ T

0

[
(E)+

τ,h(s),
∫ T

bs/τc∗τ
v(t)dt

]
Ω
ds sub→

∫ T

0

[
E(s),

∫ T

s
v(t)dt

]
Ω

ds

=
∫ T

0

[∫ t

0
E(s)ds, v(t)

]
Ω

dt = [∂−1
t E, v]ΩT .

The fact that C∞(ΩT ) ⊂ L2(ΩT ) is dense concludes the assertion for E. Similar argu-
ments work for H.

Theorem 3.30. There exists a subsequence such that

fτ,h
sub
⇀ (∇× ∂−1

t H) in L2(ΩT ),

gτ,h
sub
⇀ (∇× ∂−1

t E) in L2(ΩT ).

For sufficiently smooth ξ, it holds for ∂tξ+
τ,h := (∂τt IXh ξ)+

τ,h → ∂tξ in H(curl,ΩT ) and

1
2
〈

(γT ((∂τt )−1(Hj+1
h )j))−τ,h, γT (∂tξ+

τ,h)
〉
ΓT

sub→
〈
γT (∂−1

t H), γT (∂tξ)
〉
ΓT

− 1
2µ0
〈ϕ̃, γT (∂tξ)〉ΓT ,

1
2
〈

(γT ((∂τt )−1(Ej+1
h )j))−τ,h, γT (∂tξ+

τ,h)
〉
ΓT

sub→
〈
γT (∂−1

t E), γT (∂tξ)
〉
ΓT

+ 1
2〈ψ̃, γT (∂tξ)〉ΓT .

Proof. As fτ,h is bounded by Lemma 3.26, there exists a weakly convergent subsequence,
such that fτ,h

sub
⇀ f in L2(ΩT ). Now we show that f = ∇ × (∂−1

t H). Let ζ ∈ C∞0 (ΩT )
and particularly γT ζ = 0. It holds IXh ζ → ζ in L2(ΩT ) (cf. Lemma 3.10). Therefore we
have

[fτ,h, IXh ζ]ΩT → [f, ζ]ΩT .
Moreover, we have PXh IXh ζ = IXh ζ and ∇ × IXh ζ → ∇ × ζ in L2(ΩT ) (cf. Lemma 3.10),
γT IXh ζ = 0 (cf. [121, Lemma 5.35]) and ((∂τt )−1(Hj+1

h )j)−τ,h
sub
⇀ ∂−1

t H (see Lemma 3.29).
This implies

[fτ,h, IXh ζ]ΩT = [((∂τt )−1(Hj+1
h )j)−τ,h,∇× IXh ζ]ΩT

sub→ [∂−1
t H,∇× ζ]ΩT ,
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which concludes f = ∇× (∂−1
t H).

Now let ξ be sufficiently smooth. We have ((∂τt )−1(ϕj+1
h )j)−τ,h

sub
⇀ ϕ̃ in L2([0, T ],HΓ ) (cf.

Lemma 3.28) as well as γT IXh ξ → γT ξ in L2([0, T ],HΓ ) (as γT : H(curl,Ω) → HΓ is
continuous) and therefore we obtain with Remark 3.25

1
2[(∇× (∂τt )−1(Hj+1

h )j)−τ,h, I
X
h ξ]ΩT

= [fτ,h, IXh ξ]ΩT −
1
2[((∂τt )−1(Hj+1

h )j)−τ,h,∇× (PXh IXh ξ)]ΩT

+ 1
2µ0

〈
((∂τt )−1(ϕj+1

h )j)−τ,h, γT (PXh IXh ξ)
〉
ΓT

sub→ [∇× ∂−1
t H, ξ]ΩT −

1
2[∂−1

t H,∇× ξ]ΩT + 1
2µ0
〈ϕ̃, γT ξ〉ΓT .

Furthermore we have

−1
2〈(γT ((∂τt )−1(Hj+1

h )j))−τ,h, γT (IXh ξ)〉ΓT

= 1
2[(∇× (∂τt )−1(Hj+1

h )j)−τ,h, I
X
h ξ]ΩT

− 1
2[((∂τt )−1(Hj+1

h )j)−τ,h,∇× IXh ξ]ΩT
sub→ [∇× ∂−1

t H, ξ]ΩT − [∂−1
t H,∇× ξ]ΩT + 1

2µ0
〈ϕ̃, γT ξ〉ΓT

= −
〈
γT (∂−1

t H), γT ξ
〉
ΓT

+ 1
2µ0
〈ϕ̃, γT ξ〉ΓT .

The statement of the theorem now is shown by replacing ξ with ∂τt ξ and using that
(∂τt IXh ξ)+

τ,h → ∂tξ. Similar considerations for gτ,h and (γT ((∂τt )−1(Ej+1
h )j))−τ,j conclude

the assertion.

Remark 3.31. Even for arbitrarily smooth test functions with non-vanishing boundary
values, we are not able to show ϕ̃ = µ0γT (∂−1

t H) and therefore also not

[(∇× (∂τt )−1(Hj+1
h )j)−τ,h, I

X
h ξ]ΩT

sub→ [∇× ∂−1
t H, ξ]ΩT

and not 〈
(γT ((∂τt )−1(Hj+1

h )j))−τ,h, γT (IXh ξ)
〉
ΓT

sub→
〈
γT (∂−1

t H), γT ξ
〉
ΓT
.

But we will see, that we have convergence to a solution in the sense of Definition 3.3,
thus E and H solve the MLLG equations in the interior and their boundary values are
suitable exterior data. The projection of ϕ̃, ψ̃ on suitable exterior data gives µ0γTH, γTE.
The equivalence between the solutions from Theorem 3.8 shows that this is a reasonable
notion of solution.

3.3.3. Convergence towards the exact solution
In this section we show that the accumulation points of the previously constructed
sequences indeed are solutions of the MLLG system.

Theorem 3.32. Let (mτ,h, Eτ,h, Hτ,h, ϕτ,h, ψτ,h) be the approximations obtained by Al-
gorithm 3.12 and assume that θ ∈ (1/2, 1] and the validity of Assumption 3.14. Then
there exists for any (τ, h)→ 0 a subsequence of (mτ,h, Eτ,h, Hτ,h, ϕτ,h, ψτ,h), such that

(mτ,h, Eτ,h, Hτ,h, ((∂τt )−1ϕh)τ,h, ((∂τt )−1ψh)τ,h)
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converges weakly in
H1(ΩT )× L2(ΩT )2 × L2([0, T ],HΓ )2

to a weak solution of the MLLG system in the sense of Definition 3.3.

Proof. We have to show that weak limit functions from Lemma 3.28 are weak solutions
in the sense of Definition 3.3. We choose test functions

ρ ∈ C∞(ΩT ), ζH , ζE ∈ C∞(ΩT )

with ζH(T ) = ζE(T ) = 0 and
v, w ∈ γT (C∞(ΩT ))

with v(T ) = ∂tv(T ) = · · · = ∂mt v(T ) = 0 = w(T ) = · · · = ∂mt w(T ). As discrete test
functions we take

ρh(t, ·) := ISh (m−τ,h × ρ),

ζE,h(t, ·) := IXh ζE(t, ·), ζH,h(t, ·) := IXh ζH(t, ·),

and
vh(t, ·) := γT (IX v̂)(t, ·) and wh(t, ·) := γT (IX ŵ)(t, ·).

Here v̂, ŵ ∈ C∞(ΩT ) with γT v̂ = v and γT ŵ = w. The proof that the limit function m
from Lemma 3.28 satisfies the LLG equation can be found in [25, Proof of Theorem 5.2]
or [14]. We briefly sketch that the approximations converge to a weak solution, that it
holds m(0) = m0 in the sense of traces and that |m| = 1 is fulfilled almost everywhere.
Equation (3.16) of Algorithm 3.12 implies

[αw−τ,h, ρh]ΩT + [m−τ,h × w
−
τ,h, ρh]ΩT = −Ce[∇(m−τ,h + θτv−τ,h),∇ρh]ΩT + [H−τ,h, ρh]ΩT .

Using the approximation properties of the nodal interpolation, the strong L2(ΩT ) con-
vergence of m−τ,h × ρ to m × ρ, the uniform bound ‖

√
kw−τ,h‖2ΩT ≤ C from Lemma 3.20

together with the weak convergence properties from Lemma 3.28, we conclude

[α∂tm+m× ∂tm,m× ρ]ΩT = −Ce[∇m,∇(m× ρ)]ΩT + [H,m× ρ]ΩT .

Now suitable vector identities for the scalar and cross product together with |m = 1
and ∂tm ·m = 0 (this is shown below in an independent way) conclude that we obtain
the LLG equation in Definition 3.3. The equality m(0) = m0 follows from the weak
convergence in H1(ΩT ) and Assumption 3.14. The triangle inequality

‖|m| − 1‖ΩT ≤ ‖|m| − |m−τ,h|‖ΩT + ‖|m−τ,h| − 1‖ΩT

together with
‖|m−τ,h(t)| − 1‖Ω ≤ h max

j=0,...,N
‖∇mj

h‖

gives |m| = 1 and ∂tm ·m = 0 almost everywhere.
We now consider the Maxwell equations in the interior, where we present the argu-

ments only for one of the equations, while the second one can be treated analogously.
For simplicity we write ζ instead of ζH . By testing with ζh(tk) and summing up from
k = 0. . . . , N − 1, Algorithm 3.12 gives

µ[(∂τt H)+
τ,h, ζ

−
τ,h]ΩT = −1

2[∇× E+
τ,h, ζ

−
τ,h]ΩT −

1
2[E+

τ,h,∇× ζ
−
τ,h]ΩT

− 1
2µ〈ψ

+
τ,h, γT ζ

−
τ,h〉ΓT − µ[w−τ,h, ζ

−
τ,h]ΩT .
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We consider each of the terms separately. By discrete integration by parts (see Lemma A.3
in the Appendix) and ζ(T, ·) = 0 we obtain

µ[(∂τt H)+
τ,h, ζ

−
τ,h]ΩT = −µ[H+

τ,h, (∂
τ
t ζ)+

τ,h]ΩT − µ[H0
h, ζh(0)]Ω

sub→ −µ[H, ∂tζ]ΩT − µ[H0, ζ(0)]Ω,

where we used the weak convergence of H0
h ⇀ H0 (cf. Assumption 3.14), H+

τ,h
sub
⇀ H (cf.

Theorem 3.28), ζh(0) → ζ(0) in L2(Ω) and (∂τt ζ)+
τ,h → ∂tζ in L2(ΩT ), as ζ is smooth.

We have by ζ(T ) = 0, discrete integration by parts and Theorem 3.30 that

−1
2[∇× E+

τ,h, ζ
−
τ,h]ΩT −

1
2[E+

τ,h,∇× ζ
−
τ,h]ΩT −

1
2µ0
〈ψ+

τ,h, γT ζ
−
τ,h〉ΓT

= 1
2[(∇× (∂τt )−1(Ej+1

h )j)−τ,h, (∂
τ
t ζh)+

τ,h]ΩT

+ 1
2[((∂τt )−1(Ej+1

h )j)−τ,h,∇× (∂τt ζh)+
τ,h]ΩT

+ 1
2µ0
〈((∂τt )−1(ψj+1

h )j)−τ,h, (γT∂
τ
t ζh)+

τ,h〉ΓT

= gτ,h((∂τt ζh)+
τ,h) sub→ [∇× ∂−1

t E, ∂tζ]ΩT .

The remaining term is a straightforward application of Lemma 3.28

−µ[w−τ,h, ζ
−
τ,h]ΩT

sub→ −µ[w, ζ]ΩT .

This shows (together with similar arguments for the second Maxwell equation) that the
interior equations in (3.2) are satisfied.
For the boundary equation in Definition 3.3, Algorithm 3.12 gives by testing with

τvh(tk+1), τwh(tk+1) and summation from k = 0 to k = N − 1〈(
v+
τ,h

w+
τ,h

)
,

(
B(∂τt )

(
ϕh
ψh

))+

τ,h

〉
ΓT

= 1
2
(
〈v+
τ,h, µ

−1
0 γTE

+
τ,h〉ΓT + 〈w+

τ,h, γTH
+
τ,h〉ΓT

)
.

(3.31)
With discrete integration by parts like above, we see with Theorem 3.30 that

〈v+
τ,h, γTE

+
τ,h〉ΓT

sub→ −〈∂tv, 2γT∂−1
t E + ψ̃〉ΓT

and
〈w+

τ,h, µ0γTH
+
τ,h〉ΓT

sub→ −〈∂tw, 2µ0γT∂
−1
t H − ϕ̃〉ΓT .

We now consider the term on the left hand side of (3.31). The strategy is to apply
the adjoint operator of B(∂τt ) to the test functions via integration by parts. By setting
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vjh := vh(tj), the 〈·, ·〉Γ -adjoint B∗ of B, vjh := vN−jh and by using ψ0
h = ϕ0

h = 0 we have

LHSτh :=
〈(

v+
τ,h

w+
τ,h

)
,

(
B(∂τt )

(
ϕh
ψh

))+

τ,h

〉
ΓT

= τ
N∑
j=1

〈(
vjh
wjh

)
,

(
B(∂τt )

(
ϕh
ψh

))
(tj)

〉
Γ

= τ
N∑
j=1

〈(
vjh
wjh

)
,
j∑

k=0
Bj−k

(
ϕkh
ψkh

)〉
Γ

= τ
N∑
k=0

〈
N∑

j=max(1,k)
B∗j−k

(
vjh
wjh

)
,

(
ϕkh
ψkh

)〉
Γ

= τ
N∑
k=0

〈N−max(1,k)∑
j=0

B∗N−j−k

(
vN−jh

wN−jh

)
,

(
ϕkh
ψkh

)〉
Γ

= τ
N∑
k=0

〈N−max(1,k)∑
j=0

B∗N−j−k

(
vjh
wjh

)
,

(
ϕkh
ψkh

)〉
Γ

= τ
N∑
k=1

〈
B∗(∂τt )

(
v

w

)
(T − tk),

(
ϕkh
ψkh

)〉
Γ

.

Now we integrate by parts and obtain by using vh(T ) = wh(T ) = 0 (and the convention
B∗(∂τt )φ(t) = 0 for t < 0)

LHSτh =
N∑
k=1

〈
B∗(∂τt )

(
vh
wh

)
(T − tk), (∂τt )−1

(
ϕh
ψh

)
(tk)− (∂τt )−1

(
ϕh
ψh

)
(tk−1)

〉
Γ

=
N∑
k=1

〈
B∗(∂τt )

(
vh
wh

)
(T − tk)−B∗(∂τt )

(
vh
wh

)
(T − tk+1), (∂τt )−1

(
ϕh
ψh

)
(tk)

〉
Γ

= τ
N∑
k=1

〈
B∗(∂τt )

(
∂τt vh
∂τt wh

)
(T − tk), (∂τt )−1

(
ϕh
ψh

)
(tk)

〉
Γ

= τ
N∑
k=1

〈
(B∗(∂τt )∂τt )

(
vh
wh

)
(T − tk), (∂τt )−1

(
ϕh
ψh

)
(tk)

〉
Γ

.

Here we additionally used

(B∗(∂τt )∂τt )(φj)(tk) :=
(
B∗(s)s

)
(∂τt )(φj)(tk) = (B∗(∂τt ))(∂τt φj)(tk).

In this situation, we are able to apply the weak convergence result Lemma 3.28 for
the approximations and Convolution Quadrature convergence results of [116] for the
smooth test functions. We apply a operator valued version of the CQ convergence result
[115, Theorem 3.2], as done e.g. in [99] and [27]. Due to ‖B∗(s)s‖L(HΓ ) ≤ Cs3 for
<s ≥ σ > 0 and v(0) = v(T ) = 0, ∂tv(0) = −∂tv(T ) = 0, . . . , ∂mt v(0) = 0 and similarly
w(0) = · · · = ∂mt w(0) = 0 we have

(B∗(∂τt )∂τt )
(
v

w

)
(T − tk)→ (B∗(∂t)∂t)

(
v

w

)
(T − tk)

uniformly in 0 ≤ tk ≤ T , tk = τk, k ≥ 1. By the pointwise convergence and the
boundedness of the first derivative of B∗(∂t)∂t

(v
w

)
(T − ·), dominated convergence

B∗(∂τt )∂τt

(
v

w

)
(T − ·)+ → B∗(∂t)∂t

(
v

w

)
(T − ·) in L2([0, T ],HΓ ).
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Moreover the discrete Herglotz theorem (Theorem A.4) shows

τ
N∑
k=1

∥∥∥∥ (B∗(∂τt )∂τt )
(
vh
wh

)
(T − tk)− (B∗(∂τt )∂τt )

(
v

w

)
(T − tk)

∥∥∥∥2

HΓ

≤ Cτ
N∑
k=1
‖(∂τt )3(vh − v)(T − tk)‖2HΓ + ‖(∂τt )3(wh − w)(T − tk)‖2HΓ → 0

for (τ, h)→ 0. So, we obtain

LHSτh
sub→

〈
(B∗(∂t)∂t)

(
v

w

)
(T − ·),

(
ϕ̃

ψ̃

)〉
ΓT

=: LHS.

Now, in the continuous expression, we reverse the integration by parts and we obtain

LHS =
∫ T

0

〈
L−1(B∗(r)r−m−1)(s) ∗

(
v

w

)
(T − s),

(
ϕ̃(s)
ψ̃(s)

)〉
Γ

ds

=
∫ T

0

〈
∂m+1
x

∫ x

0
L−1(B∗(r)r−m)(s)

(
v

w

)
(x− s) ds

∣∣∣
x=T−t

,

(
ϕ̃

ψ̃

)
(t)
〉
Γ

dt

=
∫ T

0

〈
∂mx

∫ x

0
B∗m(s)∂x

(
v

w

)
(x− s) ds

∣∣∣
x=T−t

,

(
ϕ̃

ψ̃

)
(t)
〉
Γ

dt

= (−1)m+1
∫ T

0

〈∫ T−t

0
B∗m(s)

(
∂m+1
t

(
v

w

))
(T − (T − t− s)) ds,

(
ϕ̃

ψ̃

)
(t)
〉
Γ

dt

= (−1)m+1
∫ T

0

〈∫ T

t
B∗m(s− t)∂m+1

t

(
v

w

)
(s) ds,

(
ϕ̃

ψ̃

)
(t)
〉
Γ

dt

= (−1)m+1
∫ T

0

〈
∂m+1
t

(
v

w

)
(s),

∫ s

0
Bm(s− t)

(
ϕ̃

ψ̃

)
(t) dt

〉
Γ

ds

= (−1)m+1
∫ T

0

〈
∂m+1
t

(
v

w

)
(s),

(
Bm ∗

(
ϕ̃

ψ̃

))
(s)
〉
Γ

ds.

This is exactly the term that shows up in the formulation of our weak solution in Defi-
nition 3.3.

Theorem 3.33. The solutions of Theorem 3.32 have bounded energy in the sense of
Definition 3.4, i.e. for almost all t ∈ [0, T ]

‖∇m(t)‖2L2(Ω) +
∫ t

0
‖∂tm(s)‖2L2(Ω) ds+ ‖H(t)‖2L2(Ω) + ‖E(t)‖2L2(Ω) ≤ C,

where C > 0 is independent of t.

Proof. The proof proceeds analogously as in [25]. From the discrete energy estimates in
Lemma 3.20, we get for any t′ ∈ [0, T ]

‖∇mτ,h(t′)‖2Ω +
∫ t′

0
‖v−τ,h(s)‖2Ω ds+ ‖Eτ,h(t′)‖2Ω + ‖Hτ,h(t′)‖2Ω ≤ C,

where C only depends polynomially on T . Integration in time yields for any measurable
set A ⊂ [0, T ]∫

A
‖∇mτ,h(t′)‖2Ω +

∫
A
‖v−τ,h‖

2
Ωt′ +

∫
A
‖Eτ,h(t′)‖2Ω +

∫
A
‖Hτ,h(t′)‖2Ω ≤

∫
A
C,
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whence weak lower semi-continuity leads to∫
A
‖∇m(t′)‖2Ω +

∫
A
‖∂tm‖2Ωt′ +

∫
A
‖E(t′)‖2Ω +

∫
A
‖H(t′)‖2Ω ≤

∫
A
C.

The desired result now follows from standard measure theory; see, e.g. [60, IV,Theorem
4.4].



4. Weak Convergence for the Pure Maxwell
System

In this chapter we consider the weak convergence for the pure Maxwell system without
the coupling to the LLG equation. In Section 4.1, we recall the strong boundary integral
solution from Chapter 2 (without the LLG part), introduce a suitable weak solution
and show equivalence and uniqueness of these solutions. In comparison to the coupled
setting in Chapter 3, we introduce solutions with higher regularity and uniqueness and
equivalence to the solution from Chapter 2 hold without any restriction. In Section 4.2,
we propose a non-symmetric approximation scheme which seems to have advantageous
properties concerning the boundedness and weak convergence of the approximations.
We exploit this (together with the uniqueness of the pure Maxwell solution) in Section
4.3, where we show that the sequence of approximations converges weakly towards the
exact solution, and not only subsequences.

4.1. Weak Solutions, Equivalence and Uniqueness
In this section we introduce a strong and a weak solution for the boundary integral
Maxwell system and show equivalence and uniqueness of these solutions.

4.1.1. Definition of a strong solution
For the convenience of the reader, we recall the pure Maxwell system (without the
coupling to the LLG equation) from (2.12), immediately written as coupled boundary
integral system.

Find the functions E and H : [0, T ] × Ω → R3 which satisfy the following coupled
system: in the interior domain

ε∂tE −∇×H = − (J + σE) in ΩT , (4.1a)
µ∂tH +∇× E = 0 in ΩT , (4.1b)

coupled to the boundary integral equation

B(∂t)
(
µ0γTH

−γTE

)
= 1

2

(
µ−1

0 γTE

γTH

)
on [0, T ]× ∂Ω (4.1c)

and with the initial conditions

E(0) = E0, H(0) = H0 in Ω. (4.1d)

As in Section 2.4.2, with fixed m ∈ N, m > 3, this leads to the following definition of
a solution of the boundary integral Maxwell system (4.1).
Definition 4.1. A pair of functions

(E,H) ∈ H(∂t, curl,ΩT )×H(∂t, curl,ΩT )

is called solution of Maxwell’s equations, if and only if

ε∂tE −∇×H + σE = −J in L2(ΩT ),
µ∂tH +∇× E = 0 in L2(ΩT )

75
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as well as Bm ∗
(µ0γTH
−γTE

)
∈ Hm

0,∗([0, T ],HΓ ) with

∂mt

(
Bm ∗

(
µ0γTH

−γTE

))
= 1

2µ0

(
γTE

µ0γTH

)
in L2([0, T ],HΓ ) (4.2)

and H(0) = H0, E(0) = E0 in L2(Ω) in the sense of traces.

Note that this is the same definition of a solution as in Definition 2.33 (just without
the LLG part). In comparison to Definition 3.1 for the LLG-case, we do not have to
weaken the regularity assumptions on the solution (compare Theorem 3.2).
To show existence of and convergence to a solution, we will derive an equivalent weak

form.

4.1.2. Definition of a weak solution
In this section we introduce the definition of a weak solution of the Maxwell system. We
recall the definition of the inner products for suitable functions ϕ,ψ, v, w

〈ϕ,ψ〉ΓT =
∫ T

0
〈ϕ,ψ〉Γ dt

and
[v, w]ΩT =

∫ T

0

∫
Ω
v · w dx dt.

We multiply the system (4.1) with test functions ζE , ζH , v, −γT ζE , integrate over the
respective space time cylinders and apply the following transformations: With ϕ for the
tangential trace of H,

µ0γTH = ϕ,

integration by parts shows

[∇×H, ζ]ΩT = [H,∇× ζ]ΩT − 〈γTH, γT ζ〉ΓT ,
= [H,∇× ζ]ΩT − 〈µ−1

0 ϕ, γT ζ〉ΓT .
(4.3)

For w ∈ Cm([0, T ],H2
Γ ) with w(T ) = ∂tw(T ) = · · · = ∂m−1

t w(T ) = 0, we integrate by
parts m times to obtain

〈w, ∂mt (Bm ∗ v)〉ΓT = −
〈
∂tw, ∂

m−1
t (Bm ∗ v)

〉
ΓT

+
[〈
w, ∂m−1

t (Bm ∗ v)
〉
Γ

]T
0

= −
〈
∂tw, ∂

m−1
t (Bm ∗ v)

〉
ΓT

= · · · = (−1)m 〈∂mt w, (Bm ∗ v)〉ΓT .

(4.4)

Adding up all the resulting equations, we obtain the following system.
Definition 4.2. A triple of functions

(E,H,ϕ) ∈ H(curl,ΩT )×H(curl,ΩT )× L2([0, T ],HΓ )

is called a weak solution of the Maxwell equations if all ζE , ζH ∈ C∞(ΩT ) with γT ζE ∈
Hm
∗,0([0, T ],HΓ ) and all v ∈ γT (C∞(ΩT )) ∩Hm

∗,0([0, T ],HΓ ) satisfy

[ε∂tE, ζE ]ΩT + [µ∂tH, ζH ]ΩT + (−1)m
〈(

∂mt v

−γT (∂mt ζE)

)
, Bm ∗

(
ϕ

−γTE

)〉
ΓT

= [H,∇× ζE ]ΩT −
1

2µ0
〈ϕ, γT ζE〉ΓT − [σE + J, ζE ]ΩT

− [∇× E, ζH ]ΩT + 1
2µ0
〈v, γTE〉ΓT .

Moreover, we require H(0) = H0 and E(0) = E0 in L2(Ω) in the sense of traces.
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4.1.3. Equivalence of the solutions
In this section we show equivalence of the weak solution from Definition 4.2 to the strong
solution from Definition 4.1.

Theorem 4.3. If (E,H) is a solution in the sense of Definition 4.1, then (E,H, µ0γTH)
is a solution in the sense of Definition 4.2.
Conversely, if (E,H,ϕ) is a solution in the sense of Definition 4.2, then (E,H) is a

solution in the sense of Definition 4.1.

Proof. The proof is similar to the proof of Lemma 3.6, with some deviations due to
the different coupling to the boundary integral equation in the definition of the weak
solution. Furthermore the formulations in this section are integrated once in time in
comparison to Section 3.1.1. For the convenience of the reader, we sketch the most
important arguments and refer to Lemma 3.6 for a more detailed version.
Step 1: We multiply the system of Definition 4.1 with the respective test functions

of Definition 4.2 and introduce the variable ϕ = µ0γTH for the tangential trace of H.
Then, integration by parts for the interior as in (4.3), together with the identities (4.4)
for the boundary integral equation, and adding up the equations gives a solution in the
sense of Definition 4.2.
Step 2: Now let (E,H,ϕ) be a solution in the sense of Definition 4.2. We choose

arbitrary v, w ∈ C∞(ΓT ) ∩Hm
∗,0([0, T ],HΓ ) and ζE , ζH ∈ C∞(ΩT ) with −γT ζE = w. By

testing with these functions and integration by parts, we obtain

[ε∂tE, ζE ]ΩT + [µ∂tH, ζH ]ΩT + (−1)m
〈(

∂mt v

∂mt w

)
, Bm ∗

(
ϕ

−γTE

)〉
ΓT

= [∇×H, ζE ]ΩT + 〈γTH,−w〉ΓT + 1
2µ0
〈ϕ,w〉ΓT − [σE + J, ζE ]ΩT

− [∇× E, ζH ]ΩT + 1
2µ0
〈v, γTE〉ΓT .

(4.5)

By the use of cut-off functions, we let ‖ζE‖ΩT , ‖ζH‖ΩT → 0, while −γT ζE = w is fixed,
which gives

(−1)m
〈(∂mt v
∂mt w

)
, Bm ∗

(
ϕ

−γTE

)〉
ΓT

= −〈γTH,w〉ΓT + 1
2µ0
〈ϕ,w〉ΓT + 1

2µ0
〈v, γTE〉ΓT .

(4.6)

By subtracting this equation from (4.5), we obtain

[ε∂tE, ζE ]ΩT + [µ∂tH, ζH ]ΩT
= [∇×H, ζE ]ΩT − [σE + J, ζE ]ΩT − [∇× E, ζH ]ΩT ,

i.e. the Maxwell equations in ΩT are fulfilled (by density of C∞(ΩT ) ⊂ L2(ΩT )). Com-
ing back to (4.6), using integration by parts, the vanishing end conditions of the test
functions, and the density of C∞(ΓT ) ⊂ L2([0, T ],HΓ ), we deduce(

1
2µ0

(
0 −∂−mt

∂−mt 0

)
+Bm∗

)(
ϕ

ψ

)
= 1
µ0
∂−mt

(
γTE

µ0γTH

)
. (4.7)

Employing the fact that the operator

Q(∂t) :=
(

1
2µ0

(
0 −∂−mt

∂−mt 0

)
+Bm∗

)
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is a modification of a projection, as in the proof of Theorem (3.6), we obtain

Bm ∗
(
µ0γTH

−γTE

)
= 1

2µ0
∂−mt

(
γTE

µ0γTH

)
. (4.8)

By γTE,µ0γTH ∈ L2([0, T ],HΓ ) on the right hand side, we have

Bm ∗
(
µ0γTH

−γTE

)
∈ Hm

0,∗([0, T ],HΓ ).

Therefore another m derivatives in time exist on both sides of (4.8) and we obtain a
solution in the sense of Definition 4.1.

Remark 4.4. Theorem 4.3 shows that we have equivalence of the Definitions 4.1 and
4.2, the only difference is that if we have a solution in the sense of Definition 4.2, we are
not yet able to show ϕ = µ0γTH. In the subsequent section, we will show the uniqueness
of the solution of Definition 4.2, thus every weak solution in the sense of Definition 4.2
fulfills

ϕ = µ0γTH

and both solutions coincide and are unique. This is different in the LLG setting due to
the symmetric formulation with two boundary variables in Definition 3.3 and due to the
non-uniqueness of the LLG part.

4.1.4. Uniqueness of the solutions
In this section we show that both solutions of the Maxwell system are unique.

Theorem 4.5. A solution in the sense of Definition 4.2 is unique, i.e. if there exist two
solutions (E1, H1, ϕ1) and (E2, H2, ϕ2) in the sense of Definition 4.2, then it holds

(E1, H1, ϕ1) = (E2, H2, ϕ2).

Proof. Again, the proof shares some similarities with the uniqueness proof for the Max-
well part of the Maxwell–LLG system from Theorem 3.8 and we therefore only sketch
it. Assume, that there exist two solutions in the sense of Definition 4.2. The difference
U := E1 − E2, V := H1 −H2, ψ := ϕ1 − ϕ2 satisfies

(U, V, ψ) ∈ H(curl,ΩT )×H(curl,ΩT )× L2([0, T ],HΓ )

and for all

ζE , ζH ∈ C∞(ΩT ) with γT ζE(T ) = · · · = ∂m−1
t γT ζE(T ) = 0

and all
v ∈ γT (C∞(ΩT )) with v(T ) = ∂tv(T ) = · · · = ∂m−1

t v(T ) = 0

it holds

[ε∂tU, ζE ]ΩT + [µ∂tV, ζH ]ΩT + (−1)m
〈(

∂mt v

−γT (∂mt ζE)

)
, Bm ∗

(
ψ

−γTU

)〉
ΓT

= [U,∇× ζE ]ΩT −
1

2µ0
〈ψ, γT ζE〉ΓT − [σU, ζE ]ΩT − [∇× U, ζH ]ΩT + 1

2µ0
〈v, γTU〉ΓT .

(4.9)
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Moreover it is U(0) = 0 and V (0) = 0 in L2(Ω) in the sense of traces. As in the proof
of Theorem 3.8, we choose special test functions and obtain for for arbitrary 0 ≤ r ≤ T
and

Ũ := ∂−mt U, Ṽ := ∂−mt V, ψ̃ := ∂−mt ψ

that

[ε∂tŨ ,Ũ ]Ωr + [µ∂tṼ , Ṽ ]Ωr +
〈(

ψ̃

−γT (Ũ)

)
, Bm ∗

(
ψ

−γTU

)〉
Γr

+ [σŨ, Ũ ]Ωr = 0.

By the positivity of the time dependent Calderon operator from Lemma 2.16 it holds〈(
ψ̃

−γT (Ũ)

)
, Bm ∗

(
ψ

−γTU

)〉
Γr

=
〈(

ψ̃

−γT (Ũ)

)
, B(∂t)

(
ψ̃

−γT Ũ

)〉
Γr

≥ 0

and therefore

0 ≤ ε0‖Ũ(r)‖2Ω + µ0‖Ṽ (r)‖2Ω ≤ [ε∂tŨ , Ũ ]Ωr + [µ∂tṼ , Ṽ ]Ωr

+
〈(

ψ̃

−γT (Ũ)

)
, Bm ∗

(
ψ

−γTU

)〉
Γr

+ [σŨ, Ũ ]Ωr = 0.

Thus we have Ũ = U = Ṽ = V = 0.
We test (4.9) again with v := (∂t)−me−2t/T∂−mt φ, ζE = ζH = 0 and get by the

positivity of the time dependent Calderon operator from Lemma 2.16

0 =
〈(

e−2t/T∂−mt ψ

0

)
, Bm ∗

(
ψ

0

)〉
ΓT

=
〈(

e−2t/T∂−mt ψ

0

)
, B(∂t)

(
∂−mt ψ

0

)〉
ΓT

≥ c
∫ T

0
‖∂−m−1

t ψ(t, ·)‖2HΓ dt

for a c > 0. Thus ∂−m−1
t ψ = ψ = 0, which gives the desired result.

The following corollary follows immediately from Theorem 4.3 and Theorem 4.5.

Corollary 4.6. For every solution in the sense of Definition 4.2 it holds ϕ = µ0γTH.
The solutions of Definition 4.1 and Definition 4.2 coincide and are unique.

4.2. Approximation
In this section we illustrate the discretisation of the system. We start with a recall of
the continuous equations such that they fit to the discrete system. We introduce the
discrete spaces and time approximation schemes and we conclude with the resulting
algorithm. In comparison to Section 3.2, we use the same time discretization schemes,
but a non-symmetric space discretization which seems to have advantageous properties,
see Remark 4.24.
Separating the equations belonging to the independent test functions ζE , ζH and v in

Definition 4.2, we obtain

[ε∂tE, ζE ]Ω +
〈(

0
−γT ζE

)
, B(∂t)

(
ϕ

−γTE

)〉
Γ

= [H,∇× ζE ]Ω −
1

2µ0
〈ϕ, γT ζE〉Γ

− [σE + J, ζE ]Ω
[µ∂tH, ζH ]Ω = −[∇× E, ζH ]Ω〈(

vϕ
0

)
, B(∂t)

(
ϕ

−γTE

)〉
Γ

= 1
2µ0
〈vϕ, γTE〉Γ .
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This serves as a basis for the following discretization. This approximation with non-
symmetric space differential operators and one boundary variable has advantageous
properties concerning the boundedness and the convergence. We will be able to bound
∇×E in L2(Ω) and every term in the discrete equation will converge to the correspond-
ing continuous counterpart (compare Remark 3.31). In comparison to Chapter 3, the
space discretization differs in using piecewise constant functions for the magnetic field.

4.2.1. Space discretization
For the spatial discretization, let Th be a regular decomposition of the polyhedral
bounded Lipschitz domain Ω ⊂ R3 into compact tetrahedra. To discretize the elec-
tric part of the Maxwell system in the interior, we use, as before, Nédélec’s first order
H(curl,Ω)-conforming ansatz space (cf. e.g. [121]),

Xh :=
{
φh ∈ H(curl,Ω)

∣∣φh|K ∈ P1
skw(K) for all K ∈ Th

}
.

As ansatz space for the magnetic field H, we use the piecewise constant functions

Yh :=
{
φh ∈ L2(Ω)

∣∣φh(x) = φK , for all x ∈ K for a φK ∈ R, for all K ∈ Th
}
.

It holds ∇×Xh ⊂ Yh. We denote the interpolation on Xh by IXh and as interpolation on
Yh we use the L2-orthogonal projection for u ∈ L2(Ω)

IYh u :=
∑
T∈Th

( 1
|T |

∫
T
u(x)dx

)
1T .

For the functions on the boundary, we use the Raviart–Thomas space γT (Xh) and the
projection γT ◦ IXh .
Lemma 4.7. We recall the approximation properties of the interpolations that hold true
for smooth enough functions

‖φ− IYhφ‖L2(Ω) ≤ Ch‖φ‖H1(Ω),

‖φ− IXh φ‖L2(Ω) + ‖∇ × (φ− IXh φ)‖L2(Ω) ≤ Ch(‖φ‖H1(Ω) + ‖∇ × φ‖H1(Ω)),
‖γT (φ− IXh φ)‖HΓ ≤ Ch(‖φ‖H1(Ω) + ‖∇ × φ‖H1(Ω)).

4.2.2. Time discretization
For the time discretization we use a constant time step size τ := T/N for N ∈ N to
approximate the solution on the time points 0 = t0, . . . , tn = T, tj = τj. We assume
that the step size is small enough, i.e. τ ≤ τ0 for some τ0 > 0.

For the interior Maxwell part, we use the first order differential quotient

∂τt G
j+1 := Gj+1 −Gj

τ
(4.10)

for G ∈ {E,H} together with an implicit treatment of the remaining terms (i.e. evalua-
tion at tj+1).
To discretize B(∂t), we use Convolution Quadrature

(B(∂τt )w) ((j + 1)τ) :=
j+1∑
l=0

Bτ
j+1−lw(lτ), (4.11)

where the weights Bn are defined as the coefficients of

B

(
ζ(ξ)
τ

)
=
∞∑
n=0

Bτ
nξ
n. (4.12)

As in Chapter 3, we use the first order Convolution Quadrature δ(ζ) = 1−ζ, cf. Remark
3.11 and Section 3.2.2.



4. Weak Convergence for the Pure Maxwell System 81

4.2.3. Algorithm
We approximate the solution of the Maxwell system by the following algorithm:

Algorithm 4.8. Input: Discretized initial data H0
h, E0

h and ϕ0
h = 0.

For j = 0, 1, 2, . . . , N − 1

• Compute (Ej+1
h , Hj+1

h ) ∈ Xh × Yh and ϕj+1
h ∈ γT (Xh) such that we have for all

(ζEh , ζHh ) ∈ Xh × Yh and vϕh ∈ γT (Xh)

[ε∂τt E
j+1
h , ζEh ]Ω +

〈(
0

−γT ζEh

)
,

(
B(∂τt )

(
ϕh
−γTEh

))
(tj+1)

〉
Γ

= [Hj+1
h ,∇× ζEh ]Ω −

1
2µ0
〈ϕj+1

h , γT ζ
E
h 〉Γ − [σEj+1

h + J j+1, ζEh ]Ω
(4.13)

[µ∂τt H
j+1
h , ζHh ]Ω = −[∇× Ej+1

h , ζHh ]Ω (4.14)
1

2µ0
〈vϕh , γTE

j+1
h 〉Γ =

〈(
vϕh
0

)
,

(
B(∂τt )

(
ϕh
−γTEh

))
(tj+1)

〉
Γ

. (4.15)

Output: Sequence of approximations Ejh, H
j
h, ϕ

j
h.

As before, for a sequence of space-dependent approximations (Gjh)j , Gjh : Ω → R, we
will define the space and time dependent functions G−τ,h, Gτ,h, G

+
τ,h : [0, T ]×Ω→ R, see

(3.10).
In the following lemma, we show that the approximations are well defined, indeed.

Lemma 4.9. Algorithm 4.8 is well defined in the sense that for every j ≥ 0 there exist
unique approximations Ej+1

h , Hj+1
h , ϕj+1

h that satisfy (4.13)–(4.15).

Proof. The proof in the non-symmetric case is similar to the one of the symmetric
approximation from Chapter 3, see Lemma 3.13.
We define the bilinear form a(·, ·) on Xh × Yh × γT (Xh) by

a((Φ,Ψ,Θ), (φ, ψ, θ)) := 1/τ [εΦ, φ]Ω + 1/τ [µΨ, ψ]Ω − [Ψ,∇× φ]Ω + [σΦ, φ]

+
〈(

θ

−γTφ

)
, Bτ

0

(
Θ
−γTΨ

)〉
Γ

+ [∇× Φ, ψ]Ω

+ 1
2µ0
〈Θ, γTφ〉Γ −

1
2µ0
〈θ, γTΦ〉Γ

and the linear functional Lj(·) on Xh × Yh × γT (Xh) by

Lj(φ, ψ, θ) := 1/τ [εEj , φ]Ω + [µ1/τHj , ψ]Ω − [J j+1, φ]Ω

−
〈(

θ

−γTφ

)
,
j∑
l=0

Bτ
j+1−l

(
ϕl

−γTEl

)〉
Γ

.

The equations (4.13)–(4.15) are equivalent to

a((Ej+1
h , Hj+1

h , ϕj+1
h ), (φ, ψ, θ)) = Lj((φ, ψ, θ))

for all (φ, ψ, θ) ∈ Xh × Yh × γT (Xh). Next, we aim to show that the bilinear form a(·, ·)
is positive definite on Xh×Yh× γT (Xh). We have Bτ

0 = B(τ−1) and by Lemma 2.12 for
all ζ ∈ HΓ ×HΓ and s > 0

〈ζ,B(s)ζ〉Γ ≥ C(s, µ0, ε0)‖ζ‖2Γ .
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Therefore

a((Φ,Ψ,Θ), (Φ,Ψ,Θ)) = 1/τ [εΦ,Φ]Ω + 1/τ [µΨ,Ψ]Ω − [Ψ,∇× Φ]Ω + [σΦ,Φ]

+
〈(

Θ
−γTΦ

)
, Bτ

0

(
Θ
−γTΨ

)〉
Γ

+ [∇× Φ,Ψ]Ω

+ 1
2µ0
〈Θ, γTΦ〉Γ −

1
2µ0
〈Θ, γTΦ〉Γ

= 1/τ [εΦ,Φ]Ω + 1/τ [µΨ,Ψ]Ω + [σΦ,Φ]

+
〈(

Θ
−γTΦ

)
, Bτ

0

(
Θ
−γTΨ

)〉
Γ

≥ C(τ, µ, ε)(‖Φ‖2Ω + ‖Ψ‖2Ω + ‖Θ‖2HΓ )

is positive definite which yields the desired result.

4.3. Convergence
In this section we show the convergence of the algorithm. At first we show bounds on the
approximations in Section 4.3.1, secondly we extract weakly convergent subsequences
in Section 4.3.2 and finally we identify the limits as weak solutions of our system in
Section 4.3.3.

4.3.1. Boundedness of the approximations
We require the following natural assumptions:

Assumption 4.10.

• The triangulations Th are uniformly shape regular.

• J±τ,h ⇀ J in L2(ΩT ).

• E0
h ⇀ E0 and H0

h ⇀ H0 in L2(Ω).

Remark 4.11. The results in this section are formulated for scalar material constants
ε, µ ∈ R>0 and σ ∈ R≥0 but hold verbatim for symmetric, coercive and bounded material
tensors

ε, µ : Ω→ R3×3

and bounded, non-negative σ : Ω→ R3×3 (compare Remark 3.16).

For the variables on the boundary, we recall the following lemma (cf. Lemma 3.21).

Lemma 4.12 (cf. [99, Lemma 5.3]). We have for 0 < τ ≤ 1 and tj ≤ T

j∑
i=0

e−2ti/T
〈(

ϕ(ti)
ψ(ti)

)
,

(
B(∂τt )

(
ϕ

ψ

))
(ti)

〉
Γ

≥

C

 j∑
i=0
‖(∂τt ϕ)−1(ti)‖2HΓ + ‖(∂τt ψ)−1(ti)‖2HΓ


for any finite sequences (ϕ(ti))ji=0 and (ψ(ti))ji=0 in HΓ . The constant C > 0 depends
on T , ε0, µ0 and β > 0 from Lemma 2.12.



4. Weak Convergence for the Pure Maxwell System 83

Lemma 4.13. We have for j ∈ N0 and τ > 0 with τ ≤ τ0, tj ≤ T the boundedness of
the discrete energy

Ejh := µ

2 ‖H
j
h‖

2
Ω + ε

2‖E
j
h‖

2
Ω ≤ C1

and
j∑
i=1
‖H i

h −H i−1
h ‖2Ω +

j∑
i=1
‖Eih − Ei−1

h ‖
2
Ω ≤ C2

and for the boundary values

τ
j∑
i=0

(
‖(∂τt )−1ϕh(ti)‖2HΓ + ‖((∂τt )−1γTEh)(ti)‖2HΓ

)
≤ C3.

The constants C1, C2 and C3 depend on T , τ0, ε, ε0, µ, µ0, J and E0
h, but are independent

of h and τ .

Proof. The proof works analogously to the combination of the proofs of Lemma 3.20 and
3.22 (applied to the non-symmetric formulation (4.13)–(4.15)), compare Remark 3.23.
We test in Algorithm 4.8 with ζEh = Ej+1

h , ζHh = Hj+1
h , vϕh = ϕj+1

h and add up the
equations to obtain

[ε∂τt E
j+1
h , Ej+1

h ]Ω + [µ∂τt H
j+1
h , Hj+1

h ]Ω +
〈(

ϕj+1
h

−γTEj+1
h

)
,

(
B(∂τt )

(
ϕh
−γTEh

))
(tj+1)

〉
Γ

= [Hj+1
h ,∇× Ej+1

h ]Ω −
1

2µ0
〈ϕj+1

h , γTE
j+1
h 〉Γ − [σEj+1

h + J j+1, Ej+1
h ]Ω

− [∇× Ej+1
h , Hj+1

h ]Ω + 1
2µ0
〈ϕj+1

h , γTE
j+1
h 〉Γ

= −[σEj+1
h + J j+1, Ej+1

h ]Ω.

Thus we have for all i ≥ 1

ε0
τ

[Eih − Ei−1
h , Eih]Ω+µ0

τ
[H i

h −H i−1
h , H i

h]Ω +
〈(

ϕih
−γTEih

)
,

(
B(∂τt )

(
ϕh
−γTEh

))
(ti)

〉
Γ

= −[σEih + J i, Eih]Ω.
(4.16)

We define
G̃ih := e−ti/TGih

for G ∈ {E,H, J}, multiply the above equation by e−2ti/T and obtain for all i ≥ 1

ε

τ
[Ẽih − e−τ/T Ẽi−1

h , Ẽih]Ω + µ

τ
[H̃ i

h − e−τ/T H̃ i−1
h , H̃ i

h]Ω

+e−2ti/T
〈(

ϕih
−γTEih

)
,

(
B(∂τt )

(
ϕh
−γTEh

))
(ti)

〉
Γ

= −[σẼih + J̃ ih, Ẽ
i
h]Ω.

(4.17)

To treat the terms [Ẽih−e−τ/T Ẽ
i−1
h , Ẽih]Ω and [H̃ i

h−e−τ/T H̃
i−1
h , H̃ i

h]Ω we use the modified
Abel’s summation by parts (3.29): For ui ∈ Rn and j ≥ i ≥ 1, there holds

j∑
i=1

(ui − e−τ/Tui−1) · ui ≥
1
2

j∑
i=1
|ui − e−τ/Tui−1|2 + 1

2 |uj |
2 − 1

2 |u0|2.
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Summing up the equations (4.17) for i = 1, . . . , j, multiplying by τ and applying the
modified summation by parts to Ẽih = e−ti/TEih and H̃ i

h = e−ti/TH i
h, we obtain

µ

2

‖H̃j
h‖

2
Ω − ‖H̃0

h‖2Ω +
j∑
i=1
‖H̃ i

h − e−τ/T H̃ i−1
h ‖2Ω


+ ε

2

‖Ẽjh‖2Ω − ‖Ẽ0
h‖2Ω +

j∑
i=1
‖Ẽih − e−τ/T Ẽi−1

h ‖
2
Ω


+ τ

j∑
i=1

e−2ti/T
〈(

ϕih
−γTEih

)
,

(
B(∂τt )

(
ϕh
−γTEh

))
(ti)

〉
Γ

≤ −τσ
j∑
i=1
‖Ẽih‖2Ω − τ

j∑
i=1

[J̃ ih, Ẽih]Ω.

(4.18)

We estimate with the Cauchy–Schwartz estimate for arbitrary δ1 > 0

−τ
j∑
i=1

[J̃ ih, Ẽih]Ω ≤

τ j∑
i=1
‖J̃ ih‖2Ω

 1
2
τ j∑

i=1
‖Ẽih‖2Ω

 1
2

≤
j∑
i=1

τ

2δ1
‖J̃ ih‖2Ω +

j∑
i=1

τδ1
2 ‖Ẽ

i
h‖2Ω.

To absorb the term ∑j
i=1

τδ1
2 ‖E

i
h‖2Ω on the right hand side, we estimate

j∑
i=1

τδ1
2 ‖Ẽ

i
h‖2Ω ≤

j∑
i=1

τδ1‖Ẽih − e−τ/T Ẽi−1
h ‖

2
Ω +

j∑
i=1

τδ1‖Ẽi−1
h ‖

2
Ω

and obtain for the energy
Ẽjh := µ

2 ‖H̃
j
h‖

2
Ω + ε

2‖Ẽ
j
h‖

2
Ω

that

Ẽjh + µ

2

j∑
i=1
‖H̃ i

h − e−τ/T H̃ i−1
h ‖2Ω +

(
ε

2 − τδ1

) j∑
i=1
‖Ẽih − e−τ/T Ẽi−1

h ‖
2
Ω

+ τσ
j∑
i=1
‖Ẽih‖2Ω + τ

j∑
i=1

e−2ti/T
〈(

ϕih
−γTEih

)
,

(
B(∂τt )

(
ϕh
−γTEh

))
(ti)

〉
Γ

≤ Ẽ0
h +

j∑
i=1

τ

2δ1
‖J ih‖2Ω + 2δ1

ε
τ

j∑
i=1
Ẽ i−1
h .

Note that δ1 <
ε0
2τ0 implies

( ε0
2 − τδ1

)
> 0 for arbitrary τ ≤ τ0. Moreover it holds by

Lemma 4.12
j∑
i=1

e−2ti/T
〈(

ϕih
−γTEih

)
,

(
B(∂τt )

(
ϕh
−γTEh

))
(ti)

〉
Γ

≥ C
j∑
i=1
‖(∂τt )−1ϕh(ti)‖HΓ + ‖(∂τt )−1γTEh(ti)‖HΓ .

With the discrete version of Gronwall’s lemma (see Lemma A.2 in the Appendix), we
have the boundedness of Ẽ ih which, together with the estimates e−1 ≤ e−ti/T ≤ 1,
concludes the assertion.
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The results obtained so far are already enough to show convergence to a weak solution
as in Chapter 3. In the Maxwell case without the coupling to the LLG equation, with a
few additional assumptions on the input data, we are able to show the boundedness of
even more quantities and therefore obtain stronger convergence and regularity results of
the solution. A direct transfer of the following results to the MLLG case is not possible
to our knowledge, as it would require more regularity of the magnetization, i.e. the
boundedness of the second derivative ∂2

tm is missing, compare Remark 4.16 (Actually,
it would need a stronger energy estimate for the LLG equation that gives bounds on
∂2
tm).
We need the following additional assumptions.

Assumption 4.14. We assume the validity of the Assumption 4.10 and additionally

• ‖∂τt J
j
h‖Ω ≤ C for j ≥ 1.

• ‖∇ × E0
h‖Ω ≤ C independently of h, γTE0

h = 0 and H0 ∈ H(curl,Ω), γTH0 = 0
and H0

h := IYhH0.

Remark 4.15. The assumption H0
h := IYhH0 is needed for the bound

[H0
h,∇× ζHh ]Ω ≤ C‖ζHh ‖Ω

for all ζHh ∈ Xh. For H0
h := IYhH0, this follows from ∇ × Xh ⊂ Yh, γTH0 = 0,

H0 ∈ H(curl,Ω) and

[IYhH
0,∇× ζHh ]Ω = [H0,∇× ζHh ]Ω = [∇×H0, ζHh ]Ω.

Alternatively, starting values could be used that satisfy γTH0
h = 0 and ‖∇ × H0

h‖ ≤ C
independently of h. If H0 is smooth enough, this is, e.g., satisfied for Nédélec or higher
order finite elements.

Remark 4.16. If we introduce a right hand side G for the second Maxwell equation,
i.e. we consider

µ∂tH +∇× E = G,

instead of
µ∂tH +∇× E = 0,

then the additional assumption
‖∂τt G

j
h‖Ω ≤ C

for j ≥ 1 is needed.

Lemma 4.17. Under the additional Assumption 4.14, we have for j ∈ N0 and τ > 0
with τ < τ0, tj ≤ T the boundedness

ε

2‖∂
τ
t E

j
h‖

2
Ω + µ

2 ‖∂
τ
t H

j
h‖

2
Ω ≤ C1

and
j∑
i=2
‖∂τt Eih − ∂τt Ei−1

h ‖
2
Ω +

j∑
i=2
‖∂τt H i

h − ∂τt H i−1
h ‖2Ω + τ

j∑
i=2

σ‖Eih‖2Ω ≤ C2.

The constants C1 and C2 depend on T , τ0, ε, ε0, µ, µ0, J , and the bounds from As-
sumption 4.14, but are independent of h and τ .
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Proof. We add up the equations (4.13)–(4.15)

[ε∂τt E
j+1
h , ζEh ]Ω+[µ∂τt H

j+1
h , ζHh ]Ω +

〈(
vϕh
−γT ζEh

)
,

(
B(∂τt )

(
ϕh
−γTEh

))
(tj+1)

〉
Γ

= [Hj+1
h ,∇× ζEh ]Ω − [∇× Ej+1

h , ζHh ]Ω −
1

2µ〈ϕ
j+1
h , γT ζ

E
h 〉Γ

+ 1
2µ〈v

ϕ
h , γTE

j+1
h 〉Γ − [σEj+1

h + J j+1, ζEh ]Ω.

(4.19)

We consider the difference of the equations for j = i− 1 and j = i− 2 for i ≥ 2, divide
by τ and obtain by A(∂τt )B(∂τt ) = AB(∂τt ) (for the CQ boundary term, cf., e.g., [116,
Formula (17)]) the relation

[ε(∂τt )2Eih, ζ
E
h ]Ω+[µ(∂τt )2H i

h, ζ
H
h ]Ω +

〈(
vϕh
−γT ζEh

)
,

(
B(∂τt )

(
∂τt ϕh
−∂τt γTEh

))
(ti)

〉
Γ

= [∂τt H i
h,∇× ζEh ]Ω − [∂τt∇× Eih, ζHh ]Ω −

1
2µ〈∂

τ
t ϕ

i
h, γT ζ

E
h 〉Γ

+ 1
2µ〈v

ϕ
h , ∂

τ
t γTE

i
h〉Γ − [σ∂τt Eih + ∂τt J

i, ζEh ]Ω.

We test with ζEh = ∂τt E
i
h, ζHh = ∂τt H

i
h and vϕh := ∂τt ϕ

i
h and obtain for i ≥ 2

[ε(∂τt )2Eih, ∂
τ
t E

i
h]Ω+[µ(∂τt )2H i

h, ∂
τ
t H

i
h]Ω +

〈(
∂τt ϕ

i
h

−γT∂τt Eih

)
,

(
B(∂τt )

(
∂τt ϕh
−∂τt γTEh

))
(ti)

〉
Γ

= −[σ∂τt Eih + ∂τt J
i, ∂τt E

i
h]Ω.

Summing up from i = 2, . . . , j, multiplying by τ and applying Abel’s summation by
parts (3.25) gives

ε

2

‖∂τt Ejh‖2Ω − ‖∂τt E1
h‖2Ω +

j∑
i=2
‖∂τt Eih − ∂τt Ei−1

h ‖
2
Ω


+ µ

2

‖∂τt Hj
h‖

2
Ω − ‖∂τt H1

h‖2Ω +
j∑
i=2
‖∂τt H i

h − ∂τt H i−1
h ‖2Ω


+ τ

j∑
i=2

〈(
∂τt ϕ

i
h

−γT∂τt Eih

)
,

(
B(∂τt )

(
∂τt ϕh
−∂τt γTEh

))
(ti)

〉
Γ

= τ
j∑
i=2
−[σ∂τt Eih + ∂τt J

i, ∂τt E
i
h]Ω.

(4.20)

With ϕ0
h = γTE

0
h = ∂τt ϕ

0
h = ∂τt γTE

0
h = 0 we have (inserting ∂τt φ(ti) = (φi − φi−1)/τ)

τ
1∑
i=0

〈(
∂τt ϕ

i
h

−γT∂τt Eih

)
,

(
B(∂τt )

(
∂τt ϕh
−∂τt γTEh

))
(ti)

〉
Γ

= 1
τ

〈(
ϕ1
h

−γTE1
h

)
,

(
B(∂τt )

(
ϕh
−γTEh

))
(t1)

〉
Γ
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which we add on (4.20) to obtain

ε

2‖∂
τ
t E

j
h‖

2
Ω + ε

2

j∑
i=2
‖∂τt Eih − ∂τt Ei−1

h ‖
2
Ω + µ

2 ‖∂
τ
t H

j
h‖

2
Ω + µ

2

j∑
i=2
‖∂τt H i

h − ∂τt H i−1
h ‖2Ω

+ τ
j∑
i=2

σ‖Eih‖2Ω + τ
j∑
i=0

〈(
∂τt ϕ

i
h

−γT∂τt Eih

)
,

(
B(∂τt )

(
∂τt ϕh
−∂τt γTEh

))
(ti)

〉
Γ

= ε

2‖∂
τ
t E

1
h‖2Ω + µ

2 ‖∂
τ
t H

1
h‖2Ω − τ

j∑
i=2

[∂τt J i, ∂τt Eih]Ω

+ 1
τ

〈(
ϕ1
h

−γTE1
h

)
,

(
B(∂τt )

(
ϕh
−γTEh

))
(t1)

〉
Γ

.

(4.21)

We estimate with the Cauchy–Schwartz estimate for arbitrary δ1 > 0

τ
j∑
i=2
−[∂τt J i, ∂τt Eih]Ω ≤

τ j∑
i=2
‖∂τt J i‖2Ω

 1
2
τ j∑

i=2
‖∂τt Eih‖2Ω

 1
2

≤ τ

2δ1

j∑
i=2
‖∂τt J i‖2Ω + τδ1

2

j∑
i=2
‖∂τt Eih‖2Ω

≤ τ

2δ1

j∑
i=2
‖∂τt J i‖2Ω + τδ1

j∑
i=2
‖∂τt Eih − ∂τt Ei−1‖2Ω

+ τδ1

j−1∑
i=1
‖∂τt Eih‖2Ω.

(4.22)

We test (4.19) for j = 0 with ζEh = ∂τt E
1
h, ζHh = ∂τt H

1
h, v

ϕ
h = ∂τt ϕ

1
h, use γTE0

h = ϕ0
h = 0

and obtain

[ε∂τt E1
h, ∂

τ
t E

1
h]Ω + [µ∂τt H1

h, ∂
τ
t H

1
h]Ω +

〈(
∂τt ϕ

1
h

−γT∂τt E1
h

)
,

(
B(∂τt )

(
ϕh
−γTEh

))
(t1)

〉
Γ

= [H1
h,∇× ∂τt E1

h]Ω − [∇× E1
h, ∂

τ
t H

1
h]Ω −

1
2µ〈ϕ

1
h, γT∂

τ
t E

1
h〉Γ

+ 1
2µ〈∂

τ
t ϕ

1
h, γTE

1
h〉Γ − [σE1

h + J1, ∂τt E
1
h]Ω

= [H1
h,∇× ∂τt E1

h]Ω − [∇× E1
h, ∂

τ
t H

1
h]Ω − [σE1

h + J1, ∂τt E
1
h]Ω.

(4.23)

By H0
h = IYhH0 (cf. Assumption 4.14) and γTH0 = 0 we have

[H0
h,∇× ∂τt E1

h]Ω = [H0,∇× ∂τt E1
h]Ω

= [∇×H0, ∂τt E
1
h]Ω.
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We use this outcome and estimate for δ2 > 0

[H1
h,∇× ∂τt E1

h]Ω − [∇× E1
h, ∂

τ
t H

1
h]Ω = [∂τt H1

h,∇× (E1
h − E0

h)]Ω + [H0
h,∇× ∂τt E1

h]Ω
− [∇× E1

h, ∂
τ
t H

1
h]Ω

= −[∂τt H1
h,∇× E0

h]Ω + [H0
h,∇× ∂τt E1

h]Ω
= −[∂τt H1

h,∇× E0
h]Ω + [∇×H0, ∂τt E

1
h]Ω

≤ δ2
2
(
‖∂τt E1

h‖2Ω + ‖∂τt H1
h‖2Ω

)
+ 1

2δ2

(
‖∇ × E0

h‖2Ω + ‖∇ ×H0‖2Ω
)
.

(4.24)

Furthermore we estimate for δ3 > 0

−[σE1
h + J1, ∂τt E

1
h]Ω ≤

δ3
2 ‖∂

τ
t E

1
h‖2Ω + 1

2δ3
‖σE1

h + J1‖2Ω,

which we combine with (4.23) and (4.24) to obtain(
ε− δ2 + δ3

2

)
‖∂τt E1

h‖2Ω +
(
µ− δ2

2

)
‖∂τt H1

h‖2Ω

+ 1
τ

〈(
ϕ1
h

−γTE1
h

)
,

(
B(∂τt )

(
ϕh
−γTEh

))
(t1)

〉
Γ

≤ 1
2δ2

(
‖∇ × E0

h‖2Ω + ‖∇ ×H0‖2Ω
)

+ 1
2δ3
‖σE1

h + J1‖2Ω.

We choose δ2 ≤ µ and δ2 + δ3 ≤ ε which gives

ε

2‖∂
τ
t E

1
h‖2Ω+µ

2 ‖∂
τ
t H

1
h‖2Ω + 1

τ

〈(
ϕ1
h

−γTE1
h

)
,

(
B(∂τt )

(
ϕh
−γTEh

))
(t1)

〉
Γ

≤ 1
2δ2

(
‖∇ × E0

h‖2Ω + ‖∇ ×H0‖2Ω
)

+ 1
2δ3
‖σE1

h + J1
h‖2Ω.

(4.25)

We combine (4.21), (4.22) and (4.25) to obtain

ε

2‖∂
τ
t E

j
h‖

2
Ω +

(
ε

2−τδ1

) j∑
i=2
‖∂τt Eih − ∂τt Ei−1

h ‖
2
Ω + µ

2 ‖∂
τ
t H

j
h‖

2
Ω + µ

2

j∑
i=2
‖∂τt H i

h − ∂τt H i−1
h ‖2Ω

+ τ
j∑
i=2

σ‖Eih‖2Ω + τ
j∑
i=0

〈(
∂τt ϕ

i
h

−γT∂τt Eih

)
,

(
B(∂τt )

(
∂τt ϕh
−∂τt γTEh

))
(ti)

〉
Γ

≤ 1
2δ2

(
‖∇ × E0

h‖2Ω + ‖∇ ×H0‖2Ω
)

+ 1
2δ3
‖σE1

h + J1‖2Ω

+ τ

2δ1

j∑
i=2
‖∂τt J i‖2Ω + τδ1

j−1∑
i=1
‖∂τt Eih‖2Ω.

(4.26)

With this outcome, Assumption 4.14, Lemma 4.13 and Lemma 3.18, we have for

δ1 ≤
ε

2τ0

that
ε

2‖∂
τ
t E

j
h‖

2
Ω ≤ C + τδ1

j−1∑
i=1
‖∂τt Eih‖2Ω
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for j ≥ 1 and therefore by the discrete Gronwall Lemma A.2
ε

2‖∂
τ
t E

j
h‖

2
Ω ≤ C.

Together with (4.26), this yields the assertion.

Again, the following lemma provides energy bounds for the quantities on the boundary.

Lemma 4.18 (cf. [99, Lemma 5.3]). We have for 0 < τ ≤ 1 and tj ≤ T

j∑
i=0

e−2ti/T
〈(

∂τt ϕ(ti)
∂τt ψ(ti)

)
,

(
B(∂τt )∂τt

(
ϕ

ψ

))
(ti)

〉
Γ

≥

C

 j∑
i=0
‖ϕ(ti)‖2HΓ + ‖ψ(ti)‖2HΓ


for any finite sequences (ϕ(ti))ji=0 and (ψ(ti))ji=0 in HΓ with ϕ0 = ψ0 = 0. The constant
C > 0 depends on T , ε0, µ0 and β > 0 from Lemma 2.12.

Proof. For sequences (φi)i∈N0 with φ0 = 0 it holds ((∂τt )−1∂τt φ)(ti) = φi for i ≥ 0 and
the assertion follows from Lemma 4.12.

By a modification of Lemma 4.17 with the factors e−ti/T we are able to show the
following result.

Lemma 4.19. Under the additional Assumptions 4.14, we have for j ∈ N0 and τ > 0
with τ < τ0, tj ≤ T the boundedness

τ
j∑
i=0

(
‖ϕih‖2HΓ + ‖γTEih‖2HΓ

)
≤ C,

where the constants C > 0 depends on T , τ0, ε, ε0, µ, µ0, J and the bounds from
Assumption 4.14, but is independent of h and τ .

Proof. Just as in the proof of Lemma 4.17, we arrive at

[ε(∂τt )2Eih, ∂
τ
t E

i
h]Ω + [µ(∂τt )2H i

h, ∂
τ
t H

i
h]Ω +

〈(
∂τt ϕ

i
h

−γT∂τt Eih

)
,

(
B(∂τt )

(
∂τt ϕh
−∂τt γTEh

))
(ti)

〉
Γ

= −[σ∂τt Eih + ∂τt J
i
h, ∂

τ
t E

i
h]Ω

(4.27)

for i ≥ 2. We multiply the equation by e−2iτ/T and define

∂̃τt E
i
h := e−iτ/T∂τt E

i
h, ∂̃

τ
t H

i
h := e−iτ/T∂τt H

i
h, ∂̃

τ
t J

i := e−τ/T∂τt J
i, . . .

and
Ẽih := e−iτ/TEih, H̃

i
h := e−iτ/TH i

h, J̃
i := e−iτ/TJ i, . . .

We recall the adapted Abel’s summation by parts (3.29). For ui ∈ Rn and j ≥ i ≥ 1,
there holds

j∑
i=1

(ui − e−τ/Tui−1) · ui ≥
1
2

j∑
i=1
|ui − e−τ/Tui−1|2 + 1

2 |uj |
2 − 1

2 |u0|2. (4.28)
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Summing up from i = 2, . . . , j, multiplying by τ and applying the modified Abel’s
summation by parts (4.28) gives

ε0
2

‖∂̃τt Ejh‖2Ω − ‖∂̃τt E1
h‖2Ω +

j∑
i=2
‖∂̃τt Eih − e−τ/T ∂̃τt Ei−1

h ‖
2
Ω


+µ0

2

‖∂̃τt Hj
h‖

2
Ω − ‖∂̃τt H1

h‖2Ω +
j∑
i=2
‖∂̃τt H i

h − e−τ/T ∂̃τt H i−1
h ‖2Ω


+τ

j∑
i=2

e−2iτ/T
〈(

∂τt ϕ
i
h

−γT∂τt Eih

)
,

(
B(∂τt )

(
∂τt ϕh
−∂τt γTEh

))
(ti)

〉
Γ

= τ
j∑
i=2
−[σ∂̃τt Eih + ∂̃τt J

i
h, ∂̃

τ
t E

i
h]Ω.

(4.29)

We test (4.19) for j = 0 with ζEh = ∂̃τt E
1
h, ζHh = ∂̃τt H

1
h, v

ϕ
h = ∂̃τt ϕ

1
h, multiply by e−τ/T ,

use γTE0
h = ϕ0

h = 0 and obtain

[ε∂̃τt E1
h, ∂̃

τ
t E

1
h]Ω + [µ∂̃τt H1

h, ∂̃
τ
t H

1
h]Ω + e−τ/T

〈(
∂̃τt ϕ

1

−γT ∂̃τt E1
h

)
,

(
B(∂τt )

(
ϕh
−γTEh

))
(t1)

〉
Γ

= [H̃1
h,∇× ∂̃τt E1

h]Ω − [∇× Ẽ1
h, ∂̃

τ
t H

1
h]Ω − [σẼ1

h + J̃1
h, ∂̃

τ
t E

1
h]Ω.

(4.30)

With ϕ0
h = γTE

0
h = ∂τt ϕ

0
h = ∂τt γTE

0
h = 0 we have

τ
1∑
i=0

e−2iτ/T
〈(

∂τt ϕ
i
h

−γT∂τt Eih

)
,

(
B(∂τt )

(
∂τt ϕh
−∂τt γTEh

))
(ti)

〉
Γ

= e−2τ/T

τ

〈(
ϕ1
h

−γTE1
h

)
,

(
B(∂τt )

(
ϕh
−γTEh

))
(t1)

〉
Γ

= e−τ/T
〈(

∂̃τt ϕ
1
h

−γT ∂̃τt E1
h

)
,

(
B(∂τt )

(
ϕh
−γTEh

))
(t1)

〉
Γ

.

As in the proof of of Lemma 4.17, we use H̃0
h = IYhH0 (cf. Assumption 4.14) and

γT H̃
0 = γTH

0 = 0 to obtain

[H̃1
h,∇× ∂̃τt E1

h]Ω − [∇× Ẽ1
h, ∂̃

τ
t H

1
h]Ω = e−τ/T (−[∂̃τt H1

h,∇× E0
h]Ω + [∇×H0, ∂̃τt E

1
h]Ω)
(4.31)

Inserting all this in (4.30), we get

[ε∂̃τt E1
h, ∂̃

τ
t E

1
h]Ω + [µ∂̃τt H1

h, ∂̃
τ
t H

1
h]Ω

+τ
1∑
i=0

e−2iτ/T
〈(

∂τt ϕ
i
h

−γT∂τt Eih

)
,

(
B(∂τt )

(
∂τt ϕh
−∂τt γTEh

))
(ti)

〉
Γ

= e−τ/T (−[∂̃τt H1
h,∇× E0

h]Ω + [∇×H0, ∂̃τt E
1
h]Ω)− [σẼ1

h + J̃1
h, ∂̃

τ
t E

1
h]Ω.
(4.32)
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Adding this to (4.29) finally gives

ε0
2

‖∂̃τt Ejh‖2Ω + ‖∂̃τt E1
h‖2Ω +

j∑
i=2
‖∂̃τt Eih − e−τ/T ∂̃τt Ei−1

h ‖
2
Ω


+µ0

2

‖∂̃τt Hj
h‖

2
Ω + ‖∂̃τt H1

h‖2Ω +
j∑
i=2
‖∂̃τt H i

h − e−τ/T ∂̃τt H i−1
h ‖2Ω


+τ

j∑
i=0

e−2iτ/T
〈(

∂τt ϕ
i
h

−γT∂τt Eih

)
,

(
B(∂τt )

(
∂τt ϕh
−∂τt γTEh

))
(ti)

〉
Γ

= τ
j∑
i=2
−[σ∂̃τt Eih + ∂̃τt J

i
h, ∂̃

τ
t E

i
h]Ω

+ e−τ/T (−[∂̃τt H1
h,∇× E0

h]Ω + [∇×H0, ∂̃τt E
1
h]Ω)− [σẼ1

h + J̃1
h, ∂̃

τ
t E

1
h]Ω.

(4.33)

By Assumption 4.14, Lemma 4.17 and Cauchy–Schwartz, we have

e−τ/T (−[∂̃τt H1
h,∇× E0

h]Ω + [∇×H0, ∂̃τt E
1
h]Ω)− [σẼ1

h + J̃1
h, ∂̃

τ
t E

1
h]Ω ≤ C,

τ
j∑
i=2
−[σ∂̃τt Eih + ∂̃τt J

i
h, ∂̃

τ
t E

i
h]Ω ≤ C.

As all other terms on the left hand side of (4.33) are positive and/or bounded, we deduce

τ
j∑
i=0

e−2iτ/T
〈(

∂τt ϕ
i
h

−γT∂τt Eih

)
,

(
B(∂τt )

(
∂τt ϕh
−∂τt γTEh

))
(ti)

〉
Γ

≤ C.

Therefore, by Lemma 4.12 and γTE0
h = ϕ0

h = 0 for c > 0,

C ≥ cτ
j∑
i=1
‖(∂τt )−1∂τt ϕ(ti)‖HΓ + ‖(∂τt )−1∂τt γTE(ti)‖HΓ

= cτ
j∑
i=1
‖ϕih‖HΓ + ‖γTEih‖HΓ

which yields the assertion.

The following lemma is a direct consequence of Lemma 4.17, Assumption 4.14, Algo-
rithm 4.8 and ∇×Xh ⊂ Yh.

Lemma 4.20. We have for j ≥ 0 the boundedness of

‖∇ × Ejh‖Ω ≤ C

and for ζh ∈ Xh, γT ζh = 0 it holds

[Hj
h,∇× ζh] ≤ C‖ζh‖Ω.

If we denote by PX0,h the L2-orthogonal-projection on X0,h := {ζ ∈ Xh|γT ζ = 0}, then

[Hj
h,∇× PX0,h · ]Ω : L2(Ω)→ R, ζ 7→ [Hj

h,∇× PX0,hζ]Ω

is bounded in L2(Ω)′.

Proof. The proof follows from Algorithm 4.8, as all other terms in the respective equa-
tions are bounded due to the Lemmas 4.13 – 4.19 and the Assumptions 4.10 and 4.14.
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Remark 4.21. The constants in the energy estimates (4.13), (4.17), (4.20) grow expo-
nentially in T , but similar arguments as in [99, Lemma 4.3, Lemma 7.1] would yield
constants depending only polynomially on T . In this case the maximal time step size τ0
depends on T .

We sum up the obtained results in the following theorem.

Theorem 4.22. There exists a constant C > 0 independent of τ and h such that

‖Eτ,h‖ΩT + ‖∂tEτ,h‖ΩT + ‖∇ × Eτ,h‖ΩT ≤ C,
‖Hτ,h‖ΩT + ‖∂tHτ,h‖ΩT + ‖[Hτ,h,∇× PX0,h · ]ΩT ‖L2(ΩT )′ ≤ C,

‖E±τ,h‖ΩT + ‖∇ × E±τ,h‖ΩT ≤ C,
‖H±τ,h‖ΩT ≤ C,

‖ϕτ,h‖L2([0,T ],HΓ ) + ‖ϕ±τ,h‖L2([0,T ],HΓ ) ≤ C.

Proof. Most statements follow directly from Lemmas 4.13 – 4.20, the proof can be con-
cluded as in Lemma 3.27.

4.3.2. Existence of weakly convergent subsequences
Due to the shown boundedness of the approximations, we are now able to extract weakly
convergent subsequences. Again as in Chapter 3, we do not (re-)name the sequences
when passing to a subsequence. We write vτ,h

sub
⇀ v for τ, h → 0, to denote that for

any (τn, hn)→ 0 for n→∞ there exists a subsequence (nj)j∈N, such that vhnj ⇀ v for
j → ∞. We note that in the following, the convergences hold simultaneously for one
subsequence.

Theorem 4.23. There exist functions

(E,H,ϕ) ∈ H1,curl(ΩT )×H1,curl(ΩT )× L2([0, T ],HΓ )

such that

Eτ,h
sub
⇀ E in H1,curl(ΩT ),

Eτ,h, E
±
τ,h

sub
⇀ E in H0,curl(ΩT )

γTEτ,h, γTE
±
τ,h

sub
⇀ γTE in L2([0, T ],HΓ ),

Hτ,h
sub
⇀ H in H1,0(ΩT ),

Hτ,h, H
±
τ,h

sub
⇀ H in L2(ΩT ),

ϕτ,h, ϕ
±
τ,h

sub
⇀ ϕ in L2([0, T ],HΓ ),

where the subsequences are successively constructed, i.e., for arbitrary mesh sizes h→ 0
and time step sizes τ → 0 there exist subindices τnl , hnl for which the above convergence
properties are satisfied simultaneously.

Proof. By the uniform boundedness of the approximations in the respective Hilbert
spaces (cf. Theorem 4.22) and uniqueness of weak limits, we have the existence of limit
functions and the weak convergence of a (fixed) subsequence

(Eτ,h, Hτ,h, ϕτ,h) sub
⇀ (E,H,ϕ) ∈ H(curl,ΩT )×H1,0(ΩT )× L2([0, T ],HΓ ).
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It remains to show that (E±τ,h, H
±
τ,h, ϕ

±
τ,h) converges to the same limit functions and that

H ∈ H(curl,ΩT ). Similarly to the proof of Lemma 3.29, we sketch that ϕ−τ,h converges
to the same limit function as ϕτ,h. It holds for w ∈ C1

0 ([0, T ],HΓ )

〈ϕτ,h − ϕ−τ,h, w〉ΓT =
N−1∑
j=0

∫ tj+1

tj

t− tj
τ
〈ϕj+1

h − ϕjh, w(tj)〉 dt

+
N−1∑
j=0

∫ tj+1

tj

t− tj
τ
〈ϕj+1

h − ϕjh, w(t)− w(tj)〉 dt.

By w(T ) = w(0) = 0 we see
N−1∑
j=0

∫ tj+1

tj

t− tj
τ
〈ϕj+1

h − ϕjh, w(tj)〉 dt = −τ2

N−1∑
j=0
〈ϕjh, w(tj+1)− w(tj)〉.

Therefore we have by the boundedness of ϕ±τ,h

|〈ϕτ,h − ϕ−τ,h, w〉ΓT | ≤
1
2

τ N−1∑
j=0
‖ϕjh‖

2
Ω

1/2τ N−1∑
j=0
‖w(tj+1)− w(tj)‖2Ω

1/2

+

τ N−1∑
j=0
‖ϕjh − ϕ

j+1
h ‖2Ω

1/2τ N−1∑
j=0
‖
∫ tj+1

tj

w(t)− w(tj) dt‖2Ω

1/2

≤ C max
j=0,...,N−1

max
t∈[tj ,tj+1]

‖w(t)− w(tj)‖HΓ → 0.

As C1
0 ([0, T ],HΓ ) is dense in L2([0, T ],HΓ ), and the functions ϕ−τ,h are uniformly bounded

in L2([0, T ],HΓ ), it holds ϕ−τ,h
sub
⇀ ϕ.

It remains to show that ∇ × H ∈ L2(ΩT ) exists. By Theorem 4.22 we have the
boundedness and therefore the weak convergence of

[Gτ,h, · ]ΩT := [Hτ,h,∇× PX0,h · ]ΩT ,

i.e. there exists a G ∈ L2(ΩT ) with Gτ,h
sub
⇀ G. To show G = ∇ × H, we choose

ζ ∈ C∞0 (ΩT ). It holds IXh ζ → ζ in L2(ΩT ) (cf. Lemma 4.7). Therefore we have

[Gτ,h, IXh ζ]ΩT
sub→ [G, ζ]ΩT .

Moreover we have γT IXh ζ = 0 (cf. [121, Lemma 5.35]), thus PX0,hIXh ζ = IXh ζ and∇×IXh ζ →
∇× ζ in L2(ΩT ) (cf. Lemma 4.7) and Hτ,h

sub
⇀ H. This implies

[Gτ,h, IXh ζ]ΩT = [Hτ,h,∇× IXh ζ]ΩT
sub→ [H,∇× ζ]ΩT

and as ζ ∈ C∞0 (ΩT ) was chosen arbitrarily, we have G = ∇×H ∈ L2(ΩT ).

Remark 4.24. In comparison to the LLG case and the symmetric discretization of
the curl operator, in the non-symmetric case, each discretized term converges towards
the expected continuous term. For smooth enough test functions ζ, v it holds (compare
Remark 3.31 for the MLLG system, where this is not the case)

[∇× E+
τ,h, ζ

+
τ,h]ΩT

sub→ [∇× E, ζH ]ΩT
[H+

τ,h,∇× ζ
+
τ,h]ΩT

sub→ [H,∇× ζ]ΩT
and

〈v+
τ,h, γTE

+
τ,h〉ΓT

sub→ 〈v, γTE〉ΓT .
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4.3.3. Convergence towards the exact solution
We show that the limit functions indeed are a solution of the Maxwell system in the
sense of Definition 4.2. Afterwards, with the uniqueness of the solution, we conclude
that the convergence holds for the whole sequence (and not only for subsequences) and
we are able to extend the solution to the time interval [0,∞).

Theorem 4.25. Let (Eτ,h, Hτ,h, ϕτ,h) be the approximations obtained by Algorithm 4.8
and assume the validity of the Assumptions 4.10 and 4.14. Then there exists for any
sequence (τ, h)→ 0 a subsequence (τj , hj)j∈N0, such that

(Eτj ,hj , Hτj ,hj , ϕτj ,hj )

converges weakly in

H1,curl(ΩT )×H1,0(ΩT )× L2([0, T ],HΓ )

to a weak solution of the Maxwell system in the sense of Definition 4.2.

Proof. We choose arbitrary test functions

ζHh , ζ
E
h ∈ C∞(ΩT ), v ∈ γT (C∞(ΩT ))

with v(T ) = ∂tv(T ) = · · · = ∂m−1
t v(T ) = 0 = γTE(T ) = · · · = ∂m−1

t γTE(T ). As discrete
test functions we take

ζH,hh (t, ·) := IXh ζHh (t, ·), ζE,hh (t, ·) := IXh ζEh (t, ·)

and
vh(t, ·) := γT (IXh v̂)(t, ·),

where γT v̂ = v.
We first look at the second Maxwell equation, where we write ζh instead of ζHh for

simplicity. Moreover, we use the notation

ζ±τ,h := (ζh(tk))±τ,h.

Algorithm 4.8 gives by testing with ζh(tk+1) and summing up from k = 0, . . . , N − 1

[ε(∂τt H)+
τ,h, ζ

+
τ,h]ΩT = −[∇× E+

τ,h, ζ
+
τ,h]ΩT .

By Theorem 4.23 and Lemma 4.7 we get by the limit τ, h→ 0

[ε∂tH, ζH ]ΩT = −[∇× E, ζH ]ΩT .

For the first Maxwell equation and the boundary equations, we test with ζh(tk+1) :=
ζE,h(tk+1), vh(tk+1), sum up from k = 0, . . . , N − 1 and obtain

[ε(∂τt E)+
τ,h, ζ

+
τ,h]ΩT +

〈(
v+
τ,h

−γT ζ+
τ,h

)
,

(
B(∂τt )

(
ϕh
−γTEh

))+

τ,h

〉
ΓT

= [H+
τ,h,∇× ζ

+
τ,h]ΩT −

1
2µ0
〈ϕ+

τ,h, γT ζ
+
τ,h〉ΓT

− [σE+
τ,h + J+

τ,h, ζ
+
τ,h]ΩT + 1

2µ0
〈v+
τ,h, γTE

+
τ,h〉ΓT .
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By Theorem 4.23 and Lemma 4.7 we get for τ, h→ 0

[ε(∂τt E)+
τ,h, ζ

+
τ,h]ΩT

sub→ [ε∂tE, ζ]ΩT ,

[H+
τ,h,∇× ζ

+
τ,h]ΩT

sub→ [H,∇× ζ]ΩT
1

2µ0
〈ϕ+

τ,h, γT ζ
+
τ,h〉ΓT

sub→ 1
2µ0
〈ϕ, γT ζ〉ΓT ,

[σE+
τ,h + J+

τ,h, ζ
+
τ,h]ΩT

sub→ [σE + J, ζ]ΩT ,
1

2µ0
〈v+
τ,h, γTE

+
τ,h〉ΓT

sub→ 1
2µ0
〈v, γTE〉ΓT .

For the boundary functions, again the proof shares similarities with the proof of Theo-
rem 3.32 and we therefore only repeat the main steps. For shorter formulas, we use
the abbreviations wjh := −γT ζE,h(tj) and ψjh := −γTEjh. By setting vjh := vN−jh ,
wjh := wN−jh , the 〈·, ·〉Γ -adjoint B∗ of B, and by using ψ0

h = ϕ0
h = 0 we have

Xτ
h :=

〈(
v+
τ,h

w+
τ,h

)
,

(
B(∂τt )

(
ϕh
ψh

))+

τ,h

〉
ΓT

= τ
N∑
k=1

〈
B∗(∂τt )

(
vh
wh

)
(T − tk),

(
ϕkh
ψkh

)〉
Γ

.

Now we are able to apply the convergence result of [116], especially because

v(0) = v(T ) = 0, ∂tv(0) = −∂tv(T ) = 0, . . . , ∂m−1
t v(0) = 0

and
w(0) = · · · = ∂m−1

t w(0) = 0,

we have

B∗(∂τt )
(
v

w

)
(T − tk)→ B∗(∂t)

(
v

w

)
(T − tk)

uniformly in 0 ≤ tk ≤ T , tk = τk, k ≥ 1. Therefore and by the smoothness of
B∗(∂t)

(v
w

)
(T − ·), dominated convergence implies

B∗(∂τt )
(
v

w

)
(T − ·)+ → B∗(∂t)

(
v

w

)
(T − ·) in L2([0, T ],HΓ ).

Moreover, the discrete Herglotz theorem A.4 shows

τ
N∑
k=1

∥∥∥∥B∗(∂τt )
(
vh
wh

)
(T − tk)−B∗(∂τt )

(
v

w

)
(T − tk)

∥∥∥∥2

HΓ

≤ Cτ
N∑
k=1
‖(∂τt )2(vh − v)(T − tk)‖2HΓ + ‖(∂τt )2(wh − w)(T − tk)‖2HΓ → 0

for (τ, h)→ 0. All in all, we obtain

Xτ
h

sub→
〈
B∗(∂t)

(
v

w

)
(T − ·),

(
ϕ

ψ

)〉
ΓT

=: X.
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Now we reverse the integration by parts and obtain

X =
∫ T

0

〈
∂mt

(
L−1(B∗(r)rm) ∗

(
v

w

))
(T − ·),

(
ϕ

ψ

)
(t)
〉
Γ

dt

= (−1)m
∫ T

0

〈∫ T

t
B∗m(s− t)∂mt

(
v

w

)
(s) ds,

(
ϕ

ψ

)
(t)
〉
Γ

dt

= (−1)m
∫ T

0

〈
∂mt

(
v

w

)
(s),

(
Bm ∗

(
ϕ

ψ

))
(s)
〉
Γ

ds.

This is exactly the term that shows up in the formulation of our weak solution in Defi-
nition 4.2.
The equalities E(0) = E0 and H(0) = H0 follow by Assumption 4.10 and the weak
convergence in H1,0(ΩT ).

Corollary 4.26. The solutions of Theorem 4.23 have bounded energy, i.e. for almost
all t ∈ (0, T )

‖E(t)‖2Ω + ‖H(t)‖2Ω + ‖∂tE(t)‖2Ω + ‖∂tH(t)‖2Ω + ‖∇ × E(t)‖2Ω ≤ C.

Proof. The proof proceeds analogously as in [25]. From the discrete energy estimates
Lemma 4.13, Lemma 4.17 and Lemma 4.20, we get for any t′ ∈ [0, T ]

‖Eτ,h(t′)‖2Ω + ‖Hτ,h(t′)‖2Ω + ‖∂tEτ,h(t′)‖2Ω + ‖∂tHτ,h(t′)‖2Ω + ‖∇ × Eτ,h(t′)‖2Ω ≤ C,

where C only depends polynomially on T and the bounds of J j , ∂τt J j . Integration in
time yields for any measurable set A ⊂ [0, T ]∫

A
‖Eτ,h(t′)‖2Ω +

∫
A
‖Hτ,h(t′)‖2Ω +

∫
A
‖∂tEτ,h(t′)‖2Ω

+
∫
A
‖∂tHτ,h(t′)‖2Ω +

∫
A
‖∇ × Eτ,h(t′)‖2Ω ≤

∫
A
C,

whence weak lower semi-continuity leads to∫
A
‖E(t′)‖2Ω +

∫
A
‖H(t′)‖2Ω +

∫
A
‖∂tE(t′)‖2Ω

+
∫
A
‖∂tH(t′)‖2Ω +

∫
A
‖∇ × E(t′)‖2Ω ≤

∫
A
C.

The desired result now follows from standard measure theory, see, e.g. [60, IV,Theorem
4.4].

Due to the uniqueness in the pure Maxwell case, we are able to show the following
further results.

Corollary 4.27. Theorem 4.23 holds for the whole sequence and not only for subse-
quences.

Proof. By Theorem 4.5, the solution (E,H,ϕ) from Definition 4.2 is unique, so for
any subsequence the arguments of Theorem 4.23 can be repeated and there exists a
subsubsequence converging to (E,H,ϕ). This already gives the convergence of the whole
sequence by a contradiction argument.

Theorem 4.28. There exists a unique pair of functions

(E,H) : (0,∞)× Ω→ R3
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that is a solution of Maxwell’s equations in the sense of Definition 4.1 for arbitrary
T > 0. If J is smooth enough, it holds

e−ctE, e−ctH ∈ H(∂t, curl, (0,∞)× Ω)

for every c > 0 and therefore we have a solution in the sense of Definition 4.1 for
T = ∞, where the equations hold in a e−ct-weighted L2([0,∞) × Ω), or e−ct-weighted
L2([0,∞),HΓ ) -sense, respectively.

Proof. The existence and uniqueness follows by Theorem 4.3, Theorem 4.5 and Theorem
4.25 by considering the limit T →∞ and using the uniqueness on [0, T ]. The constants
in the energy estimates can be shown to only grow polynomially in T (compare [99]),
thus it remains to show that ∇×H is bounded in an e−ct-weighted L2([0,∞)×Ω) sense.
This again follows from the fact that (E,H) is a solution in the sense of Definition
4.1 and all other quantities in the first equation of Definition 4.1 are bounded in an
e−ct-weighted L2([0,∞)× Ω) sense.





5. Convergence with Rates for the MLLG
System

In this chapter, we consider convergence with rates of the Maxwell–Landau–Lifshitz–
Gilbert system. We derive an algorithm for the approximation of the MLLG system
that, provided the exact solution is smooth enough, converges to the solution with an a
priori-know error ratio. The work is based on [4] and [99], where the convergence with
rates of the LLG equation and the convergence with rates for the Maxwell system is
considered, respectively.

5.1. Introduction
In this section, we recall the MLLG system from Chapter 2 and derive a weak form
which serves as a basis for the following discretization.

5.1.1. Coupled boundary integral formulation
For the convenience of the reader, we recall the coupled formulation of the MLLG equa-
tion from (2.4) for the LLG part and (2.12) for the Maxwell part. We seek a magneti-
zation

m : [0, T ]×Ω → S2

and electric and magnetic fields

E,H : [0, T ]×Ω → R3

that satisfy the coupled boundary integral formulation for the MLLG system

α∂tm+m× ∂tm = −m× (m× (∆m+H)), in ΩT := (0, T )×Ω, (5.1a)
ε∂tE −∇×H = − σE − J in ΩT , (5.1b)
µ∂tH +∇× E = − µ∂tm in ΩT , (5.1c)

B(∂t)
(
µ0γTH

−γTE

)
= 1

2

(
µ−1

0 γT E

γT H

)
on ΓT := [0, T ]× Γ, (5.1d)

endowed with the boundary condition

∂nm = 0 on [0, T ]× Γ, (5.1e)

and the initial conditions

m(0) = m0, E(0) = E0, H(0) = H0 in Ω. (5.1f)

5.1.2. Weak formulation
We will now derive a weak formulation for the coupled MLLG system (5.1) which serves
as a basis for the approximation. It uses for the LLG part the tangent space approach
similar to [4, Section 1.2] and [14, 15], for the Maxwell part the symmetric approach as
in Chapter 3 and [99, Section 4.5] is used.

99
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Concerning the LLG equation, the term on the right-hand side in (5.1a) can be rewrit-
ten as P(m)(∆m+H), where (with Id the 3× 3 unit matrix)

P(m) = Id−mmT = −m× (m× · )

is the orthogonal projection onto the tangent plane to the unit sphere S2 at m.
We consider a weak formulation, first proposed by Alouges [14, 15], which is based on

a formulation which makes use of the tangent space

T (m) :=
{
ϕ ∈ L2(Ω)

∣∣m · ϕ = 0 a.e.
}

=
{
ϕ ∈ L2(Ω)

∣∣P(m)ϕ = ϕ},

and requiring that the time derivative ∂tm is a function in this tangent space.
For Maxwell’s equations we use the symmetric variational formulation as in Chapter 3,

see [99], motivated by the analogous formulation for the acoustic wave equation [1, 27].
The basis of this formulation is the following integration by parts formula from (2.13)
(for sufficiently regular functions u and v):

[∇× u, v]Ω = 1
2[∇× u, v]Ω + 1

2[u,∇× v]Ω −
1
2〈γT u, γT v〉Γ .

Furthermore we introduce the abbreviations for the traces ϕ = µ0γTH and ψ = −γTE.
Altogether, the following weak formulation of the coupled MLLG system (5.1) will

serve as the basis of the numerical method studied in this chapter. Find m ∈ H1(Ω),
with ∂tm ∈ T (m), E,H ∈ H(curl,Ω) and ϕ,ψ ∈ HΓ such that for all test functions
ρ ∈ T (m) ∩H1(Ω), ζE , ζH ∈ H(curl,Ω) and vϕ, vψ ∈ HΓ they satisfy the coupled weak
system:

α[∂tm, ρ]Ω + [m× ∂tm, ρ]Ω = −[∇m,∇ρ]Ω + [H, ρ]Ω, (5.2a)

ε[∂tE, ζE ]Ω = 1
2[∇×H, ζE ]Ω + 1

2[H,∇× ζE ]Ω

− 1
2〈µ

−1
0 ϕ, γT ζ

E〉Γ − [J + σE, ζE ]Ω,
(5.2b)

µ[∂tH, ζH ]Ω = −1
2[∇× E, ζH ]Ω −

1
2[E,∇× ζH ]Ω

− 1
2〈ψ, γT ζ

H〉Γ − µ[∂tm, ζH ]Ω,
(5.2c)

〈(
vϕ

vψ

)
, B(∂t)

(
ϕ

ψ

)〉
Γ

= 1
2

〈(
vϕ

vψ

)
,

(
µ−1

0 γTE

γTH

)〉
Γ

. (5.2d)

5.2. Space and Time Discretisations
The space and time discretisations of the MLLG system (5.2) is done by a combination
of the corresponding discretizations of the LLG equation from [4], and of the Maxwell
system from [99].
For the space discretization of the LLG equation (5.2a) we use continuous finite ele-

ments (of degree r), while for the interior–exterior Maxwell problem (5.2b)–(5.2d) discon-
tinuous Galerkin elements (of degree r) for the interior problem and boundary elements
(of degree r) for the boundary equation are used.
For the time discretization, we use a two-step linearly implicit BDF method (of second

order) for the LLG equation (5.2a), and a leapfrog discretization for the interior Maxwell
part (5.2b)–(5.2c) which is coupled to a Convolution Quadrature (of second order) for
the boundary integral equation (5.2d).
These discretisation methods are the same, but of a higher order in space, as those

in [99].
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The coupling terms in the equations contain L2(Ω) products of functions from dif-
ferent approximation spaces. They are naturally evaluated as the L2(Ω)-product of a
continuous finite element function and a discontinuous finite element function.
The coupling of the time discretization is slightly more involved: We first state the

underlying algorithms, where we consider the coupling terms H and ∂tm as exact, given
input data. Then we replace the exact data by suitable approximations, resulting in an
implicit coupling. It turns out that this yields a stable second order scheme which can
be evaluated at comparable cost to an uncoupled system.
After describing the general discretization setting, we briefly repeat the discretizations

of the uncoupled equations from [4, 99] for exact, given input data, and then pay special
attention to the additional terms due to the coupling.

5.2.1. General setting
For the discretizations in the following subsections, we assume the following general
setting:
We triangulate the bounded polyhedral domain Ω by a family of simplicial triangu-

lations Th, where h denotes the maximal element diameter. For our results we consider
a quasi-uniform and contact-regular family of such triangulations with maximum mesh
width h→ 0; see, e.g. [59] for these notions. For the discontinuous Galerkin method, we
adopt the following notation from [84, Section 2.3]: The faces Fh of Th are decomposed
into boundary and interior faces, Fh = Fbnd

h ∪ F int
h . The triangulation of the boundary

Γ is therefore, naturally, given by the outer faces Fbnd
h of Th.

For the time discretization, we let tn = nτ, n = 0, . . . , N , be a uniform partition of
the interval [0, T ] with time step τ = T/N .

5.2.2. Spatial discretisation
Concerning the LLG equation (5.2a), we consider the continuous Lagrange finite element
space Srh ⊂ H1(Ω) of continuous, piecewise polynomial functions of degree r. With a
function m ∈ H1(Ω) that vanishes nowhere on Ω, we associate the discrete tangent
space

Th(m) =
{
φh ∈ Srh

∣∣ (m · φh, vh) = 0, ∀ vh ∈ Srh
}
. (5.3)

In comparison to the discrete tangent space Km from Section 3.2, here the orthogonal-
ity is employed in a L2-projection sense instead of a nodewise sense. Similarly to the
continuous case, ∂tmh will be required to be in this discrete tangent space.
Concerning Maxwell’s equations (5.2b)–(5.2d), we use the central flux discontinuous

Galerkin (dG) discretization from [99] (see also [59, 82, 84]) in the interior and continuous
boundary elements on the surface.
The dG space of vector valued functions, which are elementwise polynomial functions

of degree r, is defined as

Wr
h =

{
vh ∈ L2(Ω)

∣∣ vh|K is a polynomial of degree r for all K ∈ Th
}
.

The boundary element space Ψr
h is defined as

Ψr
h =

{
vh × n

∣∣ vh : Γ → R3 is piecewise polynomial of degree r and continuous
}

Jumps and averages over faces F ∈ F int
h are denoted analogously as for trace operators

on Γ ,
[[w]]F = γ+

F w − γ
−
F w and {{w}}F = 1

2(γ+
F w + γ−F w),

where γF is the usual trace onto the face F . We often omit the subscript as it will be
clear from the context.



5. Convergence with Rates for the MLLG System 102

The discrete curl operator with centered fluxes was presented in [84, Section 2.3], for
uh, wh ∈ Wr

h,

[curlh uh, wh]Ω =
∑
K∈Th

[curluh, wh]K −
∑

F∈F int
h

〈[[uh]], {{wh}}〉F .

Following the arguments of the proof of Lemma 2.2 in [84], we obtain that the discrete
curl operator satisfies the discrete version of Green’s formula for the curl operator:

[curlh uh, wh]Ω − [uh, curlhwh]Ω = −〈γTuh, γTwh〉Γ . (5.4)

Using the above discrete tangent space Th(mh) and the discrete operator curlh, the
(FEM–dG–BEM) semi-discrete coupled boundary integral formulation of the MLLG
problem (5.2) reads as follows: Find the semi-discretization solutions mh ∈ Sh, with
∂tmh ∈ Th(mh), and Eh, Hh ∈ Wr

h and ϕh, ψh ∈ Ψr
h such that for all test functions

ρh ∈ Th(mh), and ζEh , ζHh ∈ Wr
h and vϕh , v

ψ
h ∈ Ψr

h they satisfy the problem

α
[
∂tmh, ρh

]
Ω

+
[
mh × ∂tmh, ρh

]
Ω

= −
[
∇mh,∇ρh

]
Ω

+
[
Hh, ρh

]
Ω
, (5.5a)

ε[∂tEh, ζEh ]Ω = 1
2[curlhHh, ζ

E
h ]Ω + 1

2[Hh, curlh ζEh ]Ω

− 1
2〈µ

−1
0 ϕh, γT ζ

E
h 〉Γ − [J + σEh, ζ

E
h ]Ω,

(5.5b)

µ[∂tHh, ζ
H
h ]Ω = −1

2[curlhEh, ζHh ]Ω −
1
2[Eh, curlh ζHh ]Ω

− 1
2〈ψh, γT ζ

H
h 〉Γ − µ[∂tmh, ζ

H
h ]Ω,

(5.5c)

〈(
vϕh
vψh

)
, B(∂t)

(
ϕh
ψh

)〉
Γ

= 1
2
(
〈vϕh , µ

−1
0 γT Eh〉Γ + 〈vψh , γT Hh〉Γ

)
. (5.5d)

We note here that the coupling terms contain the L2(Ω) products of semi-discrete func-
tions from different spaces.
We further point out, that the space discretization of the Maxwell part is quite flexible

and could also be proven to converge for higher order Nédélec, Raviart–Thomas, or edge
elements, and also for different (but compatible, compare (5.62)) spaces on the boundary,
cf. [99, Remark 5.1].

5.2.3. Full discretisation
For the time discretisation of the semi-discrete MLLG system (5.5) we will use, again
precisely as in [4] and [99], a two-step linearly implicit backward difference formula
(BDF method) for the LLG equation, and the leapfrog (Störmer–Verlet) method and the
Convolution Quadrature for, respectively, the interior and boundary integral equation
of Maxwell’s equations.

Recall of the underlying time discretizations

We shall discretize the LLG equation (5.5a) in time by the linearly implicit 2-step BDF
method (see, e.g. [79]), described by the polynomials δ and γ

δ(ζ) = 1
2ζ

2 − 2ζ + 3
2 =

2∑
j=0

δjζ
j , γ(ζ) = 2− ζ =

1∑
j=0

γjζ
j .

These generating polynomials define the time derivative approximation ṁn
h and the

normalized extrapolation m̂n
h at time tn, for n ≥ 2, by

ṁn
h = 1

τ

2∑
j=0

δjm
n−j
h , m̂n

h =
1∑
j=0

γjm
n−j−1
h

/∣∣∣ 1∑
j=0

γjm
n−j−1
h

∣∣∣. (5.6)
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Before stating the fully discrete scheme let us make some remarks on the time discreti-
sation of the LLG equation. We extrapolate the known values mn−2 and mn−1 to a
preliminary normalized approximation m̂n

h at tn by (5.6). To formally avoid potentially
undefined quantities, we define m̂n

h to be an arbitrary fixed unit vector if the denomi-
nator in the above formula is zero. We show in the following, that this does not occur
if τ and h are sufficiently small. The derivative approximation ṁn

h and the solution
approximation mn

h are related by the backward difference formula

ṁn
h = 1

τ

2∑
j=0

δjm
n−j
h , i.e. mn

h = 1
δ0

(
−

2∑
j=1

δjm
n−j
h + τṁn

h

)
. (5.7)

The Maxwell part is discretized, exactly as in [99], by the leapfrog or Störmer–Verlet
scheme (see, e.g., [79]) in the interior, and Convolution Quadrature on the boundary
(see Section 3.2.2). We need some auxiliary definitions here as well:

f
n+1/2 = 1

2(fn+1 + fn) averaging in time, (5.8)
and ψ̇n+1/2 = 1

τ (ψn+1 − ψn) a second-order discrete time derivative. (5.9)

As in [99] will need a stabilizing term with a parameter β > 0 that guarantees the
stability of our scheme. For convenience, we define the LIFT of a function ψh ∈ Vh to Ω
via LIFTψh = Lh ∈ Wr

h satisfying

[Lh, vLh ]Ω = 1
4〈ψh, γT v

L
h 〉Γ for all vLh ∈ Wr

h. (5.10)

Note that this is uniquely defined, as there is a coercive bilinear form on the left hand
side of (5.10). In [99], the vector product 〈vψh , γTLIFT(ψh)〉Γ is written as multiplication
of the coefficients with the matrix CT

1 M−1C1 (compare Section 6.4.1).
Convolution Quadrature (CQ) discretizes the convolutionB(∂t)w(t), defined by (2.16),

by the discrete convolution

(
B(∂τt )w

)
(nτ) =

n∑
j=0

Bn−jw(jτ),

where the weights Bn are defined as the coefficients of

B
(δ(ζ)
τ

)
=
∞∑
n=0

Bnζ
n.

In the present chapter and differently to Chapter 3, we choose

δ(ζ) = (1− ζ) + 1
2(1− ζ)2 = 1

2ζ
2 − 2ζ + 3

2 ,

which corresponds to the second-order backward difference formula. From [115], it is
known that the method is of order two,

‖(B(∂t)w)(tn)− (B(∂τt )w)(tn)‖ = O(τ2), uniformly in 0 ≤ tn ≤ T,

for functions w that are sufficiently smooth including their extension by 0 to negative
values of t. An important property of this discretization is that it preserves the coercivity
of the continuous-time convolution in the time discretization.
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Coupling

We now concentrate on the discretization of the additional terms due to the coupling.
The rest of the respective equations is discretized as in [4] and [99] and we refer there
for the details. In the end of this section, the full discretization is stated.
Concerning the LLG part, assuming given exact input data H(t), the right-hand side

term in the n-th step is given by (H(tn), ϕh). This is discretized via

(H(tn), ϕh) ≈ (Hn
h , ϕh).

Concerning the Maxwell part, assuming given exact input G = −µ∂tm, the cor-
responding terms in the uncoupled discretization are given by (∂tm(tn−1), ζHh ) and
(∂tm(tn), ζHh ). These terms are discretized via

(∂tm(tn−1), ζHh ) ≈ (ṁn−1
h , ζHh ), (∂tm(tn), ζHh ) ≈ (ṁn

h, ζ
H
h ).

We therefore also need to impose starting data ṁ0
h, ṁ1

h. In comparison to [99], we also
include conductivity to our physical model (but this is not relevant for the analysis).
This additional term is discretized via

(σE(tn−1/2), ζEh ) ≈ (σEn−1/2
h , ζEh ).

Taken together, we will see, that this still yields a stable scheme under the same CFL-
condition, with the same convergence rates and with comparable cost to the separated
execution of both schemes.

The fully discrete MLLG system

In summary, we determine the approximations to m, and to E, H, and ϕ, ψ by solving
the following fully discrete system: Find, for n ≥ 2, ṁn

h ∈ Th(m̂n
h) (where m̂n

h and ṁn
h

are related via (5.7)), Hn−1/2
h , Enh , H

n
h ∈ Wr

h, and ϕnh, ψ
n
h ∈ Ψr

h such that, for all test
functions ρh ∈ Th(m̂n

h), and ζH,1/2h , ζEh , ζ
H,1
h ∈ Wr

h and vϕh , v
ψ
h ∈ Ψr

h, the following holds

α
[
ṁn
h, ρh

]
Ω

+
[
m̂n
h × ṁn

h, ρh
]
Ω

+
[
∇mn

h,∇ρh
]
Ω

=
[
Hn
h , ρh

]
Ω
, (5.11a)

µ[Hn−1/2
h , ζ

H,1/2
h ]Ω = µ[Hn−1

h , ζ
H,1/2
h ]Ω−

τ

4 [curlhEn−1
h , ζ

H,1/2
h ]Ω−

τ

4 [En−1
h , curlh ζH,1/2h ]Ω

− τ

4 〈ψ
n−1
h , γT ζ

H,1/2
h 〉Γ −

τ

2µ[ṁn−1
h , ζ

H,1/2
h ]Ω, (5.11b)

ε[Enh , ζEh ]Ω = ε[En−1
h , ζEh ]Ω + τ

2 [curlhHn−1/2
h , ζEh ]Ω + τ

2 [Hn−1/2
h , curlh ζEh ]Ω

− τ

2 〈µ
−1
0 ϕ

n−1/2
h , γT ζ

E
h 〉Γ − τ [σEn−1/2

h + Jn−1/2, ζEh ]Ω, (5.11c)

µ[Hn
h , ζ

H,1
h ]Ω = µ[Hn−1/2

h , ζH,1h ]Ω −
τ

4 [curlEnh , ζ
H,1
h ]Ω −

τ

4 [Enh , curl ζH,1h ]Ω

− τ

4 〈ψ
n
h , γT ζ

H,1
h 〉Γ −

τ

2µ[ṁn
h, ζ

H,1
h ]Ω, (5.11d)

〈(
vϕh
vψh

)
,

(
B(∂τt )

(
ϕh
ψh

))n−1/2〉
Γ

= 1
2

〈(
vϕh
vψh

)
,

(
µ−1

0 γTE
n−1/2
h

γTH
n−1/2
h

)〉
Γ

− βτ2µ−1
0 〈v

ψ
h , γTLIFT(∂τψn−1/2

h )〉Γ . (5.11e)

We assume that the following starting values are given: m0
h, ṁ0

h, H0
h, E0

h, ϕ0
h = 0, ψ0

h = 0,
and m1

h, ṁ1
h. We note here that the values to perform the first step n = 2 are obtained

by making a single time step with the sub-system (5.11b)–(5.11e).
Although the LLG and Maxwell equations are coupled in an implicit way, the cost of

one step of the coupled algorithm is as high as one step with both uncoupled algorithms.
This favorable property is explored in detail in Remark 6.4. The role of the stabilising
term in (5.11e) is analogous to [99].
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5.3. Main Results: Error Estimates and Discrete Energy
Inequality

We state the main theorem of this chapter and postpone the proof to Section 5.7.

Theorem 5.1. Assume that the solution components of the Maxwell–Landau–Lifshitz–
Gilbert system (5.1) are sufficiently smooth, the precise regularity conditions are stated
in (5.13).
Consider the full discretization (5.11) of the MLLG system by finite elements of de-

gree r / linearly implicit 2-step BDF method for the LLG equation, and discontinuous
Galerkin elements and continuous boundary elements of degree r / leapfrog method and
Convolution Quadrature discretization for the boundary integral formulation of Maxwell’s
equation.
Then, for any stabilization parameter β ≥ 1, there exist c > 0, τ > 0 and h > 0 such

that for all τ ≤ τ , h ≤ h with
τ ≤ ch, (5.12)

the errors are bounded by, provided that the errors of the starting values satisfy a similar
bound,

max
0≤tn≤T

‖mn
h −m(tn, ·)‖H1(Ω) ≤ C(hr + τ2),

max
0≤tn≤T

‖Enh − E(tn, ·)‖L2(Ω) ≤ C(hr + τ2),

max
0≤tn≤T

‖Hn
h −H(tn, ·)‖L2(Ω) ≤ C(hr + τ2),

where C > 0 is independent of h, τ and n, but depends on the material parameters, on
the regularity of the solution components, and grows exponentially in T .

Sufficient regularity conditions are

m ∈ C3([0, T ], H1(Ω)) ∩ C1([0, T ],W r+1,∞(Ω)) and
∆m+H ∈ C([0, T ],W r+1,∞(Ω)) and
E,H ∈ C3([0, T ], L2(Ω)) ∩ C1([0, T ], Hr+1(Ω)) and
ϕ,ψ ∈ C6

0,∗([0, T ],HΓ ) ∩ C2
0,∗([0, T ], Hr+1/2(Γ )),

(5.13)

where we again point out the condition of vanishing derivatives at t = 0 for the boundary
functions in (2.14). Also note that it holds ϕ = µ0γTH and ψ = −γTE if Theorem 5.1
applies.

Remark 5.2. Note that there is no bound given for the functions on the boundary. An
estimate like

τ
n−1∑
j=0
‖(∂τt )−1ϕ

j+1/2
h − ∂−1

t ϕ(tj+1/2)‖2HΓ

+ ‖(∂τt )−1ψ
j+1/2
h − ∂−1

t ψ(tj+1/2)‖2HΓ ≤ C(hr + τ2)2

can be obtained by some modifications, compare Remark 5.18 and Remark 5.7. This is
the only part, where the results in the coupled situation are weaker then for the uncou-
pled Maxwell system, compare [99, Theorem 7.1], where a similar estimate without the
integration in time via ∂−1

t is stated. We refer to Section 7.2 for a discussion.
The electric and magnetic fields can be evaluated in the exterior domain with the

representation formula (2.8).
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Remark 5.3. Note that the CFL condition (5.12) is exactly the same as for the uncou-
pled algorithms.
The LLG algorithm asks for (see [4, Section 2])

τ4 ≤ ch (5.14)

for a sufficiently small constant c > 0. Having τ ≤ ch and τ ≤ τ0 we may choose
τ0 sufficiently small meet this requirement. Concerning the coupled exterior-interior
algorithm, the CFL condition is given in [99, Section 7] for matrices D, M as

τ‖M−1/2DM−1/2‖2 ≤
√
εµ. (5.15)

One can show that this is equivalent to τ ≤ Ch for a constant C > 0.
Remark 5.4. We note here that the results translate, subject to some purely technical
modifications, to variable and matrix-valued material parameters in the interior: ε, µ :
Ω → R3×3 (symmetric, coercive and bounded) and σ : Ω → R3×3 (non-negative and
bounded), compare Remark 3.16.

5.3.1. Discrete energy inequality
In this section, we state another favorable property of the approximation (5.11): Under
the same CFL condition as before, the discrete energy remains bounded. This is an
important robustness property for the numerical scheme, compare Chapter 3.
We first present the energy inequality for the exact solution (5.1) and then show that

a similar discrete estimate that is satisfied by the approximation (5.11).
Testing the weak problem (5.2) with (ρ, ζE , ζH , vϕ, vψ) = (∂tm,E,H,ϕ, ψ), and then

multiplying the LLG equation (5.2a) by µ (in order to cancel the mixed coupling terms
[∂tm,H]Ω in (5.2a) and (5.2c)) and summing up the equations, we obtain

µα[∂tm, ∂tm]Ω + µ[∇m, ∂t∇m]Ω

+ [ε∂tE,E]Ω + [µ∂tH,H]Ω +
〈(

ϕ

ψ

)
, B(∂t)

(
ϕ

ψ

)〉
Γ

= −[J + σE,E]Ω.
(5.16)

We exploit ∂t‖e‖2L2 = 2(∂te, e), integrate (5.16) in time and use the Cauchy–Schwarz
and Young’s inequalities to get∫ t

0
‖∂tm(s)‖2L2 ds+ ‖∇m(t)‖2L2 + ‖E(t)‖2L2 + ‖H(t)‖2L2 +

∫ t

0

〈(
ϕ

ψ

)
, B(∂t)

(
ϕ

ψ

)〉
Γ

ds

≤ C
(
‖∇m(0)‖2L2 + ‖E(0)‖2L2 + ‖H(0)‖2L2 +

∫ t

0
‖E(s)‖2L2 + ‖J(s)‖2L2 ds

)
,

for a constant C > 0 depending on α, µ, ε, and σ. The coercivity of the Calderon operator
2.16, and finally using Gronwall’s inequality A.1, conclude the energy inequality∫ t

0
‖∂tm(s)‖2L2 ds+ ‖∇m(t)‖2L2 + ‖E(t)‖2L2 + ‖H(t)‖2L2

≤ C
(
‖∇m(0)‖2L2 + ‖E(0)‖2L2 + ‖H(0)‖2L2 +

∫ t

0
‖J(s)‖2L2 ds

)
.

(5.17)

Remark 5.5. Note that the multiplication of the LLG equation with the factor µ for
the cancellation of the coupling term [∂tm,H] (compared to (5.16)) is not necessary, the
Cauchy–Schwarz and Young’s inequalities give for arbitrary δ > 0

[∂tm,H] ≤ δ

2‖∂tm‖
2
L2 + 1

2δ‖H‖
2
L2 .

Therefore the term ‖∂tm‖2L2 can be absorbed and the term ‖H‖2L2 is treated by Gronwall’s
lemma A.1. This is how we proceed in the following.
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Similarly as above, we test with discrete counterparts in the approximation (5.11).
Then we can prove the following discrete energy inequality, which holds under very
weak regularity assumptions on the data.

Proposition 5.6 (Energy inequality). The numerical solution satisfies the following
discrete energy inequality: under the CFL condition (5.12), for a stabilization parameter
β > 1 and for τ ≤ τ0 small enough, we have for 0 ≤ nτ ≤ T that the discrete combined
Maxwell–LLG energy

Enh := EnMax,h + EnLLG,h := ‖Hn
h ‖2Ω + ‖Enh‖2Ω + ‖∇mn

h‖2Ω + τ
n∑
i=0
‖ṁi

h‖2Ω

is bounded by

Enh ≤ C
(
E0
h + E1

LLG,h + τ
n−1∑
i=0
‖J i+1/2‖2Ω

)
.

The constant C depends on T , α, ε, µ, σ but is independent of h and τ .

Proof. The proof of this lemma transfers the arguments of the continuous energy inequal-
ity (5.17) to the fully discrete situation, using time discrete energy estimates obtained
by testing the approximation system (5.11), respectively, with

ρh = ṁn
h,

ζ
H,1/2
h = 1

2H
n−1
h , ζEh = E

n−1/2
h , ζH,1h = 1

2H
n
h,

vϕh = ϕ
n−1/2
h , vψh = ψ

n−1/2
h ,

(5.18)

where we recall (5.8), i.e. that ej = 1
2(ej+1/2 +ej−1/2). We combine the energy estimates

of [4, Lemma 3.2], [27, Lemma 8.1] and [99, Lemma 7.1] and pay special attention to the
coupling terms. To help the reader we will follow the structure of the referenced proofs
below:

Energy estimates for LLG. (cf. [4, Lemma 3.2])
For the LLG equation (5.11a), we have ρh = ṁn

h ∈ Th(m̂n
h) and with

(
m̂n
h×ṁn

h, ṁ
n
h

)
=

0, we obtain for n ≥ 2

α‖ṁn
h‖2L2 + (∇mn

h,∇ṁn
h) = (Hn, ṁn

h).

Summing up from 2 to n we deduce

τ
n∑
j=2

α‖ṁj
h‖

2
L2 + τ

n∑
j=2

[∇mj
h,∇ṁ

j
h]Ω = τ

n∑
j=2

[Hj , ṁj
h]Ω. (5.19)

The A-stability of the second-order BDF method via Dahlquist’s G-stability theory (as
explained in [4, Lemma 3.2 and Lemma 10.1]) gives for constants γ± > 0

τ
n∑
j=2

[∇mj
h,∇ṁ

j
h]Ω ≥ γ−[∇mn

h,∇mn
h]Ω − γ+

(
[∇m0

h,∇m0
h]Ω + [∇m1

h,∇m1
h]Ω
)
. (5.20)

Combining (5.19) and (5.20) concludes

EnLLG,h := ‖∇mn
h‖2L2 + τ

n∑
j=2
‖ṁj

h‖
2
L2 6 C

1∑
i=0
‖∇mi

h‖2L2 + Cτ
n∑
j=2

[Hj , ṁj
h]Ω, (5.21)

with C > 0 depending on α, but independent of h, τ and n.
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Energy estimates for Maxwell. (cf. [27, Lemma 8.1] and [99, Lemma 7.1])
By testing the discrete equations (5.11b)–(5.11e) (where the leapfrog steps for Hj

h

(5.11b) and (5.11d) are expressed using the midpoint values Hj±1/2
h ) with the above

functions (5.18), and then taking the sum of the equations from weighting the boundary
integral equation with τ , after collecting and rearranging the terms, we obtain

1
4µ
(
‖Hn+1/2

h ‖2L2 − ‖Hn−3/2
h ‖2L2

)
+ 1

2ε
(
‖Enh‖2L2 − ‖En−1

h ‖2L2

)
− 1

4τ
(
− [curlhEn−1

h , H
n−1
h ]Ω − [En−1

h , curlhH
n−1
h ]Ω − 〈ψn−1

h , γT H
n−1
h 〉Γ

)
− 1

4τ
(
− [curlhEnh , H

n
h]Ω − [Enh , curlhH

n
h]Ω − 〈ψnh , γT H

n
h〉Γ

)
+ 1

2τ
(
− [curlhE

n−1/2
h , H

n−1/2
h ]Ω − [En−1/2

h , curlhHn−1/2
h ]Ω − 〈ψ

n−1/2
h , γT H

n−1/2
h 〉Γ

)
+ βτ3µ−1

0 〈γ
∗
T ψ

n−1/2
h , γ∗T ∂τe

n−1/2
ψ,h 〉Γ

+ τ

〈(
ϕ
n−1/2
h

ψ
n−1/2
h

)
,

(
B(∂τt )

(
ϕh
ψh

))n−1/2〉
Γ

= − τµ[ṁn−1
h ,

1
2H

n−1
h ]Ω − τµ[ṁn

h,
1
2H

n
h]Ω − τσ‖E

n−1/2
h ‖2L2 − τ [Jn−1/2

h , E
n−1/2
h ]Ω,

(5.22)
where we used the notation

〈γ∗T ϕh, γ∗T ψh〉Γ := [γT ϕh, γT (LIFTψh)]HΓ . (5.23)

Note that the LIFT-operator (5.10) is anti-symmetric w.r.t. the anti-symmetric pairing
such that the term on the right hand side of (5.23) is symmetric and γ∗T is well-defined.
We now rewrite the terms in the second to fourth lines of (5.22). Using that ζ̇n =

(ζn+1/2 − ζn−1/2)/τ (cf. (5.9)) we obtain

− 1
4τ
(
− [curlhEn−1

h , H
n−1
h ]Ω − [En−1

h , curlhH
n−1
h ]Ω − 〈ψn−1

h , γT H
n−1
h 〉Γ

)
− 1

4τ
(
− [curlhEnh , H

n
h]Ω − [Enh , curlhH

n
h]Ω − 〈ψnh , γT H

n
h〉Γ

)
+ 1

2τ
(
− [curlhE

n−1/2
h , H

n−1/2
h ]Ω − [En−1/2

h , curlhHn−1/2
h ]Ω − 〈ψ

n−1/2
h , γT H

n−1/2
h 〉Γ

)
= − 1

16τ
2
(
− [curlhEnh , Ḣn

h ]Ω − [Enh , curlh Ḣn
h ]Ω − 〈ψnh , γT Ḣn

h 〉Γ
)

+ 1
16τ

2
(
− [curlhEn−1

h , Ḣn−1
h ]Ω − [En−1

h , curlh Ḣn−1
h ]Ω − 〈ψn−1

h , γT Ḣ
n−1
h 〉Γ

)
.

(5.24)
Similarly, with the symmetry of the product in (5.23), we obtain

βτ3µ−1
0 [γ∗T ψ

n−1/2
h , γ∗T ∂τψ

n−1/2
h ]HΓ = βτ2µ−1

0

(1
2‖ γ

∗
T ψ

n
h‖2HΓ −

1
2‖ γ

∗
T ψ

n−1
h ‖2HΓ

)
.

(5.25)
Combining the above identities, and introducing the modified energy for the Maxwell
part (for n = 0, we define H−1/2

h from 2H0 = H−1/2 +H1/2)

ẼnMax,h := 1
4µ‖H

n+1/2
h ‖2L2 + 1

2ε‖E
n
h‖2L2 + 1

4µ‖H
n−1/2
h ‖2L2

− 1
16τ

2
(
− [curlhEnh , Ḣn

h ]Ω − [Enh , curlh Ḣn
h ]Ω − 〈ψnh , γT Ḣn

h 〉Γ
)

+ βτ2µ−1
0

1
2‖ γ

∗
T ψ

n
h‖2HΓ ,

(5.26)
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the energy equality (5.22) can then be written as

ẼnMax,h − Ẽn−1
Max,h + τ

〈(
ϕ
n−1/2
h

ψ
n−1/2
h

)
,

(
B(∂τt )

(
ϕh
ψh

))n−1/2〉
Γ

= − τµ

2 [ṁn−1
h , H

n−1
h ]Ω −

τµ

2 [ṁn
h, H

n
h]Ω − τσ‖E

n−1/2
h ‖2L2 − τ [Jn−1/2

h , E
n−1/2
h ]Ω.

(5.27)

Summing up from 1 to n yields

ẼnMax,h − Ẽ0
Max,h + τ

n∑
j=1

〈(
ϕ
j−1/2
h

ψ
j−1/2
h

)
,

(
B(∂τt )

(
ϕh
ψh

))j−1/2〉
Γ

≤ τµ

2

n∑
j=0
|[ṁj

h, H
j
h]Ω| − τ

n∑
j=1

(
σ‖Ej−1/2

h ‖2L2 + τ [J j−1/2
h , E

j−1/2
h ]Ω

)
.

(5.28)

As in the proof of Lemma 8.1 from [27], with the CFL condition (5.15) and the lower
bound on the stabilization parameter β ≥ 1 and using (5.11b), one shows that the
modified Maxwell energy is bounded from below by (using (Hn−1/2

h +H
n+1/2
h )/2 = Hn

h )

cẼnMax,h ≥ 1
2‖H

n−1/2
h ‖2L2 + 1

2‖H
n+1/2
h ‖2L2 + ‖Enh‖2L2 ≥ ‖Hn

h ‖2L2 + ‖Enh‖2L2 , (5.29)

for a constant c > 0 depending on ε and µ. Similarly, using ψ(0) = 0, we get for C > 0

Ẽ0
Max,h ≤ C

(
‖H0

h‖2L2 + ‖E0
h‖2L2

)
. (5.30)

Combining (5.28), (5.29) and (5.30) with the positivity of the Calderon operator, the
Cauchy–Schwarz and Young’s inequalities, and collecting the terms, yields

‖Hn
h ‖2L2 + ‖Enh‖2L2 ≤ C

(
‖H0

h‖2L2 + ‖E0
h‖2L2 + τ

n∑
j=0

∣∣[ṁj
h, H

j
h]Ω

∣∣
+ τ

n∑
j=0
‖Ejh‖

2
L2 + τ

n∑
j=1
‖J j−1/2

h ‖2L2

) (5.31)

for a constant C > 0 depending on µ, ε and σ.
Combination.
We now combine the two energy estimates (5.21) and (5.31). We exploit Cauchy–

Schwarz and Young’s inequalities to get for arbitrary % > 0 (note Hj
h = Hj

h )

τ
n∑
j=0

∣∣[ṁj
h, H

j
h]Ω

∣∣≤ τ ρ2
n∑
j=0
‖ṁj

h‖
2
L2 + τ

1
2ρ

n∑
j=0
‖Hj

h‖
2
L2 .

Choosing % > 0 sufficiently small (independently of h and τ) to absorb the ∑ ‖ṁj
h‖2L2

term, we altogether obtain that the combined discrete MLLG energy

Enh := ‖∇mn
h‖2L2 + τ

n∑
j=0
‖ṁj

h‖
2
L2 + ‖Hn

h ‖2L2 + ‖Enh‖2L2 (5.32)

satisfies the bound

Enh ≤ C

(
E0
h + E1

LLG,h + τ
n∑
j=0
Ejh + τ

n∑
j=1
‖J j−1/2

h ‖2L2

)
(5.33)

for a constant C > 0 depending on α, µ, ε and σ. By applying the discrete Gronwall
inequality (see Lemma A.2 in the Appendix) for sufficiently small τ > 0 (i.e. absorbing
τCEnh ), we obtain the stated energy estimate.
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Remark 5.7. Under the same conditions as in Proposition 5.6, it holds

τ
n∑
i=0

(
‖(∂τt )−1ϕ(ti+1/2)‖2HΓ + ‖(∂τt )−1ψ(ti+1/2)‖2HΓ

)
≤ C

(
E0
h + E1

h + τ
n∑
i=0
‖J i+1/2‖2L2

)
.

(5.34)

The constant C depends on T , α, ε, ε0, µ, µ0, σ but can be chosen independently of h
and τ .

Proof. The assertion can be shown by a modification with factors e−2t/T as in Lemma 3.20.

Remark 5.8. The above proof gives some insight in how we can combine the arguments
from [4] and [99] to prove Proposition 5.6. In the following sections, for simplicity
however, we choose a different approach. Instead of repeating the steps from [4] and
[99] and applying similar arguments as in the proof of Proposition 5.6 for the coupling
terms, we directly use the stability results from [4] and [99]. Therefore we treat the
coupling terms as additional terms on the right hand side, apply the stability results
of the uncoupled equations (which use a Gronwall estimate) and then use absorption
techniques to get rid of the additional terms. A further application of Gronwall’s lemma
concludes the assertion. This results in theoretically larger constants, but reuses more of
the arguments of the uncoupled systems.

5.4. Preparations
In this section, we collect the main results of the underlying papers [4] and [99] in a way
such that they can be applied as needed in the following. We sketch how the proofs in
the respective references have to be modified. The results are collected in a brief version,
for a comprehensive study and the modifications in the proofs, we refer to the respective
references.

5.4.1. The LLG equation
A continuous perturbation result

As in Section 4 from [4], let m(t) be a solution of

α∂tm+m× ∂tm = P(m)(∆m+H). (5.35)

for 0 6 t 6 T , and let m?(t), also of unit length, solve the same equation up to a defect
d(t):

α∂tm? +m? × ∂tm? = P(m?)(∆m? +H) + d. (5.36)
Then, the following perturbation result holds.

Lemma 5.9 (cf. [4, Lemma 4.1]). Suppose that for 0 6 t 6 T , we have

‖m?(t)‖W 1,∞(Ω) + ‖∂tm?(t)‖W 1,∞(Ω) 6 R

and ‖∆m?(t) +H(t)‖L∞(Ω) 6 K.
(5.37)

Then, the error e(t) = m(t)−m?(t) satisfies, for 0 6 t 6 T ,

‖e(t)‖2H1(Ω) +
∫ t

0
‖∂te(s)‖2L2(Ω) ds 6 C

(
‖e(0)‖2H1(Ω) +

∫ t

0
‖d(s)‖2L2(Ω) ds

)
, (5.38)

where the constant C depends only on α, R, K and T .
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Proof. The proof is similar to the proof of [4, Lemma 4.1], with some slight modifications
to obtain the additional bound on

∫ t
0 ‖∂te(s)‖2L2(Ω) ds. This is sketched briefly in the

following:
As in [4, Lemma 4.1], we obtain

α
1
2‖∂te‖

2
L2 + 1

2
d
dt‖∇e‖

2
L2 6 c‖e‖2H1 + c‖d‖2L2 .

With the estimate

1
2

d
dt‖e‖

2
L2 = (∂te, e) 6 1

2‖∂te‖
2
L2 + 1

2‖e‖
2
L2 , i.e. α

4
d
dt‖e‖

2
L2 6

α

4 ‖∂te‖
2
L2 + α

4 ‖e‖
2
L2 ,

we obtain

α

4 ‖∂te‖
2
L2 + min

(α
4 ,

1
2
) d
dt‖e‖

2
H1 6

(
c+ α

4
)
‖e‖2H1 + c‖d‖2L2 .

Integration in time and Gronwall’s inequality (see Lemma A.1 in the Appendix) imply
the stated error bound.

Consistency analysis

As in Section 6.2 from [4], we define the Ritz projection Rh and the L2(Ω)-projection
Ph(m) onto the discrete tangent space at m. We insert the following quantities, which
are related to the exact solution,

mn
?,h = Rhm(tn),

m̂n
?,h =

1∑
j=0

γjm
n−j−1
?,h

/∣∣∣ 1∑
j=0

γjm
n−j−1
?,h

∣∣∣, (5.39)

ṁn
?,h = Ph(m̂n

?,h) 1
τ

2∑
j=0

δjm
n−j
?,h ∈ Th(m̂n

?,h),

into the linearly implicit 2-step BDF approximation: We obtain the defect dnh ∈ Th(m̂n
?,h)

from

α
(
ṁn
?,h, ϕh

)
+
(
m̂n
?,h × ṁn

?,h, ϕh
)

= −
(
∇mn

?,h,∇ϕh
)

+
(
Hn, ϕh

)
+
(
dnh, ϕh

)
(5.40)

for all ϕh ∈ Th(m̂n
?,h).

The consistency error is bounded as follows.

Lemma 5.10 (cf. [4, Lemma 6.2]). If the solution of the LLG equation (5.35) has the
regularity

m ∈ C3([0, T ], L2(Ω)) ∩ C1([0, T ],W r+1,∞(Ω)) and
∆m+H ∈ C([0, T ],W r+1,∞(Ω)),

then the consistency error in (5.40) is bounded by

‖dnh‖L2(Ω) 6 C(τ2 + hr)

for n ≥ 2 with nτ 6 T .

Proof. The assertion directly follows from [4, Lemma 6.2] for the second order scheme,
i.e. inserting k = 2.
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Error equation

The error enh = mn
h −mn

?,h satisfies the error equation that is obtained by subtracting
(5.40) from the BDF approximation for the LLG equation (5.11a) (with Hn

h replaced by
H(tn)). We use the notations

ênm,h = m̂n
h − m̂n

?,h, (5.41)

ėnm,h = ṁn
h − ṁn

?,h = 1
τ

2∑
j=0

δje
n−j
h + snh, (5.42)

with snh = (I− Ph(m̂n
?,h)) 1

τ

2∑
j=0

δjm
n−j
?,h .

We then have the error equation

α[ėnm,h, ϕh]Ω+[ênm,h×ṁn
?,h, ϕh]Ω+[m̂n

h×ėnm,h, ϕh]Ω+[∇enh,∇ϕh]Ω = −[rnm,h, ϕh]Ω, (5.43)

for all ϕh ∈ Th(m̂n
h), where

rnm,h = −(Ph(m̂n
h)− Ph(m̂n

?,h))(∆m?(tn) +H(tn)) + dnh. (5.44)

We repeat the following bound for snh from [4].

Lemma 5.11 (cf. [4, Lemma 6.3]). Under the regularity assumptions

m ∈ C3([0, T ], H1(Ω)) ∩ C1([0, T ],W r+1,∞(Ω))

we have
‖snh‖H1(Ω) 6 C(τ2 + hr). (5.45)

Stability analysis

Similarly as in Section 7 from [4], we derive the following stability estimate.

Lemma 5.12 (cf. [4, Lemma 7.1]). Suppose that the exact solution m(t) is bounded by
(5.37) and that h 6 h and τ 6 τ are sufficiently small. Assume that the right-hand side
in the following estimate (5.46) is bounded by ĉh with a sufficiently small constant ĉ > 0
(note that the right-hand side is of size O((τ2 +hr)2) in the case of a sufficiently regular
solution).
Then, the error enh = mn

h −mn
?,h from the error equation (5.43) satisfies for tn 6 T ,

‖enh‖2H1(Ω) + τ
n∑
j=2
‖ėjm,h‖

2
L2(Ω) 6 C

( 1∑
i=0
‖eih‖2H1(Ω) + τ

n∑
j=2
‖djh‖

2
L2(Ω) + τ

n∑
j=2
‖sjh‖

2
H1(Ω)

)
,

(5.46)
where the constant C is independent of h, τ and n, but depends on α, R, K, M and T .

Proof. The proof is similar to the proof of [4, Lemma 7.1], with some modifications
one obtains the additional bound on τ∑n

j=2 ‖ė
j
m,h‖2L2(Ω). This is sketched briefly in the

following: The arguments in part (a) Preparations. and (b) Energy estimates. from the
proof of [4, Lemma 7.1] can be conducted until we obtain

α
1
2τ

n∑
j=2
‖ėjm,h‖

2
L2 + ‖∇enh‖2L2 6 cτ

n∑
j=2
‖ejh‖

2
H1 + cτ

n∑
j=2

(
‖djh‖

2
L2 + ‖sjh‖

2
H1
)

+ c
1∑
i=0
‖eih‖2H1 ,

(5.47)
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with a constant c > 0 depending on α. As in [4, Lemma 7.1], we derive for C > 0

‖enh‖2L2 6 Cτ
n∑
j=2
‖ėjm,h‖

2
L2 + Cτ

n∑
j=2
‖sjh‖

2
L2 + C

1∑
i=0
‖eih‖2L2 ,

i.e.
α

4C ‖e
n
h‖2L2 −

α

4 τ
n∑
j=2
‖sjh‖

2
L2 −

α

4

1∑
i=0
‖eih‖2L2 6

α

4 τ
n∑
j=2
‖ėjm,h‖

2
L2 . (5.48)

Combining (5.47) and (5.48) gives

α
1
4τ

n∑
j=2
‖ėjm,h‖

2
L2 + α

4C ‖e
n
h‖2L2 + ‖∇enh‖2L2

6 cτ
n∑
j=2
‖ejh‖

2
H1 +

(
c+ α

4
)
τ

n∑
j=2

(
‖djh‖

2
L2 + ‖sjh‖

2
H1
)

+
(
c+ α

4
) 1∑
i=0
‖eih‖2H1

(5.49)

and the discrete version of Gronwall’s Lemma A.2 concludes the assertion.

5.4.2. The Maxwell equations
A continuous perturbation result

As in [99, Section 6.1], we consider the Maxwell system with inhomogeneities j, g :
[0, T ]→ L2(Ω) and ρ, σ : [0, T ]→ HΓ ,

[ε∂tE, ζE ]Ω = 1
2[∇×H, ζE ]Ω + 1

2[H,∇× ζE ]Ω −
1
2〈µ

−1ϕ, γT ζ
E〉Γ + [j, ζE ]Ω,

[µ∂tH, ζH ]Ω = −1
2[∇× E, ζH ]Ω −

1
2[E,∇× ζH ]Ω −

1
2〈ψ, γT ζ

H〉Γ + [g, ζE ]Ω,

〈(
vφ

vψ

)
, B(∂t)

(
ϕ

ψ

)〉
Γ

= 1
2
(
〈vφ, µ−1 γT E〉Γ + 〈vψ, γT H〉Γ

)
+ [vφ, ρ]HΓ + [vψ, σ]HΓ .

(5.50)

The system satisfies the following continuous stability result.

Lemma 5.13 (cf. [99, Lemma 6.1]). The Maxwell energy

E(t) = 1
2
(
ε‖E(t)‖2L2(Ω) + µ‖H(t)‖2L2(Ω)

)
,

satisfies the bound, for 0 ≤ t ≤ T

E(t) ≤ C
(
E(0) +

∫ t

0

(
‖j(s)‖2L2(Ω) + ‖g(s)‖2L2(Ω)

)
ds

+
∫ t

0

(
‖∂2

t ρ(s)‖2HΓ + ‖∂2
t σ(s)‖2HΓ

)
ds
)
,

provided that ρ(0) = ∂tρ(0) = 0 and σ(0) = ∂tσ(0) = 0 and where the constant C > 0
depends on T , ε0, µ0.

Proof. The assertion holds, in comparison to [99, Lemma 6.1], also for the continuous
quantities instead of the space-discretized quantities. Furthermore, by the arguments of
Section 2.2.3, it does not matter whether the inhomogeneities on the boundary ρ, σ are
introduced with respect to the anti-symmetric pairing 〈·, ·〉Γ as in (5.50) or with respect
to the Hilbert space product [·, ·]HΓ as in [99, Equation (6.2)].

By linearity, the same estimates hold for the errors one obtains subtracting (5.50)
from the non-perturbed equations (i.e. (5.50) without the inhomogenieties).
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Consistency analysis

Similar to [99, Section 7] and [27, Section 9], we insert the following quantities, which
are related to the exact solution (also compare Section 5.6.1),

H̃
n−1/2
?,h = IWh

(
H(tn−1/2)− τ2

8 ∂
2
tH(tn−1/2)

)
and

En?,h = IWh E(tn), Hn
?,h = IWh H(tn) and

ϕ
n−1/2
?,h = IΨh ϕ(tn−1/2), ψn?,h = IΨh ψ(tn)

(5.51)

into the leapfrog–Convolution Quadrature approximation of the interior–exterior Max-
well system (5.11a)–(5.11e) (with exact right hand side g(tn) instead of ṁn

h). We obtain
the defects d̃n+1/2

E,h , d̃nH,h, d̃
j+1/2
ϕ,hr , d̃j+1/2

ψ,h in the error equation

[µH̃n−1/2
?,h , ζ

H,1/2
h ]Ω = [µHn−1

?,h , ζ
H,1/2
h ]Ω −

τ

4 [∇× En−1
?,h , ζ

H,1/2
h ]Ω −

τ

4 [En−1
?,h ,∇× ζH,1/2h ]Ω

− τ

4 〈ψ
n−1
?,h , γT ζ

H,1/2
h 〉Γ −

τ

2 [g(tn−1), ζH,1/2h ]Ω + τ

2 [d̃n−1
H,h , ζ

H,1/2
h ]Ω,

[εEn?,h, ζEh ]Ω = [εEn−1
?,h , ζEh ]Ω + τ

2 [∇× H̃n−1/2
?,h , ζEh ]Ω + τ

2 [H̃n−1/2
?,h ,∇× ζEh ]Ω

− τ

2µ0
〈ϕn−1/2

?,h , γT ζ
E
h 〉Γ − τ [j(tn−1/2)− d̃n−1/2

E,h , ζEh ]Ω,

[µHn
?,h, ζ

H,1
h ]Ω = [µH̃n−1/2

?,h , ζH,1h ]Ω −
τ

4 [∇× En?,h, ζ
H,1
h ]Ω −

τ

4 [En?,h,∇× ζ
H,1
h ]Ω

− τ

4 〈ψ
n
?,h, γT ζ

H,1
h 〉Γ −

τ

2 [g(tn), ζH,1h ]Ω + τ

2 [d̃nH,h, ζ
H,1
h ]Ω,〈(

vϕh
vψh

)
,

(
B(∂τt )

(
ϕ?,h

ψ?,h

))n−1/2〉
Γ

= 1
2

〈(
vϕh
vψh

)
,

(
µ−1

0 γTE
n−1/2
?,h + 2d̃n−1/2

ϕ,h

γTH
n−1/2
?,h + 2d̃n−1/2

ψ,h

)〉
Γ

− β τ
2

µ0
〈vψh , γTLIFT(ψ̇n−1/2

?,h )〉Γ .

(5.52)

The consistency errors are bounded as follows.

Lemma 5.14 (cf. [99, Theorem 7.1]). If the solution of the Maxwell system has the
regularity

E,H ∈ C3([0, T ], L2(Ω)) ∩ C1([0, T ], Hr+1(Ω)) and
ϕ,ψ ∈ C6

0,∗([0, T ],HΓ ) ∩ C2
0,∗([0, T ], Hr+1/2(Γ )),

then the defects in the error equation (5.52) are bounded by

‖d̃n+1/2
E,h ‖L2 ≤ C(τ2 + hr), ‖d̃nH,h‖L2 ≤ C(τ2 + hr) and

τ
n∑
j=0
‖(∂τt )2d̃

j+1/2
ϕ,hr ‖

2
HΓ + ‖(∂τt )2d̃

j+1/2
ψ,h ‖2HΓ ≤ C(τ2 + hr)2.

Proof. This can be shown using the higher order estimates from Section 5.6.1 and adapt-
ing the consistency results from [99, Lemma 6.6] for the space discretization. Then the
error of the full discretization can be treated as in [27, Section 9]. Furthermore, the
proof also works if there is an inhomogeneity in the second Maxwell equation (there is
no inhomogeneity in [99] because of the physical model).
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Stability analysis

We state the stability results from [99, Section 7.1] under the CFL condition (compare
Remark 5.3)

τ‖M−1/2DM−1/2‖2 ≤
√
εµ. (5.53)

The fully discrete electric and magnetic field satisfy the following stability bound.

Lemma 5.15 (cf. [99, Lemma 7.1]). Under the CFL condition (5.53) and for a stabi-
lization parameter β ≥ 1, the discrete energy

Enh = ε

2‖E
n
h‖2L2(Ω) + µ

2 ‖H
n
h ‖2L2(Ω)

is bounded for 0 ≤ tn ≤ T by

Enh ≤ C

(
E0
h + τ

n∑
k=0

(
‖jk−1/2
h ‖2L2(Ω) + ‖gkh‖2L2(Ω)

)

+ τ
n−1∑
k=0

(
‖(∂τt )2ρ

k+1/2
h ‖2HΓ + ‖(∂τt )2σ

k+1/2
h ‖2HΓ

))
,

(5.54)

where C > 0 depends on T , ε, ε0, µ, µ0, but is independent of h, τ and n.

Proof. By a precise retracing of the proof of [27, Lemma 8.1], one can see that the term
τ‖jn+1/2

h ‖2L2(Ω) which appears in [99, Lemma 7.1], can be omitted. (And also the term
τ‖(∂τt )2ρ

n+1/2
h ‖2HΓ + τ‖(∂τt )2σ

n+1/2
h ‖2HΓ can be omitted, but this is not needed in the

following.) For simplicity of (5.54), we set jk−1/2
h = 0.

5.5. Continuous Perturbation Result
We will present here a continuous perturbation result for the MLLG system (5.2), which
will be transferred to the discretised setting in Section 5.7 to prove stability, hence, it
gives insight into the main ideas of the coupling and of the fully discrete stability proof.
The perturbation result below is a combination of the energy estimate from Maxwell’s
equations (Lemma 5.13, cf. [99, Section 4.5]) and of the perturbation result for the LLG
equation (Lemma 5.9, cf. [4, Section 4]).

Let us recall the weak form of the MLLG system (5.2) which is solved by (m,E,H,ϕ, ψ).
Furthermore, let (m?, E?, H?, ϕ?, ψ?), with m? also of unit length, solve the same equa-
tion up to a defects (dm, dE , dH , dϕ, dψ), i.e. for all 0 ≤ t ≤ T

α∂tm? +m? × ∂tm? = P(m?)(∆m? +H?) + dm = P(m)(∆m? +H?) + rm,

ε∂tE? −∇×H? = − (J + σE?) + dE ,

µ∂tH? +∇× E? = − µ∂tm? + dH ,

B(∂t)
(
ϕ?
ψ?

)
= 1

2

(
µ−1

0 γTE?
γTH?

)
+
(
dϕ
dψ

) (5.55)

with
rm = −

(
P(m)− P(m?)

)
(∆m? +H?) + dm.

The weak formulation of the perturbed problem is analogous to (5.2) with the addi-
tional defect terms. In particular, explaining the role of rm, the perturbed magnetization
m? also solves the perturbed weak formulation:

α[∂tm?, ρ]Ω + [m?×∂tm?, ρ]Ω + [∇m?,∇ρ]Ω− [H?, ρ]Ω = [rm, ρ]Ω ∀ρ ∈ T (m)∩H1(Ω).
(5.56)
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The errors between the perturbed an non-perturbed solutions are denoted by

em = m−m?, eE = E − E?, eH = H −H?, eϕ = ϕ− ϕ?, eψ = ψ − ψ?.

Subtracting the weak formulation of the perturbed problem (using (5.56) for the mag-
netization m?) from the weak formulation (5.2), we obtain that the errors satisfy the
error equations, for all (ρ, ζE , ζH , vϕ, vψ) ∈ (T (m) ∩H1(Ω))×H(curl,Ω)2 ×HΓ 2,

α[∂tem, ρ]Ω+ [em × ∂tm?, ρ]Ω + [m× ∂tem, ρ]Ω + [∇em,∇ρ]Ω
= [eH , ρ]Ω − [rm, ρ]Ω, (5.57a)

ε[∂teE , ζE ]Ω = 1
2[∇× eH , ζE ]Ω + 1

2[eH ,∇× ζE ]Ω −
1

2µ0
〈eϕ, γT ζE〉Γ

− σ[eE , ζE ]Ω − [dE , ζE ]Ω, (5.57b)

µ[∂teH , ζH ]Ω = − 1
2[∇× eE , ζH ]Ω −

1
2[eE ,∇× ζH ]Ω −

1
2〈eψ, γT ζ

H〉Γ

− µ[∂tem, ζH ]Ω − [dH , ζH ]Ω, (5.57c)〈(
vϕ

vψ

)
,

(
B(∂t)

(
eϕ
eψ

))〉
Γ

= 1
2

〈(
vϕ

vψ

)
,

(
µ−1

0 γT eE
γT eH

)〉
Γ

−
〈(

vϕ

vψ

)
,

(
dϕ
dψ

)〉
Γ

. (5.57d)

We have the following perturbation result.

Lemma 5.16. Let m(t) and m?(t) be weak solutions of unit length of (5.2) and of
the perturbed weak system corresponding to (5.55), respectively, and suppose that, for
0 ≤ t ≤ T , we have

‖m?(t)‖W 1,∞(Ω) + ‖∂tm?(t)‖W 1,∞(Ω) ≤ R
and ‖∆m?(t) +H?(t)‖L∞(Ω) ≤ K.

(5.58)

Additionally, we assume the defects to satisfy dϕ(0) = ∂tdϕ(0) = dψ(0) = ∂tdψ(0) = 0.
Then, the combined error

E(t) := ‖em(t)‖2H1 + ‖eE(t)‖2L2 + ‖eH(t)‖2L2

satisfies, for 0 ≤ t ≤ T ,

E(t) ≤ C
(
E(0) +

∫ t

0

(
‖dm(r)‖2L2 + ‖dE(r)‖2L2 + ‖dH(r)‖2L2

)
dr

+
∫ t

0

(
‖∂2

t dϕ(r)‖2HΓ + ‖∂2
t dψ(r)‖2HΓ

)
dr
)
,

(5.59)

where the constant C > 0 depends only on α, ε, µ, σ, R, K, and T .

Proof. For the LLG part, by |m?| = 1, P(m?) is an projection and ‖P(m?)‖ ≤ 1. We
apply Lemma 5.9 and obtain with d = dm − P(m?)eH for a constant Ĉ > 0

‖e(t)‖2H1(Ω) +
∫ t

0
‖∂te(s)‖2L2(Ω) ds

6
Ĉ

2
(
‖e(0)‖2H1(Ω) +

∫ t

0
‖d(s)‖2L2(Ω) ds

)
,

6 Ĉ
(
‖e(0)‖2H1(Ω) +

∫ t

0
‖dm(s)‖2L2(Ω) ds+

∫ t

0
‖eH(s)‖2L2(Ω) ds

)
.

(5.60)
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For the Maxwell part, we apply Lemma 5.13 by replacing the defect j with σeE + dE
and the defect g with µ∂tem + dH to obtain

‖eE(t)‖2L2 + ‖eH(t)‖2L2

≤ C̃

2

(
‖eE(0)‖2L2 + ‖eH(0)‖2L2 +

∫ t

0
‖σeE + dE‖2L2 + ‖µ∂tem + dH‖2L2

+
∫ t

0
‖∂2

t dϕ‖2HΓ + ‖∂2
t dψ‖2HΓ

)
≤ C̃

(
‖eE(0)‖2L2 + ‖eH(0)‖2L2 +

∫ t

0
‖σeE‖2L2 + ‖dE‖2L2 + ‖µ∂tem‖2L2 + ‖dH‖2L2

+
∫ t

0
‖∂2

t dϕ‖2HΓ + ‖∂2
t dψ‖2HΓ

)
(5.61)

with a constant C̃ > 0 depending on t, µ, µ0, ε and ε0 as long as dϕ(0) = ∂tdϕ(0) =
dψ(0) = ∂tdψ(0).
Combining the LLG estimate (5.60), with the Maxwell estimate (5.61), multiplying

(5.60) with the constant µ2C̃ (without loss of generality µ2C̃ ≥ 1) and adding up the
equations, we obtain for E(t) = ‖em(t)‖2H1 + ‖eE(t)‖2L2 + ‖eH(t)‖2L2 that

E(t) + C̃

∫ t

0
‖µ∂tem‖2L2 ≤ C̃Ĉ

(
E(0) +

∫ t

0
‖em‖2H1 + ‖dm‖2L2 + ‖eH‖2L2

)
+ C̃

(∫ t

0
‖σeE‖2L2 + ‖dE‖2L2 + ‖µ∂tem‖2L2 + ‖dH‖2L2

+
∫ t

0
‖∂2

t dϕ‖2HΓ + ‖∂2
t dψ‖2HΓ

)
.

Absorption of the term
∫ t

0 ‖µ∂tem‖2L2 gives

E(t) ≤ C
(
E(0) +

∫ t

0
‖dm‖2L2 + ‖dE‖2L2 + ‖dH‖2L2

+
∫ t

0
‖∂2

t dϕ‖2HΓ + ‖∂2
t dψ‖2HΓ +

∫ t

0
E(s) ds

)
=: rhs(t) + C

∫ t

0
E(s) ds

for a generic constant C > 0 depending on σ, C̃ and Ĉ and the monotonically increasing
right hand side rhs(t) from (5.59). Finally, Gronwall’s lemma A.1 concludes

E(t) ≤ rhs(t) + C

∫ t

0
rhs(τ) dτ ≤ C rhs(t).

Remark 5.17. In the previous proof (compare Remark 5.8), we directly used the esti-
mates of the underlying papers (recalled in Section 5.4), which use Gronwall’s lemma to
give bounds for m depending on H and to give bounds for E, H depending on ∂tm (via
the right hand side). Then another absorption and Gronwall argument can bound the
dependencies because of the coupling. This is not really necessary, one could also directly
combine the arguments of the Lemmas (resulting in theoretically smaller constants), but
then one would have to repeat all the details of the proofs for the uncoupled problems.
For simplicity however, we directly apply the results from Section 5.4.

Remark 5.18. Similar to Lemma 5.16, one can obtain a bound for Ẽ(t) := E(t) +∫ t
0 ‖∂

−1
t eϕ‖2HΓ + ‖∂−1

t eψ‖2HΓ , by modification with factors e−t/T and considering Laplace
transformed quantities.
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5.6. Consistency Analysis and Error Equations
The goal of this section is to prove suitable bounds on the defects, i.e. the fully discrete
residuals, upon inserting suitable finite element projections of the exact solutions into
the numerical method. After stating the used interpolations and projections and their
properties in Section 5.6.1, we introduce the defects and the corresponding error equation
in Section 5.6.2. In Section 5.6.3, we show that these equations hold indeed and that
the defects can be bounded suitably.

5.6.1. Preliminaries
The error equations arise from taking the equations for the numerical method (5.11)
and subtracting similar equations where suitable projections and interpolations (here
the Ritz and L2 projections and finite element interpolation) into the finite element
space of polynomial degree r of the exact solutions are inserted into the method. The
projections of the exact solutions only fulfill the method up to some defects. In this
subsection we state the interpolations and their properties, the following subsection will
contain the consistency analysis where we will derive error equations and bound the
defects.
For the LLG equation, following [4, Section 6.2], we introduce the Ritz projection

Rh : H1(Ω)→ Srh corresponding to the Poisson–Neumann problem via(
∇Rhϕ,∇ψ

)
+
(
Rhϕ, 1

)(
ψ, 1

)
=
(
∇ϕ,∇ψ

)
+
(
ϕ, 1

)(
ψ, 1

)
for all ψ ∈ Srh, (recall that Srh denotes a finite element space of polynomial degree r). The
following interpolation bound holds by Céa’s lemma and standard interpolation results.

Lemma 5.19. There exists a constant C > 0, independent of h, such that for all
v ∈ Hr+1(Ω) ∩H1

0 (Ω),

‖v − Rhv‖L2(Ω) + h‖∇(v − Rhv)‖L2(Ω) ≤ Chr+1‖v‖Hr+1(Ω).

By Ph(m), we denote the L2(Ω)-orthogonal projection onto the discrete tangent space
Th(m),

Ph(m) : Srh → Th(m).
For Maxwell’s equations, following [99, Section 6.3], we will use the finite element in-

terpolation IWh in Ω and the boundary element interpolation IΨh on Γ (both of polynomial
degree r).

For a suitable set of Lagrange points NΩ
L ⊂ Ω and corresponding (higher order poly-

nomial) Lagrange basis functions ϕΩ
l (see [39, Section 3.6] for further details)

ϕΩ
l (xΩ

k ) =
{

1, l = k,

0, else,
for all xk ∈ NΩ

L

the interpolation in the interior IWh on the discrete approximation space Wr
h is defined

as

IWh (ζ) =
|NΩ
L |∑

k=1
ζ(xΩ

k )ϕΩ
l .

Similarly, the interpolation IΨh on the boundary space Ψr
h is defined for a suitable set of

Lagrange points N Γ
L ⊂ Γ and corresponding (higher order polynomial) Lagrange basis

functions ϕΓl (see [142, Section 4.1.7] for further details) as

IΨh (ζ) =
|NΓL |∑
k=1

ζ(xΓk )ϕΓl .
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For first order elements, the Lagrange points correspond to the nodes of the triangula-
tions in the interior and on the boundary. We assume (as in Section 5.2.3), that each
Lagrange point of the boundary mesh also is a Lagrange point of the interior mesh, i.e.
N Γ
L = NΩ

L ∩ Γ . Therefore it holds

(IΨh γF ) = (γIWh F ) on Γ.

Since the normal vector n is constant on every face of Γ , we have

IΨh (χ× n) = (IΨh χ)× n for χ ∈ C(Γ ),

which implies that IΨh maps HΓ ∩ C(Γ ) into HΓ . Moreover, this yields the very useful
relation

IΨh γTF = γT IWh F for F ∈ C(Ω), (5.62)
as is seen by noting that

IΨh γTF = IΨh (γF × n) = (IΨh γF )× n = (γIWh F )× n = γT IWh F.

It is because of (5.62) that we work in the following with interpolation operators rather
than orthogonal projections. We recall the standard results for the interpolation errors,
see, e.g., [39, Thm. 4.4.20].

Lemma 5.20. There exists a constant C > 0, independent of h, such that for all
v ∈ Hr+1(Ω),

‖v − IWh v‖L2(Ω) + h‖∇(v − IWh v)‖L2(Ω) ≤ Chr+1‖v‖Hr+1(Ω).

The following interpolation error estimate is a standard result for boundary element
approximations, see, e.g., [142, Theorem 4.1.50] or [123].

Lemma 5.21. There exists a constant C > 0, independent of h, such that for all
ϕ ∈ Hr+1/2(Γ ),

‖ϕ− IΨh ϕ‖H1/2(Γ ) ≤ Ch
r‖ϕ‖Hr+1/2(Γ ).

We remark that for piecewise smooth boundaries just piecewise Hr+1/2 regularity is
needed.

5.6.2. Error equations
In summary, the consistency analysis will use the following quantities:

• For the LLG equation:

mn
?,h = Rhm(tn), (5.63a)

m̂n
?,h =

1∑
j=0

γjm
n−j−1
?,h

/∣∣∣ 1∑
j=0

γjm
n−j−1
?,h

∣∣∣, (5.63b)

ṁn
?,h = Ph(m̂n

?,h) 1
τ

2∑
j=0

δjm
n−j
?,h ∈ Th(m̂n

?,h). (5.63c)

• For the Maxwell equations:

H̃
n−1/2
?,h = IWh

(
H(tn−1/2)− τ2

8 ∂
2
tH(tn−1/2)

)
and

En?,h = IWh E(tn), Hn
?,h = IWh H(tn) and

ϕ
n−1/2
?,h = IΨh ϕ(tn−1/2), ψn?,h = IΨh ψ(tn).

(5.64)
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• The fully discrete errors, defined by

enm,h = mn
h −mn

?,h, e
n−1/2
H,h = H

n−1/2
h − H̃n−1/2

?,h and
enE,h = Enh − En?,h, enH,h = Hn

h −Hn
?,h and

e
n−1/2
ϕ,h = ϕ

n−1/2
h − ϕn−1/2

?,h , enψ,h = ψnh − ψn?,h.

(5.65)

Furthermore, by comparing (5.63b) and (5.63c) with their respective counterparts in
(5.6), we obtain

ênm,h = m̂n
h − m̂n

?,h, ėnm,h = ṁn
h − ṁn

?,h = 1
τ

2∑
j=0

δje
n−j
m,h + snh,

where snh = (Id− Ph(m̂n
?,h)) 1

τ

∑2
j=0 δjm

n−j
?,h , cf. [4, equation (6.23)].

We show in the following that the above errors satisfy the MLLG error equation system
below with suitably bounded defects dnm,h, d

n+1/2
E,h , dnH,h, d

j+1/2
ϕ,h and dj+1/2

ψ,h . The MLLG
error equation system reads, for all ρh ∈ Th(m̂n

h), ζH,1/2h , ζEh , ζ
H,1
h ∈ Wr

h, and v
ϕ
h , v

ψ
h ∈ Ψr

h,

α(ėnm,h, ρh)+(ênm,h × ṁn
?,h, ρh) + (m̂n

h × ėnm,h, ρh) + (∇ėnm,h,∇ρh)
= (enH,h, ρh)− (rnm,h, ρh), (5.66a)

µ[en−1/2
H,h , ζ

H,1/2
h ]Ω = µ[en−1

H,h , ζ
H,1/2
h ]Ω −

τ

4 [curlh en−1
E,h , ζ

H,1/2
h ]Ω −

τ

4 [en−1
E,h , curlh ζH,1/2h ]Ω

− τ

4 〈e
n−1
ψ,h , γT ζ

H,1/2
h 〉Γ −

τ

2µ[ėn−1
m,h , ζ

H,1/2
h ]Ω −

τ

2 [dn−1
H,h , ζ

H,1/2
h ]Ω,

(5.66b)

ε[enE,h, ζEh ]Ω = ε[en−1
E,h , ζ

E
h ]Ω + τ

2 [curlh en−1/2
H,h , ζEh ]Ω + τ

2 [en−1/2
H,h , curlh ζEh ]Ω

− τ

2µ
−1
0 〈e

n−1/2
ϕ,h , γT ζ

E
h 〉Γ − τ [σen−1/2

E,h + d
n−1/2
E,h , ζEh ]Ω, (5.66c)

µ[enH,h, ζ
H,1
h ]Ω = µ[en−1/2

H,h , ζH,1h ]Ω −
τ

4 [curlh enE,h, ζ
H,1
h ]Ω −

τ

4 [enE,h, curlh ζH,1h ]Ω

− τ

4 〈e
n
ψ,h, γT ζ

H,1
h 〉Γ −

τ

2µ[ėnm,h, ζ
H,1
h ]Ω −

τ

2 [dnH,h, ζ
H,1
h ]Ω, (5.66d)〈(

vϕh
vψh

)
,

(
B(∂τt )

(
eϕ,h
eψ,h

))n−1/2〉
Γ

=
〈

1
2

(
vϕh
vψh

)
,

(
µ−1

0 γT e
n−1/2
E,h

γT e
n−1/2
H,h

)
−
(
d
n−1/2
ϕ,h

d
n−1/2
ψ,h

)〉
Γ

− β τ
2

µ0
〈vψh , γTLIFT(∂τen−1/2

ψ,h )〉Γ , (5.66e)

with
rnm,h = −(Ph(m̂n

h)− Ph(m̂n
?,h))(∆m(tn) +H(tn)) + dnm,h. (5.67)

5.6.3. Consistency error

We aim for a suitable bound for the defects (dnm,h, d
n−1/2
E,h , dnH,h, d

n−1/2
ϕ,h , d

n−1/2
ψ,h ) that are

given in the error equations (5.66).

Lemma 5.22. If the solution of the MLLG system has the regularity

m ∈ C3([0, T ], H1(Ω)) ∩ C1([0, T ],W r+1,∞(Ω)) and
∆m+H ∈ C([0, T ],W r+1,∞(Ω)) and
E,H ∈ C3([0, T ], L2(Ω)) ∩ C1([0, T ], Hr+1(Ω)) and
ϕ,ψ ∈ C6

0,∗([0, T ],HΓ ) ∩ C2
0,∗([0, T ], Hr+1/2(Γ )),
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then the MLLG error equations (5.66) hold with defects that are bounded by

‖dnm,h‖L2(Ω) ≤ C(τ2 + hr), ‖snh‖H1(Ω) ≤ C(τ2 + hr) and

‖dn+1/2
E,h ‖L2 ≤ C(τ2 + hr), ‖dnH,h‖L2 ≤ C(τ2 + hr) and

τ
n∑
j=0
‖(∂τt )2d

j+1/2
ϕ,h ‖2HΓ + ‖(∂τt )2d

j+1/2
ψ,h ‖2HΓ ≤ C(τ2 + hr)2

for n ≥ 2 concerning the LLG defects (first line) and for n ∈ N concerning the Maxwell
defects (second and third line).

Proof. The proof is split into a part for the LLG equation and a part for the Maxwell
system, which both have a similar structure. First, we repeat the bounds we obtain
from the underlying papers [4] and [99] in the uncoupled situation, so for “exact”, given
right hand sides H(t) and ∂tm, respectively. We denote the corresponding defects with a
tilde and we obtain bounds on the defects covering all terms except the coupling terms.
Then we replace the exact data in the coupling terms by their approximations through
the exact solution, yielding additional errors. Taking together the already bounded
defects and the coupling defects, we obtain the final error equation and under the stated
regularity the final defects can be bounded suitably. So, in summary, we do not have to
repeat the whole consistency analysis for the whole system, but it is almost enough to
focus on the additional coupling errors. For the LLG equation attention has to be paid
to apply the arguments in the right order due to the nonlinearity.
Concerning the LLG equation, as in [4, Section 6.3], we recall, from (5.11), the fully

discrete problem with the linearly implicit BDF method: find ṁn
h ∈ Th(m̂n

h) such that
for all ϕh ∈ Th(m̂n

h),

α(ṁn
h, ϕh) + (m̂n

h × ṁn
h, ϕh) + (∇mn

h,∇ϕh) = (Hn
h , ϕh). (5.68)

By Lemma 5.10 ([4, Section 6.3]) we obtain for the exact H(tn) that for all ϕh ∈ Th(m̂n
h),

α(ṁn
?,h, ϕh) + (m̂n

?,h × ṁn
?,h, ϕh) + (∇mn

?,h,∇ϕh) = (H(tn) + r̃nm,h, ϕh) (5.69)

with
r̃nm,h = −(Ph(m̂n

h)− Ph(m̂n
?,h))(∆m(tn) +H(tn)) + d̃nm,h, (5.70)

where
d̃nm,h ≤ C(τ2 + hr) (5.71)

for n ≥ 2. Subtracting (5.69) from (5.68), the errors enm,h = mn
h−mn

?,h, enH,h = Hn
h −Hn

?,h

satisfy the error equation

α(ėnm,h, ϕh) + (ênm,h × ṁn
?,h, ϕh) + (m̂n

h × ėnm,h, ϕh) + (∇enm,h,∇ϕh)
= (Hn

h −H(tn), ϕh)− (r̃nm,h, ϕh),
(5.72)

for all ϕh ∈ Th(m̂n
h). With

dnm,h = d̃nm,h − (Hn
?,h −H(tn))

and

rnm,h = −(Ph(m̂n
h)− Ph(m̂n

?,h))(∆m(tn) +H(tn)) + dnm,h

= r̃nm,h − (Hn
?,h −H(tn)),

we rewrite the right hand side term as

(Hn
h −H(tn)− r̃nm,h, ρh) = (enH,h − rnm,h, ρh).
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Under the stated regularity assumptions, the coupling consistency error in H can be
bounded (the estimate holds concerning the L2(Ω)-norm) by

Hn
h −H(tn) ≤ Hn

h −Hn
?,h +Hn

?,h −H(tn)
= enH,h +O(hr+1).

This yields ‖dnm,h‖L2 ≤ C(τ2 + hr) and the bound ‖snh‖H1(Ω) ≤ C(τ2 + hr) from Lemma
5.11 (Lemma 6.3 from [4]) concludes the LLG part.
Concerning Maxwell’s equations, we obtain from Lemma 5.14 ([99, Section 7] and [27,

Section 9]), by inserting j(t) = −σE(t)− J and g(t) = ∂tm(t), the defects d̃n+1/2
E,h , d̃nH,h,

d̃
j+1/2
ϕ,hr , d̃j+1/2

ψ,h satisfying

[µH̃n−1/2
?,h , ζH ]Ω = [µHn−1

?,h , ζH ]Ω −
τ

4 [∇× En−1
?,h , ζH ]Ω −

τ

4 [En−1
?,h ,∇× ζH ]Ω

− τ

4 〈ψ
n−1
?,h , γT ζH〉Γ −

τµ

2 [∂tm(tn−1), ζH ]Ω + τ

2 [d̃n−1
H,h , ζH ]Ω,

[εEn?,h, ζE ]Ω = [εEn−1
?,h , ζE ]Ω + τ

2 [∇× H̃n−1/2
?,h , ζE ]Ω + τ

2 [H̃n−1/2
?,h ,∇× ζE ]Ω

− τ

2µ0
〈ϕn−1/2

?,h , γT ζE〉Γ − τ [σE(tn−1/2) + J(tn−1/2)− d̃n−1/2
E,h , ζE ]Ω,

[µHn
?,h, ζH ]Ω = [µH̃n−1/2

?,h , ζH ]Ω −
τ

4 [∇× En?,h, ζH ]Ω −
τ

4 [En?,h,∇× ζH ]Ω

− τ

4 〈ψ
n
?,h, γT ζH〉Γ −

τµ

2 [∂tm(tn), ζH ]Ω + τ

2 [d̃nH,h, ζH ]Ω,〈(
vϕ
vψ

)
,

(
B(∂τt )

(
ϕ?,h

ψ?,h

))n−1/2〉
Γ

= 1
2

〈(
vϕ
vψ

)
,

(
µ−1

0 γTE
n−1/2
?,h + 2d̃n−1/2

ϕ,h

γT H̃
n−1/2
?,h + 2d̃n−1/2

ψ,h

)〉
Γ

− β τ
2

µ0
〈vψ, γTLIFT(ψ̇n−1/2

?,h )〉Γ ,
(5.73)

with

‖d̃n+1/2
E,h ‖L2 ≤ C(τ2 + hr), ‖d̃nH,h‖L2 ≤ C(τ2 + hr) and

τ
n∑
j=0
‖(∂τt )2d̃

j+1/2
ϕ,hr ‖

2
HΓ + ‖(∂τt )2d̃

j+1/2
ψ,h ‖2HΓ ≤ C(τ2 + hr)2.

Subtracting this from (5.11b)–(5.11e), we deduce

[µen−1/2
H,h , ζH ]Ω = [µen−1

H,h , ζH ]Ω −
τ

4 [∇× en−1
E,h , ζH ]Ω −

τ

4 [en−1
E,h ,∇× ζH ]Ω

− τ

4 〈e
n−1
ψ,h , γT ζH〉Γ −

τµ

2 [ṁn−1
h − ∂tm(tn−1), ζH ]Ω −

τ

2 [d̃n−1
H,h , ζH ]Ω,

[εenE,h, ζE ]Ω = [εen−1
E,h , ζE ]Ω + τ

2 [∇× en−1/2
H,h , ζE ]Ω + τ

2 [en−1/2
H,h ,∇× ζE ]Ω

− τ

2µ0
〈en−1/2
ϕ,h , γT ζE〉Γ − τ [σ(En−1/2

h − E(tn−1/2)) + d̃
n−1/2
E,h , ζE ]Ω,

[µenH,h, ζH ]Ω = [µen−1/2
H,h , ζH ]Ω −

τ

4 [∇× enE,h, ζH ]Ω −
τ

4 [enE,h,∇× ζH ]Ω

− τ

4 〈e
n
ψ,h, γT ζH〉Γ −

τµ

2 [ṁn
h − ∂tm(tn), ζH ]Ω −

τ

2 [d̃nH,h, ζH ]Ω,〈(
vϕ
vψ

)
,

(
B(∂τt )

(
eϕ,h
eψ,h

))n−1/2〉
Γ

= 1
2

〈(
vϕ
vψ

)
,

(
µ−1

0 γT e
n−1/2
E,h − 2d̃n−1/2

ϕ,h

γT e
n−1/2
H,h − 2d̃n−1/2

ψ,h

)〉
Γ

− β τ
2

µ0
〈vψ, γTLIFT(ėn−1/2

ψ,h )〉Γ .
(5.74)
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Observing (concerning the L2-norm)

ṁn
h − ∂tm(tn) = ṁn

h − ṁn
?,h + ṁn

?,h − ∂tm(tn)
= ėnm,h +O(τ2 + hr)

and

E
n−1/2
h − E(tn−1/2) = E

n−1/2
h − En−1/2

?,h + E
n−1/2
?,h − E(tn−1/2)

= e
n−1/2
E,h +O(τ2 + hr)

together with setting

d
n−1/2
E,h = d̃

n−1/2
E,h + σ(En−1/2

?,h − E(tn−1/2)), dnH,h = d̃nH,h + µ(ṁn
?,h − ∂tm(tn)),

d
n−1/2
ϕ,h = d̃

n−1/2
ϕ,h , d

n−1/2
ψ,h = d̃

n−1/2
ψ,h ,

concludes the assertion.

5.7. Stability
In this section we will prove stability of the fully discrete MLLG system, that is, we will
prove that the errors at time step n are bounded in terms of the inital errors and the
defects. Combining the stability result with the consistency estimates from Section 5.6,
we are able to proof Theorem 5.1 at the end of this section.
The stability analysis is the fully discrete analogue of the continuous perturbation

result Lemma 5.16. Its proof uses the same ideas – translated to the fully discrete setting
– and it is based on the careful combination of Lemma 5.12 (based on [4, Lemma 7.1])
and Lemma 5.15 (based on [99, Lemma 7.1], [27, Lemma 8.1]), with paying particular
attention to the coupling terms in the MLLG system.
For the LLG part we need sufficient regularity of the solution, a smallness estimate on

the right hand side which results in a mild CFL condition (5.14), and for the Maxwell
part the bound on the stabilization parameter β ≥ 1 and the CFL condition (5.15). As
stated in Remark 5.3, this is covered by the CFL condition (5.12), i.e. for a constant
C > 0

τ ≤ Ch.

Lemma 5.23 (Stability). Let the errors (5.65) satisfy the error equation (5.66) and
suppose that the exact solution is smooth enough (cf. Lemma 5.16). Furthermore assume
that β ≥ 1 and the CFL condition (5.12).
Then, for sufficiently small h ≤ h and τ ≤ τ , the error satisfies the following bound,

‖enm,h‖2H1(Ω) + ‖enE,h‖L2 + ‖enH,h‖L2

≤ C
(
‖e0
m,h‖2H1 + ‖e1

m,h‖2H1 + ‖e0
E,h‖L2 + ‖e0

H,h‖L2 + τ‖ė0
m,h‖2L2 + τ‖ė1

m,h‖2L2

+ τ
n∑
j=2

(
‖djm,h‖

2
L2(Ω) + ‖sjh‖

2
H1(Ω)

)
+τ

n∑
j=0

(
‖dj−1/2

E,h ‖
2
L2(Ω) + ‖djH,h‖

2
L2(Ω)

)
+ τ

n∑
j=0

(
‖(∂τt )2d

j−1/2
ϕ,h ‖2HΓ + ‖(∂τt )2d

j−1/2
ψ,h ‖2HΓ

))
,

(5.75)
for n ≥ 0, where the constant C is independent of h, τ and n, but depends on α, R, K,
M , µ, ε, σ, and T . This estimate holds under the smallness condition that the right-
hand side of this estimate is bounded by ĉh with a sufficiently small constant ĉ (note that
the right-hand side is of size O((τ2 +hr)2) in the case of a sufficiently regular solution).
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Proof. Again, we consider the LLG part and the Maxwell part separately and conclude
with a combination of both.
For the LLG equation, as long as the right hand side in the following estimate (denoted

by rhsLLG in the following) is small enough, we obtain by Lemma 5.12 (based on [4,
Lemma 7.1]) for n ≥ 2

‖enm,h‖2H1(Ω) + τ
n∑
j=2
‖ėjm,h‖

2
L2

≤ Ĉ

2
( 1∑
i=0
‖eim,h‖2H1(Ω) + τ

n∑
j=2
‖djm,h − e

j
H,h‖

2
L2(Ω) + τ

n∑
j=2
‖sjh‖

2
H1(Ω)

)
,

≤ Ĉ
(
‖e0
m,h‖2H1 + ‖e1

m,h‖2H1 + τ
n∑
j=2

(
‖djm,h‖

2
L2(Ω) + ‖ejH,h‖

2
L2(Ω) + ‖sjh‖

2
H1(Ω)

))
=: rhsLLG(t).

(5.76)
It holds for the right hand side rhs(t) in (5.75) for a C > 0

rhsLLG(t) ≤ Crhs(t),

i.e. the smallness assumption for the right hand side of Lemma 5.12 is satisfied, if the
right hand side in the assertion of this lemma is small enough. Furthermore, the estimate
(5.76) holds also for n = 0 and n = 1.

For the Maxwell part, we apply Lemma 5.15 (based on [99, Lemma 7.1]) under the
stated assumptions and obtain that

EnM,h = ‖enE,h‖2L2(Ω) + ‖enH,h‖2L2(Ω)

is bounded, at tn = nτ , by

EnM,h ≤
C̃

2

(
E0
M,h + τ

n∑
k=0

(
‖σek−1/2

E,h + d
k−1/2
E,h ‖2L2(Ω) + ‖µėkm,h + dkH,h‖2L2(Ω)

)
+ τ

n∑
k=0

(
‖(∂τt )2d

k+1/2
ψ,h ‖2HΓ + ‖(∂τt )2d

k+1/2
ϕ,h ‖2HΓ

))
,

≤ C̃
(
E0
M,h + τ

n∑
k=0

(
‖σek−1/2

E,h ‖2L2(Ω) + ‖dk−1/2
E,h ‖2L2(Ω) + ‖µėkm,h‖2L2(Ω) + ‖dkH,h‖2L2(Ω)

)
+ τ

n∑
k=0

(
‖(∂τt )2d

k+1/2
ψ,h ‖2HΓ + ‖(∂τt )2d

k+1/2
ϕ,h ‖2HΓ

))
,

where C̃ > 0 is independent of h, τ and n.
Now a combination of the two estimates, absorption of the error terms and the discrete

Gronwall Lemma A.2 conclude the assertion. Therefore we multiply the LLG-estimate
by µ2C̃ (without loss of generality µ2C̃ ≥ 1) and add it to the Maxwell estimate to
obtain for Enh = ‖enm,h‖2H1(Ω) + EnM,h and n ≥ 0

Enh + C̃
n∑
j=2
‖µėjm,h‖

2
L2(Ω) ≤ C

(
E0
h + ‖enm,h‖2H1(Ω) + τ

n∑
j=2

(
‖djm,h‖

2
L2(Ω) + ‖sjh‖

2
H1(Ω)

)

+ τ
n∑
j=0

(
‖dj−1/2

E,h ‖
2
L2(Ω) + ‖djH,h‖

2
L2(Ω) + ‖(∂τt )2d

j+1/2
ψ,h ‖2HΓ + ‖(∂τt )2d

j+1/2
ϕ,h ‖2HΓ

))

+ C̃
n∑
j=0
‖µėjm,h‖

2
L2(Ω) + Cτ

n∑
j=0
Ejh,
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for a generic constant C > 0 depending on σ, Ĉ and C̃. Direct absorption of the term
C̃
∑n
j=2 ‖µė

j
m,h‖2L2(Ω) and for small enough τ the absorption of τCEnh (i.e. τC ≤ 1/2),

gives

Enh ≤ C

(
E0
h + ‖e1

m,h‖2H1 + τ‖ė0
m,h‖2L2 + τ‖ė1

m,h‖2L2 + τ
n∑
j=2

(
‖djm,h‖

2
L2 + τ

n∑
j=2
‖sjh‖

2
H1

)

+ τ
n∑
j=0

(
‖dj−1/2

E,h ‖
2
L2(Ω) + ‖djH,h‖

2
L2(Ω) + ‖(∂τt )2d

j+1/2
ψ,h ‖2HΓ + ‖(∂τt )2d

j+1/2
ϕ,h ‖2HΓ

))

+ Cτ
n−1∑
j=0
Ejh.

The discrete version of Gronwall’s lemma A.2 concludes the assertion.

Proof of Theorem 5.1. A combination of the interpolation properties from Section 5.6.1
together with the consistency and stability results Lemma 5.22 and Lemma 5.23 yields
the assertion: By the above Lemmas, we have for a sufficiently smooth solution

‖enm,h‖2H1(Ω) + ‖enE,h‖L2 + ‖enH,h‖L2 ≤ C(τ2 + hr).

Recalling (5.65) and employing

‖Rhm(tn)−m(tn)‖H1(Ω) 6 Chr,

‖IWh H(tn)−H(tn)‖L2(Ω) 6 Chr,

‖IWh E(tn)− E(tn)‖L2(Ω) 6 Chr,

implies the error bound (5.33).
The smallness condition imposed in Lemma 5.23 is satisfied under the very mild CFL

condition (compare [4, Remark 3.1]), for a sufficiently small c > 0 (independent of h, τ
and n),

τ2 6 ch1/2.

Compare Remark 5.3 that this is fulfilled under the CFL condition (5.12). Taken to-
gether, this proves Theorem 5.1.





6. Numerics

In this chapter we consider numerical experiments for the algorithms proposed in the
Chapters 3–5.

6.1. Preliminaries
6.1.1. Notation
In this section we present the relevant notation we use in the following for the imple-
mentation.

For a finite dimensional space Vh and a function Eh ∈ Vh, we denote by E(Vh) the
vector of coefficients with respect to the basis φ(Vh) used in the respective software
platform for Vh. Therefore we can represent Eh as

Eh =
|Vh|∑
j=1

Ej(Vh)φj(Vh) = E(Vh) · φ(Vh),

where Ej(Vh) is the j-th coefficient corresponding to the j-th basis function φj(Vh), and
E(Vh), φ(Vh) denote the corresponding vectors of coefficients and basis functions. The
variable φ is exclusively reserved for basis functions and not for coefficients.
For the spaces in the domain Ω, we abbreviate the first order Nédélec space Xh by N1

and the piecewise constant space Yh by N0. The space of scalar linear elements S1(Th,R)
and the space of vector valued linear elements S1(Th,R3) are both abbreviated with the
symbol S1.

A short introduction to the spaces on the boundary can be found in Section 6.1.4
(cf. [144] for further details). We abbreviate the Raviart–Thomas space VRTh by RT , the
Nédélec space VNCh by NC , the Rao–Wilton–Glisson space VRWG

h by RWG, the scaled
Nédélec space VSNCh by SNC , the Buffa–Christiansen space VBCh by BC and the rotated
Buffa–Christiansen space VRBCh by RBC . Due to implementational reasons, some of the
spaces have mathematically identical counterparts on a (barycentrically) refined grid.
We put a B in front of the abbreviation to underline that difference wherever necessary
(this is only relevant for the implementation).
For a sequence (φj)j∈N0 we define the sequence with the j-th entry set to zero as

φ|φj=0 := (φ0, . . . , φj−1, 0, φj+1, . . . ).

6.1.2. Tangent plane scheme
We present the implementation of the tangent plane scheme in FEniCS [8]. As in [4,
Section 2], we build up the saddle point problem to implement the tangent space con-
straint.
Instead of computing the unique solution wjh ∈ Kmj

h
such that for all ρh ∈ Kmj

h

α[wjh, ρh]Ω +
[
mj
h × w

j
h, ρh

]
Ω

= −Ce
[
∇(mj

h + θτwjh),∇ρh
]

Ω
+
[
Hj
h, ρh

]
Ω
,

127
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we use a saddle point approach: We seek (wjh, λh) ∈ S1(Th,R3) × S1(Th,R) such that
for all (ρh, ξh) ∈ S1(Th,R3)× S1(Th,R)

α[wjh, ρh]Ω +
[
mj
h × w

j
h, ρh

]
Ω

= −Ce
[
∇(mj

h + θτwjh),∇ρh
]

Ω
+
[
Hj
h, ρh

]
Ω
,

+ [ρh ·mj
h, λh]Ω + [wjh ·m

j
h, ξh]Ω.

We update and normalize by computing mj+1
h (z) := mj

h
(z)+τwj

h
(z)

|mj
h

(z)+τwj
h

(z)|
, i.e. projecting the

outcome to S1(Th,R3). There are other possibilities to implement the tangent plane
scheme, e.g., one could directly parameterize the tangent space. For simplicity however,
we stick with the present approach.

6.1.3. Convolution Quadrature
In this section we present the formula for the approximation of the Convolution Quadra-
ture weights.
An exact formula for the convolution weight operators Bτ

n is

Bτ
n = 1

2πi

∫
|ζ|=ρ

B

(
δ(ζ)
τ

)
ζ−n−1 dζ

for ρ < 1. As in [115, Formula (3.10)], we approximate the integral by the trapezoidal
rule

Bτ
n ≈

ρ−n

L

L−1∑
l=0

B

(
δ(ζl)
τ

)
e−2πinl/L, n = 0, . . . , N, (6.1)

with L = 2N or L = N evaluation points

ζl = ρe2πil/L, l = 0, . . . , L− 1

and radius of integration ρ = ε0.5/N for a predefined tolerance ε > 0. We compute

Bτ
0 = B

(
δ(0)
τ

)
exactly. Like it is proposed in [115], as

‖B(s)‖ ≤ C|s|2,

we rewrite for m ∈ N0
B(∂τt )φ = (B(s)s−m)(∂τt )(∂τt )mφ

and compute ψ = (∂τt )mφ and (B(s)s−m)(∂τt )ψ independently of each other. The weights
for (∂τt )m are computed exactly (the corresponding function in equation (3.12) with
B(s) = sm is a polynomial). The weights for (B(s)s−m)(∂τt )ψ are approximated via
(6.1) and indicated by Bm,τ

n (again, Bm,τ
0 = B(δ(0)/τ)τmδ(0)−m is computed exactly).

We denote the resulting operator by B(∂̃τt ). For the first order scheme, it is δ(ξ) = 1− ξ
and

∂τt φ(tj) = φj − φj−1

τ
.

To separate the unknown φn+1, we point out

(B(∂̃τt )φ)(tn+1) = Bm,τ
0 ((∂τt )mφ)(tn+1) +

n∑
j=0

Bm,τ
n+1−j((∂τt )mφ)(tj)

= Bm,τ
0

φn+1

τm
+Bm,τ

0 (∂τt )m(φ|φn+1=0)(tn+1) +
n∑
j=0

Bm,τ
n+1−j((∂τt )mφ)(tj)

= Bm,τ
0

φn+1

τm
+B(∂̃τt )(φ|φn+1=0)(tn+1),
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where we recall that (φ|φn+1=0) is the sequence (φ0, φ1, . . . , φn, 0, φn+2, . . . ). For higher
order schemes, the additional factor δ(0) (it is δ(0) = 1 for the first order scheme) comes
into place and the equation reads

(B(∂̃τt )φ)(tn+1) = Bm,τ
0 δ(0)mφ

n+1

τm
+B(∂̃τt )(φ|φn+1=0)(tn+1).

In both cases, the factor δ(0)m/τm cancels in the final discretization matrix on the left
hand side, as Bm,τ

0 = Bτ
0 δ(0)−mτm.

6.1.4. Boundary spaces
We present an overview of the basis functions on the boundary and the corresponding
discrete spaces from Bempp [145]. The degrees of freedom correspond to the edges of
the triangulation and each basis function is assigned to one edge. For the j-th edge with
length lj , we denote the two triangles adjacent to the edge by T+ and T− , A+ and A−
are the areas of the triangles and p+ and p− are the opposite corners of the triangles,
compare Figure 6.1.1.

Figure 6.1.1.: Sketch of j-th edge with adjacent triangles from [90].

For the most of the standard basis functions, there are corresponding scaled basis
functions (scaled by the edge length) implemented, which naturally generate the same
discrete spaces. Even further, there are corresponding basis functions defined on the
barycentrically refined grid, that are mathematically identical to the original basis func-
tions (see also the following sketches, e.g. compare Figure 6.1.2 and Figure 6.1.4). Never-
theless, for the implementation a differentiation between all of them is necessary (inner
products can only be computed if the functions are defined on the same grid). The
barycentrically refined grid arises from adding the centroid on every cell (The centroid
xS of a cell is given by xS = (xC1 + xC2 + xC3)/3 for the corners xC1 , xC2 , xC3 for a two
dimensional grid) to the set of nodes and extend the set of edges by the connecting lines
between the centroid and the corners of every cell, see Figure 6.1.4.
For the Raviart–Thomas (RT) space (compare Figure 6.1.2), the j-th basis function

associated to the j-th edge of the mesh is defined as (compare Figure 6.1.1)

φj(RT )(x) :=


1

2A+
(x− p+), x ∈ T+,

− 1
2A− (x− p−), x ∈ T−.

0, otherwise

The Nédélec (NC) space (compare Figure 6.1.2) is generated by rotated RT functions,
i.e. the j-th basis function is defined as φj(NC) = n × φj(RT ) and it holds φj(RT ) =
φj(NC)× n.
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Figure 6.1.2.: Sketch of Raviart–Thomas (RT) element and Nédélec (NC) element.

The Rao–Wilton–Glisson (RWG) space (compare Figure 6.1.3) is identical to the
Raviart–Thomas space, the basis functions are scaled with the edge length lj of the
associated edge, i.e. φj(RWG) = ljφj(RT ). The basis functions of the scaled Nédélec
space (SNC) (compare Figure 6.1.3), similarly, are scaled with the edge length, it holds
φj(SNC) = ljφj(NC) = n× φj(RWG) and φj(RWG) = φj(SNC)× n.

Figure 6.1.3.: Sketch of Rao–Wilton–Glisson (RWG) element and Scaled Nédélec (SNC)
element.

A Raviart–Thomas basis function defined on the barycentrically refined grid (BRT) is
in theory identical to the RT basis function (compare Figure 6.1.4), for the implementa-
tion we have to distinguish between RT and BRT. Similarly, the Nédélec basis function
on the barycentric grid (BNC), the Rao–Wilton–Glisson element on the barycentric
grid (BRWG) and the scaled Nédélec element on the barycentric grid (BSNC), are the
correpsonding counterparts on the refined grid, compare Figure 6.1.5.
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Figure 6.1.4.: Sketch of Raviart–Thomas element on barycentric grid (BRT) and Nédélec
element on barycentric grid (BNC).

Figure 6.1.5.: Sketch of Rao–Wilton–Glisson element on barycentric grid (BRWG) and
Scaled Nédélec element on barycentric grid (BSNC).

The Buffa–Christiansen (BC) space (compare Figure 6.1.6) contains basis functions
defined on the barycentrically refined grid such that we have curl conforming vector fields
on Γ and the space is L2-dual to the Raviart–Thomas space, for details see [42]. The
rotated Buffa–Christiansen (RBC) basis functions (compare Figure 6.1.6) are defined as
rotations of the corresponding BC basis function, i.e. it holds φj(RBC) = n × φj(BC)
and φj(BC) = φj(RBC)× n.

Figure 6.1.6.: Sketch of Buffa–Christiansen (BC) and Rotated Buffa–Christiansen
(RBC) element.
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6.1.5. Operator concept in Bempp
We briefly illuminate the operator concept in Bempp [145]. For discrete spaces DS
(Domain Space), RS (Range Space), DSRS (Dual Space to the Range Space), let F be
a linear operator which we denote by

F : DS DSRS−−−−→ RS.

We denote the weak form of F by DSRSFDS , it maps coefficients of a function u in the
domain space DS to a weak form tested with functions of the dual space to the range
space DSRS. It holds

[DSRSFDS ]ij =
∫
Γ
φi(DSRS) · F (φj(DS)) ds,

i.e. for all ψ ∈ DSRS

[ψ, F (u)]Γ = ψ(DSRS) · DSRSFDS · u(DS).

We denote the strong form of F by FDS→RS := F
DS

DSRS−−−−→RS
, it maps coefficients of

a function u in the domain space DS to coefficients of F (u) given with respect to the
range space RS. The coefficients of F (u) are determined by testing with functions in
the dual to range space DSRS, i.e. it holds for all i = 1, . . . , |DSRS|

∫
Γ
φi(DSRS) ·

|RS|∑
j=1

(FDS→RS · u(DS))jφj(RS)

 ds =
∫
Γ
φi(DSRS) · F (u) ds.

Therefore it is for all ψ ∈ DSRS

[ψ, (FDS→RS · u(DS)) · φ(RS)]Γ = [ψ,F (u)]Γ

and we have
FDS→RS = (DSRSIdRS)−1

DSRSFDS .

We introduce the projection PDSRS : L2(Γ ) → RS, u 7→ PDSRSu as the element
PDSRSu ∈ RS satisfying for all ψ ∈ DSRS

[ψ, PDSRSu]Γ = [ψ, u]Γ .

Therefore we can express the strong form as

(PDSRSF (u))(RS) = FDS→RS ·U(DS).

6.1.6. Implemented operators
The trace mapping is implemented via the Bempp function

γT : N1 RT−−→ RT,

i.e. (γT )N1→RT is the matrix that maps coefficients with respect to N1 (abbreviation for
Xh) to coefficients given with respect to RT on the boundary. It holds for Eh ∈ Xh

γTEh =
(
(γT )N1→RT ·E(N1)

)
·φ(RT),

i.e.
(γTE)(RT ) = (γT )N1→RT ·E(N1).
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An application of n × · can be implemented via a change of the basis functions, by
n× φj(RT ) = φj(NC), we have

n× γTEh = ((γT )N1→RT ·E(Xh)) · φ(NC).

The Calderon operator is implemented in Bempp via

B̂(k) =
(
D̂ Ê

F̂ Ĝ

)
,

where
D̂ : BRWG

RBC−−−→ BRWG Ê : BC RBC−−−→ BRWG

F̂ : BRWG
BSNC−−−−→ BC Ĝ : BC BSNC−−−−→ BC

. (6.2)

After rescaling this operator, i.e. setting

B̃(k) :=
(
D̃ Ẽ

F̃ G̃

)
:=

 D̂
√

µ0
ε0
Ê√

ε0
µ0
F̂ Ĝ

 ,
the condition for suitable exterior data of the time harmonic Maxwell equations can be
rewritten as: The traces γTE, γTH are suitable exterior data for the problem (with
=k > 0, s = −ik/√µ0ε0)

−sε0u+∇× v = 0,
sµ0v +∇× u = 0,

γTu = γTE,

γT v = γTH,

if and only if (1
2 − B̃(k)

)(
γTE

γTH

)
=
(
γTE

γTH

)
. (6.3)

Comparing this with the compatibility condition (2.26), we rewrite (6.3) for k = i
√
µ0ε0s

as

−1
µ0

(
µ−1

0 Ẽ −D̃
G̃ −µ0F̃

)
(i√µ0ε0s)

(
µ0γTH

−γTE

)
= 1

2µ0

(
γTE

µ0γTH

)
.

We deduce that the Calderon operator from Section 2.3 is given as

B(s) = −1
µ0

(
µ−1

0 Ẽ −D̃
G̃ −µ0F̃

)
(i√µ0ε0s). (6.4)

The overview of the different rescalings in Section A.3 in the Appendix confirms this
derivation, i.e. we have that B̂(k) = BSB(k), B̃(k) = BSV (k) and B(s) = BKL(s).

6.1.7. Changes in Bempp-cl
The implementation details in Section 6.2.1 and Section 6.3.1 are with respect to the
Bempp version 3.3.4. In the mean time, a newer version of Bempp, Bempp-cl has been
published. For an overview of the changes (and the performance gains) we refer to [35].
We only state the few changes that are relevant for the algorithms in this thesis and
especially for the implementation details in Section 6.4.1
The differentiation between scaled and unscaled basis functions has been removed,

i.e. only the scaled versions RWG (instead of RT ) and SNC (instead of NC ) remain.



6. Numerics 134

Furthermore, the mathematically irrelevant barycentrically refined spaces have been
removed, i.e. we do not have to distinguish any more between RWG and BWRG, and
SNC and BSNC basis functions (the latter have been removed).
The scaling by the factor

√
µ0/ε0 in Section 6.1.6 to obtain the desired B̃ is not

necessary any more. This is done automatically by the implemented routines if we pass
the magnetic and electric permeabilities µ0 and ε0 to them.
Even further, the Calderon operator can be generated with different domain, range

and dual to range spaces than in (6.2), i.e. in Section 6.4.1 we choose all sub-operators
to map

D̂, Ê, F̂ , Ĝ : RWG
SNC−−−→ RWG.

6.2. Weak Convergence for the MLLG System
6.2.1. Implementation details
In this section we present the implementation details of Algorithm 3.12 in FEniCS and
Bempp. In comparison to Algorithm 3.12, the tangent plane scheme is formulated as
a saddle point problem (cf. Section 6.1.2), the Convolution Quadrature weights are
approximated by a quadrature rule (cf. Section 6.1.3) and the trace variable ϕ and the
corresponding test functions are elements of the Buffa–Christiansen space instead of the
Raviart–Thomas space.
Algorithm 6.1. Input: Discretized initial data m0

h, H0
h, E0

h, ϕ0
h = 0, ψ0

h = 0 and
parameter θ ∈ [0, 1].
For j = 0, 1, 2, . . . , N − 1 we compute

• For givenmj
h, H

j
h we compute the unique solution (wjh, λh) ∈ S1(Th,R3)×S1(Th,R)

such that for all (ρh, ξh) ∈ S1(Th,R3)× S1(Th,R)

α[wjh, ρh]Ω +
[
mj
h × w

j
h, ρh

]
Ω

= −Ce
[
∇(mj

h + θτwjh),∇ρh
]

Ω
+
[
Hj
h, ρh

]
Ω

+ [ρh ·mj
h, λh]Ω + [wjh ·m

j
h, ξh]Ω.

(6.5)

• We compute Ej+1
h , Hj+1

h ∈ Xh and ϕj+1
h ∈ VBCh , ψj+1

h ∈ γT (Xh) such that we have
for all ζEh , ζHh ∈ Xh and vϕh ∈ VBCh , vψh ∈ γT (Xh)

[ε∂τt E
j+1
h , ζEh ]Ω = 1

2[∇×Hj+1
h , ζEh ]Ω + 1

2[Hj+1
h ,∇× ζEh ]Ω

− 1
2µ0
〈ϕj+1

h , γT ζ
E
h 〉Γ − [σEj+1

h + J j+1, ζEh ]Ω,

(6.6)

[µ∂τt H
j+1
h , ζHh ]Ω = −1

2[∇× Ej+1
h , ζHh ]Ω −

1
2[Ej+1

h ,∇× ζHh ]Ω

− 1
2〈ψ

j+1
h , γT ζ

H
h 〉Γ − [µwjh, ζ

H
h ]Ω,

(6.7)〈(
vϕh
vψh

)
,

(
B(∂̃τt )

(
ϕh
ψh

))
(tj+1)

〉
Γ

= 1
2
(
〈vϕh , µ

−1
0 γTE

j+1
h 〉Γ + 〈vψh , γTH

j+1
h 〉Γ

)
.

(6.8)

• Define mj+1
h by projecting

mj+1
h (z) := mj

h(z) + τwjh(z)
|mj

h(z) + τwjh(z)|
to S1.
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Output: Sequence of approximations mj
h, E

j
h, H

j
h, ϕ

j
h, ψ

j
h for j = 0, 1, 2, . . . , N .

For the LLG part, after separating known and unknowns, we build the (bi)linear forms
from equation (6.5) in FEniCS syntax and solve the equation with implemented routines.
For the Maxwell equations, the term [∂τt E

j+1
h , ζEh ]Ω is a product of Nédélec functions,

i.e. for the mass matrix
M1 := N1IdN1,

it holds

[∂τt E
j+1
h , ζEh ]Ω = 1

τ

(
ζE(N1) ·M1 ·Ej+1(N1)− ζE(N1) ·M1 ·Ej(N1)

)
.

We define the symmetric differential operator

D := 1
2 N1(∇×)N1 + 1

2(N1(∇×)N1)T

and rewrite
1
2[∇×Hj+1

h , ζEh ]Ω + 1
2[Hj+1

h ,∇× ζEh ]Ω = ζE(N1) ·D ·Hj+1(N1).

For the coupling to the boundary integral equation via the terms 〈ϕh, γT ζEh 〉Γ and
〈ψh, γT ζHh 〉Γ , we express the anti-symmetric pairing 〈·, ·〉Γ as 〈ζ, ξ〉Γ = [ζ × n, ξ]Γ and
build up the respective terms for rotated basis functions with respect to the L2(Γ )-
product [·, ·]Γ . For the products [φj(BC) × n, φj(RT )]Γ and [φj(RWG) × n, φj(RT )]Γ
we have to interchange the RT functions by the BRT functions (to compute the weak
forms, the functions have to be defined on the same grid) and obtain

〈ϕh, γT ζh〉Γ = [ϕh × n, γT ζ]Γ
= −ϕ(BC) · RBCIdBRT · (γT )N1→RT · ζ(NC)

and

〈ψh, γT ζh〉Γ = [ψh × n, γT ζ]Γ
= −ψ(RWG) · SNCIdBRT · (γT )N1→RT · ζ(NC).

Most of the remaining terms in the first and second equation can be treated analogously,
we have

−[σEj+1
h + J j+1

h , ζEh ]Ω = −ζE(N1) ·M1 ·
(
σEj+1(N1) + Jj+1(N1)

)
,

[∂τt H
j+1
h , ζHh ]Ω = 1

τ

(
ζH(N1) ·M1 ·Hj+1(N1)− ζH(N1) ·M1 ·Hj(N1)

)
,

−[µwjh, ζ
H
h ]Ω = −µζH(N1) · N1IdS1 ·wj(S1)

and
−1

2[∇× Ej+1
h , ζHh ]Ω −

1
2[Ej+1

h ,∇× ζHh ]Ω = −ζH(N1) ·D ·Ej+1(N1).

For the equation on the boundary, in Algorithm 6.1 the discrete test functions are RT and
BC functions with respect to the anti-symmetric pairing 〈·, ·〉Γ . This can be equivalently
reached by using n × φj(RT ) = φj(NC) and n × φj(BC) = φj(RBC) functions with
respect to the L2(Γ ) scalar product [·, ·]Γ . For the NC functions, it is equivalent to test
with the scaled Nédélec functions on the refined grid, instead. The discretized boundary
equation takes the form

(RBCSNC)B(∂τt )( BC
RWG)

(
ϕ(BC)
ψ(RWG)

)
= 1

2µ0

(
RBCIdBRT 0

0 SNCIdBRT

)(
(γT )N1→RTE(N1)
µ0(γT )N1→RTH(N1)

)
.
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We multiply this equation by −1, to obtain an overall positive definite discretization
matrix, because (RBCSNC)B(0)( BC

RWG) is negative definite: It holds for ζ, ξ ∈ L2(Γ )

〈ζ, ξ〉Γ = [ζ × n, ξ]Γ

and for the basis functions we have φj(RBC) = n × φj(BC) = −φj(BC) × n and
φj(SNC) = n× φj(RWG) = −φj(RWG)× n. So it is

ζ

(
BC

RWG

)
(RBCSNC)B(δ(0)/τ)( BC

RWG)ζ
(
BC

RWG

)
= [n× ζ,B(δ(0)/τ))ζ]

= −〈ζ,B(δ(0)/τ))ζ〉
≤ −c‖ζ‖2HΓ

negative definite
We summarize and build up the resulting system. We recall the mass matrices

M1 = N1IdN1,

M2 = RBCIdBRT (γT )N1→RT ,

M3 = BSNCIdBRT (γT )N1→RT ,

the symmetric, discrete differential operator

D = 1
2 N1∇×N1 + 1

2(N1∇×N1)T

and the Calderon sub operators

B1,1 = −1
µ2

0

√
µ0
ε0

RBCÊBC(i√µ0ε0δ(0)/τ),

B1,2 = 1
µ0

RBCD̂BRWG(i√µ0ε0δ(0)/τ),

B2,1 = −1
µ0

BSNCĜBC(i√µ0ε0δ(0)/τ),

B2,2 =
√
ε0
µ0

BSNC F̂BRWG(i√µ0ε0δ(0)/τ).

The overall discretization matrix then is

Lhs :=


( ε0τ + σ)M1 −D −1

2µ0
MT

2 0
D µ0

τ M1 0 −1
2 M

T
3

1
2µ0

M2 0 −B1,1 −B1,2
0 1

2M3 −B2,1 −B2,2


with right hand side

Rhsi :=


ε0
τ M1E

i(N1)−M1J
i+1(N1)

µ0
τ M1H

i(N1)− N1IdS1w
i(S1)

( RBC
BSNC)B( BC

BRWG)(∂̃τt )
(

ϕ(BC)
ψ(BRWG)

)
|( ϕ(BC)
ψ(BRWG))

i+1
=0

(ti+1)


and the system to solve in the i-th time step is

Lhs


Ei+1(Xh)
Hi+1(Xh)
ϕi+1(BC)
ψi+1(RWG)

 = Rhsi. (6.9)
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6.2.2. Numerical experiments
In this section we present some numerical experiments obtained with Algorithm 6.1.

Convergence in time

We consider an example on the three-dimensional unite cube

Ω = [0, 1]3,

where we choose the observation time and the material parameters as

T = 0.125, ε = ε0 = 1.1, µ = µ0 = 1.2, σ = 1.3, α = 1.4, Ce = 1.5,

as well as the initial and input data

m0 =

1
0
0

 , E0 = H0 =

0
0
0

 , ϕ0 = ψ0 =

0
0
0

 , J(t) = (1− t/T )

100
0
0

 .
Finally, the tolerance and restart parameter for the iterative solver (GMRES), the implic-
ity parameter for the tangent plane scheme and the Convolution Quadrature parameters
are set to

tolgmres = 10−8, restart = 20, θ = 1.0, ρN = tolgmres1/(2N), L = N.

As discretized initial data and input data we use L2-projections of the exact data onto
the respective approximation spaces. We look at the time discretization error on a fixed
coarse mesh and compare the approximations to a reference solution computed on a fine
time-grid.
We use time step sizes τi = T · 2−i, for i = 0, . . . , 8, and the reference solution is

computed with τref = min(τi)/2. We compute the maximum over the time errors as

errG,i = max
j=0,...,Ni

‖Gjh −G
ref
h (tj)‖ for G ∈ {m,E,H,ϕ, ψ}

and obtain first order convergence results for E and H in the L2(Ω)-norm, see Fig-
ure 6.2.1.

Figure 6.2.1.: Convergence in time for E (left) and H (right).

For the boundary variables ϕ and ψ, we obtain first order convergence results in L2(Γ ),
see Figure 6.2.2.
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Figure 6.2.2.: Convergence in time for ϕ (left) and ψ (right).

Especially in this experiment, the convergence rate for the magnetization is slightly
higher than 1 for small τ , as then the approximation is already near to the reference
solution, see Figure 6.2.3.

Figure 6.2.3.: Convergence in time for m.

Convergence in space

For the following experiment, we consider the three-dimensional unite cube

Ω = [0, 1]3,

where we choose the observation time and the material parameters as

T = 0.25, ε = ε0 = 1.1, µ = µ0 = 1.2, σ = 1.3, α = 1.4, Ce = 1.5,

as well as the initial data fitting to the exact solutions below. The RHS-input data is
chosen such that the exact solution is given by

m(x, t) :=

−(x3
1 − 3x2

1/2 + 1/4) sin(3πt/(10T ))√
1− (x3

1 − 3x2
1/2 + 1/4)2

−(x3
1 − 3x2

1/2 + 1/4) cos(3πt/(10T ))


and

E(t, x) = t2

sin(πx1)2 sin(πx2)2 sin(πx3)2

0
0

 , H = −∂−1
t ∇× E/µ, ϕ = ψ = 0.
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Finally, the tolerance and restart parameter for the iterative solver (GMRES), the
stabilization parameter and the Convolution Quadrature parameters are set to

tolgmres = 10−8, restart = 20, β = 1, ρN = tolgmres1/(2N), L = N.

As discretized initial data and input data we use interpolations to the respective spaces.
We look at the space discretization error on a fixed time grid such that the time error is
small enough (N = 20 for T = 0.25 is small enough) and compare the approximations
with the exact solution.
We use mesh sizes h =

√
3 ≈ 1.7,

√
3/2, . . . ,

√
3/12 ≈ 0.14 and compute the maximum

space-errors (as norm we use L2(Ω) and H1(Ω) for m, L2(Ω) for E, H and L2(Γ ) for ϕ,
ψ) as

errG,i = max
j=0,...,20

‖Gjhi −G(tj)‖, G ∈ {m,E,H,ϕ, ψ}

We obtain for the magnetization second order convergence in the L2(Ω)-norm and first
order convergence in the H1(Ω)-norm, see Figure 6.2.4.

Figure 6.2.4.: Convergence in space for m in the L2(Ω)-norm (left) and H1(Ω)-norm
(right).

We obtain first order convergence for the electric and magnetic fields in the L2(Ω)-
norm, see Figure 6.2.5

Figure 6.2.5.: Convergence in space in the L2(Ω)-norm for E (left) and H (right).

We obtain first order convergence for the boundary values in the L2(Γ )-norm, see
Figure 6.2.6:
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Figure 6.2.6.: Convergence in space in the L2(Γ )-norm for ϕ (left) and ψ (right).

6.3. Weak Convergence for the Maxwell System
6.3.1. Implementation details
In this section we present the implementation details of Algorithm 4.8 used in Chapter 4.
The implemented algorithm differs from Algorithm 4.8 by using Buffa–Christiansen

elements for the trace variable ϕh and the corresponding test functions vϕh (instead of RT
functions). The Convolution Quadrature weights are approximated as in Section 6.1.3.

Algorithm 6.2. Input: Discretized initial data H0
h, E0

h and ϕ0 = 0.
For j = 0, 1, 2, . . . , N − 1

• Compute (Ej+1
h , Hj+1

h ) ∈ Xh × Yh and ϕj+1
h ∈ VBCh such that we have for all

(ζEh , ζHh ) ∈ Xh × Yh and vϕh ∈ VBCh

[ε∂τt E
j+1
h , ζEh ]Ω +

〈(
0

−γT ζEh

)
,

(
B(∂̃τt )

(
ϕh
−γTEh

))
(tj+1)

〉
Γ

= [Hj+1
h ,∇× ζEh ]Ω −

1
2µ0
〈ϕj+1

h , γT ζ
E
h 〉Γ − [σEj+1

h + J j+1
h , ζEh ]Ω

(6.10)
[µ∂τt H

j+1
h , ζHh ]Ω = −[∇× Ej+1

h , ζHh ]Ω (6.11)
1

2µ0
〈vϕh , γTE

j+1
h 〉Γ =

〈(
vϕh
0

)
,

(
B(∂̃τt )

(
ϕh
−γTEh

))
(tj+1)

〉
Γ

. (6.12)

Output: Sequence of approximations Ejh, H
j
h, ϕ

j
h.

We separate knows and unknowns and rewrite (6.10)–(6.12) with

Bτ
0 = B(δ(0)/τ) =

(
B1,1 B1,2
B2,1 B2,2

)
as

[(ε/τ + σ)Ej+1
h , ζEh ]Ω + 〈γT ζEh , B2,2γTE

j+1
h 〉Γ

− [Hj+1
h ,∇× ζEh ]Ω + 〈

(
B2,1 + (2µ0)−1

)
ϕj+1
h , γT ζ

E
h 〉Γ

= [ε/τEjh, ζ
E
h ]Ω − [J j+1

h , ζEh ]Ω +
〈(

0
γT ζEh

)
,

(
B(∂̃τt )

(
ϕh
−γTEh

))
|( ϕh
−γT Eh

)j+1=0
(tj+1)

〉
Γ

,
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[∇× Ej+1
h , ζHh ]Ω + [µ/τHj+1

h , ζHh ]Ω = [µ/τHj
h, ζ

H
h ]Ω

and

−〈vϕh ,
(
(2µ0)−1 +B1,2

)
γTE

j+1
h 〉Γ + 〈vϕh , B1,1ϕ

j+1
h 〉Γ

= −
〈(

vϕh
0

)
, B(∂̃τt )

(
ϕh
−γTEh

)
|( ϕh
−γT Eh

)j+1=0
(tj+1)

〉
Γ

.

We describe in the following how to discretize each of the terms in FEniCS and Bempp.
The term [(ε/τ + σ)Ej+1

h , ζEh ]Ω is a product of Nédélec functions, i.e. for the mass
matrix

M1 := N1IdN1,

it holds
[(ε/τ + σ)Ej+1

h , ζEh ]Ω = (ε/τ + σ)ζE(N1) ·M1 ·Ej+1(N1).

For the term 〈γT ζEh , B2,2γTE
j+1
h 〉Γ , we express the anti-symmetric pairing 〈·, ·〉Γ in terms

of the L2(Γ )-product [·, ·]Γ , i.e. it holds for ζ, ξ ∈ L2(Γ )

〈ζ, ξ〉Γ = [ζ × n, ξ]Γ .

The discretized Calderon sub operator Bdcd
2,2 is given as (compare (6.4))

Bdcd
2,2 := BSNC F̃BRWG(i√µ0ε0),

so the coefficients of the input function should be given with respect to the BRWG space.
If we apply the trace matrix (γT )N1→RT to Ej+1(N1), we obtain coefficients of γTEj+1

given with respect to RT-functions. This is why we additionally apply (Id)BRT→BRWG,
to convert the coefficients. In fact, (Id)BRT→BRWG is a diagonal matrix and the entries
are the edge lengths to the power −1. Altogether, it holds

(γTEj+1)(BRWG) = (Id)BRT→BRWG · (γT )N1→RT ·Ej+1(N1).

The coefficients of the test function should be given with respect to the BSNC basis, by
φj(BSNC) = n× φj(BRWG) = −φj(BRWG)× n, we have

γT ζ
E
h × n = ((Id)BRT→BRWG(γT )N1→RT ζ

E(N1)) · (φ(BRWG)× n)
= (−(Id)BRT→BRWG(γT )N1→RT ζ

E(N1)) · φ(BSNC).

All in all, we obtain

〈γT ζEh , B2,2γTE
j+1
h 〉Γ = ζE(N1) · (−(Id)BRT→BRWG · (γT )N1→RT )T ·

Bdcd
2,2 · (Id)BRT→BRWG · (γT )N1→RT ·Ej+1(N1).

To discretize −[Hj+1
h ,∇× ζEh ]Ω, we define the differential operator

D := N0(∇×)N1

and it holds
−[Hj+1

h ,∇× ζEh ]Ω = ζE(N1) · (−D)T ·Hj+1(N0).

We set (compare (6.4))

Bdcd
2,1 := − 1

µ0τm
BSNCG̃BC(i√µ0ε0δ(0)/τ)
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and deduce〈(
B2,1+ 1

2µ0

)
ϕj+1, γT ζE

〉
Γ

=
[
n× γT ζE ,

(
B2,1+ 1

2µ0

)
ϕj+1

]
Γ

= ζE(N1)((Id)BRT→BRWG(γT )N1→RT )T ·Bdcd
2,1 ϕ

j+1(BC)

+ 1
2µ0

ζE(N1)(γT )N1→RT )T BNC(Id)BCϕj+1(BC).

By B1,∗ and B2,∗ we denote the first and second line of the Calderon operator, respec-
tively. With the abbreviation

G1 := (γT )N1→BRWG := (Id)BRT→BRWG · (γT )N1→RT ,

we obtain〈(
0

γT ζEh

)
,

(
B(∂̃τt )

(
ϕh
−γTEh

))
|( ϕh
−γT Eh

)j+1=0
(tj+1)

〉
Γ

=

ζE(N1)(−G1)T BSNC(B2,∗)( BC
BRWG)(∂̃τt )

(
ϕ(BC)
−G1E(N1)

)
|( ϕ(BC)
−G1E(N1))

j+1
=0

(tj+1).

Most of the remaining terms in the first and second equation can be treated analogously,
we have

[ε/τEjh, ζ
E
h ]Ω = ε/τζE(N1) ·M1 ·Ej(N1),

−[J j+1
h , ζEh ]Ω = −ζ(N1) ·M1 · Jj+1(N1),

[∇× Ej+1
h , ζHh ]Ω = ζH(N0) ·D ·Ej+1(N1),

[µ/τHj+1
h , ζHh ]Ω = µ/τζH(N0) · N0IdN0 ·Hj+1(N0),

[µ/τHj
h, ζ

H
h ]Ω = µ/τζH(N0) · N0IdN0 ·Hj(N0).

For
Bdcd

1,2 := 1
µ0

RBCD̃BRWG(i√µ0ε0δ(0)/τ),

it holds (by φj(RBC) = n× φj(BC) = −φj(BC)× n) that

−〈vϕh ,
(
(2µ0)−1 +B1,2

)
γTE

j+1
h 〉Γ = [n× vϕh ,

(
(2µ0)−1 +B1,2

)
γTE

j+1
h ]Γ

= 1
2µ0

vϕ(BC) · RBCIdBRT · (γT )N1→RT ·Ej+1(N1)

+ vϕ(BC) ·Bdcd
1,2 · (γT )N1→BRWG ·Ej+1(N1).

Furthermore we define

Bdcd
1,1 := −1

µ2
0
RBCẼBC(i√µ0ε0δ(0)/τ),

and write

〈vϕh , B1,1ϕ
j+1
h 〉Γ = [vϕh × n,B1,1ϕ

j+1
h ]Γ

= −vϕ(BC) ·Bdcd
1,1 ·ϕj+1(BC).

The Convolution Quadrature right hand side term is computed in a similar way, we
denote the first row of the Calderon operator (with e1 := (1, 0)) by

B1,∗(s) := e1 ·B(s)
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and obtain

−
〈(

vϕh
0

)
, B(∂̃τt )

(
ϕh
−γTEh

)
|( ϕh
−γT Eh

)j+1=0
(tj+1)

〉
Γ

=

vϕ(BC)RBC(B1,∗)( BC
BRWG)(∂̃τt )

(
ϕ(BC)
−G1E(N1)

)
|( ϕ(BC)
−G1E(N1))

j+1
=0

(tj+1).

We summarize and build up the full system. We recall the mass matrices

M1 = N1IdN1,

M0 = N0IdN0,

M2 = RBCIdBRT (γT )N1→RT = −(BNCIdBC)T (γT )N1→RT ,

the discrete differential operator

D = NC∇×NC ,

the trace operator
G1 = (Id)BRT→BRWG · (γT )N1→RT

and Calderon sub operators

Bdcd
1,1 = −1

µ2
0

√
µ0
ε0

RBCÊBC(i√µ0ε0δ(0)/τ), Bdcd
1,2 = 1

µ0
RBCD̂RWG(i√µ0ε0δ(0)/τ),

Bdcd
2,1 = −1

µ0
SNCĜBC(i√µ0ε0δ(0)/τ), Bdcd

2,2 =
√
ε0
µ0

SNC F̂RWG(i√µ0ε0δ(0)/τ).

The overall discretization matrix then is

Lhs :=

( ε0τ + σ)M1 −GT1 Bdcd
2,2 G1 −DT GT1 B

dcd
2,1 − 1

2µ0
(M2)T

D µ0
τ M0 0

1
2µ0

M2 +Bdcd
1,2 G1 0 −Bdcd

1,1


with right hand side

Rhsj :=


ε0
τ M1E

j(N1)−M1J
j+1(N1) +Rj1

µ0
τ M0H

j(N0)
RBC(B1,∗)( BC

BRWG)(∂̃τt )
( ϕ(BC)
−G1E(N1)

)
|( ϕ(BC)
−G1E(N1))

j+1
=0

(tj+1)

 ,
where

Rj1 = −(G1)T BSNC(B2,∗)( BC
BRWG)(∂̃τt )

(
ϕ(BC)
−G1E(N1)

)
|( ϕ(BC)
−G1E(N1))

j+1
=0

(tj+1)

and the system to solve in the j-th time step is

Lhs

Ej+1(Xh)
Hj+1(Yh)
ϕj+1(BC)

 = Rhsj . (6.13)
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6.3.2. Numerical experiments
Convergence in time

We consider a simple example on the unite cube

Ω = [0, 1]3,

where we choose observation time and the material parameters as

T = 0.25, µ0 = 2.0, ε0 = 3.0, σ = 0.1,

as well as the initial and input data

H0 =

0
0
0

 , E0 =

0
0
0

 , ϕ0 =

0
0
0

 , J(t) = t

 1
−1
3

 .
The GMRES tolerance and Convolution Quadrature parameters are set to

tolgmres = 10−8, ρN = tolgmresN/2, L = N.

As discretized initial data and input data we use L2-projections to the respective spaces.
We look at the time discretization error on a fixed coarse mesh. The reference solution
is computed on a fine time grid. For the time step sizes τi = T · 2−i, for i = 0, . . . , 7,
the reference solution is computed with τref = min(τi)/2. We consider the maximum
L2(Ω)-error as

erri = max
j=0,...,Ni

‖Ejh − E
ref
h (tj)‖Ω

and obtain first order convergence results for E and H in L2(Ω), see Figure 6.3.1.

Figure 6.3.1.: Convergence in time for E (left) and H (right) in L2(Ω).

We compute the maximum L2(Γ )-error as

erri = max
j=0,...,Ni

‖ϕjh − ϕ
ref
h (tj)‖Γ

and obtain first order convergence results for ϕ and γTE in L2(Γ ), see Figure 6.3.2.
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Figure 6.3.2.: Convergence in time for ϕ (left) and γTE (right) in L2(Γ ).

Convergence in space

For the following example, we consider the domain

Ω = [0, 1]3,

where we choose the observation time and the material parameters as

T = 0.5, ε = ε0 = 1.0, µ = µ0 = 1.0, σ = 1.3,

as well as the initial data fitting to the exact solutions below. The RHS-input data is
chosen such that the exact solution is given by

E(t, x) = t2

sin(πx1)2 sin(πx2)2 sin(πx3)2

0
0

 , H = −∂−1
t ∇× E/µ, ϕ = ψ = 0.

Finally, the tolerance and restart parameter for the iterative solver (GMRES), the
stabilization parameter and the Convolution Quadrature parameters are set to

tolgmres = 10−8, restart = 20, β = 1, ρN = tolgmres1/(2N), L = N.

As discretized initial data and input data we use interpolations to the respective spaces.
We look at the space discretization error on a fixed time grid such that the time error
is small enough (N = 20 for T = 0.5 is small enough) and compare the approximations
with the exact solution.
For the mesh sizes h =

√
3 ≈ 1.7,

√
3/2, . . . ,

√
3/12 ≈ 0.14, we compute the maximum

space-errors (as norm we use the norms of H(curl,Ω) and L2(Ω) for E, L2(Ω) for H and
L2(Γ ) for ϕ) as

errG,i = max
j=0,...,20

‖Gjhi −G(tj)‖, G ∈ {E,H,ϕ}.

We obtain first order convergence results for E, see Figure 6.3.3.
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Figure 6.3.3.: Convergence in space for E in H(curl,Ω) (left) and L2(Ω) (right).

We observe first order convergence results for H and ϕ, see Figure 6.3.4.

Figure 6.3.4.: Convergence in space for H in L2(Ω) (left) and ϕ in L2(Γ ) (right).

6.4. Convergence with Rates for the MLLG System
6.4.1. Implementation details
In this section we present the implementation details of Algorithm 5.11 used in Chapter 5.
In comparison to Algorithm 5.11, the tangent plane scheme is formulated as a saddle

point problem (cf. Section 6.1.2) and the Convolution Quadrature weights are approxi-
mated by a quadrature rule (cf. Section 6.1.3).
Concerning the interior Maxwell space discretization, we use first order Nédélec ele-

ments Xh instead of the discontinuous Galerkin elements. For the boundary we use
the trace space γT (Xh), i.e. the RT space. While there are higher order Nédélec- and
discontinuous Galerkin-spaces implemented in FEniCS, in Bempp the coupling is only
implemented for the first order Nédélec space and the first order continuous Galerkin
space. Furthermore the Calderon operator and tangential trace operators are only avail-
able for the Maxwell boundary spaces which are of first order. For numerical experiments
considering higher order convergence in space, an implementation of those spaces im Be-
mpp would be necessary, which is beyond the scope of this thesis.
The proofs of Chapter 5 stay true for the implemented spaces in a similar way, compare

Section 5.2.2 and [99, Remark 5.1].

Algorithm 6.3. Input: Discretized initial data m0
h, H

0
h, E0

h, ϕ0
h = 0, ψ0

h = 0 and
starting values ṁ1

h, m
1
h, H

1
h, E1

h, ϕ1
h, ψ1

h.
For n = 2, . . . , N : For given values at tn−1, determine the approximations for tn by:
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• Determine (ṁn
h, λh) ∈ S1(Th,R3) × S1(Th,R) such that we have for all (ρh, ξh) ∈

S1(Th,R3)× S1(Th,R)

α[ṁn
h, ρh]Ω + [m̂n

h × ṁn
h, ρh]Ω = [∇mn

h,∇ρh]Ω + [Hn
h , ρh]Ω

+ [ρh · m̂n
h, λh]Ω + [ṁn

h · m̂n
h, ξh]Ω,

(6.14)

where m̂n
h and ṁn

h are related to mn−j
h for j = 0, 1, 2 via

ṁn
h = 1

τ

2∑
j=0

δjm
n−j
h , m̂n

h =
1∑
j=0

γjm
n−j−1
h

/∣∣∣ 1∑
j=0

γjm
n−j−1
h

∣∣∣. (6.15)

• Determine Enh , Hn
h ∈ Xh and ϕnh, ψnh ∈ γT (Xh) such that we have for all ζH,1/2h , ζEh , ζ

H,1
h ∈

Xh and vϕh , v
ψ
h ∈ γT (Xh)

[µHn−1/2
h , ζ

H,1/2
h ]Ω = [µHn−1

h , ζ
H,1/2
h ]Ω −

τ

4 [∇× En−1
h , ζ

H,1/2
h ]Ω −

τ

4 [En−1
h ,∇× ζH,1/2h ]Ω

− τ

4 〈ψ
n−1
h , γT ζ

H,1/2
h 〉Γ −

τµ

2 [ṁn−1
h , ζ

H,1/2
h ]Ω,

(6.16)

[εEnh , ζEh ]Ω = [εEn−1
h , ζEh ]Ω + τ

2 [∇×Hn−1/2
h , ζEh ]Ω + τ

2 [Hn−1/2
h ,∇× ζEh ]Ω

− τ

2µ0
〈ϕn−1/2

h , γT ζ
E
h 〉Γ − τ [σEn−1/2

h + Jn−1/2, ζEh ]Ω,

(6.17)

[µHn
h , ζ

H,1
h ]Ω = [µHn−1/2

h , ζH,1h ]Ω −
τ

4 [∇× Enh , ζ
H,1
h ]Ω −

τ

4 [Enh ,∇× ζ
H,1
h ]Ω

− τ

4 〈ψ
n
h , γT ζ

H,1
h 〉Γ −

τµ

2 [ṁn
h, ζ

H,1
h ]Ω,

(6.18)

This is coupled with Convolution Quadrature on the boundary〈(
vϕh
vψh

)
,

(
B(∂̃τt )

(
ϕh
ψh

))n−1/2〉
Γ

= 1
2

〈(
vϕh
vψh

)
,

(
µ−1

0 γTE
n−1/2
h

γTH
n−1/2
h

)〉
Γ

(6.19)

− β τ
2

µ
〈vψh , γTLIFT(ψ̇n−1/2

h )〉Γ , (6.20)

where fn−1/2, ḟn−1/2 and LIFT are defined in (5.10).

Output: Sequence of approximations mn
h, E

n
h , H

n
h , ϕ

n
h, ψ

n
h .

Remark 6.4. Note that Algorithm 6.3 is equally expensive as the approximation for the
uncoupled systems for the BDF-LLG-Approximation and the interior-exterior Maxwell-
coupling:

• Given Hn−1
h , En−1

h , ϕn−1
h and ṁn−1

h , compute Hn−1/2
h by (6.16).

• Insert (6.17) in (6.19) and solve for ϕn−1/2
h and ψnh . Then compute Enh with (6.17).

• Insert (6.18) in (6.14) and solve a linear system for ṁn
h. Then compute Hn

h with
(6.18) and mn

h with (6.15).

We introduce the mass matrices

M1 = N1IdN1, M2 = SNCIdSNC , M3 = N1IdS1
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and the differential operator

D = −1
2(N1∇×N1 + (N1∇×N1)T ).

With the trace operator (γT )N1→RWG, we define

C1 = −1
2(γT )TN1→RWGM

T
2 , C2 = 1

µ0
C1

and initialize the time harmonic Calderon operator (compare Section 6.1.6)

B(s) =
(
D̃ Ẽ

F̃ G̃

)
(s).

We build up the matrix

Lhs =


(ε+ στ/2)M1 0 τ/2C2 0

0 µ0M1 0 2βτC1
−CT2 0 1/µ2

0 RWGẼRWG(δ(0)/τ) −1/µ0 RWGD̃RWG(δ(0)/τ)
0 −CT1 1/µ0 RWGG̃RWG(δ(0)/τ) −RWGF̃RWG(δ(0)/τ)

 .
Then, (6.16) takes the form

µM1H
n−1/2(N1) = µM1H

n−1(N1) + τ

2DE
n−1(N1)

− τ

2C1ψ
n−1(RWG)− τµ

2 M3ṁ
n−1(S1).

With

(ε+τσ/2)M1Ẽ
n(N1) = (ε−τσ/2)M1E

n−1(N1)−τDHn−1/2(N1)+τM1J
n−1/2(NC),

inserting (6.17) in (6.19) gives

Lhs


X
Y

ϕn−1/2(RWG)
ψ
n−1/2(RWG)

 =



(ε+ στ/2)M1(Ẽn(N1) +En−1(N1))/2
2βτC1ψ

n−1(RWG)
−B1,∗(∂̃τt )

(ϕ(RWG)
ψ(RWG)

)
|(ϕ
ψ
)n−1/2=0

(tn−1/2)

−B2,∗(∂̃τt )
(ϕ(RWG)
ψ(RWG)

)
|(ϕ
ψ
)n−1/2=0

(tn−1/2) + CT1 H
n−1/2(N1)


.

It follows ψnh = 2ψn−1/2
h − ψn−1

h and (equivalent to the following is En(N1) = 2X −
En−1(N1))

(ε+ τσ/2)M1E
n(N1) = (ε+ τσ/2)M1Ẽ

n(N1)− τC2ϕ
n−1/2(RWG).

Inserting (6.18) in (6.14) gives a linear system for ṁn
h which is solved by separating known

and unknowns and writing the resulting (bi)linear forms in FEniCS syntax. With the
solution ṁn

h at hand, we compute mn
h with (6.15). Finally, Hn

h is computed with (6.18)
via

µM1H
n(N1) = µM1H

n−1/2(N1) + τ

2DE
n(N1)− τ

2C1ψ
n(RWG)− τµ

2 M3ṁ
n(S1).
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6.4.2. Numerical experiments
Convergence in time

We consider a simple example on the three-dimensional unite cube

Ω = [0, 1]3,

where we choose the observation time and the material parameters as

T = 0.25, ε = ε0 = 1.1, µ = µ0 = 1.2, σ = 1.3, α = 1.4, Ce = 1.5,

as well as the initial data

m0 =

1
0
0

 , E0 =

0
0
0

 , H0 =

0
0
0

 , ϕ0 =

0
0
0

 , ψ0 =

0
0
0

 .
The RHS-input data is chosen to guarantee that the solutions are smooth enough in
time, i.e. that enough time derivatives vanish at t = 0 on the boundary:

J(t, x) = 100t4 sin(πx1)2 sin(πx2)2 sin(πx3)2

1
0
0

 .
Finally, the tolerance and restart parameter for the iterative solver (GMRES), the sta-
bilization parameter and the Convolution Quadrature parameters are set to

tolgmres = 10−8, restart = 20, β = 1, ρN = tolgmres1/(2N), L = N.

As discretized initial data and input data we use interpolations to the respective spaces.
We look at the time discretization error on a fixed coarse mesh and compare the approx-
imations with a reference solution computed on a fine time-grid.
We use time step sizes τi = T · 2−i, for i = 0, . . . , 6, and the reference solution is

computed with τref = min(τi)/2. We compute the maximum space-errors (as norm we
use H1(Ω) for m, L2(Ω) for E, H and L2(Γ ) for ϕ, ψ) as

errG,i = max
j=0,...,Ni

‖Gjh −G
ref
h (tj)‖, G ∈ {m,E,H,ϕ, ψ}

and obtain second order convergence results, see Figure 6.4.1–6.4.3.

Figure 6.4.1.: Convergence in time for m.
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Figure 6.4.2.: Convergence in time for E (left) and H (right).

Figure 6.4.3.: Convergence in time for ϕ (left) and ψ (right).

Convergence in space versus exact solution

We consider an example on the three-dimensional unite cube

Ω = [0, 1]3,

where we choose the observation time and the material parameters as

T = 0.25, ε = ε0 = 1.1, µ = µ0 = 1.2, σ = 1.3, α = 1.4, Ce = 1.5,

as well as the initial data fitting to the exact solutions below. The RHS-input data is
chosen such that the exact solution is given by

m(x, t) :=

−(x3
1 − 3x2

1/2 + 1/4) sin(3πt/(10T ))√
1− (x3

1 − 3x2
1/2 + 1/4)2

−(x3
1 − 3x2

1/2 + 1/4) cos(3πt/(10T ))


and

E(t, x) = t2

sin(πx1)2 sin(πx2)2 sin(πx3)2

0
0

 , H = −∂−1
t ∇× E/µ, ϕ = ψ = 0.

Finally, the tolerance and restart parameter for the iterative solver (GMRES), the
stabilization parameter and the Convolution Quadrature parameters are set to

tolgmres = 10−8, restart = 20, β = 1, ρN = tolgmres1/(2N), L = N.
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As discretized initial data and input data we use interpolations to the respective spaces.
We look at the space discretization error on a fixed time grid such that the time error is
small enough (N = 20 for T = 0.25 is small enough) and compare the approximations
with the exact solution.
We use the mesh sizes h =

√
3 ≈ 1.7,

√
3/2, . . . ,

√
3/12 ≈ 0.14 and compute the

maximum space-errors (we use the norm of the space L2(Ω) or H1(Ω) for m, L2(Ω) for
E, H and L2(Γ ) for ϕ, ψ) as

errG,i = max
j=0,...,20

‖Gjhi −G(tj)‖, G ∈ {m,E,H,ϕ, ψ}

We obtain for m second order convergence in the L2-norm and first order convergence
in the H1-norm, see Figure 6.4.4.

Figure 6.4.4.: Convergence in space versus exact solution for the magnetization in the
L2(Ω)-norm (left) and H1(Ω)-norm (right).

We obtain first order convergence for E and H in the L2(Ω)-norm, see Figure 6.4.5.

Figure 6.4.5.: Convergence in space versus exact solution in the L2(Ω)-norm for E and
H.

We obtain first order convergence for ϕ and ψ in the L2(Γ )-norm, see Figure 6.4.6.
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Figure 6.4.6.: Convergence in space versus exact solution in the L2(Γ )-norm for ϕ and
ψ.

Convergence in space versus reference solution

We show two more experiments where no exact solution is known, but we compare with
a reference solution.
We consider an example on the three-dimensional unite cube and a second one on a

thin plate domain

Ω1 = [0, 1]3, Ω2 = [0, 1]× [0, 1]× [0, 0.08],

where we choose the observation time and the material parameters as

T1 = 0.25, T2 = 0.5, ε = ε0 = 1.1, µ = µ0 = 1.2, σ = 1.3, α = 1.4, Ce = 1.5.

With g1(x) := Π3
i=1 sin4(πxi) and g2(x) := Π2

i=1 sin4(πxi) we define the initial data for
the first and second experiment, m0

1 and m0
2, respectively as

m0
1(x) := 1√

1 + g1(x)2

g3(x)
0
1

 , m0
2(x) := 1√

1 + (10g2(x))2

10g2(x)
0
1


and the Maxwell part is zero at starting time for both experiments

E0
1 = E0

2 = 0, H0
1 = H0

2 = 0, ϕ0
1 = ϕ0

2 = 0, ψ0
1 = ψ0

2 = 0.

The RHS-input data is chosen to guarantee that the solutions are smooth enough in
time, i.e. that enough time derivatives vanish at t = 0 on the boundary:

J1(t, x) = t3

10g1(x)2

0
0

 , J2(t, x) = t3

10g2(x)2

0
0

 .
Finally, the tolerance and restart parameter for the iterative solver (GMRES), the sta-
bilization parameter and the Convolution Quadrature parameters are set to

tolgmres = 10−8, restart = 20, β = 1, ρN = tolgmres1/(2N), L = N.

As discretized initial data and input data we use interpolations to the respective spaces.
We look at the space discretization error on a fixed time grid such that the time error is
small enough (N = 20 is small enough).

We use mesh sizes h =
√

3 ≈ 1.7,
√

3/2, . . . ,
√

3/12 ≈ 0.14 and href =
√

3/16 for the
first experiment and mesh sizes h ≈

√
2/2, . . . ,

√
2/16 and href ≈

√
2/24 for the second
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experiment. We compute the maximum space-errors (we use the norm of the space
H1(Ω) for m, L2(Ω) for E, H) via

errG,i = max
j=0,...,20

‖IhrefG
j
hi
−Gjhref

‖, G ∈ {m,E,H},

where Ihref denotes the interpolation onto the respective approximation space corre-
sponding to mesh size href. Due to the additional interpolation of the approximation
and as the reference solution may not be computed on a fine enough grid due to hard-
ware restrictions, the rates of convergence are visibly slightly worse than compared to
an exact solution. We obtain for m first order convergence in the H1(Ω)-norm in both
experiments, see Figure 6.4.7.

Figure 6.4.7.: Convergence in space versus reference solution for the magnetization in
the H1(Ω)-norm for the first (left) and second (right) experiment.

We obtain first order convergence for E in the L2(Ω)-norm in both experiments, see
Figure 6.4.8.

Figure 6.4.8.: Convergence in space versus reference solution in the L2(Ω)-norm for E
for the first (left) and second (right) experiment.

We obtain first order convergence for H in the L2(Ω)-norm in both experiments, see
Figure 6.4.9.
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Figure 6.4.9.: Convergence in space versus reference solution in the L2(Ω)-norm for H
for the first (left) and second (right) experiment.



7. Summary and Outlook

7.1. Summary
In this dissertation we have considered theory and numerical approximation of the cou-
pling between the full space Maxwell system and the LLG equation which is relevant
in various physical and industrial applications. After an introduction of the functional
analytic foundations in Chapter 2, we have reformulated the system on the whole space
in a rigorous way to a partial differential – boundary integral system. In Chapter 3,
under minimal assumptions on the input data, the weak convergence of the approxima-
tions and the existence of a weak solution are shown. Without the coupling to the LLG
equation, these results can even be improved in Chapter 4 for the full space Maxwell
system. In Chapter 5 we show that the approximations with a priori known and higher
order convergence rates in space and time converge to the exact solution, provided the
latter is regular enough. Numerical experiments for all the considered algorithms are
presented in Chapter 6 and underline the theoretical findings. The properties of the
Laplace transform, which are essential for the definition and dependencies between the
different solution terms of the MLLG system, are derived in Chapter B in the Appendix.
We conclude the thesis with possible extensions of the theoretical results and indicate
potential directions of future research in the following section.

7.2. Assumptions and Assertions
In this section we consider some of the assumptions we have made throughout the thesis
and discuss their physical significance as well as possible generalizations of the theoretical
results.

Shape of the magnetic device

The domain Ω that indicates the magnetic device is assumed to be open, connected,
bounded with connected, piecewise smooth Lipschitz boundary, in Chapter 2, and in the
following chapters, as far as we work with approximations, it is assumed to be the union
of the elements of a regular triangulation. We recall that convexity is not needed and
also finite collections of such domains can be treated.

Initial data supported inside of the magnetic body

In Section 1.2.2, we assume that at starting time t = 0 electric and magnetic field are
supported inside of Ω, i.e.

H(0, x) = E(0, x) = 0 for all x ∈ R3 \ Ω. (7.1)

This corresponds to the situation when at the beginning of the experiment everything
is at rest in the exterior domain:
Inserting ∂tB(0) = ∂tD(0) = 0 in (1.7) and (1.8) (no time evolution at starting time

outside of Ω), the starting values satisfy

(∇× E)(0, x) = (∇×H)(0, x) = 0 for all x ∈ R3 \ Ω.

155
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The shifted variables E = E − E(0), H = H − H(0) (with any suitable extension
inside) satisfy (7.1) and Faraday’s (1.7) and Ampère’s law (1.8) (with inhomogenieties,
or even without additional inhomogenieties when choosing the extension such that (∇×
E)(0, x) = (∇ × H)(0, x) = 0 inside of Ω. By physical means, it is plausible that this
exists.).
This also justifies to define the discrete starting values ϕ0

h = 0 and ψ0
h = 0 in the

Algorithms 3.12 and 4.8. The regularity assumptions from Chapter 5 even ask for
further derivatives of the boundary variables to vanish at t = 0.

Magnetic body surrounded by non-magnetic material and vacuum

Similar to [25] (on a bounded domain), we may consider the situation in which a mag-
netizable body is surrounded by other non-magnetizable objects, which in turn are sur-
rounded by vacuum. This can be modeled by a domain Ω ⊂ R3, comprising the whole
experimental setup which is in vacuum and where ω ⊂ Ω indicates the magnetizable
parts. We thus obtain a coupled system, where on ω the coupled MLLG equations hold,
on Ω \ ω only the Maxwell equations hold, and on ∂Ω we obtain the usual boundary
integral equation. The results of Chapter 3 are retained in an analogous manner. The
results of Chapter 5 can be adapted in the same way, but the regularity requirements
must be checked during application. If, for example, jumping material coefficients are
located within the area of Ω (e.g. at object boundaries), then in general not enough
regularity is at hand, see [155]. Refined analysis would have to show whether in such
cases these could also be attributed to piecewise regularity assumptions (inside of Ω), if
necessary.

Corner singularities

The conclusion remains similar with respect to possible boundary singularities: If one
considers Maxwell’s equations on domains with an reentrant corner, singularities can
form there. This stays true also with the coupling to the LLG equation. Since in Chapter
3 and 4 analogies of the energy norms are bounded, the results already cover the case
of those boundary singularities without modification of the proofs. For Chapter 5, on
the other hand, it must be checked whether the regularity requirements remain fulfilled
or whether adaptive methods can be applied to improve the numerical complexity, cf.
Section 7.3.

Generalized effective magnetic field

If one considers in Section 1.2.1 (physical derivation of the LLG equation) further terms
of the total magnetic Gibbs free energy, or drops the assumption µ ∈ R+ there, a more
complicated effective magnetic field Heff = ∆m + H + π(t,m) comes into place. As in
[25], the results of Chapter 3 stay valid, if the additional energy contributions π(t,m)
satisfy

‖π(t,m)‖L2(Ω) ≤ C

for any m ∈ L2(Ω) with |m| ≤ 1 almost everywhere and for mτ,h
sub
⇀ m

π(·,mτ,h) sub
⇀ π(·,m) in L2(ΩT ).

Also approximations πh of π can be treated, see [41].
For the conservation of the strong convergence results from Chapter 5, we need a

sufficiently good approximation πnh for the implementation and for the theory a suitable
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counterpart πnh,?, which corresponds to the insertion of the exact solution into the ap-
proximation πnh . The precise requirements on π, πnh and πnh,? are the following (compare
Section 5.6):

‖πnh − πn?,h‖L2(Ω) 6 L
2∑
j=0
‖en−jh ‖H1(Ω) + α

2 ‖ė
n
m,h‖L2(Ω) + c‖snh‖H1(Ω) (7.2a)

and at the same time

‖πn?,h − π(tn,m(tn))‖L2(Ω) ≤ C(τ2 + hr). (7.2b)

In the case an approximate functional πh is given, possible discretizations of the right
hand side πnh are given by, e.g. πh(tn, m̂n

?,h) or πh(tn,mn
h). In both cases, we can ensure

(7.2), if we have a Lipschitz type bound

‖πh(tn, u)− πh(tn, v)‖L2(Ω) 6 L‖u− v‖H1(Ω)

and an approximation error

‖πh(tn,m(tn))− π(tn,m(tn))‖L2(Ω) ≤ C(τ2 + hr).

The regularity assumptions take the form

m ∈ C3([0, T ], H1(Ω)) ∩ C1([0, T ],W r+1,∞(Ω)),
∆m+H + π(·,m) ∈ C([0, T ],W r+1,∞(Ω)).

(7.3)

Material parameters

In Section 1.2.2, we assume linear material laws, i.e. the electric and magnetic perme-
abilities ε and µ are symmetric and uniformly coercive matrices inside of Ω and positive
scalars outside. This is also necessary for the analysis, the reformulation in Chapter 2
needs representation formulae which are only available for scalar material parameters in
the exterior domain. In Chapters 3 to 5 we need that (at least suitable perturbations
of) [ · , ε · ]Ω and [ · , µ · ]Ω yield symmetric and coercive bilinear forms.

The analysis also covers the case of indefinite conductivity, i.e. it is enough to have
that [ · , σ · ]Ω is bounded. For simplified models like the ELLG system, it is essential
that σ is strictly positive.

For the sake of completeness, we also note that constant, positive permeabilities can
also be assumed for air in a good approximation, so that the experimental setup can
alternatively be surrounded by air or other homogeneous gases.

Higher regularity convergence for the pure Maxwell system

Due to the linearity of Maxwell’s equations, arguments similar to those in Chapter 4
possibly could be extended to higher derivatives. Assuming constant material parameters
(scaled to one in the following), k ∈ N times differentiating Maxwell’s equations results
in

∂k+1
t E −∇× ∂ktH = ∂kt J

∂k+1
t H +∇× ∂kt E = ∂kt G

(7.4)

Testing with ∂kt E, ∂ktH gives (under neglect of boundary values integration by parts
gives [∇× ∂ktH, ∂kt E]Ω = [∇× ∂kt E, ∂ktH]Ω)

1
2∂t‖∂

k
t E‖2Ω + 1

2∂t‖∂
k
tH‖2Ω = [∇× ∂kt J, ∂kt E]Ω + [∇× ∂kt G, ∂ktH]Ω

≤ 1
2
(
‖∂kt E‖2Ω + ‖∂ktH‖2Ω + ‖∂kt J‖2Ω + ‖∂kt G‖2Ω

)
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Integration in time and Gronwall’s Lemma A.1 conclude

‖∂kt E(t)‖2Ω + ‖∂kt E(t)‖2Ω ≤ et
(
‖∂kt E(0)‖2Ω + ‖∂ktH(0)‖2Ω

+
∫ t

0
‖∂kt J(s)‖2Ω + ‖∂kt G(s)‖2Ω ds

)
.

Consideration of (7.4) inductively gives (neglecting J and G for simplicity)

∇×H = ∂tE ∈ L2, ∇×∇×H = ∇× ∂tE = −∂2
tH ∈ L2, . . .

and this also links ∂kt E(0) and ∂ktH(0) to regularity assumptions for the initial data, i.e.
(∇×)kE0 and (∇×)kH0 have to exist.

Symmetric vs. non-symmetric approach for the Maxwell part

In Chapter 3 we considered a discretization symmetric in E and H, obtaining the sym-
metric differential operator D = (∇×+(∇×)T )/2 and two trace variables ϕ and ψ. In
Chapter 4, however, the discretizations differ in E (piecewise linear Nedelec elements)
and H (piecewise constant elements) and in the differential operators ∇× and (∇×)T ,
respectively. This results in differences in the convergence of certain points of the solu-
tion, compare Remark 3.31 and Remark 4.24. In the symmetric case we have (ignoring
the integration in time)

1
2[∇× Eh, ζh]Ω + 1

2[Eh,∇× ζh]Ω + 1
2〈ψh, γT ζh〉Γ

sub→ [∇× E, ζ]Ω (7.5a)

and
1
2 〈(γT (Eh), γT ζh〉ΓT

sub→ 〈γTE, γT ζ〉ΓT + 1
2〈ψ, γT ζ〉ΓT . (7.5b)

Discretized terms may not correspond to continuous terms, while in the non-symmetric
case the following holds:

[∇× Eh, ζh]Ω sub→ [∇× E, ζ]Ω and [Hh,∇× ζh]Ω sub→ [H,∇× ζ]Ω (7.6a)

and

〈(γTEh, γT ζh〉ΓT
sub→ 〈γTE, γT ζ〉ΓT and 〈(ϕh, γT ζh〉ΓT

sub→ 〈ϕ, γT ζ〉ΓT . (7.6b)

Nevertheless, in both cases, for the equivalence to the corresponding solution of Chap-
ter 2, the projection property of the Calderon operator must be exploited, cf. Section
3.1 and Section 4.1.
One reason for the convergence in (7.5) is that in the discretized equation, traces and

interior quantities cannot be separated: In the continuous equation, in the case of

1
2[∇× E, ζ]Ω + 1

2[E,∇× ζ]Ω + 1
2〈ψ, γT ζ〉Γ ≤ C‖ζ‖Ω

one can show by the use of cut-off functions that ψ = −γTE. This is not possible in the
discretized setting, finally it cannot be shown that ψh

sub
⇀ −γTE holds. We further note

(cf. Remark 5.2) that in Chapter 5 even (again ignoring time dependencies)

‖ψh + γTE‖HΓ ≤ Ch
r

can be shown, but there in the consistency analysis the existence of a sufficiently smooth
exact solution is assumed.
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In the non-symmetric case of Chapter 4, the boundary integral equation implements
a discrete Dirichlet–to–Neumann map for the first Maxwell equation, and in the second
Maxwell equation

[∇× Eh, ζh]Ω ≤ ‖ζh‖Ω
ensures the existence of ∇×Eh ∈ L2(Ω). The question now arises to what extent these
phenomena can also be used for a convergence analysis with rates. In [99], a symmetric
method is used and in the stability analysis a term comparable to the one in (7.5a) is
bounded. In the final result, however, no bound concerning the curl of the approxima-
tions is specified. Is this possible using the non-symmetric approach? Is it also possible
to use other methods, e.g. such that work without the additional boundary variables ψ
and ϕ, e.g. by using a Dirichlet–to–Neumann map or by including the conditions that
γTEh, γTHh are suitable exterior data in the respective approximation spaces?

Coupled vs. uncoupled Maxwell–LLG system

In Chapter 4, we transferred the results of Chapter 3 for the uncoupled Maxwell system
and obtained stronger results. This is on the one hand due to the uniqueness of the
linear Maxwell equations, on the other hand, however, due to the reason mentioned
in Remark 4.15: The occurring phenomena are described in a continuous setting and
boundary terms can be neglected (these are handled appropriately by the boundary
element method). We recall Maxwell’s equations with inhomogeneities J , G

∂tE −∇×H = J,

∂tH +∇× E = G,
(7.7)

note that G = ∂tm in the case of MLLG coupling. We test with E and H, respectively
and obtain (under neglect of the boundary terms, integration by parts yields [∇ ×
H,E]Ω = [∇× E,H]Ω)

1
2∂t‖E‖

2
Ω + 1

2∂t‖H‖
2
Ω = [J,E]Ω + [G,H]Ω ≤

1
2
(
‖E‖2Ω + ‖H‖2Ω + ‖J‖2Ω + ‖G‖2Ω

)
.

Gronwall’s Lemma A.1 concludes for t > 0

‖E(t)‖2Ω + ‖H(t)‖2Ω ≤ et
(
‖E(0)‖2Ω + ‖H(0)‖2Ω +

∫ t

0
‖J(s)‖2Ω + ‖G(s)‖2Ω ds

)
.

In the coupled case, G = ∂tm can be bounded due to the LLG energy estimates.
For the further procedure in Chapter 4, we use discrete versions of the following

arguments: Differentiating (7.7) in time, and testing with ∂tE, ∂tH yields

1
2∂t‖∂tE‖

2
Ω + 1

2∂t‖∂tH‖
2
Ω ≤

1
2
(
‖∂tE‖2Ω + ‖∂tH‖2Ω + ‖∂tJ‖2Ω + ‖∂tG‖2Ω

)
.

Again Gronwall’s lemma A.1 concludes (with ∂tE(0) = ∇×H0, ∂tH(0) = −∇× E0)

‖∂tE(t)‖2Ω +‖∂tH(t)‖2Ω ≤ et
(
‖∇×H0‖2Ω +‖∇×E0‖2Ω +

∫ t

0
‖∂tJ(s)‖2Ω +‖∂tG(s)‖2Ω ds

)
.

These arguments cannot be applied in a similar way to the coupled case, since there is
no stability result for ∂tG = ∂2

tm.
With respect to (7.7) the question arises whether a stability result for ∂2

tm is necessary
at all (if G = ∂tm is bounded, why not ∂tH and ∇ × E ?) We sketch in the following
why this question must be answered in the affirmative.
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If we insert in (7.7) the special solutions E(t, x) = (0, e(t, x1), 0)T and H(t, x) =
(0, 0, h(t, x1))T we get (with x1 ∈ R again denoted by x)

∂te+ ∂xh = j,

∂th+ ∂xe = g.

Assuming space periodic solutions e(t, x) = ê(t) sin(kx), h(t, x) = ĥ(t) cos(kx) for k ∈ N
the problem simplifies to

∂tê− kĥ = ĵ,

∂tĥ+ kê = ĝ.

A solution is given by (for simplicity ĵ = 0)

ê(t) = sin(kt)
∫ t

0
cos(ks)ĝ(s) ds− cos(kt)

∫ t

0
sin(ks)ĝ(s) ds

ĥ(t) = cos(kt)
∫ t

0
cos(ks)ĝ(s) ds+ sin(kt)

∫ t

0
sin(ks)ĝ(s) ds

We recall that boundedness of ∇ × E corresponds to uniform boundedness of kê and
compute

∂tĥ(t) = −k sin(kt)
∫ t

0
cos(ks)ĝ(s) + k cos(kt)

∫ t

0
sin(ks)ĝ(s) ds+ g(t)

= g(0) cos(kt)− sin(kt)
∫ t

0
sin(ks)∂tĝ(s) ds− cos(kt)

∫ t

0
cos(ks)∂tĝ(s) ds.

Inserting special functions and further arguments show, that this cannot be bounded,
if a uniform bound for kĝ or ∂tg is unavailable. We will not go into further detail
here. As ∂tĝ corresponds to ∂2

tm, ∂tĥ cannot be bounded. Similarly, we do not have
a bound for ∇ × ∂tm (corresponding to kg) so that kê cannot be bounded uniformly.
As a consequence kê and ∂tĥ cannot be bounded independently of each other, but for
the combination of both it naturally holds ∂tĥ + kê = ĝ, which is bounded again. We
conclude with two resulting statements:
1) Possibly the arguments of Chapter 3 can be transferred to a space–time setting

which considers the differential operatorM and the associated Hilbert space H(M,ΩT ),
with

M =
(
∂t −∇×
∂t ∇×

)
, H(M,ΩT ) =

{(
E

H

)
∈ L2(ΩT )2

∣∣∣∣∣M
(
E

H

)
∈ L2(ΩT )2

}
.

This possibly could additionally show the weak convergence of

M
(
Eτ,h
Hτ,h

)
sub
⇀ M

(
E

H

)
.

The existence ofM
(E
H

)
, however, already can be deduced from Definition 3.1 (rewriting

the left hand side of Maxwell’s equations in terms ofM
(E
H

)
and noticing that the right

hand side is bounded).
2) To extend the results of Chapter 3 in a similar way as in Chapter 4, a stability

result for ∂2
tm or ∇ × ∂tm from the LLG equation is needed first. If this furthermore

can be applied in a suitable way to the discrete setting (and if the phenomena described
in the previous paragraph for the non-symmetric Maxwell discretization can indeed be
applied to strong convergence analysis), the results of Chapter 5 could be extended by
the estimates

‖∇ × E(tn)−∇× Enh‖2L2(Ω) +
n−1∑
j=0
‖µ0γTH(tj+1/2)− ϕj+1/2

h ‖2HΓ ≤ C(τ2 + hr)2.
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7.3. Outlook
We conclude the thesis with an outlook on possible future research projects.
In [23], error estimators for the LLG equation are presented with numerical results

that underline their applicability. However, no rigorous error analysis is provided. How
can efficient and reliable error estimators be constructed that ensure strong convergence
of the solutions?
Another emerging field of research is to incorporate stochastic noise to the LLG equa-

tion. In [73, 74], similar to Chapter 3, almost sure weak convergence to weak martingale
solutions of the (Maxwell–)LLG system is shown. Can the strong convergence results of
Chapter 5 be extended in some way to the stochastic case?
In [66] the total helicity is explored as the sum of two terms: A term that measures

the difference between the number of left-handed and right-handed photons of the free
magnetic and electric fields, and another term that measures the screwiness of the mag-
netization density in matter. Without external input, between a static starting and a
static final state, the total helicity stays constant, only a transfer between the hand-
edness of the free fields and the chirality of the magnetization density can take place.
Numerical simulations that could demonstrate the dynamics of the helicity transfer be-
tween the static states would be of great interest. Therefore, again it is necessary to
consider the time evolution of the fully coupled Maxwell–LLG system and finally, this
could lead to a numerical tool for a novel study of the all-optical switching.
In Chapter 5, strong regularity assumptions on the exact solution are formulated

to ensure convergence with rates. In [63] it is shown that these are satisfied for the
LLG equation, assuming sufficiently small initial data. Can we show the existence of
sufficiently regular solutions for the coupled Maxwell–LLG system, which then would
ultimately justify the assumptions on the exact solution in the numerical algorithm?





A. Appendix

A.1. Gronwall’s Lemma, Integration by Parts and Discrete
Counterparts

We state Gronwall’s inequality and a discrete counterpart.

Lemma A.1 (Gronwall’s lemma). Let T > 0 and a : [0, T ] → R≥0 be a continuous,
non-negative function, that is bounded for all t ∈ [0, T ] by

a(t) ≤ g(t) + C

∫ t

0
a(s) ds

for a constant C > 0 and a continuous, non-negative function g : [0, T ]→ R≥0. Then a
is bounded by

a(t) ≤ g(t) + C

∫ t

0
g(s)eC(t−s) ds.

If g is monotonically increasing, we conclude

a(t) ≤ C̃g(t)

for C̃ = eCT .

Lemma A.2 (Discrete version of Gronwall’s lemma). Let T > 0, N ∈ N, k ∈ N0 with
k ≤ N and τ = T/N . Let (aj)Nj=k ⊂ R≥0 be a real valued, non-negative sequence, that is
bounded for all j ∈ {k, . . . , N} by

aj ≤ gj + Cτ
j−1∑
i=k

ai

for a constant C > 0 and a non-negative sequence (gj)Nj=k ⊂ R≥0. Then a is bounded
for all j ∈ {k, . . . , N} by

aj ≤ gj + Cτ
j−1∑
i=k

gieC(tj−1−ti) ds.

If g is monotonically increasing, we conclude for all j ∈ {k, . . . , N}

aj ≤ C̃gj

for C̃ = eCT .

Integration by parts shows for regular functions a, b : [0, T ]→ R

[∂ta, b][0,T ] = a(T )b(T )− a(0)b(0)− [a, ∂tb][0,T ] and
[a, b][0,T ] = (∂−1

t a)(T )b(T )− [∂−1
t a, ∂tb][0,T ].

Similarly, discrete counterparts hold true.
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Lemma A.3 (Discrete Integration by Parts). For N ∈ N and sequences (aj)j=0,...,N ,
(bj)j=0,...,N it holds

[(∂τt a)+
τ , b
−
τ ][0,T ] = aNbN − a0b0 − [a+

τ , (∂τt b)+
τ ][0,T ],

[a+
τ , b
−
τ ][0,T ] = ((∂τt )−1(ak+1)k)(tN−1)bN − [((∂τt )−1(ak+1)k)−τ , (∂τt b)+

τ ][0,T ].

Proof. It holds

[(∂τt a)+
τ , b
−
τ ][0,T ] + [a+

τ , (∂τt b)+
τ ][0,T ] = τ

N−1∑
j=0

aj+1 − aj

τ
bj + τ

N−1∑
j=0

aj+1 b
j+1 − bj

τ

=
N−1∑
j=0

aj+1bj+1 − ajbj

= aNbN − a0b0.

The second assertion can be shown similarly, by introducing the sequence c0 := 0, cj :=
((∂τt )−1(ak+1)k)(tj−1) = τ

∑j−1
k=0 a

k+1 for j = 1, . . . , N and using (cj+1 − cj)/τ = aj+1

for j = 0, . . . , N − 1:

[a+
τ , b
−
τ ][0,T ] + [((∂τt )−1(ak+1)k)−τ , (∂τt b)+

τ ][0,T ] = τ
N−1∑
j=0

cj+1 − cj

τ
bj + τ

N−1∑
j=0

cj+1 b
j+1 − bj

τ

= cNbN − c0b0

= ((∂τt )−1(ak+1)k)(tN−1)bN .

This is the version we apply in Chapter 3 and 4. The formula can also be rewritten in
the clearer form

[a+
τ , b
−
τ ][0,T ] = ((∂τt )−1a)(N)bN − τa0bN

+
N−1∑
j=0

τa0(∂τt b)(j + 1)− [((∂τt )−1(a)+
τ , (∂τt b)+

τ ][0,T ]

= ((∂τt )−1a)(N)bN − τa0bN

+
N−1∑
j=0

a0(bj+1 − bj)− [((∂τt )−1(a)+
τ , (∂τt b)+

τ ][0,T ]

= ((∂τt )−1a)(N)bN − τa0b0 − [((∂τt )−1(a)+
τ , (∂τt b)+

τ ][0,T ]

and it is τa0 = ((∂τt )−1a)(0).

A.2. Discrete Herglotz Theorems
In this section we recall discrete versions of the Herglotz theorem, see Theorem B.83,
[27, Lemma 2.1–2.3] and the original reference [81]. The notation is similar to Chapter
B and the results are for the first order Convolution Quadrature scheme δ(ζ) = 1 − ζ,
see Section 3.2.2. Provided that the scheme is stable, the results can be extended to
higher order schemes, see [99, Lemma 5.3].

Theorem 1 (Discrete Herglotz Theorem on [0, T ]). Let B,R ∈ Hm(σ0) for σ0 ∈ R. Let
a(·, ·) : X ×X → C sesquilinear and continuous. If there exists a c > 0 such that for all
w ∈ C, all <s > σ0

<a(w,B(s)w) ≥ c‖R(s)w‖2X ,
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then it holds for any sequence (wn)n=0,...,N ⊂ X and for all σ ≥ σ0

τ
N∑
j=0

e−2σtj<a(wj , (B(∂τt )w)(tj)) ≥ cτ
N∑
j=0

e−2σtj‖R(∂τt )w)(tj)‖2X .

Proof. The assertion follows similarly to the proof of Lemma 3.17 and Lemma 3.21.

Theorem A.4 (Discrete Herglotz Theorem on [0, T ]). Let B ∈ Hm(σ0) for σ0 ∈ R+.
For N ∈ N sufficiently large and a sequence (wn)n=0,...,N ⊂ X, it holds

τ
N∑
j=0
‖(B(∂τt )w)(tj)‖2 ≤ Cτ

N∑
j=0
‖((∂τt )mw)(tj)‖2.

The constant C depends on σ0, T and B, but not on τ .

Proof. We extend w to a sequence (wn)n∈N such that ((∂τt )mw)(tj) = 0 for all j > N .
This is always possible by an iterative procedure, as we can write ((∂τt )mw)(tk+1) =
wk+1/τm − f((wn)n≤k), where f((wn)n≤k) does not depend on wk+1. Now we compute
iteratively wN+1, such that ((∂τt )mw)(tN+1) = 0, wN+2 such that ((∂τt )mw)(tN+2) =
0, . . . .
Now we define the finite sequence wjM := wj for j = 0, . . . ,M and wjM = 0, j > M . As
in Lemma 3.21 we have for ρ = e−2σ0τ , |ζ| < ρ and sufficiently small τ

<
(
δ(ζ)
τ

)
≥ 1− e−2σ0τ

τ
=
∫ 2σ0

0
e−τr dr ≥ 2σ0e

−2τσ0 > σ0.

With similar arguments as in [27, Lemma 2.1, Lemma 2.3] we obtain

τ
∞∑
j=0

e−4σ0tj‖(B(∂τt )w)(tj)‖2 ≤ Cτ
∞∑
j=0

e−4σ0tj‖((∂τt )mwM )(tj)‖2.

For j ≥M, it is wj ≤ Ctmj (this can be shown by discrete integration) and therefore

τ
∞∑
j=0

e−4σ0tj‖((∂τt )mwM )(tj)‖2 ≤ τ
N∑
j=0

e−4σ0tj‖((∂τt )mwM )(tj)‖2 + C(τ,m)e−4σ0tM tmM

and the limit M → ∞ exists on the right hand side. We obtain by discrete Causality
(i.e. B(∂τt )w(tj) is independent of wn, n > j) for M > N

τ
N∑
j=0

e−4σ0tj‖(B(∂τt )w)(tj)‖2 = τ
N∑
j=0

e−4σ0tj‖(B(∂τt )wM )(tj)‖2

≤ τ
∞∑
j=0

e−4σ0tj‖(B(∂τt )wM )(tj)‖2.

Combining the previous estimates for the limit M →∞ gives

τ
N∑
j=0

e−4σ0tj‖(B(∂τt )w)(tj)‖2 ≤ Cτ
N∑
j=0

e−4σ0tj‖((∂τt )mw)(tj)‖2.

Now the bounds e−4σ0T ≤ e−4σ0tj ≤ 1 yield the assertion.
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A.3. Rescalings of the Calderon Operator
In this section, we give an overview of the different rescalings of the time harmonic
Maxwell system and corresponding Calderon operators from literature. Especially for
the implementation, it is crucial to deal with the right operators. The different versions
vary in details, so it is necessary to give all the formulas in detail. The overview also
supported the Erratum [125], in which similar content is considered. All problems are
considered in the exterior domain Ωc of the open, bounded and Lipschitz domain Ω with
piecewise smooth boundary Γ . We do not provide any proofs, however, in brackets we
give some notes why the formulas are reasonable and coherent.
The first reformulation is from Buffa & Hiptmaier in [46]. The Calderon operator is

symmetric, the formulation suits the second order formulation of Maxwells equations.

Buffa & Hiptmaier (BH) In [46] the tangential trace and the Neumann trace, respec-
tively are introduced as

γBHT u = u× n,

γBHN u = 1
k
γT (∇× u)

and the following second order formulation for given EBH , HBH is considered for k > 0

∇×∇× u− k2u = 0 in Ωc
,

γBHT u = EBH on Γ,
γBHN u = HBH on Γ.

Defining v := 1
k∇× u, it is equivalent to solve

−ku+∇× v = 0,
−kv +∇× u = 0,

γBHT u = EBH ,

γBHT v = HBH .

If EBH and HBH are suitable exterior data, the solution is given by

u = −DBH(k)EBH − SBH(k)HBH ,

v = −SBH(k)EBH −DBH(k)HBH ,
(A.1)

with the electric single layer potential(
SBH(k)ϕ

)
(x) := k

∫
Γ
GBH(k, x− y)ϕ(y)dy + 1

k
∇
∫
Γ
GBH(k, x− y)divΓϕ(y)dy

and the electric double layer potential

(DBH(k)ϕ)(x) = curl
∫
Γ
GBH(k, x− y)ϕ(y) dy,

where the fundamental solution GBH(k, z) is given as

GBH(k, z) = eik|z|

4π|z| .

The boundary data EBH and HBH is suitable exterior data if and only if(1
2 −B

BH(k)
)(

EBH

HBH

)
=
(
EBH

HBH

)
.
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Here the Calderon operator is defined as

BBH(k) =
(
WBH(k) V BH(k)
V BH(k) WBH(k)

)
,

where

V BH(k) = {{γBHT ◦ SBH(k)}} = {{γBHN ◦ DBH(k)}},
WBH(k) = {{γBHT ◦ DBH(k)}} = {{γBHN ◦ SBH(k)}}.

(This is reasonable, by applying the averaged trace {{γTG}} = (γTG+ + γTG
−)/2 to

the representation formula (A.1) and inserting the zero solution inside of Ω, yielding
{{γTu}} = EBH/2).

The next reformulation is from Scroggs et al. from [144]. The Calderon operator is not
as symmetric as before, therefore the formulation better fits to the first order Maxwell
formulation. Nevertheless a scaling with the material parameters is necessary to arrive
at the first order system we consider in Section 2.4.1. However, only the wavelength k
is necessary to evaluate the Calderon operator, and not both of the material parameters
ε0 and µ0. This is how the Calderon operator is implemented in Bempp 3.4.3. The
formulation differs by a factor i and −i in the definition of γN and S, respectively in
comparison to the operators from (BH).

Scroggs et al. (SA) In [144] the tangential trace and the Neumann trace are intro-
duced, respectively as

γSAT u = u× n,

γSAN u = 1
ik
γT (∇× u)

and for given ESA and HSA the following second order formulation is considered for
k > 0

∇×∇× u− k2u = 0 in Ωc
,

γSAT u = ESA on Γ,
γSAN u = HSA on Γ.

By defining v := 1
ik∇× u, it is equivalent to solve

iku+∇× v = 0,
−ikv +∇× u = 0,

γSAT u = ESA,

γSAT v = HSA.

If ESA, HSA are suitable exterior data, the solution is given by

u = −DSA(k)ESA − SSA(k)HSA,

v = SSA(k)ESA −DSA(k)HSA,
(A.2)

(Note that in view of (A.3), the first line of (A.2) corresponds to the first line of (A.1)
and for the second line, changing the roles of u and v (i.e. v,−u solve a similar system)
yields the consistency of the formula) with the electric single layer potential(

SSA(k)ϕ
)

(x) := ik

∫
Γ
GSA(k, x− y)ϕ(y)dy − 1

ik
∇
∫
Γ
GSA(k, x− y)divΓϕ(y)dy
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and the electric double layer potential(
DSA(k)ϕ

)
(x) = curl

∫
Γ
GSA(k, x− y)ϕ(y) dy,

where the fundamental solution GSA(k, z) is given as

GSA(k, z) = eik|z|

4π|z| .

The boundary data ESA, HSA is suitable exterior data if and only if(1
2 −B

SA(k)
)(

ESA

HSA

)
=
(
ESA

HSA

)

(This is reasonable, by applying the averaged trace {{γT ·}} to (A.2) and inserting the
zero solution inside of Ω). Here the Calderon operator is defined as

BSA(k) =
(
WSA(k) V SA(k)
−V SA(k) WSA(k)

)
,

where (the second equalities are reasonable by noticing γNu = γT v)

V SA(k) = {{γSAT ◦ SSA(k)}} = −{{γSAN ◦ DSA(k)}},
WSA(k) = {{γSAT ◦ DSA(k)}} = {{γSAN ◦ SSA(k)}}.

For an better overview, we express the different ways of definition with each other. It
holds

γSAT u = γBHT u,

γSAN u = −iγBHN u,

GSA(k, z) = GBH(k, z),
SSA(k)ϕ = iSBH(k)ϕ,
DSA(k)ϕ = DBH(k)ϕ,

BSA(k) =
(
WBH(k) iV BH(k)
−iV BH(k) WBH(k)

)
.

(A.3)

The following reformulation is an intermediate step between the reformulations from
Scroggs et al. in [144] and Kovács & Lubich in [99]. It fits to the first order formula-
tion that arises from the Laplace transformed, first order and time dependent Maxwell
equations, which we consider in Section 2.4.1. In contrast to (SA) and (BH) it is a
modification by the factor

√
µ0
ε0

and i
√

µ0
ε0
, respectively, which employs the difference in

the material parameters µ0 and ε0.

Ballani et al. (BA) In [22] similar conventions to the following ones are used. Through-
out the following lines it holds k = i

√
ε0µ0s and the tangential trace and the Neumann

trace are defined, respectively as

γBAT u = u× n,

γBAN u = 1
ik

√
ε0
µ0
γT (∇× u) = −1

µ0s
γT (∇× u).
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For k > 0 the second order formulation is considered

∇×∇× u− k2u = 0 in Ωc
,

γBAT u = EBA on Γ,
γBAN u = HBA on Γ.

By defining v := 1
ik

√
ε0
µ0
∇× u, it is equivalent to solve

−sε0u+∇× v = 0,
sµ0v +∇× u = 0,

γBAT u = EBA,

γBAT v = HBA.

If EBA, HBA are suitable exterior data, the solution is given by

u = −DBA(k)EBA − SBA(k)HBA,

v = ε0
µ0
SBA(k)EBA −DBA(k)HBA (A.4)

(Note that in view of (A.5), the first line of (A.4) corresponds to the first line of (A.1)
and changing the roles of u and v (i.e. v,−ε0u/µ0 solve a similar system) yields the
consistency of the second line.) with the electric single layer potential(
SBA(k)ϕ

)
(x) = ik

√
µ0
ε0

∫
Γ
GBA(s, x− y)ϕ(y)dy

− 1
ik

√
µ0
ε0
∇
∫
Γ
GBA(s, x− y)divΓϕ(y)dy

= −µ0s

∫
Γ
GBA(s, x− y)ϕ(y)dy + 1

εs
∇
∫
Γ
GBA(s, x− y)divΓϕ(y)dy

and the electric double layer potential(
DBA(k)ϕ

)
(x) = curl

∫
Γ
GBA(s, x− y)ϕ(y) dy,

where the fundamental solution GBA(s, z) is given as

GBA(s, z) = e−s
√
ε0µ0|z|

4π|z| .

The boundary data EBA, HBA is suitable exterior data if and only if (apply {{γT · }} to
(A.4)) (1

2 −B
BA(k)

)(
EBA

HBA

)
=
(
EBA

HBA

)
.

Here the Calderon operator is defined as

BBA(k) =
(

WBA(k) V BA(k)
− ε0
µ0
V BA(k) WBA(k)

)
,

where (the second equalities are reasonable due to γNu = γT v)

V BA(k) = {{γBAT ◦ SBA(k)}} = −µ0
ε0
{{γBAN ◦ DBA(k)}},

WBA(k) = {{γBAT ◦ DBA(k)}} = {{γBAN ◦ SBA(k)}},
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For an better overview, we express the different ways of definition with each other. It
holds

γBAT u = γSAT u = γBHT u,

γBAN u =
√
ε0
µ0
γSAN u = −i

√
ε0
µ0
γBHN u,

GBA(s, z) = GSA(k, z) = GBH(k, z),

SBA(k)ϕ =
√
µ0
ε0
SSA(k)ϕ = i

√
µ0
ε0
SBH(k)ϕ,

DBA(k)ϕ = DSA(k)ϕ = DBH(k)ϕ,

BBA(k) =

 WSA(k)
√

µ0
ε0
V SA(k)

−
√

ε0
µ0
V SA(k) WSA(k)

 =

 WBH(k) i
√

µ0
ε0
V BH(k)

−i
√

ε0
µ0
V BH(k) WBH(k)

 .
(A.5)

The next reformulation is used by Kovács & Lubich in [99]. In the Chapters 2–
5 we rely on that formulation, as the Calderon operator has the coercivity property
stated in Lemma 2.12. The operators are comparable to the ones from (BA), adapted
to the formulation for the trace variables ψ = −γTE and ϕ = µ0γTH, which yields
the important coercivity property. The following formulations are based on the first
version of [99], before the Erratum [125], but are without the sign error noticed in [125].
However, the operators here slightly differ from the ones introduced in [125], but the
overall representation formulae coincide. As described in [125], the theory of [99] remains
true without restriction and the following formulas even hold without the scaling of time
proposed in [125], so for possibly ε0µ0 6= 1.

Kovács & Lubich (KL) In [99] the tangential trace and Neumann trace operators,
respectively are defined for k = i

√
ε0µ0s as

γKLT u = u× n,

γKLN u = −1
ik

√
ε0µ0γT (∇× u) = 1

s
γT (∇× u)

and for <s > 0 the following problem is considered

×∇× u+ s2ε0µ0u = 0 in Ωc
,

γKLT u = EKL on Γ,
γKLN u = −µ0H

KL on Γ.

By defining v := − 1
ik

√
ε0µ0∇× u = 1

s∇× u, this is equivalent to solve

sµ0ε0u+∇× v = 0,
−sv +∇× u = 0,

γKLT u = EKL,

γKLT v = −µ0H
KL.

As the boundary data is scaled, this is again the same system as in (BA), if we define
ṽ = (−µ0)−1v, we arrive at

−sε0u+∇× ṽ = 0,
sµ0ṽ +∇× u = 0,

γKLT u = EKL,

γKLT ṽ = HKL.
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If EKL, HKL are suitable, the solution is given by

u = −DKL(s)(EKL)− SKL(s)(−µ0H
KL),

v = ε0µ0SKL(s)(EKL)−DKL(s)(−µ0H
KL),

ṽ = −SKL(s)(ε0E
KL)−DKL(s)(HKL),

(A.6)

with the electric single layer potential(
SKL(s)ϕ

)
(x) = s

∫
Γ
GKL(s, x− y)ϕ(y)dy − s−1 1

ε0µ0
∇
∫
Γ
GKL(s, x− y)divΓϕ(y)dy

= −ik
√
ε0µ0

∫
Γ
GKL(s, x− y)ϕ(y)dy

+ 1
ik
√
ε0µ0

∇
∫
Γ
GKL(s, x− y)divΓϕ(y)dy

and the electric double layer potential(
DKL(s)ϕ

)
(x) = curl

∫
Γ
GKL(s, x− y)ϕ(y) dy,

where the fundamental solution GKL(s, z) is given as

GKL(s, z) = e−s
√
ε0µ0|z|

4π|z| .

The boundary data EKL,−µ0H
KL is suitable exterior data if and only if(1

2 − B̂
KL(s)

)(
EKL

−µ0HKL

)
=
(

EKL

−µ0HKL

)
.

Here the Calderon operator is defined as

B̂KL(s) =
(

WKL(s) V KL(s)
−ε0µ0V

KL(s) WKL(s)

)
,

where

V KL(s) = {{γKLT ◦ SKL(s)}} = −(ε0µ0)−1{{γKLN ◦ DKL(s)}},
WKL(s) = {{γKLT ◦ DKL(s)}} = {{γKLN ◦ SKL(s)}}.

To obtain the desired coercivity, the suitability condition is rewritten as

BKL(s)
(
µ0H

KL

−EKL

)
= 1

2µ0

(
EKL

µ0HKL

)
,

where

BKL(s) = 1
µ0

(
V KL(s) WKL(s)
−WKL(s) ε0µ0V

KL(s)

)
.
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For an better overview, we express the different ways of definition with each other. It
holds

γKLT u = γBAT u = γSAT u = γBHT u,

γKLN u = −µ0γ
BA
N u = −√ε0µ0γ

BH
N u = i

√
ε0µ0γ

BH
N u

GKL(k, z) = GBA(s, z) = GSA(k, z) = GBH(k, z),
SKL(s)ϕ = (−µ0)−1SBA(k)ϕ = (−√ε0µ0)−1SSA(k)ϕ = (i√ε0µ0)−1SBH(k)ϕ,
DKL(s)ϕ = DBA(k)ϕ = DSA(k)ϕ = DBH(k)ϕ,

B̂KL(s) =
(
WBA(k) −1

µ0
V BA(k)

ε0V
BA(k) WBA(k)

)
=
(

WSA(k) −1√
ε0µ0

V SA(k)
√
µ0ε0V

SA(k) WSA(k)

)

=
(

WBH(k) −i√
ε0µ0

V BH(k)
i
√
ε0µ0V

BH(k) WBH(k)

)
,

BKL(s) = 1
µ0

(
−1
µ0
V BA(k) WBA(k)

−WBA(k) −ε0V
BA(k)

)
= 1
µ0

( −1√
ε0µ0

V SA(k) WSA(k)
−WSA(k) −√ε0µ0V

SA(k)

)

= 1
µ0

( −i√
ε0µ0

V BH(k) WBH(k)
−WBH(k) −i√ε0µ0V

BH(k)

)
.

(A.7)

Remark A.5. In the implementation details from Section 6.1.6, it holds

B̂(k) =
(
D̂ Ê

F̂ Ĝ

)
= BSA(k) =

(
WSA(k) V SA(k)
−V SA(k) WSA(k)

)
,

so the assertions there (and especially the signs) are correct which can be seen from
comparing (A.7) and (6.4).



B. The Laplace Transform
In this chapter we introduce the Laplace transform. We consider the scalar valued case
in Section B.1 for functions u(t) ∈ R and then generalize the results to vector valued
functions u(t) ∈ X for an Hilbert space X in Section B.2. Although many of the results
are well-known, most of the proofs can’t be found in the literature. Similar results
without prove are given in [115, Section 2.1], in [143, 102] a related setting for vector
valued distributions is considered.

B.1. Scalar Valued Laplace Transform and Differential
Operators

B.1.1. Laplace transform on [0,∞)
The Laplace transform of a function u : [0,∞)→ R is defined as

(Lu)(s) :=
∫ ∞

0
u(t)e−st dt for s ∈ C (B.1)

and the inverse Laplace transform for U : {<(s) > σ0} → C as

(L−1U)(t) := 1
2πi

∫
σ+iR

estU(s) ds for t ∈ [0,∞) (B.2)

for a σ > σ0. We see that the inverse Laplace transform is a priori not uniquely defined.
It turns out that the choice of σ does not matter for certain function classes and hence
the definition is valid. We require the following well-known property of the Fourier
transform
Theorem B.1 ([140, Chapter 9]). The Fourier transform

F : L1(R)→ L∞(R) ∩ C(R), (Ff)(x) :=
∫
R
f(ξ)e−ixξ dξ (B.3)

can be extended to a continuous and continuously invertible operator

F : L2(R)→ L2(R).

The inverse operator is given as the extension of the inverse Fourier transform

F−1 : L1(R)→ L∞(R) ∩ C(R), (F−1f)(x) := 1
2π

∫
R
f(ξ)eixξ dξ.

Proof. By Plancherel’s formula for the Fourier transform, it holds for all φ ∈ C∞0 (R)

‖Fφ‖2R = 2π‖φ‖2R.

Now the Fourier transform can be defined for f ∈ L2(R) by a density argument as

Ff := L2(R)− lim
r→∞

∫
|x|≤r

f(ξ)e−ixξ dξ,

where the convergence is understood in L2(R). For f ∈ L1(R), this definition coincides
with (B.3). Similar statements hold for the inverse Fourier transform. The proof of

F−1F = FF−1 = IdL2(R)→L2(R)

can be found in [140, Theorem 9.13].

173
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The similarities between the Laplace transform L and the Fourier transform F are
expressed in the identity

(Lu)(σ + iτ) = F(u(·)e−σ·)(τ) for all σ, τ ∈ R,

where we extended u by zero on (−∞, 0). This allows us to define a useful domain of
definition for the Laplace transform.

Definition B.2. For c ∈ R, we consider the space

L2
c [0,∞) :=

{
u : [0,∞)→ R measurable

∣∣ (x 7→ e−cxu(x)) ∈ L2[0,∞)
}

equipped with the norm
‖u‖L2

c [0,∞) := ‖e−c·u‖[0,∞).

For u ∈ L2
c [0,∞), we redefine the Laplace transform

Lu(s) := F
(
x 7→ u(x)1[0,∞)(x)e−<(s)x)(=(s)). (B.4)

for all s ∈ C with <(s) ≥ c.
Furthermore, we define

L2
∗[0,∞) :=

⋃
c∈R

L2
c [0,∞)

and observe that L2
c [0,∞) ⊂ L2

c′ [0,∞) for all c′ ≥ c.

Remark B.3. The function U := Lu is well-defined on {<s ≥ c} and thus depends on
the growth of u(t) for t→∞. Even exponential growth is admissible.
For <s > c, it is e−<s · u( · ) ∈ L1[0,∞) and formula (B.4) can be interpreted in the

classical sense (B.3), yielding a continuous function on each vertical line in (B.1).

Theorem B.4 (Plancherel’s formula). It holds for u, v ∈ L2
c [0,∞) and for all σ ≥ c∫ ∞

0
e−2σtu(t)v(t) dt = 1

2π

∫
σ+iR

Lu(s)Lv(s) ds,

especially we have
‖Lu‖2σ+iR = 2π‖u‖2L2

σ [0,∞).

Proof. This is a direct consequence of Plancherels formula for the Fourier Transform
which gives for u, v ∈ L2(R)

[Fu,Fv]R = 2π[u, v]R.

We are not able to establish boundedness

L : L2
∗[0,∞)→ Im(L).

However, for u ∈ L2
c [0,∞), Plancherel’s formula yields for σ ≥ c

‖Lu‖σ+iR =
√

2π‖x 7→ e−σxu(x)‖[0,∞)

and it holds
‖x 7→ e−cxu(x)‖[0,∞) = sup

σ>c
‖x 7→ e−σxu(x)‖[0,∞).

Thus, for arbitrary, but fixed c ∈ R

L : (L2
c [0,∞), ‖ · ‖L2

c [0,∞))→ (Im(L), ‖ · ‖Im(L))

is bounded and with bounded inverse on its image Im(L), which we will determine in
the following. A suitable choice of ‖ · ‖Im(L) is

‖ · ‖Im(L) := sup
σ>c
‖ · ‖σ+iR.
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Lemma B.5. For u ∈ L2
c [0,∞), U := Lu is analytic on its domain.

Proof. For z ∈ C it holds∣∣∣∣ez − 1
z

∣∣∣∣ =
∣∣∣∣∫ 1

0
ezω dω

∣∣∣∣ ≤ ∫ 1

0
max(e<z, 1) dω = emax(0,<z). (B.5)

For <s2 > c, δ > 0 such that <s2 > c+ 2δ, and for all s1 ∈ Bδ(s2) (Bδ(s2) denoting the
open ball with radius δ around s2) we have by the Cauchy Schwartz estimate and (B.5)

|U(s1)− U(s2)| ≤
∫ ∞

0
|u(t)|e−ctect|e−s1t − e−s2t| dt

≤
(∫ ∞

0
|u(t)|2e−2ct dt

)1/2 (∫ ∞
0

e2(c−<(s1))t|1− e(s1−s2)t|2 dt
)1/2

≤ ‖e−c·u(·)‖[0,∞)|s1 − s2|
(∫ ∞

0
e2 max(c−<(s1),c−<(s2))tt2 dt

)1/2

≤ C(u, c, δ)|s1 − s2|,

since max(c− <(s1), c− <(s2)) < δ by definition. Therefore an integrable majorant for
the integrand of |U(s1)−U(s2)|/|s1−s2| exists, we can interchange limit and integral and
see that ∂sU(s) = L(−tu(t)) exists. Thus U has a complex derivative and is therefore
analytic, see [140, Chapter 10].

Lemma B.6. For u ∈ L2
c [0,∞), the L2-norm over each vertical line of U = Lu is

uniformly bounded for σ ≥ c and it holds

sup
σ>c
‖U‖σ+iR = ‖U‖c+iR <∞.

Proof. By Plancherel’s formula and the theorem of monotone convergence we have

sup
σ>c
‖x 7→ U(σ + ix)‖2R = sup

σ>c

∫
σ+iR

|U(s)|2 ds = 2π sup
σ>c
‖x 7→ e−σxu(x)‖2[0,∞)

= 2π‖x 7→ e−cxu(x)‖2[0,∞).

Another application of Plancherel’s formula concludes

sup
σ>c
‖x 7→ U(σ + ix)‖2R = 2π‖x 7→ e−cxu(x)‖2[0,∞) = ‖U(c+ i·)‖2R.

The properties of U := Lu shown in Lemma B.5 and Lemma B.6 are already enough
to characterize the image of the Laplace transform.

Theorem B.7 (Paley–Wiener theorem, cf. [128, Theorem V.], [140, Theorem 19.2]). If
U : s 7→ U(s) is analytic for <(s) > σ0 and

sup
σ̃>σ0

∫
σ̃+iR

|U(s)|2 ds <∞,

then there exists a function u ∈ L2
∗[0,∞), such that U = Lu.

The space of the functions with these properties – to be analytic and uniformly square
integrable over each vertical line for high enough real part – is the right choice as domain
of the inverse Laplace transform. By transformation of variables s = σ + iξ, we can
express the inverse Laplace transform in terms of the Fourier transform

(L−1U)(t) = 1
2πi

∫ ∞
−∞

e(σ+iξ)tU(σ + iξ)i dξ = eσtF−1(U(σ + i·))(t).
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Definition B.8. For σ0 ∈ R, we define the Hardy space

H(σ0) := H2(σ0) :=
{
B
∣∣ B(s) : {<s > σ0} → C is analytic

and sup
σ>σ0

∫
σ+iR

|U(s)|2 ds <∞
}
,

equipped with the norm

‖u‖2H2(σ0) := sup
σ>σ0

∫
σ+iR

|U(s)|2 ds.

We define the inverse Laplace transform for U ∈ H(σ0) as

(L−1U)(t) := eσtF−1(U(σ + i · ))(t)

for a σ > σ0. We collect the Laplace invertible functions

H :=
⋃
σ0∈R

H(σ0) =
{
B
∣∣For a σ0 ∈ R, B(s) : {<s > σ0} → C is analytic

and sup
σ>σ0

∫
σ+iR

|U(s)|2 ds <∞
}
.

We summarize the properties and the welldefinedness of the inverse Laplace transform.
Especially we have a one-to-one identity through the Laplace transform between L2

∗[0,∞)
and H and between L2

c [0,∞) and H(c).

Theorem B.9. For σ0 ∈ R and U ∈ H(σ0), there exists a unique u ∈ L2
∗(R+), such

that U = Lu. It holds u ∈ L2
σ0 [0,∞) and

L−1U = u.

The function U can be extended by the L2 − limσ→σ0 to the vertical line {<s = σ0} and
U |{<s=σ0} ∈ L2(σ0 + iR). There holds

2π‖e−σ0·u‖2[0,∞) = sup
σ̃>σ0

∫
σ̃+iR

|U(s)|2 ds =
∫
σ0+iR

|U(s)|2 ds.

Proof. Existence follows from Theorem B.7 and Uniqueness of u ∈ L2
∗[0,∞) can be

deduced with Plancherel’s formula: Let u1 ∈ L2
σ1 [0,∞), u2 ∈ L2

σ2 [0,∞), Lu1 = U ,
Lu2 = U , then it holds by Plancherel’s formula and linearity of the Laplace transform

0 = sup
σ̃>σ0

∫
σ̃+iR

|U(s)− U(s)|2 ds

≥ sup
σ̃>max(σ1,σ2)

∫
σ̃+iR

|U(s)− U(s)|2 ds

= sup
σ̃>max(σ1,σ2)

2π‖e−σ̃ · (u1 − u2)‖2[0,∞)

≥ 0.

Thus u1 = u2. By Plancherel’s formula and the monotone convergence theorem we
deduce

sup
σ̃>σ0

∫
σ̃+iR

|U(s)|2 ds = sup
σ̃>σ0

2π‖e−σ̃ · u‖2[0,∞)

= 2π‖e−σ0 · u‖2[0,∞),
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i.e. u ∈ L2
σ0 [0,∞). It holds for every σ > σ0 and almost every t ∈ R

(L−1U)(t) = eσtF−1((Lu)(σ + i · )
)
(t)

= eσtF−1
((
s 7→ F(u( · )1[0,∞)( · )e−<s · )(=s)

)
(σ + i · )

)
(t)

= eσtu(t)1[0,∞)(t)e−σt

= u(t)1[0,∞)(t).

As U = Lu on {<s > σ0} and u ∈ L2
σ0 [0,∞), by Lebesgue’s theorem we have

‖U(σ1 + i · )− U(σ0 + i · )‖2R = 2π
∫ ∞

0
|(e−σ1t − e−σ0t)u(t)|2 dt

→ 0 for σ1 → σ0,

so
U(σ0 + i · ) := L2(R)− lim

σ→σ0
U(σ + i · )

exists and it holds

sup
σ̃>σ0

∫
σ̃+iR

|U(s)|2 ds = sup
σ̃>σ0

2π‖e−σ̃ · u‖2[0,∞)

= 2π‖e−σ0 · u‖2[0,∞)

=
∫
σ0+iR

|U(s)|2 ds.

B.1.2. Laplace differential operators on [0,∞)
For a function B : {<s > σ0} → C it is natural to define the Laplace differential operator
B(∂t)f via the Laplace transform as L−1(B(s)L(f)(s)).
We start with a first, most general definition and in the following we give sufficient

conditions for the welldefinedness and state the resulting properties of the operators.

Definition B.10. For a function B(s) : {<s > σ0} → C for a σ0 ∈ R and f ∈ L2
∗[0,∞),

such that

B(s)Lf ∈ H, (B.6)

we define B(∂t)f as

B(∂t)f := L−1(B(s)L(f)(s)). (B.7)

To determine the properties of B(∂t), we require function spaces with homogeneous
initial conditions.

Definition B.11. We define for m ∈ N the spaces with homogeneous initial condition
up to order m− 1, i.e.,

Hm
0 [0,∞) :=

{
φ ∈ Hm[0,∞)

∣∣ φ(0) = · · · = φ(m−1)(0) = 0
}
, H0

0 [0,∞) := L2[0,∞)

equipped with the Hm[0,∞)-norm and the exponentially weighted spaces

Hm
∗ [0,∞) :=

{
φ
∣∣ x 7→ e−cxφ(x) ∈ Hm[0,∞) for some c ∈ R

}
, H0

∗ [0,∞) := L2
∗[0,∞),

the exponentially weighted spaces with zero condition at t = 0

Hm
0,∗[0,∞) :=

{
φ
∣∣ x 7→ e−cxφ(x) ∈ Hm

0 [0,∞) for some c ∈ R
}
, H0

0,∗[0,∞) := L2
∗[0,∞).
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Furthermore, we define for fixed damping parameter c ∈ R

Hm
c [0,∞) :=

{
φ
∣∣ x 7→ e−cxφ(x) ∈ Hm[0,∞)

}
, H0

c [0,∞) := L2
c [0,∞)

and

Hm
0,c[0,∞) :=

{
φ
∣∣ x 7→ e−cxφ(x) ∈ Hm

0 [0,∞)
}
, H0

0,c[0,∞) := L2
c [0,∞).

We equip these spaces with the norms

‖u‖Hm[0,∞) := ‖u‖Hm
0 [0,∞) :=

 m∑
j=0
‖∂jt u‖2[0,∞)

1/2

and
‖u‖Hm

c [0,∞) := ‖u‖Hm
0,c[0,∞) := ‖e−c · u‖Hm[0,∞).

Note that functions in Hm
0 [0,∞) may have infinite support (in comparison to Cm0 [0,∞),

where we collect m times differentiable functions with finite support, see Definition B.16
below), the sub index 0 illustrates the zero condition at t = 0. There is a possible
ambiguity of notation between Hm

c for c = 0 and Hm
0 denoting the space with zero

initial condition. This, however, will not be a problem in the following, as the variable
c will never be substituted with particular values.

Remark B.12. It is equivalent for c ∈ R

f ∈ Hm
c [0,∞)⇔ e−c · f ∈ Hm[0,∞)

⇔ e−c · f, . . . , e−c · ∂mt f ∈ L2[0,∞)
⇔ f, . . . , ∂mt f ∈ L2

c [0,∞).

The norms ‖ · ‖Hm
c [0,∞) and ‖ · ‖Hm

0,c[0,∞) are equivalent (depending on c) to the norm

‖f‖2 :=
m∑
k=0
‖∂jt f‖2L2

c [0,∞).

Theorem B.13. For c ∈ R and m ∈ N the spaces Hm[0,∞), Hm[0,∞), Hm
c [0,∞),

Hm
0,c[0,∞) and H(c) are Hilbert spaces together with the scalar products

[u, v]Hm[0,∞) :=
m∑
j=0

[∂jt u, ∂
j
t v][0,∞),

[u, v]Hm
0 [0,∞) :=

m∑
j=0

[∂jt u, ∂
j
t v][0,∞),

[u, v]Hm
c [0,∞) :=

m∑
j=0

[e−2c · ∂jt u, ∂
j
t v][0,∞),

[u, v]Hm
0,c[0,∞) :=

m∑
j=0

[e−2c · ∂jt u, ∂
j
t v][0,∞),

[U, V ]H(c) := 1
2π [U, V ]c+iR.

Proof. The space Hm[0,∞) is a Hilbert space due to [140], and Hm
0 [0,∞) is a Hilbert

space, as the trace mapping is continuous.
The space Hm

c [0,∞) is a Prehilbert space, as the scalar product is positive definite,
linear and symmetric and the induced norm is a norm. For the completeness, let vn be
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a Cauchy sequence in Hm
c [0,∞). Therefore e−c · vn is a Cauchy sequence in Hm[0,∞)

and converges to ṽ ∈ Hm[0,∞). This is equivalent to the convergence of vn → ec · ṽ in
Hm
c [0,∞).

To show that the subspace Hm
0,c[0,∞) ⊂ Hm

c [0,∞) is a Hilbert space, it remains to show
completeness. For a sequence vn → v in Hm

0,c[0,∞), it holds for T > 0

vn|[0,T ] → v|[0,T ] in Hm[0, T ].

As the trace mapping is continuous, it holds v(j) = 0, j = 0, . . .m−1 and v ∈ Hm
0,c[0,∞).

The space H(σ0) is a Hilbert space by the one to one identity of the Laplace transform
from L : L2

c [0,∞)→ H(σ0), which is an invertible isometry by Plancherel’s formula.

Example B.14. a) For the operator B(s) = s, f ∈ H1
0,∗[0,∞), it holds

s(Lf)(s) ∈ H

and we have
B(∂t)f = ∂tf.

Thus the Laplace differential operator ∂t coincides with the weak derivative ∂t, if f is
weakly differentiable and f(0) = 0.
b) For the operator B(s) = s−1, f ∈ L2

∗[0,∞) it holds

s−1(Lf)(s) ∈ H

and we have
B(∂t) = ∂−1

t f :=
∫ t

0
f(τ) dτ.

Thus the Laplace differential operator ∂−1
t coincides with the integration over time

∫ t
0 dτ .

The condition to be zero at t = 0 comes from the fact that we extend the functions
to zero on (−∞, 0) and otherwise the function regarded on (−∞,∞) would have a
singularity at t = 0.

Proof. a) Let σ0 ∈ R and f ∈ H1
0,σ0 [0,∞). For <s > σ0 it holds

|f(t)e−st| = |f(t)e−σ0t · e−(s−σ0)t|

≤
∫ t

0
|f ′(r)e−σ0r − σ0f(r)e−σ0r| dr · e−(<s−σ0)t

≤ e−t(<s−σ0)t1/2(‖f ′‖L2
σ0 [0,∞) + |σ0|‖f‖L2

σ0 [0,∞))

→ 0 for t→∞.

Using this outcome and integration by parts we obtain

Lf(s) =
∫ ∞

0
f(t)e−st dt

= −
∫ ∞

0
f ′(t)e−st(−s)−1 dt+

[
f(t)e−st(−s)−1]∞

0

= 1
s
Lf ′(s).

Thus (the case s = 0 follows from σ0 < 0 and f(0) = limt→∞ f(t) = 0)

s(Lf)(s) = Lf ′(s) ∈ H(σ0)

and
L−1(s(Lf)) = ∂tf.



B. The Laplace Transform 180

b) Let σ0 ∈ R and f ∈ L2
σ0 [0,∞). It is for ε > 0

s−1(Lf)(s) ∈ H(max(ε, σ0)) (B.8)

and if ∂−1
t f(t) :=

∫ t
0 f(τ) dτ ∈ H1

0,∗[0,∞), the same calculations as in a) show

L−1(s∂−1
t f) = f,

i.e.
L−1(s−1Lf)(t) =

∫ t

0
f(τ) dτ.

As ∂−1
t f(0) = 0 and ∂t∂−1

t f = f ∈ L2
∗[0,∞), it remains to show ∂−1

t f ∈ L2
∗[0,∞). By

the estimate for z ∈ C∣∣∣∣ez − 1
z

∣∣∣∣ =
∣∣∣∣∫ 1

0
ezω dω

∣∣∣∣ ≤ ∫ 1

0
max(e<z, 1) dω = emax(0,<z),

we have ∣∣∣∣∫ t

0
f(τ) dτ

∣∣∣∣2 ≤ ∫ t

0
e2σ0τ dτ

∫ t

0
e−2σ0τ |f(τ)|2 dτ

≤ e2σ0t − 1
2σ0

‖f‖2L2
σ0 [0,∞)

≤ temax(0,2σ0t)‖f‖2L2
σ0 [0,∞).

Thus for every ε > 0

‖∂−1
t f‖2L2

max(0,σ0)+ε[0,∞) =
∫ ∞

0
e−max(0,2σ0t)−2εt|∂−1

t f |2 dt

≤
∫ ∞

0
te−2εt dt‖f‖2L2

σ0 [0,∞) <∞.
(B.9)

Remark B.15. If we compare (B.9) to (B.8), we expect that this estimate is not optimal
for σ0 > 0, (in this case ε = 0 should be possible). Indeed, we can improve our estimates
for σ0 > 0: By the previous estimate it holds for σ > σ0 > 0

‖∂−1
t f‖2L2

σ [0,∞) =
∫ ∞

0
e−2σt|∂−1

t f(t)|2 dt

=
∫ ∞

0
e−2σt(∂−1

t f(t))2 dt

=
[
e−2σt(−2σ)−1(∂−1

t f(t))2]∞
0 −

∫ ∞
0

e−2σt(−2σ)−12(∂−1
t f(t))f(t) dt

= 1
σ

∫ ∞
0

e−σt∂−1
t f(t)e−σtf(t) dt

≤ 1
σ
‖f‖L2

σ [0,∞)‖∂−1
t f‖L2

σ [0,∞).

Division by ‖∂−1
t f‖L2

σ [0,∞), σ → σ0 and monotone convergence yield

‖∂−1
t f‖L2

σ0 [0,∞) ≤
1
σ0
‖f‖L2

σ0 [0,∞).

This additionally shows continuity of the operator

∂−1
t : L2

σ0 [0,∞)→ L2
max(ε,σ0)[0,∞).
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We define the following spaces for a domain Ω ⊂ Rm, m ∈ N.

Definition B.16. The space of k-times continuously differentiable functions

Ck(Ω) := Ck(Ω,Rn) :=
{
f : Ω→ Rn

∣∣ f is k times continuously differentiable in Ω◦

and continuously extendable to Ω
}
.

The infinitely differentiable functions are defined as

C∞(Ω) := C∞(Ω,Rn) :=
⋂
k∈N0

Ck(Ω,Rn).

For a function f : Rm → Rn we define the support as

supp(f) := {x|f(x) 6= 0}

and the compactly supported functions

Ck0 (Ω) := Ck0 (Ω,Rn) :=
{
f ∈ Ck(Ω,Rn)

∣∣ supp(f) is compact and supp(f) ⊂ Ω
}

and
C∞0 (Ω) := C∞0 (Ω,Rn) :=

⋂
k∈N0

Ck0 (Ω,Rn).

Lemma B.17. In the situation of Definition B.10, if there exists an m ∈ N0, σ1, σ2 ∈ R
and a constant C > 0, such that for every φ ∈ C∞(0,∞)

B(∂t)φ = L−1(B(s)L(φ)(s)) ∈ L2
∗[0,∞)

and
‖B(∂t)φ‖L2

σ1 [0,∞) ≤ C‖φ‖Hm
0,σ2

[0,∞),

then B(∂t)f exists for every f ∈ Hm
0,σ2 [0,∞) and it holds

B(∂t)f = lim
φ→f in Hm

0,σ2
[0,∞)

B(∂t)φ,

where the convergence is understood in L2
σ1 [0,∞) and the limit φ→ f is in Hm

0,σ2 [0,∞).
Under these assumptions, we can define B(∂t) as a continuous operator

B(∂t) : Hm
0,σ2 [0,∞)→ L2

σ1 [0,∞).

The assertion holds for any space that is dense in Hm
0,σ2 [0,∞) instead of C∞0 (0,∞).

Proof. Let f ∈ Hm
0,σ2 [0,∞). By Plancherel’s formula, we have for φ ∈ C∞0 (0,∞) that

‖B(s)Lφ‖H(σ1) = ‖B(∂t)φ‖L2
0,σ1

[0,∞)

≤ C‖φ‖Hm
σ2 [0,∞).

Thus, for a sequence φ → f in Hm
0,σ2 [0,∞), B(s)Lφ is a Cauchy sequence and conver-

gences in the Banach space H(σ1) (see Theorem B.13). Especially the limit function is
analytic, and on {<s > max(σ1, σ2)}, it equals B(s)Lf , because on {<s > σ2}, we have
pointwise convergence of Lφ→ Lf

|B(s)Lf(s)−B(s)Lφ(s)| ≤ |B(s)|‖e−<s · (f − φ)‖L1[0,∞)

≤ C(B, s, σ2)‖f − φ‖L2
σ2 [0,∞) → 0.

Thus B(s)Lf ∈ H(max(σ1, σ2)) and B(∂t)f exists.
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If σ1 ≥ σ2, we have by Plancherel’s formula and the previously shown

B(∂t)f = L2
σ1 [0,∞)− lim

φ→f in Hm
σ2 [0,∞)

B(∂t)φ.

If σ1 < σ2, B(s)Lf has an extension in H(σ1), i.e. there exists g ∈ L2
σ1 [0,∞) such that

Lg = B(s)Lf on {<s > σ2}. As the inverse Laplace transform is uniquely defined by
one vertical line, this already shows B(∂t)f ∈ L2

σ1 [0,∞) and

B(∂t)f = L2
σ1 [0,∞)− lim

φ→f in Hm
0,σ2

[0,∞)
B(∂t)φ.

The operator
B(∂t) : Hm

0,σ2 [0,∞)→ L2
σ1 [0,∞)

is continuous, as the approximating sequence can be chosen such that

‖φ‖Hm
0,σ2

[0,∞) ≤ 2‖f‖Hm
0,σ2

[0,∞)

and therefore by continuity of the norm

‖B(∂t)f‖L2
σ1 [0,∞) ≤ lim

φ→f in Hm
0,σ2

[0,∞)
‖B(∂t)φ‖L2

σ1 [0,∞)

≤ C‖φ‖Hm
0,σ2

[0,∞)

≤ 2C‖f‖Hm
0,σ2

[0,∞).

Example B.18. a) For σ0 ∈ R and every φ ∈ H∞0,∗[0,∞) ∩ C∞0 [0,∞), it is by Exam-
ple B.14

sLφ(s) ∈ H

and
‖∂tφ‖L2

σ0 [0,∞) ≤ ‖φ‖H1
0,σ0

[0,∞).

For f ∈ H1
0,σ0 [0,∞) we have

L2
σ0 [0,∞)− lim

φ→f in H1
0,σ0

[0,∞)
∂tφ = ∂tf

and
∂t : H1

0,σ0 [0,∞)→ L2
σ0 [0,∞)

is continuous.
b) For σ0 ∈ R, ε > 0 and every φ ∈ C∞0 (0,∞), it is by Example B.14

s−1Lφ(s) ∈ H

and
‖∂−1

t φ‖L2
max(ε,σ0)[0,∞) ≤ ‖φ‖L2

σ0 [0,∞).

For f ∈ L2
σ0 [0,∞) we have

L2
max(ε,σ0)[0,∞)− lim

φ→f in L2
σ0 [0,∞)

∂−1
t φ = ∂−1

t f

and
∂−1
t : L2

σ0 [0,∞)→ L2
max(ε,σ0)[0,∞)

is continuous.
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In the following lemma, we give a more concrete condition that ensures the existence
of B(∂t)f .

Lemma B.19. In the setting of Definition B.10, if there exists an m ∈ N0, σ1 ∈ R and
a constant C > 0, such that B is analytic on its domain and

|B(s)| ≤ C|s|m for all <s > σ1,

then B(∂t)f exists for every f ∈ Hm
0,∗[0,∞) and it holds

B(∂t)f = ∂mt L−1(B(s)s−mLf) = L−1(B(s)s−mL∂mt f).

Under these assumptions, the assumptions of Lemma B.17 are satisfied and we can define
B(∂t) as a continuous operator for σ2 ∈ R

B(∂t) : Hm
0,σ2 [0,∞)→ L2

max(σ1,σ2)[0,∞).

Proof. Let f ∈ Hm
0,σ2 [0,∞). Then it is smLf ∈ H(σ2) and

B(s)Lf ∈ H(max(σ1, σ2))

and B(∂t)f exists. By Example B.14, it is

B(∂t)f = ∂mt ∂
−m
t B(∂t)f = ∂mt L−1(B(s)s−mLf)

and as f ∈ Hm
0,σ2 [0,∞)

B(∂t)f = B(∂t)∂−mt ∂mt f = L−1(B(s)s−mL(∂mt f)).

The assumptions of Lemma B.17 are satisfied, we have for φ ∈ C∞0 (0,∞), by Plancherel’s
formula and Example B.14

‖B(∂t)φ‖L2
max(σ1,σ2)[0,∞) = 1

2π‖B(s)Lφ‖H(max(σ1,σ2))

≤ C‖smLφ‖H(max(σ1,σ2))

= C‖∂mt φ‖L2
max(σ1,σ2)[0,∞)

≤ ‖φ‖Hm
0,σ2

[0,∞).

Definition B.20. We define for m ∈ N0 and σ0 ∈ R

Hm(σ0) :=
{
B : {<s > σ0} → C analytic

∣∣ |B(s)| ≤ C|s|m for all <s > σ0
}

and
Hm :=

⋃
σ0∈R

Hm(σ0).

We call B ∈ H0 a smoothing operator.

We illustrate the statements of the previous theorem with the simple differential op-
erators ∂t and ∂−1

t .

Example B.21. a) It holds for every σ1 ∈ R that s 7→ s ∈ H1(σ1) as

|s| ≤ |s|1 on {<s > σ1}
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and for σ2 ∈ R, f ∈ H1
0,σ2 [0,∞) we have

∂tf = ∂tL−1(Lf) = L−1(L∂tf) in L2
σ2 [0,∞).

b) It holds for every σ1 > 0

|s−1| ≤ 1
σ1

on {<s > σ1}

and for every σ2 ∈ R f ∈ L2
σ2 [0,∞)

∂−1
t f = L−1(sLf) in L2

max(σ1,σ2)[0,∞)

and ∂−1
t is a smoothing operator.

We define the convolution of a, b ∈ L2
∗[0,∞) as

(a ∗ b)(t) :=
∫ t

0
a(τ)b(t− τ) dτ =

∫ t

0
a(t− τ)b(τ) dτ = (b ∗ a)(t)

and summarize some of the properties in the following lemma.

Lemma B.22. It holds

L2
∗[0,∞) ∗ L2

∗[0,∞) ⊂ L2
∗[0,∞).

More precise it is for σ1, σ2 ∈ R, a ∈ L2
σ1 [0,∞), b ∈ L2

σ2 [0,∞) for σ1 6= σ2

a ∗ b ∈ L2
max(σ1,σ2)[0,∞).

For σ1 = σ2, in general we only have for some ε > 0

a ∗ b ∈ L2
σ1+ε[0,∞).

Furthermore it is
L(a ∗ b) = La · Lb on {<s > max(σ1, σ2)}

and the functions lie in H(max(σ1, σ2)) (or H(σ1 + ε), in the case σ1 = σ2). For
A ∈ H(σ1), B ∈ H(σ2)

L−1A ∗ L−1B = L−1(AB) almost everywhere in [0,∞)

and the functions are in L2
max(σ1,σ2)[0,∞) (or L2

σ1+ε[0,∞), in the case σ1 = σ2).

Proof. For 1 ≤ p, q, r ≤ ∞ witch 1
p + 1

q = 1 + 1
r Young’s inequality gives for φ ∈ Lp(R),

ψ ∈ Lq(R)
‖φ ∗R ψ‖Lr(R) ≤ ‖φ‖Lp(R)‖ψ‖Lq(R),

where ∗R denotes the convolution over R,

φ ∗R ψ(t) :=
∫
R
φ(τ) ∗ ψ(t− τ) dτ.

If supp(φ), supp(ψ) ⊂ [0,∞), it holds

φ ∗R ψ = φ ∗ ψ
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almost everywhere on R. Therefore we have for r = p = 2, q = 1 and without loss of
generality σ1 < σ2

‖a ∗ b‖2L2
max(σ1,σ2)[0,∞) =

∫ ∞
0

e−2 max(σ1,σ2)t|
∫ t

0
a(τ)b(t− τ) dτ |2 dt

=
∫ ∞

0
|
∫ t

0
e−σ2τa(τ)|b(t− τ)|e−σ2(t−τ)|a(τ)| dτ |2 dt

= ‖e−σ2 · a ∗ e−σ2 · b‖2[0,∞)

≤ ‖e−σ2 · a‖2L1[0,∞)‖e
−σ2 · b‖2[0,∞)

≤ C(σ2 − σ1)‖a‖2L2
σ1 [0,∞)‖b‖

2
L2
σ2 [0,∞) <∞.

For σ1 = σ2, the same estimate for σ1 := σ1, σ2 := σ1 + ε gives

‖a ∗ b‖2L2
max(σ1,σ1+ε)[0,∞) ≤ ‖e

−(σ1+ε) · a‖2L1[0,∞)‖e
−(σ1+ε) · b‖2[0,∞)

≤ ‖e−ε · ‖2[0,∞)‖a‖
2
L2
σ1 [0,∞)‖b‖

2
L2
σ1 [0,∞) <∞.

We have by the Fourier convolution law for c, d ∈ L2(R), if c ∗R d ∈ L2(R), that

F(c ∗R d) = F(c) · F(d).

Similarly, for C,D ∈ L2(R), if CD ∈ L2(R), it holds

F−1C ∗R F−1D = F−1(CD).

These relations translate to the Laplace transform in a similar way, it holds for s ∈ C,
<s > max(σ1, σ2)

(e−<s · a) ∗ (e−<s · b) ∈ L2[0,∞)

and

L(a ∗ b)(s) = F(e−<s · (a ∗ b)( · ))(=(s))
= F((e−<s · a) ∗ (e−<s · b))(=(s))
= F(e−<s · a)(=(s))(e−<s · b)(=(s))
= L(a)(s) · L(b)(s).

Similarly we have for almost all t ∈ [0,∞) and σ > max(σ1, σ2)

L−1A ∗ L−1B(t) =
∫ t

0
eσ(t−s)F−1(A(σ + i · ))(t− s)eσsF−1(B(σ + i · ))(s) ds

= eσtF−1(A(σ + i · )) ∗R F−1(B(σ + i · ))(t)
= eσtF−1(A(σ + i · )B(σ + i · ))(t)
= L−1AB(t).

Remark B.23. Aa example that ε > 0 is necessary in the previous Lemma B.22 for
σ1 = σ2, can be constructed by

A(s) := 1
s1/4

1
1 + s

.

The function A is analytic for <s > 0 and A ∈ L2(iR) ∩ L2(σ + iR) for all σ > 0, so

A ∈ H(0).
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Thus there exists a ∈ L2[0,∞), such that La = A. By what we have already shown in
Lemma B.22, it is

L(a ∗ a) = A2 on {<s > 0}.
However, as A2 /∈ L2(iR), it holds

L(a ∗ a) = A2 /∈ H(0)

and thus
a ∗ a /∈ L2[0,∞).

For every ε > 0 we have
a ∗ a ∈ L2

ε [0,∞)
and

A2 ∈ H(ε).

Lemma B.24. In the setting of Lemma B.19, it is for every ε > 0

B(s)s−(m+1) ∈ H(max(ε, σ1)),

so L−1(B(s)s−(m+1)) exists. Similarly L−1(B(s)s−(m+2)) exists and is continuous re-
garded as function on R. For f such that B(∂t)f exists (e.g. f ∈ Hm

0,∗[0,∞)), it holds

B(∂t)f = ∂m+1
t L−1(B(s)s−(m+1)) ∗ f = ∂m+2

t L−1(B(s)s−m+2) ∗ f.

For f ∈ Hm+1
0,∗ [0,∞) we have

B(∂t)f = L−1(B(s)s−(m+1)) ∗ ∂m+1
t f

and for f ∈ Hm+2
0,∗ [0,∞)

B(∂t)f = L−1(B(s)s−m+2) ∗ ∂m+2
t f.

Proof. It is B(s)s−(m+1) analytic for <s > max(σ1, 0) and by

|B(s)s−(m+1)| ≤ |s|−1 on <s > max(σ1, 0),

we obtain
B(s)s−(m+1) ∈ H(max(ε, σ1)).

The function L−1(B(s)s−(m+2)) is continuous regarded as function on R, as

B(s)s−(m+2) ∈ L1(σ + iR)

for σ > max(σ1, ε). By the Fourier transform properties from Lemma B.1 it is continuous
on [0,∞) and

L−1(B(s)s−(m+2))(0) = ∂−1
t L−1(B(s)s−(m+1))(0) = 0.

For σ2 ∈ R, g ∈ L2
σ2 [0,∞) it holds with Lemma B.22

L−1(B(s)s−(m+1)Lg) = L−1(B(s)s−(m+1)) ∗ g.

The assertion follows from

∂mt ∂
−m
t = IdL2

∗[0,∞)→L2
∗[0,∞), ∂−mt ∂mt = IdHm

0,∗[0,∞)→Hm
0,∗[0,∞)

and
L−1(B(s)f) = ∂m+1

t ∂−m−1
t L−1(B(s)f) = ∂m+1

t L−1(s−m−1B(s)f),
as well as

L−1(B(s)f) = L−1(B(s)(∂−m−1
t ∂m+1

t f)) = L−1(s−m−1B(s)(∂m+1
t f)).
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Again, we illustrate the previous lemma for the simple differential operators ∂t and
∂−1
t .

Example B.25. a) It holds for f ∈ H1
0,∗[0,∞) that

∂tf = ∂2
t

∫ t

0
f(τ) dτ = ∂2

t ∂
−1
t f

and
∂tf = ∂3

t

∫ t

0
(t− τ)f(τ) dτ = ∂3

t ∂
−2
t f.

For f ∈ H2
0,∗[0,∞) we have

∂tf =
∫ t

0
∂2
t f(τ) dτ = ∂−1

t ∂2
t f

and if f ∈ H3
0,∗[0,∞), even

∂tf =
∫ t

0
(t− τ)∂3

t f(τ) dτ = ∂−2
t ∂3

t f.

The function L−1(1/s2) = 1[0,∞)(t)t is continuous over R.
b) It is

L
(
1[0,∞)(t)t

)
= 1
s2

and
L
(
1[0,∞)(t)

t2

2

)
= 1
s3 .

It holds for f ∈ L2
∗[0,∞) that

∂−1
t f = ∂t

∫ t

0
(t− τ)f(τ) dτ = ∂t∂

−2
t f

and
∂−1
t f = ∂2

t

∫ t

0

(t− τ)2

2 f(τ) dτ = ∂2
t ∂
−3
t f.

For f ∈ H1
0,∗[0,∞) we have

∂−1
t f = ∂t

∫ t

0

(t− τ)2

2 ∂tf(τ) dτ = ∂1
t ∂
−2
t ∂tf.

and if even f ∈ H2
0,∗[0,∞),

∂−1
t f =

∫ t

0

(t− τ)2

2 ∂2
t f(τ) dτ = ∂−3

t ∂2
t f.

Remark B.26. The formulas in Lemma B.19 and Lemma B.24, that do not need dif-
ferentiabillity of f , also hold for f ∈ L2

∗[0,∞), if B(∂t)f exists (i.e. B(s)Lf ∈ H). In
this case it is for m ∈ N0

B(∂t)f = ∂mt L−1(B(s)s−mLf)

and for high enough m ∈ N

B(∂t)f = ∂mt L−1(B(s)s−m) ∗ f.

The last equality only holds if L−1(B(s)s−m) exists.
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We summarize some further properties concerning the concatenation of Laplace dif-
ferential operators.

Theorem B.27. Let f ∈ L2
∗[0,∞) and functions A(s), B(s). If B(∂t)f and (AB)(∂t)f

exist, then A(∂t)B(∂t)f exists and equals

(AB)(∂t)f = A(∂t)B(∂t)f.

If furthermore A(∂t)f exists, it holds

(AB)(∂t)f = A(∂t)B(∂t)f = B(∂t)A(∂t)f.

Corollary B.28. For A ∈ Hm, B ∈ Hn, AB ∈ Hp and f ∈ Hmax(m,n,p)
0,∗ [0,∞) it is

(AB)(∂t)f = A(∂t)B(∂t)f = B(∂t)A(∂t)f.

Example B.29. For f ∈ L2
∗[0,∞), ∂−1

t f exists, L−1(Lf) exists, so

f = ∂t∂
−1
t f,

but ∂tf exists only for f ∈ H1
0,∗[0,∞).

The following Herglotz theorem, originally from [81], is an important result for the
connection between positivity and boundedness of time dependent and time harmonic
operators.

Theorem B.30 (Herglotz theorem, cf. [27, Lemma 2.2]). Let B,R ∈ Hm(σ0) for σ0 ∈ R.
Then the following statements are equivalent:

• There exists c > 0 such that for all w ∈ C, all <s > σ0

<(wB(s)w) ≥ c|R(s)w|2.

• There exists c > 0 such that for all w ∈ Hm
0,∗[0,∞), for all σ ≥ σ0∫ ∞

0
e−2σt<(w(t)B(∂t)w(t)) dt ≥ c‖R(∂t)w‖2L2

σ [0,∞).

Additionally, the following statements are equivalent:

• There exists C > 0 such that for all <s > σ0

|B(s)|2 ≤ C|R(s)|2.

• There exists C > 0 such that for all w ∈ Hm
0,∗[0,∞), for all σ ≥ σ0

‖B(∂t)w‖2L2
σ [0,∞) ≤ C‖R(∂t)w‖2L2

σ [0,∞).

Proof. The execution follows immediately by Plancherel’s formula, and the reverse di-
rection can be shown by localizing around arbitrary values by special sequences, cf. [27,
Lemma 2.2].
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B.1.3. Laplace transform and differential operators on [0, T ]
As we will mainly work on bounded time intervals, we want to define the Laplace trans-
form and Laplace differential operators for functions with domain [0, T ], so e.g. for
f ∈ L2([0, T ]). The Laplace transform can easily be defined by extending f to zero
outside of [0, T ]:

For f ∈ L2([0, T ]), it is e−c · f1[0,T ] ∈ L2[0,∞) for all c ∈ R , thus

Lf := L(f1[0,T ])

exists and is analytic in the whole complex plane. Also L−1 of Lf is well defined and
returns a function with support in [0, T ]. For general functions B ∈ H, we can ensure
supp(L−1B) ⊂ [0, T ] by setting

L−1 := 1[0,T ]L−1.

It should then be taken into account, that in general L−1 is only a right inverse, i.e. it is

L−1L = IdL2([0,T ])→L2([0,T ]),

but
LL−1 6= IdH→H.

The definition of Laplace differential operators cannot be done straightforward by re-
stricting the function to [0, T ], as thereby an artificial singularity is set at t = T, if
f(T ) 6= 0. This can be seen by the slow decay of Lf , even if f ∈ C∞[0, T ] it is

(Lf)(s) =
∫ T

0
e−stf(t) dt

= 1
s

∫ T

0
e−stf ′(t) dt+ 1

s
f(0)− e−sT

s
f(T )

= 1
s

(Lf ′)(s) + 1
s
f(0)− e−sT

s
f(T ).

It holds Lf ′ ∈ H, so 1
s (Lf ′)(s) is decaying fast enough to apply an differential operator

of order one. But, as f(0) 6= 0 6= f(T ), we only have

|Lf(s)| ≤ |s|−1,

so for fixed <s > 0
|Lf(s)| ≤ C(<s)(1 + |=s|)−1.

Thus we are in general only able to apply differential operators B(∂t), where

|B(s)| ≤ C|s|1/2−ε

for ε > 0 to ensure that B(∂t)f exists.
To demand f(T ) = f(0) = 0 is not an option, as this will not be satisfied by the

considered functions and this would be a to strict restriction if we want to apply several
Laplace differential operators successively.
A possibility to overcome this issue would be, to extend f on [T,∞) in a smooth way,

such that f(t) = 0 for t > 2T , to apply the operator B(∂t) on [0,∞) and to ensure,
that 1[0,T ]B(∂t)f does not depend on the arbitrarily chosen extension. We will go a
slightly different way and define B(∂t)f by choosing a special extension, which turns the
definition in a more explicit and more handy form. The property, that the definition
is invariant under any smooth enough extension of f to [0,∞) will be satisfied under
weak assumptions. We motivate the approach in the following example, where we again
consider the differential operators ∂t and ∂−1

t .
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Example B.31. a) If we consider

(Lf)(s) =
∫ T

0
e−stf(t) dt

= 1
s

(Lf ′)(s) + 1
s
f(0)− e−sT

s
f(T ).

in a distributional sense, we see that

L−1(sLf) = ∂tf + δ0f(0)− δT f(T ),

where δx is the Dirac Delta distribution for x ≥ 0 (zero everywhere, except δx(x) = ∞
such that

∫
{x} δx = 1)

(Lδx)(s) =
∫ ∞

0
e−stδx(t) dt = e−sx.

This again underlines that L−1(sLf) is the derivative of f over the whole R. If we would
smoothly extend f on [0,∞) and assume f(0) = 0, we would obtain the expected

L−1(sLf) = ∂tf on [0, T ].

b) The smoothing operator ∂−1
t can be applied to f ∈ L2[0, T ], as 1[0,T ]f ∈ L2

∗[0,∞) and
the outcome is

L−1(s−1Lf)(t) =
{∫ t

0 f(τ) dτ, for t ∈ [0, T ],∫ T
0 f(τ) dτ, for t ∈ [T,∞),

.

Again, restriction to [0, T ] gives the expected, no matter which extension (instead of
extension by zero) is chosen on [T,∞).

If we regard the last example, we see, that for f ∈ L2[0, T ], ∂−1
t f ∈ H1

0,∗[0,∞).
In the following, ∂t always stands for the weak derivative, and not for the Laplace
differential operator L−1(sL · ). Thus, if we take f ∈ Hm[0, T ], it is ∂mt f ∈ L2[0, T ] and
if

f(0) = · · · = f (m−1)(0) = 0,
it holds

f = ∂−mt ∂mt f in [0, T ]
and for t > T we obtain the extension

∂−mt ∂mt f(t) = f(T ) + (t− T )f ′(T ) + · · ·+ (t− T )m−1

(m− 1)! f (m−1)(T ) for t > T.

It holds ∂−mt ∂mt f ∈ Hm
0,∗[0,∞) and we can apply B(∂t) for B ∈ Hm to it. This yields

that
L−1(s−mB(s)L(∂mt f))

exists. As this definition would still require ∂mt f to exist, we rewrite it as

L−1(s−mB(s)L(∂mt f)) = ∂mt L−1(s−mB(s)L(∂−mt ∂mt f)).

The term on the right hand side does not depend on the values of ∂−mt ∂mt f on (T,∞)
by definition of convolution

1[0,T ]∂
m
t L−1(s−mB(s)L(∂−mt ∂mt f)) = 1[0,T ]∂

m+1
t L−1(s−m−1B(s)L(∂−mt ∂mt f))

= 1[0,T ]∂
m+1
t L−1(s−m−1B(s)) ∗ (∂−mt ∂mt f)

= 1[0,T ]∂
m+1
t L−1(s−m−1B(s)) ∗ f.

Thus we can replace ∂−mt ∂mt f by f and define
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Definition B.32. Let f ∈ L2[0, T ]. Whenever there is an m ∈ N0 such that the expres-
sion ∂mt L−1(B(s)s−mLf) exists (i.e. L−1(B(s)s−mLf) exists and L−1(B(s)s−mLf) ∈
Hm([0, T ])), we define

B(∂t)f := ∂mt L−1(B(s)s−mLf).
We call the function B(s) or the mapping B(∂t) causal, if for every f (and arbi-

trary T > 0), such that B(∂t)f exists, B(∂t)f does not depend on an arbitrarily chosen
extension of f in L2

∗[0,∞), i.e. for every f̃ ∈ L2
∗[0,∞),

f = 1[0,T ]f̃ in L2[0, T ]

it holds
B(∂t)f = 1[0,T ]B(∂t)f̃ in L2[0, T ].

Attention, this is a new definition of B(∂t), that does not coincides in general with
the one on [0,∞) of the previous subsection. The definition is well defined in the sense
that it does not depend on the selection of m ∈ N. If B(∂t)f exists for m0 ∈ N0 then for
all m > m0:

∂m0
t L−1(B(s)s−m0Lf) = ∂mt L−1(B(s)s−mLf).

We note, that if we work on the finite time interval [0, T ], the Laplace differential
operators have to be understood following Definition B.32. Thus the derivative ∂t is not
understood as L−1(sL · ), but as the classical derivative, which is equivalent for smooth
enough extended functions.

Example B.33. a) The derivation Laplace operator L−1(sL · ) is not causal, but ∂t
interpreted as weak derivative is causal, again (although this is not a Laplace differential
operator).
b) The integration operator ∂−1

t is causal.

In the following, we give sufficient conditions for the existence.

Definition B.34. We define for m ∈ N0 the space of m−times weakly differentiable
functions with initial condition zero as

Hm
0,∗[0, T ] :=

{
φ ∈ Hm[0, T ]

∣∣ f(0) = · · · = f (m−1)(0) = 0
}
.

With the induced norm

‖ · ‖Hm
0,∗[0,T ] := ‖ · ‖Hm[0,T ] =

√
〈 · , · 〉Hm[0,T ],

this is a Hilbert space.

Attention, the sub index 0, ∗ in Hm
0,∗[0, T ] has the meaning 0 at t = 0 and arbitrary

value at t = T, as we also use

Hm
∗,0[0, T ] :=

{
φ ∈ Hm[0, T ]

∣∣ f(T ) = · · · = f (m−1)(T ) = 0
}
,

Lemma B.35. For f ∈ Hm
0,∗[0, T ] and B ∈ Hm, we have that B(∂t)f exists, it holds

L−1(B(s)s−mLf) ∈ Hm
0,∗[0, T ] and

B(∂t)f = 1[0,T ]L−1(B(s)s−mL(∂mt f)) = 1[0,T ]∂
m+1
t (L−1(B(s)s−(m+1)) ∗ f).

We can define B(∂t) as a continuous operator

B(∂t) : Hm
0,∗[0, T ]→ L2([0, T ]).

Every B ∈ Hm is causal and for every smooth enough extension of f on [0,∞) it holds

B(∂t)f = 1[0,T ]L−1(B(s)Lf).
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Proof. For an extension f̃ ∈ Hm
0,∗[0,∞), it holds

|B(s)s−mLf̃ | ≤ |Lf̃ |

and therefore by Lemma B.19

B(∂t)f̃ = 1[0,T ]L−1(B(s)Lf̃).

For an arbitrary extension f̃ ∈ L2
∗[0,∞), it exists L−1(B(s)s−mLf̃) and it holds

L−1(B(s)s−mLf̃) = ∂2
t L−1(B(s)s−m−2) ∗ f̃ ,

which does not depend on the extension. So B(∂t)f does neither.
We extend f ∈ Hm

0,∗[0, T ] by f̃ ∈ Hm
0,∗[0,∞) and by Causality we conclude

1[0,T ]L−1(B(s)s−mLf) = 1[0,T ]L−1(B(s)s−mLf̃) ∈ Hm
0,∗[0, T ].

The further assertions follow due to previous computations.

Remark B.36. In view of the previous lemma one may ask whether the assertions also
hold for f ∈ Hm[0, T ] (without the homogeneous initial conditions). It holds

1[0,T ]L−1(B(s)s−mL(∂mt f)) = 1[0,T ]L−1(B(s)L(∂−mt ∂mt f)) = B(∂t)(∂−mt ∂mt f),

i.e. this is just B(∂t) applied to ∂−mt ∂mt f , which again fulfills the homogeneous initial
conditions.

Lemma B.37. In the situation of Lemma B.35, it holds for f ∈ Hm+1
0,∗ [0, T ]

B(∂t)f = L−1(B(s)s−(m+1)) ∗ ∂m+1
t f.

Furthermore L−1(B(s)s−(m+2)) is continuous and we have for f ∈ H(m+2)
0,∗ [0, T ]

B(∂t)f = L−1(B(s)s−m+2) ∗ ∂m+2
t f.

Proof. The assertion follows due to Causality and Lemma B.24.

We collect the following properties in analogue to the case on [0,∞).

Theorem B.38. Let f ∈ L2
∗[0, T ] and functions B(s) and causal A(s). If B(∂t)f and

A(∂t)B(∂t)f exist, then (AB)(∂t)f exists and it equals

(AB)(∂t)f = A(∂t)B(∂t)f.

If furthermore A(∂t)f and B(∂t)A(∂t)f exist and B is causal, it holds

(AB)(∂t)f = A(∂t)B(∂t)f = B(∂t)A(∂t)f.

Proof. Let f ∈ L2
∗[0,∞) and n,m, p ∈ N be integers for the existence of B(∂t)f ,

A(∂t)B(∂t)f and (AB)(∂t)f. It holds for g := B(∂t)f , that A(∂t)g exists and

A(∂t)g = ∂mt L−1(A(s)s−mLg)
= ∂mt ∂

n
t ∂
−n
t L−1(A(s)s−mLg)

= ∂m+n
t L−1(A(s)s−ms−nLg)

= ∂m+n
t L−1(A(s)s−mL(∂−nt g)).
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So we obtain that ∂nt A(∂t)∂−nt g exists, and we can use the Causality property of A. As
B(∂t)f exists, it is

B(s)s−nL(1[0,T ]f) ∈ H
and L−1(B(s)s−nLf) is a function in [0,∞), which we will use in the following as ex-
tension of ∂−nt g to [0,∞). Thus, by the Causality of A, we have

A(∂t)g = ∂m+n
t L−1(A(s)s−mL∂−nt g)

= ∂m+n
t L−1(A(s)B(s)s−m−nLf).

This already shows that AB(∂t) exists and that p can be chosen smaller or equal than
p ≤ m+ n.
If furthermore A(∂t)f and B(∂t)A(∂t)f exist and B is causal, then the same calculations
give (BA)(∂t)f = B(∂t)A(∂t)f and (BA)(∂t)f = (AB)(∂t)f concludes the assertion.

Corollary B.39. For A ∈ Hm, B ∈ Hn, AB ∈ Hp, f ∈ Hmax(m,n,p)
0,∗ [0, T ] it holds

(AB)(∂t)f = A(∂t)B(∂t)f = B(∂t)A(∂t)f.

Theorem B.40 (Herglotz theorem on [0, T ], cf. [27, Lemma 2.2]). Let B,R ∈ Hm(σ0)
for σ0 ∈ R. If there exists a c > 0 such that for all w ∈ C, all <s > σ0

<(wB(s)w) ≥ c|R(s)w|2,

then it holds for all w ∈ Hm
0,∗[0, T ], for all σ ≥ σ0∫ T

0
e−2σt<(w(t)B(∂t)w(t)) dt ≥ c‖e−σ·R(∂t)w‖2L2[0,T ].

Proof. a) For B being a smoothing operator, this follows immediately by the Herglotz
theorem on [0,∞) and Causality, as the function can be approximated by a sequence
converging to 0 on [T,∞). For non-smoothing operators this is in general not possible,
as they depend on derivatives, which explode, if we approximate the function in that
way. We will show the result by the discrete Herglotz theorem and the convergence of
Convolution Quadrature. Therefore, at first, the higher regularitym+4 is needed, which
can be eliminated later by a density argument.
Let w ∈ Cm+4[0, T ] and w(0) = · · · = w(m+3)(0) = 0. If we use Convolution Quadra-

ture with the second order backward difference formula (cf. [27, Chapter 2.3]), it holds
by the discrete Herglotz theorem (cf. [27, Lemma 2.3]) for a ρ = e−στ +O(τ2) and every
function v : [0,∞)→ R with finite support

∞∑
n=0

ρ2n<v(tn)B(∂τt )v(tn) ≥ c
∞∑
n=0

ρ2n‖R(∂τt )v(tn)‖2

Therefore, for a smooth enough extension wN of w, with wN (tn) = 0 for n > N we
obtain by discrete Causality

N∑
n=0

ρ2n<w(tn)B(∂τt )w(tn) =
∞∑
n=0

ρ2n<wN (tn)B(∂τt )wN (tn)

≥ c
∞∑
n=0

ρ2n|R(∂τt )wN (tn)|2

≥ c
N∑
n=0

ρ2n|R(∂τt )wN (tn)|2

=
N∑
n=0

ρ2n|R(∂τt )w(tn)|2.



B. The Laplace Transform 194

As wB(∂t)w and |R(∂t)w|2 are differentiable, with continuous and therefore bounded
derivative, it holds for τ → 0∣∣∣∣τ N∑

n=0
e−2σtn<(w(tn)B(∂t)w(tn))−

∫ T

0
e−2στ<(w(τ)B(∂t)w(τ)) dτ

∣∣∣∣
≤ τ

N∑
n=1

sup
ζ∈[tn−1,tn]

|e−2σtn<(w(tn)B(∂t)w(tn))− e−2σ(ζ)<(w(ζ)B(∂t)w(ζ))|

≤ τ2
N∑
n=1

sup
ζ∈[tn−1,tn]

|∂ζe−2σζ(w(ζ)B(∂t)w(ζ))| → 0.

and similar statements for |R(∂τt )w|2
By [116, Theorem 2.2 and following remarks] or [115, Theorem 3.1], the approxima-

tions converge uniformly in 0 ≤ tn ≤ T , for τ → 0,

|B(∂τt )w(tn)−B(∂t)w(tn)| ≤ Cτ2

and
|R(∂τt )w(tn)−R(∂t)w(tn)| ≤ Cτ2.

As w is continuous, it is bounded on [0, T ] and we have∣∣∣∣∣τ
N∑
n=0

e−2σtnw(tn)B(∂τt )w(tn)− e−2σtnw(tn)B(∂t)w(tn)
∣∣∣∣∣ ≤ Cτ3

N∑
n=0
|e−2σtnw(tn)|

≤ C(w) max(T, e−σ0T )τ2

≤ C(w, σ0, T )τ2 → 0.

It is R(∂t)w continuous and therefore pointwise bounded, and by the convergence, also
R(∂τt )w(tn) is uniformly bounded for 0 ≤ tn ≤ T . Therefore it holds

∣∣∣∣τ N∑
n=0

e−2σtn |R(∂τt )w(tn)|2 − e−2σtn |R(∂t)w(tn)|2
∣∣∣∣

≤ Cτ3
N∑
n=0
|e−2σtn(R(∂τt )w(tn) +R(∂t)w(tn))|

≤ C(R(∂t)w) max(T, e−σ0T )τ2

≤ C(R(∂t)w, σ0, T )τ2 → 0.

As both, w(tn)B(∂τt )w(tn) and |R(∂τt )w(tn)|2 are uniformly convergent to the contin-
uous, bounded wB(∂t)w and |R(∂t)w|2, they are uniformly bounded and it holds

∣∣∣∣τ N∑
n=0

e−2σtn<(w(tn)B(∂τt )w(tn))− τ
N∑
n=0

ρ2n<(w(tn)B(∂τt )w(tn))
∣∣∣∣= O(τ2)→ 0

and ∣∣∣∣τ N∑
n=0

e−2σtn |R(∂τt )w(tn)|2 − τ
N∑
n=0

ρ2n|R(∂τt )w(tn)|2
∣∣∣∣= O(τ2)→ 0.

All in all, we have by the limit τ → 0 for w ∈ Cm+4[0, T ] with

w(0) = · · · = w(m+1)(0) = 0,
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that ∫ T

0
e−2σt<(w(t)B(∂t)w(t)) dt ≥ c

∫ T

0
e−2στ |R(∂t)w(τ)|2 dτ.

For arbitrary w ∈ Hm
0 [0, T ], the assertion follows by an approximating sequence in

wn ∈ Cm+4[0, T ] with zero initial condition in derivatives, which converges in Hm
0,∗[0, T ]

to w. Due to the continuous dependency shown in Lemma B.35 we have the convergence

wn → w in L2[0, T ],
B(∂t)wn → B(∂t)w in L2[0, T ],
R(∂t)wn → R(∂t)w in L2[0, T ],

which yields the assertion.

If we compare this result to the one on [0,∞) from Theorem B.30, the second case is
missing.

Remark B.41. In the case
|B(s)| ≤ C|R(s)|,

with the same ideas of proof, we can not get an estimate which is valid in the finite
interval setting, because the R-term is on the other side of the estimate.
From Lemma B.30 we would obtain∫ T

0
e−2σt|B(∂t)w(t)|2 dt ≤

∫ ∞
0

e−2σt|B(∂t)w(t)|2 ≤ C‖R(∂t)w‖2L2
σ [0,∞),

and the dependency of the last term on the right hand side on [0,∞) cannot be removed
in general. I the case R(s) = sm, one can obtain by Causality and a density argument
(approximating ∂mt wN → 1[0,T ]∂

m
t w for N →∞)∫ T

0
e−2σt|B(∂t)w(t)|2 dt ≤ C(T, σ)‖∂mt w‖2L2[0,T ],

which is again only on [0, T ]. Similar arguments work for an operator R that satisfies
‖R(∂t)w‖2L2

σ(T,∞) ≤ C‖∂
m
t w‖2L2

σ(T,∞).
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B.2. Vector Valued Laplace Transform and Differential
Operators

In the following, for a Hilbert space X, we want to generalize the Laplace transform to
Hilbert space valued functions [0,∞) 3 t 7→ u(t) ∈ X. For a family of operators B(s) :
X → X, we will define the corresponding convolution operator, with domain spaces
living on ([0,∞), X) and on ([0, T ], X), respectively. This is done in a componentwise
definition by using an orthonormal basis (ej)j∈N of X.

B.2.1. Vector valued Laplace transform on [0,∞)
For a complex, separable Hilbert space X, we want to define the Laplace transform of a
function u : [0,∞)→ X as

(Lu)(s) :=
∫ ∞

0
u(t)e−st dt for s ∈ C

and the inverse Laplace transform for U : {<(s) > σ0} → X as

(L−1U)(t) := 1
2πi

∫
σ+iR

estU(s) ds for t ∈ [0,∞)

for a σ ≥ σ0. We will transfer the results of the scalar case where X = C, by defining
Lu as the element satisfying

[L(u)(s), v]X = L([u, v]X)(s)

for all v ∈ X. Therefore, let (ej)j∈N be a orthonormal basis of X, i.e.

[ei, ej ]X = δij

and for every v ∈ X it holds

v =
∞∑
j=1

[ej , v]Xej .

Lemma B.42. It is u = ∑
j∈N ujej ∈ X if and only if

∑
j∈N |uj |2 < ∞. It holds

uk = ∑
j∈N u

k
j ej → u = ∑

j∈N ujej in X if and only if
∑
j∈N |ukj − uj |2 → 0 for k →∞.

Definition B.43. For an interval I ⊂ R, we define

L2(I,X) :=
{
u : I → X measurable

∣∣ ∫
I
‖u(t)‖2X dt <∞

}
.

Lemma B.44. We have u ∈ L2(I,X) if and only if for all j ∈ N the coefficients [ej , u]X
are measurable and

∑
j∈N ‖[ej , u]X‖2L2(I) < ∞. It holds ‖u‖2L2(I,X) = ‖‖u‖X‖2L2(I) =

‖‖u‖L2(I)‖2X .

Proof. This follows from L2(I,X) ∼= L2(I) ⊗X and Hilbert space theory X ∼= l2(N) ∼=
L2(I) for the space of square summable sequences l2(N).

Definition B.45. For c ∈ R, we define the spaces

L2
c([0,∞), X) :=

{
u : [0,∞)→ X measurable

∣∣ e−c · u( · ) ∈ L2([0,∞), X)
}
,

equipped with the norm

‖u‖L2
c([0,∞),X) := ‖e−c · u‖L2([0,∞),X)
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and

L2
∗([0,∞), X) :=

{
u : [0,∞)→ X measurable

∣∣ e−c · u( · ) ∈ L2([0,∞), X) for a c ∈ R
}
.

We define the Laplace transform for s ∈ C, <s ≥ c and u ∈ L2
c([0,∞), X)

Lu(s) :=
∞∑
j=1
L([ej , u]X)(s)ej . (B.10)

Lemma B.46. The Laplace transform from Definition B.45 is welldefined for <s ≥ c
in the sense that Lu ∈ L2(σ + iR, X) for all σ ≥ c and it holds for all v ∈ X and all
<s > c

[L(u)(s), v]X = L([u, v]X)(s). (B.11)

Proof. For the welldefinedness we note that t 7→ [ej , u(t)]X is measurable and by the
Cauchy–Schwartz estimate we have [ej , u(t)]X ≤ ‖u(t)‖X , so (t 7→ [ej , u(t)]X) ∈ L2

∗[0,∞).
With Fubini’s theorem we have∑

j∈N
‖L[ej , u]X‖2L2(σ+iR) =

∑
j∈N
‖[ej , u]X‖2L2

σ [0,∞)

=
∫ ∞

0

∑
j∈N

e−σt|[ej , u(t)]X |2 dt

= ‖u‖L2
σ([0,∞),X) <∞

and Lemma B.44 shows the welldefinedness for σ ≥ c.
By the real valued estimates (cf. Lemma B.1), we have for c ∈ R, u ∈ L2

c([0,∞), X),
<s > c

|L([ej , u]X)(s)| ≤ ‖e−s·[ej , u(·)]X‖L1[0,∞) ≤ C(s, c)‖[ej , u]X‖L2
c [0,∞)

and therefore by Fubini’s theorem

‖Lu(s)‖2X =
∑
j∈N
|L[ej , u](s)|2

≤ C(s, c)
∞∑
j=1
‖[ej , u]‖2L2

c [0,∞)

= C(s, c)
∞∑
j=1

∫ ∞
0
|[ej , u](t)|2 dt

= C(s, c)
∫ ∞

0
e−ct

∑
j∈N
|[ej , u(t)]|2 dt

= C(s, c)‖u‖2L2
c([0,∞),X) <∞.

Thus the defining sum is a Cauchy sequence in X for each s ∈ {<s > c} and we have
the welldefinedness of (B.10). By the pointwise boundedness of Lu(s), it is for <s > c
(summation and Laplace transform can be interchanged, see the following estimates)

[Lu(s), v]X =
∑
j∈N

[Lu(s), ej ]X [ej , v]X

=
∑
j∈N
L([u, ej ]X)(s)[ej , v]X

= L(
∑
j∈N

[u, ej ]X [ej , v]X)(s)

= L([u, v]X)(s).



B. The Laplace Transform 198

The sum and the Laplace transform can be interchanged by Fubini’s theorem: It holds
with Lemma B.44 and again Fubini’s theorem∑

j∈N

∫ ∞
0
|e−st[u(s), ej ]X [ej , v]X | dt =

∑
j∈N
|[ej , v]X |

∫ ∞
0

e−<st|[u(t), ej ]X | dt

≤
∑
j∈N
|[ej , v]X |‖[u, ej ]X‖L1

<s[0,∞)

≤ C(s, c)
∑
j∈N
|[ej , v]X |‖[u, ej ]X‖L2

c [0,∞)

≤ C(s, c)‖v‖X

∑
j∈N
‖[u, ej ]X‖2L2

c [0,∞)

1/2

≤ C(s, c)‖v‖X‖u‖L2
c([0,∞),X) <∞.

Theorem B.47 (Plancherel’s formula, cf. [19, Theorem 1.8.2]). It holds for u, v ∈
L2
c [0,∞) for all σ ≥ c∫ ∞

0
e−2σt[u(t), v(t)]X dt = 1

2π

∫
σ+iR

[Lu(s),Lv(s)]X ds,

especially we have
‖Lu‖σ+iR,X =

√
2π‖u‖L2

σ [0,∞),X .

Instead of the Hilbert space scalar product [·, ·]X , the result also holds for any continuous
and sesquilinear product on X.

Proof. Let a[·, ·] be a continuous, sesqilinear product on X with continuity constant
C > 0.

The assertion is a direct consequence of Plancherel’s formula from the scalar case (see
Theorem B.4), by using the component wise definition of the Laplace transform and inter-
changing sum and integral (which is possible due to the majorants C‖Lu(s)‖X‖Lv(s)‖X
and Ce−2σt‖u(t)‖X‖v(t)‖X)

a[Lu,Lv]σ+iR,X =
∫
σ+iR

a[Lu(s),Lv(s)] ds

=
∫
σ+iR

∑
i∈N

∑
j∈N
L[ei, u]X(s)L[ej , v]X(s)a[ei, ej ] ds

=
∑
i∈N

∑
j∈N

∫
σ+iR

L[ei, u]X(s)L[ej , v]X(s)a[ei, ej ] ds

=
∑
i∈N

∑
j∈N

2π
∫ ∞

0
e−2σt[ei, u(t)]X [ej , v(t)]Xa[ei, ej ] dt

= 2π
∫ ∞

0
e−2σta[u(t), v(t)] dt.

Remark B.48. Due to the dependency of the growth parameter c ∈ R, we are not able
to establish continuity

L : L2
∗([0,∞), X)→ Im(L).

However, for u ∈ L2
c([0,∞), X), Plancherel’s formula yields σ ≥ c

‖Lu‖L2(σ+iR,X) =
√

2π‖e−σ · u‖L2([0,∞),X)
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and it holds
‖e−c · u‖([0,∞),X) = sup

σ>c
‖e−σ · u‖L2([0,∞),X).

Thus, for arbitrary, but fixed c ∈ R

L : (L2
c([0,∞), X), ‖ · ‖L2

c([0,∞),X))→ (Im(L), ‖ · ‖Im(L))
is continuous and with bounded inverse on its image Im(L), which we will determine in
the following. A suitable choice of ‖ · ‖Im(L) is

‖ · ‖Im(L) := sup
σ>c
‖ · ‖L2(σ+iR,X).

Definition B.49. Let D ⊂ C open. We call U : D → X complex differentiable (holo-
morphic) in s0 ∈ D if

∂sU(s0) = lim
s→s0

U(s)− U(s0)
s− s0

exists, i.e.
lim
s→s0

‖U(s)− U(s0)
s− s0

− ∂sU(s0)‖X = 0.

Lemma B.50. For u ∈ L2
c([0,∞), X), U := Lu is complex differentiable on {<s > 0}.

Proof. We show that ∂sU(s) = L(−tu(t))(s). The existence of L(−tu(t))(s) for <s > c
follows as in the scalar case. Let <s1,<s2 > c+ δ, it holds by Lemma B.46
‖U(s2)− U(s1)− (s2 − s1)∂sU(s1)‖X

|s2 − s1|

= sup
v∈X,‖v‖X=1

|[U(s2)− U(s1)− (s2 − s1)∂sU(s1), v]X |
|s2 − s1|

= sup
v∈X,‖v‖X=1

|
∫∞

0 e−s2t − e−s1t − (s2 − s1)te−s2t[u(t), v]X dt|
|s2 − s1|

≤
∫ ∞

0

|e−s2t − e−s1t − (s2 − s1)te−s2t|
|s1 − s2|

‖u(t)‖X dt

As in the scalar case, an integrable majorant exists and we can interchange integral and
limit s1 → s2. Choosing δ > 0 arbitrary small, we conclude see that U is complex
differentiable on {<s > 0}.

Lemma B.51. For u ∈ L2
c([0,∞), X) the L2-norm over each vertical line of U := Lu

is uniformly bounded for σ ≥ c and it holds

‖U‖L2(c+iR,X) = sup
σ>c
‖U‖L2(σ+iR,X) <∞.

Proof. We have by Plancherel’s formula (integral and summation can be exchanged, as
all terms are bounded, cf. Lemma B.44)

sup
σ>c
‖U(σ + i · )‖2L2((−∞,∞),X) = sup

σ>c

∫
σ+iR

‖U(s)‖2X ds

= sup
σ>c

∫
σ+iR

∑
j∈N
|L([ej , u]X)(s)|2 ds

= sup
σ>c

∑
j∈N

∫
σ+iR

|L([ej , u]X)(s)|2 ds

= sup
σ>c

∑
j∈N

2π
∫ ∞

0
e−σt|[ej , u(t)]|2 dt

= sup
σ>c

2π‖e−σ · u‖2L2([0,∞),X)

≤ 2π‖e−c · u‖2L2([0,∞),X).
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By Lebeque’s theorem it holds

sup
σ>c
‖e−σ · u‖2L2([0,∞),X) = lim

σ→c
‖e−σ · u‖2L2([0,∞),X) = ‖e−c · u‖2L2([0,∞),X)

and therefore by Plancherel’s formula

sup
σ>c
‖U(σ + i · )‖2L2(R,X) = 2π‖e−c · u‖2L2([0,∞),X) = ‖U(c+ i · )‖2L2(R,X).

The properties of U := Lu shown in Lemma B.50 and Lemma B.51 are already enough,
to apply the inverse Laplace transform.
The space of the functions with these properties, to be complex differentiable and

uniformly square integrable over each vertical line for high enough real part, is the right
choice as domain space of the inverse Laplace transform.
Again we use a componentwise approach and the properties derived in the scalar case

to define the inverse Laplace transform as

L−1U :=
∑
j∈N
L−1([ej , U ]X)ej .

Definition B.52. We collect the inverse Laplace transformable functions in the Hardy
space

U ∈ H(X) :=
{
U
∣∣ For a σ0 ∈ R, U(s) : {<s > σ0} → X is holomorph

and sup
σ>σ0

∫
σ+iR

‖U(s)‖2X ds <∞
}

and define the inverse Laplace transform as

L−1U :=
∑
j∈N
L−1([ej , U ]X)ej .

For σ0 ∈ R, we introduce the space

H(σ0, X) :=
{
U
∣∣ U(s) : {<s > σ0} → X is analytic

and sup
σ>σ0

∫
σ+iR

‖U(s)‖2X ds <∞
}
,

equipped with the norm

‖u‖2H(σ0) := sup
σ>σ0

∫
σ+iR

‖U(s)‖2X ds.

We summarize the properties and the welldefinedness of the inverse Laplace transform.

Theorem B.53. The inverse Laplace transform is a well defined operator

L−1 : H(σ0, X)→ L2
σ0([0,∞), X).

Furthermore, L−1 is the inverse of the Laplace transform, i.e. for U ∈ H(σ0, X) there
exists exactly one u ∈ L2

∗([0,∞), X), such that U = Lu and u is given through

L−1U = u.

Each U ∈ H(σ0, X) is extendable to {<s = σ0} in L2(σ0 × iR) by the L2- limit σ → σ0
and it holds

2π‖e−σ0 · u‖2L2([0,∞),X) = sup
σ̃>σ0

∫
σ̃+iR

‖U(s)‖2X ds =
∫
σ0+iR

‖U(s)‖2X ds.

This gives a one-to-one identity through the Laplace transform between L2
∗([0,∞), X)

and H(X) and between L2
c([0,∞), X) and H(c,X).



B. The Laplace Transform 201

Proof. As U is holomorph, each of the components is holomorph:

lim
h→0

|[ej , U ]X(s+ h)− [ej , U ]X(s)− h[ej , U ′]X(s)|
h

≤ lim
h→0

‖U(s+ h)− U(s)− hU ′(s)‖
h

= 0.

Similarly, the H-boundedness follows for σ > σ0 for each component∫
σ+iR

|[ej , U(s)]X |2 ds ≤
∫
σ+iR

‖U(s)‖2X ds = ‖U‖L2(σ+iR,X) <∞.

We conclude [ej , U ]X ∈ H(σ0) for all j ∈ N and the inverse Laplace transform of each
of the components exists. The sum over the components converges in L2

σ0([0,∞), X):
By Fatou’s lemma and the scalar version of Plancherel’s formula from Theorem B.4 we
deduce

‖L−1U‖2L2
σ0 ([0,∞),X) =

∫ ∞
0

e−2σ0t‖L−1U(t)‖2X dt

=
∫ ∞

0
e−2σ0t

∑
j∈N
|[ej ,L−1U(t)]X |2 dt

≤
∑
j∈N

∫ ∞
0

e−2σ0t|L−1[ej , U ]X(t)|2 dt.

With Fubini’s theorem we conclude

‖L−1U‖2L2
σ0 ([0,∞),X) = 1

2π
∑
j∈N

∫
σ0+iR

|[ej , U ]X(s)|2 ds

= 1
2π

∫
σ0+iR

∑
j∈N
|[ej , U ]X(s)|2 ds

= 1
2π

∫
σ0+iR

‖U(s)‖2 ds

= 1
2π‖U‖H(σ0,X) <∞

and the welldefinedness follows from Lemma B.44.
Each of the coefficients [ej , U ]X can be written as Luj for uj ∈ L2

σ0 [0,∞) and by the
coefficientwise definitions it follows that U = Lu = L

(∑
j∈N ujej

)
holds.

Uniqueness of u ∈ L2
∗([0,∞), X) follows by Plancherel’s formula: Let u1 ∈ L2

σ1 , u2 ∈
L2
σ2 , Lu1 = U , Lu2 = U , then it holds by Plancherel’s formula and linearity of the

Laplace transform

0 = sup
σ̃>σ0

∫
σ̃+iR

‖U(s)− U(s)‖2X ds

≥ sup
σ̃>max(σ1,σ2)

∫
σ̃+iR

‖U(s)− U(s)‖2X ds

= sup
σ̃>max(σ1,σ2)

2π‖e−σ̃ · (u1 − u2)‖2L2([0,∞),X)

≥ 0,

thus u1 = u2. With Plancherel’s formula and the monotone convergence theorem we
deduce

sup
σ̃>σ0

∫
σ̃+iR

‖U(s)‖2X ds = sup
σ̃>σ0

2π‖e−σ̃ · u‖2L2([0,∞),X)

= 2π‖e−σ0 · u‖2L2([0,∞),X),
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so u ∈ L2
σ0 [0,∞). As U = Lu on {<s > σ0} and u ∈ L2

σ0([0,∞), X), U(σ + i · ), σ → σ0
is a Cauchy sequence, i.e. by Lebesgue theorem we have

‖U(σ1 + i · )− U(σ2 + i · )‖2L2(R,X) = 2π
∫ ∞

0
‖(e−σ1t − e−σ2t)u(t)‖2X dt

→ 0 for σ1, σ2 → σ0,

so by the completeness of L2(R, X)

U(σ0 + i · ) := L2(R, X)− lim
σ→σ0

U(σ + i · )

exists and it holds

sup
σ̃>σ0

∫
σ̃+iR

‖U(s)‖2 ds = sup
σ̃>σ0

2π‖e−σ̃ · u‖2L2([0,∞),X)

= lim
σ̃→σ0

2π‖e−σ̃ · u‖2L2([0,∞),X)

=
∫
σ0+iR

‖U(s)‖2 ds.

Lemma B.54. For c ∈ R, a continuous operator B : X → X and u ∈ L2
c [0,∞) and

U ∈ H(c,X) it holds for <s > c

L(Bu)(s) = B(LU)(s)

and in L2
c([0,∞), X)

L−1(BU) = BL−1(U).

Similar statements hold for B : X → Y for a Hilbert space Y .

Proof. From Lemma B.46 we obtain for v ∈ X and <s > c

[L(Bu)(s), v]X = L([Bu, v]X)(s) = L([u,B′v]X)(s) = [L(u)(s), B′v]X = [BL(u)(s), v]X .

From Theorem B.53, we conclude

L−1(BU) = L−1(BLu) = L−1(LBu) = Bu = BL−1(U).

B.2.2. Vector valued Laplace differential operators on [0,∞)
We denote by L(X) the linear, bounded operators X → X. For a function B : {<s >
σ0} → L(X) we want to define B(∂t)f as L−1(B(s)L(f)(s)).
The following definition is very general and not practical and will be refined in the
following.

Definition B.55. For a function B(s) : {<s > σ0} → L(X) for a σ0 ∈ R and f ∈
L2
∗([0,∞), X), such that

B(s)Lf ∈ H, (B.12)

we say that B(∂t)f exists and we define B(∂t)f as

B(∂t)f := L−1(B(s)L(f)(s)). (B.13)
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Remark B.56. By the definition of the Laplace transforms, it is with Bi,j(s) := [ei, B(s)ej ]X
and fj := [ej , f ]X

B(s)Lf(s) =
∑
i∈N

[ei, B(s)
∑
j∈N
L[ej , f ]X(s)ej ]Xei =

∑
i∈N

∑
j∈N

Bi,j(s)Lfj(s)ei

and

B(∂t)f =
∑
i∈N
L−1

∑
j∈N

Bi,jLfj

 ei.
For sufficiently bounded functions we can interchange Laplace transform and summation
and get

B(∂t)f =
∑
i∈N

∑
j∈N
L−1 (Bi,jLfj) ei.

We require the following spaces of functions with homogeneous initial condition.

Definition B.57. We define for m ∈ N the spaces with homogeneous initial condition
up to order m

Hm
0 ([0,∞), X) :=

{
φ ∈ Hm([0,∞), X)

∣∣ φ(0) = · · · = φ(m−1)(0) = 0
}
,

H0
0 ([0,∞), X) := L2([0,∞), X)

equipped with the Hm([0,∞), X)-norm and the exponentially weighted spaces

Hm
∗ ([0,∞), X) :=

{
φ
∣∣ e−c ·φ ∈ Hm([0,∞), X) for a c ∈ R

}
,

H0
∗ ([0,∞), X) := L2

∗([0,∞), X)

the exponentially weighted spaces with homogeneous initial condition

Hm
0,∗([0,∞), X) :=

{
φ
∣∣ e−c ·φ ∈ Hm

0 ([0,∞), X) for a c ∈ R
}
,

H0
0,∗([0,∞), X) := L2

∗([0,∞), X).

Furthermore, we define for fixed damping parameter c ∈ R

Hm
c ([0,∞), X) :=

{
φ
∣∣ e−c ·φ ∈ Hm([0,∞), X)

}
,

H0
c ([0,∞), X) := L2

c([0,∞), X)

and

Hm
0,c([0,∞), X) :=

{
φ
∣∣ e−c ·φ ∈ Hm

0 ([0,∞), X)
}
,

H0
0,c([0,∞), X) := L2

c([0,∞), X).

We equip these spaces with the norms

‖u‖Hm([0,∞),X) := ‖u‖Hm
0 ([0,∞),X) :=

 m∑
j=0
‖∂jt u‖2L2([0,∞),X)

1/2

and
‖u‖Hm

c ([0,∞),X) := ‖u‖Hm
0,c([0,∞),X) := ‖e−c · u‖Hm([0,∞),X).

Remark B.58. As in Remark B.12 we note for c ∈ R

f ∈ Hm
c ([0,∞), X)⇔ f, . . . , ∂mt f ∈ L2

c([0,∞), X)

and the norm ‖ · ‖Hm
c ([0,∞),X) (and ‖ · ‖Hm

0,c([0,∞),X)) is equivalent to the norm

‖f‖2 :=
m∑
k=0
‖∂jt f‖2L2

c([0,∞),X).
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Theorem B.59. For c ∈ R and m ∈ N the spaces Hm([0,∞), X), Hm([0,∞), X),
Hm
c ([0,∞), X), Hm

0,c([0,∞), X) and H(c,X) are Hilbert spaces together with the scalar
products

[u, v]Hm([0,∞),X) :=
m∑
j=0

[∂jt u, ∂
j
t v]L2([0,∞),X),

[u, v]Hm
0 ([0,∞),X) :=

m∑
j=0

[∂jt u, ∂
j
t v]L2([0,∞),X),

[u, v]Hm
c ([0,∞),X) :=

m∑
j=0

[e−2c · ∂jt u, ∂
j
t v]L2([0,∞),X),

[u, v]Hm
0,c([0,∞),X) :=

m∑
j=0

[e−2c · ∂jt u, ∂
j
t v]L2([0,∞),X),

[U, V ]H(c) := 1
2π [U, V ]L2(c+iR,X).

Proof. The proof can be generalized from the scalar setting to the Hilbert space valued
one, by the use of the following properties. For Hilbert spaces X1, X2, and continuous
linear operators B1 : X1 → X1, B2 : X2 → X2, we have that X1 ⊗X2 is again a Hilbert
space and B1 ⊗B2 is continuous.
The space H(c) is a Hilbert space by the one to one identity of the Laplace transform

from L : L2
c([0,∞), X)→ H(c), which is an invertible isometry by Plancherel’s formula.

Remark B.60. We consider Hm([0,∞), X) ∼= Hm([0,∞),R)⊗X and the weak deriva-
tive in time is a continuous operator

∂t ⊗ Id : Hm([0,∞),R)⊗X → Hm−1([0,∞),R)⊗X.

This yields for f ∈ Hm
? ([0,∞), X) the weak derivative ∂t

∂tf :=
∑
j∈N

∂t[f, ej ]Xej .

and for the integration operator ∂−1
t

∂−1
t f =

∑
j∈N

∂−1
t [f, ej ]Xej .

Example B.61. a) For the operator B(s) = s, f ∈ H1
0,∗([0,∞), X), it holds s(Lf)(s) ∈

H and we have
B(∂t)f = ∂tf.

Thus the Laplace differential operator ∂t coincides with the weak derivative ∂t, if f is
weakly differentiable and f(0) = 0.
b) For the operator B(s) = s−1, f ∈ L2

∗([0,∞), X) it holds s−1(Lf)(s) ∈ H and we have

B(∂t) = ∂−1
t f :=

∫ t

0
f(τ) dτ.

Thus the Laplace differential operator ∂−1
t coincides with the integration over time

∫ t
0 dτ .

Proof. b) Let f ∈ L2
σ([0,∞, X)), then s−1Lf(s) ∈ H(max(σ, ε)) for ε > 0. Furthermore

it holds for <s > max(σ, ε) that r 7→ 1
<se
−<srf(r) ∈ L1([0,∞), X) and therefore we have
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by Fubini’s Theorem

L(∂−1
t f)(s) =

∫ ∞
0

e−st
∫ t

0
f(r) dr dt

=
∫ ∞

0

∫ ∞
0

1r≤te
−stf(r) dr dt

=
∫ ∞

0

∫ ∞
r

e−st dtf(r) dr

=
∫ ∞

0

1
s
e−srf(r) dr

= 1
s
Lf(s).

As s−1Lf(s) ∈ H, it holds ∂−1
t f = L−1s−1Lf(s).

a) Let f ∈ H1
0,σ([0,∞), X) for σ ∈ R. It is ∂−1

t ∂tf = f and therefore by b) for <s ≥
max(σ, ε) > 0

1
s
L(∂tf)(s) = Lf(s).

As L(∂tf) ∈ H, it holds ∂tf = L−1(sLf).

With Example B.61 we are able to state concrete conditions for the existence in
Definition B.55.

Lemma B.62. In the setting of Definition B.55, if there exists an m ∈ N0, σ1 ∈ R and
a constant C > 0, such that B is holomorphic inside of its definition regime and

‖B(s)‖L(X) ≤ C|s|m for all <s > σ1,

then B(∂t)f exists for every f ∈ Hm
0,∗([0,∞), X) and it holds

B(∂t)f = ∂mt L−1(B(s)s−mLf) = L−1(B(s)s−mL(∂mt f)).

We can define B(∂t) as a continuous operator for σ2 ∈ R

B(∂t) : Hm
0,σ2([0,∞), X)→ L2

max(σ1,σ2)([0,∞), X).

Proof. Let f ∈ Hm
0,σ2([0,∞), X). It follows from Example B.61 that smLf ∈ H(σ2) and

B(s)Lf ∈ H(max(σ1, σ2)),

i.e. B(∂t)f exists. By Example B.61, it is

B(∂t)f = ∂mt ∂
−m
t B(∂t)f = ∂mt L−1(B(s)s−mLf)

and as f ∈ Hm
0,σ2([0,∞), X) and the coefficientwise definitions

B(∂t)f = B(∂t)∂−mt ∂mt f = L−1(B(s)s−mL(∂mt f)).

We have for φ ∈ Hm
0,σ2([0,∞), X), by Plancherel’s formula and Example B.61

‖B(∂t)φ‖L2
max(σ1,σ2)([0,∞),X) = 1

2π‖B(s)Lφ‖H(max(σ1,σ2))

≤ C‖smLφ‖H(max(σ1,σ2))

= C‖∂mt φ‖L2
max(σ1,σ2)([0,∞),X)

≤ ‖φ‖Hm
0,σ2

([0,∞),X).
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Definition B.63. We define for m ∈ N0

Hm :=
{
B
∣∣ There exists a σ0 ∈ R such that B : {<s > σ0} → L(X) is holomorphic
and ‖B(s)‖L(X) ≤ C|s|m for all <s > σ0

}
and for σ0 ∈ R

Hm(σ0) :=
{
B : {<s > σ0} → L(X) holomorphic

∣∣ ‖B(s)‖L(X) ≤ C|s|m for all <s > σ0
}
.

We call B ∈ H0 a smoothing operator.

We want to apply the (inverse) Laplace transform to operators B(s) : X → X and con-
volute the outcome with functions f(t) ∈ X. Again, we define the respective operations
in a componentwise way.

Definition B.64. For a family of bounded linear operators A(t) : X → X, t ∈ [0,∞) we
define the convolution with b(t) ∈ X as

(A ∗ b)(t) :=
∫ t

0
A(τ)b(t− τ) dτ :=

∑
i∈N

∑
k∈N

∫ t

0
[ei, A(τ)ek]X [ek, b(t− τ)]X dτ

 ei
and the Laplace transformed operator as

(LA)(s)b :=
∑
i∈N

∑
k∈N
L([ei, A(·)ek]X)(s)[ek, b]X

 ei.
Similarly we define the inverse Laplace transform of an operator family B(s) : X → X,
s ∈ <s > σ0 entrywise as

(L−1B)(t)b :=
∑
i∈N

∑
k∈N
L−1([ei, B(·)ek]X)(s)[ek, b]X

 ei.
In the following we give some conditions, when this is welldefined.
The natural norm for the operator space is the induced norm ‖B‖L(X) := sup‖v‖X=1 ‖Bv‖X .

The differency compared to the scalar case is now, with the induced norm, L(X) is no
Hilbert space, but only a Banach space (and to use the Frobenius norm is not an option).
Plancherel’s formula does not hold in general.
In the following we elaborate the workaround, which uses estimates that hold in Ba-

nach spaces and that correspond to L−1 : L1(iR) → L∞([0,∞)) (Plancherel’s formula
allowed us to consider L−1 : L2(iR)→ L2([0,∞)) in the scalar case). After defining the
(inverse) Laplace transform and convolution in a componentwise setting, we consider
the operator applied to functions. The resulting function again lies in a Hilbert space
and we can recover some estimates of Plancherel’s formula type.
We start with some estimates for the (inverse) Laplace transform and the convolution.

Lemma B.65. For e−σ0·u ∈ L1([0,∞), X) the Laplace integral exists for σ ≥ σ0 and is
in L∞([σ0,∞)× R, X) ∩ C([σ0,∞)× R, X). It holds

‖Lu‖L∞([σ0,∞)×R,X) ≤ ‖e−σ0·u‖L1([0,∞),X),

Proof. By the triangle inequality, it holds for arbitrary s = σ + ir ∈ {< ≥ σ0}

‖Lu(s)‖X ≤
∫ ∞

0
‖e−stu(t)‖X dt

= ‖e−σ·u‖L1([0,∞),X)

≤ ‖e−σ0·u‖L1([0,∞),X).

Continuity follows similarly by Lebesgue’s theorem.
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Lemma B.66. For B ∈ L1(σ0 + iR, L(X)) the inverse Laplace integral exists for that
σ0 and is in e−σ0·L−1B ∈ L∞([0,∞), L(X)) ∩ C([0,∞), L(X)).
If B is complex differentiable in <s > σ0 and uniformly square integrable over each
vertical line <s = σ, σ > σ0 then the definition of the inverse Laplace transform is
welldefined, in the sense that it does not depend on σ ∈ [σ0,∞) and is supported in
[0,∞). It holds

‖e−σ·L−1B‖L∞([0,∞),L(X)) ≤
1

2π‖B‖L1(σ+iR,L(X)),

where σ ∈ [σ0,∞) is arbitrary.
Proof. By the triangle inequality it holds for arbitrary t ∈ [0,∞)

‖L−1B(t)‖L(X) ≤
1

2π

∫
σ+iR

‖estB(s)‖L(X) ds

= 1
2πe

σt‖B(σ + i·)‖L1(R,L(X)).

If B ∈ H(σ0), componentwise arguments conclude that the Definition does not depend
on σ ∈ [σ0,∞) and L−1B(t) = 0 for t < 0.

Lemma B.67. For p ∈ [1,∞) it holds
‖B ∗ v‖Lp([0,∞),X) ≤ ‖B‖Lp([0,∞),L(X))‖v‖L1([0,∞),X)

and for c ∈ R

‖e−c·(B ∗ v)‖Lp([0,∞),X) ≤ ‖e−c·B‖Lp([0,∞),L(X))‖e−c·v‖L1([0,∞),X).

So
∗ : Lpc([0,∞), L(X))× L1

c([0,∞), X)→ Lpc([0,∞), X).
is continuous with continuity constant 1.
Proof. We have (the first equality follows by Fubini’s theorem)

‖(B ∗ v)(t)‖X =
∥∥∥∥∫ t

0
B(t− τ)v(τ) dτ

∥∥∥∥
X

≤
∫ t

0

∥∥∥B(t− τ)‖L(X)‖v(τ)
∥∥∥
X

dτ

= (‖B‖L(X) ∗ ‖v‖X)(t).

By Young’s inequality for 1 ≤ p, q, r ≤ ∞ with 1
p + 1

q = 1 + 1
r and φ ∈ Lp([0,∞)),

ψ ∈ Lq[0,∞) we deduce
‖φ ∗R ψ‖Lr[0,∞) ≤ ‖φ‖Lp[0,∞)‖ψ‖Lq [0,∞)

and as in the scalar case for c ∈ R

e−ct(B ∗ v)(t) = (e−c·B ∗ e−c·v)(t).
We conclude for p ∈ [1,∞) (the case p =∞ is similar)

‖e−c·B ∗ v‖Lp([0,∞),X) =
(∫ ∞

0
‖e−ctB ∗ v(t)‖pX dt

)1/p

=
(∫ ∞

0
‖(e−c·B) ∗ (e−c·v)(t)‖pX dt

)1/p

≤
(∫ ∞

0
(‖e−c·B‖L(X) ∗ ‖e−c·v‖X)p(t) dt

)1/p

=
∥∥‖e−c·B‖L(X) ∗ ‖e−c·v‖X

∥∥
Lp([0,∞),R)

≤
∥∥‖e−c·B‖L(X)

∥∥
Lp([0,∞),R)

∥∥‖e−c·v‖X∥∥L1([0,∞),R)

= ‖e−c·B‖Lp([0,∞),L(X))‖e−c·v‖L1([0,∞),X).
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Inserting c = 0 yields the first assertion.

So far, we have estimates which are with respect to L1(iR) and L∞([0,∞)). To come
back to estimates that act on the used L2-spaces, we insert a factor e−δ·, to come back
to estimates in L2(iR) and L1(iR). This is elaborated in the following Lemma.

Lemma B.68. It holds for p, r ∈ [1,∞), r ≤ p for any δ > 0 and v ∈ Lp[0,∞)

‖e−δ·v‖Lr[0,∞) ≤ C(δ, p, r)‖v‖Lp[0,∞).

Similar estimates are possible on a bounded domain, where the constant depends on
the size of the domain. Here, on the unbounded domain, the decay of e−δ· towards
infinity takes this role.

Proof. We want to apply Hölder’s inequality

‖ab‖Lr[0,∞) ≤ ‖a‖Lq [0,∞)‖b‖Lq [0,∞)

for p, q, r ∈ [1,∞) with 1/r = 1/q+ 1/p. First assume r < p. This gives for r = r, p = p
and q = (1/r − 1/p)−1 ∈ [1,∞)

‖e−δ·v‖Lr[0,∞) ≤ ‖e−δ·‖Lq [0,∞)‖v‖Lp[0,∞)

≤
(
[e−δq·/(−δq)]∞0

)1/q
‖v‖Lp[0,∞)

= (δq)1/p−1/r‖v‖Lp[0,∞).

For p = r, it is ‖e−δ·‖L∞[0,∞) = 1 and the assertion follows similarly.

We will use these estimates for the cases r = 2, p =∞, i.e.

‖b‖L2
σ0+2ε([0,∞),X) ≤ C(ε)‖e−(σ0+ε)·b‖L∞([0,∞),X)

and r = 1, p = 2, i.e.

‖e−(σ0+ε)·u‖L1([0,∞),X) ≤ C(ε)‖u‖L2
σ0 ([0,∞),X).

We are now able to put together the previous lemmas. Similarly, as L2
c([0,∞), X) we

denote L1
c([0,∞), X) := ec·L1([0,∞), X) and L∞c ([0,∞), X) := ec·L∞([0,∞), X) with

the respective e−c·-weighted norms.

Lemma B.69. For B ∈ L1(σ0 + iR, L(X)) ∩ H(σ0) the convolution with the inverse
Laplace transform gives for every δ > 0 a welldefined and continuous operator

L−1B∗ : L2
σ0([0,∞), X)→ L2

σ0+δ([0,∞), X)

and it holds

‖L−1B ∗ u‖L2
σ0+δ([0,∞),X) ≤ C(δ)‖B‖L1(σ0+iR,L(X))‖u‖L2

σ0 ([0,∞),X).

Proof. The concatenation (B 7→ B∗·)◦L−1 is well-defined, as we have from Lemma B.66
the continuous mappings

L−1 : L1(σ0 + iR, L(X)) ∩H(σ0)→ L∞σ0([0,∞), L(X))

and from Lemma B.67 the continuous

∗ : L∞σ0([0,∞), L(X))× L1
σ0([0,∞), X)→ L∞σ0([0,∞), X).
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By the use of Lemma B.68, it holds for ε > 0 that

‖L−1B ∗ u‖L2
σ0+2ε([0,∞),X) ≤ C(ε)‖e−(σ0+ε)·L−1B ∗ u‖L∞([0,∞),X)

≤ C(ε)‖e−(σ0+ε)·L−1B‖L∞([0,∞),L(X))‖e−(σ0+ε)·u‖L1([0,∞),X)

≤ inf
σ∈[σ0,σ0+ε]

‖B‖L1(σ+iR,L(X))C(ε)‖u‖L2
σ0 ([0,∞),X).

So far we considered inverse Laplace transform applied to an operator and convolution
with the outcome in an independent way. In the following we consider the concatenation
more closely, as therefore Plancherel’s formula type arguments are again possible.

Lemma B.70. For B ∈ H(σ0), we have continuity of

L−1B∗ : L2
σ0−δ → L2

σ0 , f 7→ L
−1B ∗ f

for every δ > 0 and it holds
L−1B ∗ f = B(∂t)f

for all f ∈ L2
σ0−δ.

Proof. For B ∈ L1(σ0 + iR, L(X)) ∩H(σ0), v ∈ L2
σ0−δ([0,∞), X) and by arguments of

the scalar valued case, we have

L−1B ∗ v =
∑
i∈N

∑
j∈N
L−1([ei, Bej ]X) ∗ [ej , v]

 ei
=
∑
i∈N

∑
j∈N
L−1([ei, Bej ]XL[ej , v])

 ei
= L−1 (B(s)Lv) .

(B.14)

The last equality holds true, as we can interchange integral and summation by Fubini’s
theorem: For sequences A = (Aij)i,j∈N, b = (bj)j∈N, we set (for fixed i ∈ N) Ai· :=
(Aij)j∈N and x = (xj)j∈N with xj := Aij

‖Ai·‖l2
. It holds with ‖x‖l2 = 1

‖Ai·‖2l2 : =
∑
j∈N
|Aij |2

= ‖Ai·‖l2
∑
j∈N

Aij ·
Aij
‖Ai·‖l2

≤ ‖Ai·‖l2

∑
k∈N

∣∣∣∣∣∣
∑
j∈N

Akj ·
Aij
‖Ai·‖l2

∣∣∣∣∣∣
2


1/2

= ‖Ai·‖l2‖Ax‖l2
≤ ‖Ai·‖l2‖A‖,

so ‖Ai·‖l2 ≤ ‖A‖. Therefore we have

∑
j∈N
|Aijbj | ≤

∑
j∈N
|Aij |2

1/2∑
j∈N
|bj |2

1/2

= ‖Ai·‖l2‖b‖l2
≤ ‖A‖‖b‖l2 .
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Using this estimate and ‖([ei, Bej ])ij‖ = ‖B‖L(X) and ‖([v, ej ])j‖l2 = ‖v‖X we deduce

∫
σ0+iR

∑
j∈N

eσ0t|[ei, B(s)ej ]XL[ej , v](s)|

 ds ≤ eσ0t
∫
σ0+iR

(
‖B(s)‖L(X)‖Lv(s)‖X

)
ds

≤ eσ0t
∫
σ0+iR

(
‖B(s)‖L(X)‖Lv(s)‖X

)
ds

≤ eσ0t‖B(s)‖L2(σ0+iR,L(X))‖Lv(s)‖L2(σ0+iR,X)

= eσ0t‖B(s)‖L2(σ0+iR,L(X))‖v(s)‖L2
σ0 ([0,∞),X)

<∞.

By Plancherel’s formula and (B.14) it follows

‖L−1B ∗ v‖L2
σ0

= 1√
2π
‖BLv‖L2(σ0+iR,X)

≤ 1√
2π
‖B‖L2(σ0+iR,L(X))‖Lv‖L∞(σ0+iR,X)

≤ C‖B‖L2(σ0+iR,L(X))‖e−σ0tv‖L1([0,∞),X)

≤ C(δ)‖B‖L2(σ0+iR,L(X))‖v‖L2
σ0−δ

([0,∞),X).

By the density of L1(σ0 +iR, L(X)) in L2(σ0 +iR, L(X)), we can define v 7→ L−1B∗v for
B ∈ H(σ0, L(X)). Note, that L−1B is not welldefined itself in general, as Plancherel’s
formula does not hold in the Banach space L(X).

The previous result corresponds to [143, Proposistion 3.2.2.]. We use similar arguments
as in the previous lemma to improve the mapping properties of L−1B∗ for L∞-bounded
operators on a real line. So far, for B(s) ∈ H(σ0), the convolution operators map from
L2
σ0−δ[0,∞)→ L2

σ0 [0,∞), but under additional assumptions on the operator, we will get
more time regularity.

Lemma B.71. Let σ0 > 0. For a family of operators B such that

B(s) ≤ C for <s ≥ σ0,

it is B(s)/s ∈ H(σ0) and it is continuous

∂tL−1(B(s)/s)∗ : L2
σ0−δ[0,∞)→ L2

σ0 [0,∞), f 7→ ∂t(L−1(B(s)/s) ∗ f).

It holds for f ∈ L2
σ0−δ

B(∂t)f = ∂t(L−1(B(s)/s) ∗ f).

Furthermore it is B(s)/s2 ∈ H(σ0) ∩ L1(σ + iR) for all σ ≥ σ0 and similarly

∂2
t L−1(B(s)/s2) : L2

σ0 [0,∞)→ L2
σ0+δ[0,∞), f 7→ ∂2

t (L−1(B(s)/s2) ∗ f)

is continuous. The convolution kernel L−1(B(s)/s2) is bounded, continuous and it holds
for f ∈ L2

σ0
B(∂t)f = ∂2

t L−1(B(s)/s2) ∗ f.

Proof. As σ0 > 0, it follows B(s)/s ∈ H(σ0), so the convolution operator is well defined.
Let f ∈ L2

σ0−δ[0,∞). By Lemma B.70 it is L−1(B(s)/s) ∗ f = L−1(B(s)/sLf), by
Lemma B.62 B(∂t)f exists and by Example B.61 we have ∂−1

t B(∂t)f = L−1(B(s)/sLf).
By derivation in time we obtain

B(∂t)f = ∂tL−1(B(s)/s) ∗ f.
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As σ0 > 0, it holds B(s)/s2 ∈ H(σ0) ∩ L1(σ0 + iR) and the inverse Laplace transform
and convolution are well defined. We can see, by similar estimates as in the proof of
Lemma B.70, that we can interchange integral and sum for f ∈ L2

σ0 [0,∞) (using similar
operator estimates and the assertions of Lemma B.69) and therefore it holds

L−1(B(s)/s2) ∗ f = L−1(B(s)/s2Lf).

By Lemma B.62 it follows that B(∂t)f exists (for f ∈ L2
∗[0,∞)) and it is by Example B.61

L−1(B(s)/s2Lf) = ∂−2
t B(∂t)f.

By derivation in time we obtain B(∂t)f = ∂2
t L−2(B(s)/s) ∗ f.

We now can rewrite the previous lemma for B ≤ Csm in analogy to the scalar valued
case.

Lemma B.72. In the setting of Lemma B.62, every ε > 0 satisfies

B(s)s−(m+1) ∈ H(max(ε, σ1))

and it holds for every f ∈ Hm
0,∗[0,∞)

B(∂t)f = ∂m+1
t L−1(B(s)s−(m+1)) ∗ f

and every f ∈ Hm+1
0,∗ [0,∞)

B(∂t)f = L−1(B(s)s−(m+1)) ∗ ∂m+1
t f.

Furthermore every ε > 0 satisfies

B(s)s−(m+2) ∈ H(max(ε, σ1)) ∩ L1(max(ε, σ1) + iR, L(X)),

thus L−1(B(s)s−(m+2)) is continuous and we have for f ∈ Hm
0,∗[0,∞)

B(∂t)f = ∂m+2
t L−1(B(s)s−m+2) ∗ f

and for f ∈ H(m+2)
0,∗ [0,∞)

B(∂t)f = L−1(B(s)s−m+2) ∗ ∂m+2
t f.

Proof. It is B(s)s−(m+1) analytic for <s > max(σ1, 0) and by

|B(s)s−(m+1)| ≤ |s|−1 on <s > max(σ1, 0),

we obtain
B(s)s−(m+1) ∈ H(max(ε, σ1)).

For σ2 ∈ R, g ∈ L2
σ2 [0,∞) it is by Lemma B.70 (for σ0 = max(σ1, σ2))

L−1(B(s)s−(m+1)Lg) = L−1(B(s)s−(m+1)) ∗ g.

Setting g := ∂mt f, the first assertions follow as in Lemma B.71 from

∂mt ∂
−m
t = IdL2

∗([0,∞),X)→L2
∗([0,∞),X)

and
∂−mt ∂mt = IdHm

0,∗([0,∞),X)→Hm
0,∗([0,∞),X).
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To show that the function L−1(B(s)s−(m+2)) is continuous regarded as function on R
we consider

B(s)s−(m+2) ∈ L1(σ + iR, L(X))

for σ > max(σ1, ε). By the properties of the Fourier transform it is continuous on [0,∞)
and by the componentwise definition and interchanging limit and integral (with similar
arguments as in Lemma B.70 we have for v ∈ X

‖L−1(B(s)s−m−2)(0)v‖2X = lim
t→0
‖L−1(B(s)s−m−2)(t)v‖2X

= lim
t→0

∑
i∈N

∣∣∣∣∣∣
∑
j∈N
L−1(Bi,j(s)s−m−2)(t)vj

∣∣∣∣∣∣
2

=
∑
i∈N

lim
t→0

∣∣∣∣∣∣
∑
j∈N
L−1(Bi,j(s)s−m−2)(t)vj

∣∣∣∣∣∣
2

=
∑
i∈N

∣∣∣∣∣∣
∑
j∈N

lim
t→0
L−1(Bi,j(s)s−m−2)(t)vj

∣∣∣∣∣∣
2

= 0.

Here integration and sum can be interchanged in the second and third line because of
similar arguments as in Lemma B.70 and∣∣∣∣∣∣

∑
j∈N
L−1(Bi,j(s)s−m−2)(t)vj

∣∣∣∣∣∣
2

≤ ‖L−1(s−m−2B(s))(t)v‖X ≤ C.

Remark B.73. The formulas in Lemma B.62 and Lemma B.72, that do not need dif-
ferentiabillity of f , also hold for f ∈ L2

∗[0,∞), if B(∂t)f exists. In this case it is for
m ∈ N0

B(∂t)f = ∂mt L−1(B(s)s−mLf)

and for high enough m ∈ N

B(∂t)f = ∂mt L−1(B(s)s−m) ∗ f.

The last equality only holds if L−1(B(s)s−m)∗ exists (e.g. if B(s)s−m ∈ H).

Proof. The first assertion follows by the scalar results and the componentvise definitions.
The second one follows from Lemma B.70 for f ∈ L2

σ2([0,∞), X), B(s)s−m ∈ H(σ1) and
σ0 = max(σ2 + δ, σ1)

We summarize some further properties.

Theorem B.74. Let f ∈ L2
∗([0,∞), X) and families of operators A(s), B(s) ∈ L(X).

If B(∂t)f and (AB)(∂t)f exist, then A(∂t)B(∂t)f exists and equals

(AB)(∂t)f = A(∂t)B(∂t)f.

If furthermore A(∂t)f exists and ABLf = BALf on a complex line with high enough
real part, it holds

(AB)(∂t)f = A(∂t)B(∂t)f = B(∂t)A(∂t)f.

Proof. The proof follows directly by the scalar results and the componentvise definitions.
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Corollary B.75. For A ∈ Hm, B ∈ Hn, AB ∈ Hp f ∈ Hmax(m,n,p)
0,∗ [0,∞) it is

(AB)(∂t)f = A(∂t)B(∂t)f.

If furthermore A(s)B(s) = B(s)A(s) on a complex line with high enough real part, it is

(AB)(∂t)f = B(∂t)A(∂t)f.

Theorem B.76 (Herglotz Theorem, cf. [27, Lemma 2.2]). Let B,R ∈ Hm(σ0) for σ0 ∈ R
and a(·, ·) : X ×X → C sesquilinear and continuous. Then the following statements are
equivalent:

• There exists c > 0 such that for all w ∈ X, all <s > σ0

<a(w,B(s)w) ≥ c‖R(s)w‖2X .

• There exists c > 0 such that for all w ∈ Hm
0,∗([0,∞), X), for all σ ≥ σ0∫ ∞

0
e−2σt<a(w(t), B(∂t)w(t)) dt ≥ c‖R(∂t)w‖2L2

σ([0,∞),X).

Additionally, the following statements are equivalent:

• There exists C > 0 such that for all w ∈ X and all <s > σ0

‖B(s)w‖2X ≤ C‖R(s)w‖2X .

• There exists C > 0 such that for all w ∈ Hm
0,∗([0,∞, X)), for all σ ≥ σ0

‖B(∂t)w‖2L2
σ([0,∞),X) ≤ C‖R(∂t)w‖2L2

σ([0,∞),X).

Proof. The execution follows from by Plancherel’s formula, and the rear direction can
be shown by localizing around arbitrary values by special sequences, cf. [27, Lemma
2.2].

B.2.3. Vector valued Laplace transform and differential operators on [0, T ]
As in the scalar case, we want to define the Laplace transform and Laplace differential
operators for functions defined on bounded domains, so e.g. for f ∈ L2([0, T ], X). Similar
results can be found in [115, Section 2.1].
The Laplace transform can easily be defined by extending f to zero outside of [0, T ]:
For f ∈ L2([0, T ], X), it is e−c · f1[0,T ] ∈ L2([0,∞), X) for all c ∈ R , thus

Lf := L(f1[0,T ])

exists and is holomorphic in the whole complex plane. Also L−1 of Lf is well defined
and gives back a function with support in [0, T ]. For general functions B ∈ H, we can
ensure supp(L−1B) ⊂ [0, T ] by setting

L−1 := 1[0,T ]L−1.

It should be taken into account, that in general it is

L−1L = IdL2([0,T ],X)→L2([0,T ],X),

but
LL−1 6= IdH→H.
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As in the scalar case, we apply some modifications to the Laplace differential operators
to define them for functions on [0, T ]. A possibility to do this would be, to extend f
on [T,∞) in a smooth way, such that f(t) = 0 for t > 2T , to apply the operator B(∂t)
on [0,∞) and to ensure, that 1[0,T ]B(∂t)f does not depend on the arbitrarily chosen
extension. We will go the other way around: To define B(∂t)f , we reformulate the
operator until we arrive at a formulation that suits f ∈ L2([0, T ], X) and then show that
the property, that the definition is invariant under any smooth enough extension of f to
[0,∞) will be satisfied under weak assumptions.

Definition B.77. Let B(s) ∈ L(X) be a family of operators and f ∈ L2([0, T ], X).
Whenever there is an m ∈ N0 such that

B(s)s−mLf ∈ H and L−1(B(s)s−mLf) ∈ Hm([0, T ], X),

we say that B(∂t)f exists and we set

B(∂t)f := ∂mt L−1(B(s)s−mLf).

We call the function B(s) or the mapping B(∂t) causal, if for every f (and every T > 0),
such that B(∂t)f exists, B(∂t)f does not depend on an arbitrarily chosen extension of f
in L2

∗([0,∞), X), i.e. for every f̃ ∈ L2
∗([0,∞), X),

f = 1[0,T ]f̃ in L2([0, T ], X)

it holds that B(∂t)f exists and

B(∂t)f = 1[0,T ]B(∂t)f̃ in L2([0, T ], X).

We call it Causality that B(∂t)f(T ) only depends on values of f for t < T .

This is a new definition of B(∂t), that does not coincide in general with the one on
[0,∞) of the previous subsection. The definition is well defined in the sense that it does
not depend on the selection of m ∈ N. If existent for m0 ∈ N0 then it follows by Example
B.61 for all m > m0:

∂m0
t L−1(B(s)s−m0Lf) = ∂mt L−1(B(s)s−mLf).

In the following, we define the suitable function spaces and give sufficient conditions
for the existence.

Definition B.78. We define for m ∈ N0 the space of m−times weakly differentiable
functions with initial condition zero as

Hm
0,∗([0, T ], X) :=

{
f ∈ Hm([0, T ], X)

∣∣ f(0) = · · · = f (m−1)(0) = 0
}
.

With the induced norm

‖ · ‖Hm
0,∗([0,T ],X) := ‖ · ‖Hm([0,T ],X) =

√
〈 · , · 〉Hm([0,T ],X),

this is a Hilbert space.
The sub index 0, ∗ in Hm

0,∗([0, T ], X) has the meaning 0 at t = 0 and arbitrary value at
t = T, and we also define

Hm
∗,0([0, T ], X) :=

{
φ ∈ Hm([0, T ], X)

∣∣ f(T ) = · · · = f (m−1)(T ) = 0
}
.
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Lemma B.79. Let m ∈ N0. For

f ∈ Hm
0,∗([0, T ], X)

and
B ∈ Hm,

B(∂t)f exists and it holds L−1(B(s)s−mLf) ∈ Hm
0,∗([0, T ], X) and

B(∂t)f = 1[0,T ]L−1(B(s)s−mL(∂mt f))

We can define B(∂t) as a continuous operator

B(∂t) : Hm
0,∗([0, T ], X)→ L2([0, T ], X).

Every B ∈ Hm is causal and for every smooth enough extension f̃ of f on [0,∞) it holds

B(∂t)f = 1[0,T ]L−1(B(s)Lf).

Proof. As B is holomorphic and by

|B(s)s−mLf | ≤ |Lf |

it follows B(s)s−mLf ∈ H. For an extension f̃ ∈ Hm
0,∗([0,∞), X) of f it holds by

Lemma B.69 that

L−1(s−mB(s)Lf) = ∂2
t L−1(B(s)s−m−2) ∗ f

= ∂2
t L−1(B(s)s−m−2) ∗ f̃

= L−1(s−mB(s)Lf̃).

Inserting f̃ = ∂−mt ∂mt f ∈ Hm
0,∗([0,∞), X), we see by Lemma B.62 that L−1(s−mB(s)Lf̃) ∈

Hm
0,∗([0,∞), X), so it holds L−1(s−mB(s)Lf) ∈ Hm

0,∗([0, T ], X). By Lemma B.62 it fol-
lows B(∂t)f = 1[0,T ]L−1(B(s)s−mL(∂mt f)). By Plancherel’s formula, we see for high
enough σ ∈ R

‖B(∂t)f‖L2([0,T ],X) ≤ C(σ, T )‖L−1(B(s)s−mL(∂mt f))‖L2
σ([0,∞),X)

= C(σ)‖B(s)s−mL(∂mt f))‖H(σ)

≤ C(σ)‖L(∂mt f))‖H(σ)

= ‖eσ·∂mt f‖L2([0,T ],X)

≤ ‖f‖Hm
0,∗([0,T ],X).

The Causality can be shown by the following argument. For an arbitrary extension
f̃ ∈ L2

∗([0,∞), X), it exists L−1(B(s)s−mLf̃) and it holds

L−1(B(s)s−mLf̃) = ∂2
t L−1(B(s)s−m−2) ∗ f̃ ,

which does not depend on the extension. So B(∂t)f does neither.

Lemma B.80. In the setting of Lemma B.79, f ∈ Hm
0,∗([0, T ], X)

B(∂t)f = ∂m+1
t L−1(B(s)s−(m+1)) ∗ f = ∂1

t L−1(B(s)s−(m+1)) ∗ ∂mt f

and every f ∈ Hm+1
0,∗ ([0, T ], X)

B(∂t)f = L−1(B(s)s−(m+1)) ∗ ∂m+1
t f.
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Furthermore L−1(B(s)s−(m+2)) is continuous and we have for f ∈ Hm
0,∗([0, T ], X)

B(∂t)f = ∂m+2
t L−1(B(s)s−m+2) ∗ f = ∂2

t L−1(B(s)s−(m+2)) ∗ ∂mt f

and for f ∈ H(m+2)
0,∗ ([0, T ], X)

B(∂t)f = L−1(B(s)s−m+2) ∗ ∂m+2
t f.

Proof. The assertion follows as in the scalar case with Lemma B.69 and Lemma B.70.

We collect the following properties in analogue to the case on [0,∞).

Theorem B.81. Let f ∈ L2
∗([0, T ], X) and functions B(s) and causal A(s). If B(∂t)f

and A(∂t)B(∂t)f exist, then (AB)(∂t)f exists and it equals

(AB)(∂t)f = A(∂t)B(∂t)f.

If furthermore A(∂t)f and B(∂t)A(∂t)f exist and B is causal and A(s)B(s) = B(s)A(s)
on an imaginary line σ + iR for σ large enough, it holds

(AB)(∂t)f = A(∂t)B(∂t)f = B(∂t)A(∂t)f.

Proof. The proof works analogous to the scalar case. Let f ∈ L2
∗[0,∞) and n,m, p ∈ N be

integers for the existence ofB(∂t)f , A(∂t)B(∂t)f and (AB)(∂t)f. It holds for g := B(∂t)f ,
that A(∂t)g exists and

A(∂t)g = ∂m+n
t L−1(A(s)s−mL(∂−nt g)).

So ∂nt A(∂t)∂−nt g exists, and we can use the Causality property ofA with L−1(B(s)s−nLf)
as extension of ∂−nt g to [0,∞). Therefore we have

A(∂t)g = ∂m+n
t L−1(A(s)B(s)s−m−nLf).

This shows that (AB)(∂t) exists an that p can be chosen smaller or equal than p ≤ m+n.
If additionally B is causal, we get (BA)(∂t)f = B(∂t)A(∂t)f. Now let p be the maximum
of the integers for the existence of (AB)(∂t)f and (BA)(∂t)f .
Then A(s)B(s) = B(s)A(s) on a line σ + iR with σ large enough such that it holds

s−pA(s)B(s)Lf, s−pB(s)A(s)Lf ∈ H(σ), yields

A(∂t)B(∂t)f = (AB)(∂t)f = (BA)(∂t)f = B(∂t)A(∂t)f.

Corollary B.82. For A ∈ Hm(σ1), B ∈ Hn(σ2), AB ∈ Hp, f ∈ Hmax(m,n,p)
0,∗ ([0, T ], X)

it holds
(AB)(∂t)f = A(∂t)B(∂t)f

and if A(s)B(s)=B(s)A(s) on a line σ + iR with σ ≥ max(σ1, σ2) it holds

(AB)(∂t)f = A(∂t)B(∂t)f = B(∂t)A(∂t)f.

Proof. For σ ≥ max(σ1, σ2) it holds

A(s)B(s)s−m−n ≤ C,

so as Lf is complex differentiable on the whole complex plane,

s−m−nA(s)B(s)Lf, s−m−nB(s)A(s)Lf ∈ H(σ)

and all conditions are satisfied that where needed for σ in the proof the previous theorem.
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Theorem B.83 (Herglotz Theorem on [0, T ], cf. [27, Lemma 2.2]). Let B,R ∈ Hm(σ0)
for σ0 ∈ R. Let a(·, ·) : X ×X → C sesquilinear and continuous. If there exists a c > 0
such that for all w ∈ C, all <s > σ0

<a(w,B(s)w) ≥ c‖R(s)w‖2X ,

then it holds for all w ∈ Hm
0,∗([0, T ], X), for all σ ≥ σ0∫ T

0
e−2σt<a(w(t), B(∂t)w(t)) dt ≥ ce−2σT ‖R(∂t)w‖2L2([0,T ],X).

Proof. The proof follows the lines of the scalar case, using the respective Hilbert space
valued arguments.
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