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Abstract. Finite element (FE) forming simulation offers the possibility of a detailed analysis of the deformation behaviour of engineering textiles 

during forming processes, to predict possible manufacturing effects such as wrinkling or local changes in fibre volume content. The majority of 

macroscopic simulations are based on conventional two-dimensional shell elements with large aspect ratios to model the membrane and bending 

behaviour of thin fabrics efficiently. However, a three-dimensional element approach is necessary to account for stresses and strains in thickness 

direction accurately, which is required for processes with a significant influence of the fabric’s compaction behaviour, e.g. wet compression 

moulding. Conventional linear 3D-solid elements that would be commercially available for this purpose are rarely suitable for high aspect ratio 

forming simulations. They are often subjected to several locking phenomena under bending deformation, which leads to a strong dependence of 

the element formulation on the forming behaviour [1]. Therefore, in the present work a 3D hexahedral solid-shell element, based on the initial 

work of Schwarze and Reese [2,3], which has shown promising results for the forming of thin isotropic materials [1], is extended for highly 

anisotropic materials. The advantages of a locking-free element formulation are shown through a comparison to commercially available solid and 

shell elements in forming simulations of a generic geometry. Additionally, first ideas for an approach of a membrane-bending-decoupling based 

on a Taylor approximation of the strain are discussed, which is necessary for an accurate description of the deformation behaviour of thin fabrics. 

Keywords: Solid-Shell; Forming; Process Simulation; Finite Element Analysis (FEA) 

1 Introduction 

Lightweighting is a development strategy that aims to increase a system’s efficiency and to decrease CO2 emissions rather than 

just reducing the weight of a system. Continuously fibre-reinforced composites made of engineering textiles like woven or non-

crimp fabrics, provide a particularly high lightweight potential and have the advantage to be tailor-made for the specific application 

[4]. However, a detailed understanding of the manufacturing process is necessary to fully exploit this potential. Therefore, finite 

element (FE) forming simulations can be used to analyse the deformation behaviour and to predict effects like fibre orientation or 

wrinkling. 

State of the art forming simulation approaches mainly apply conventional two-dimensional shell approaches [5] to efficiently 

model the deformation of thin fibrous reinforcements, since they allow for high aspect ratios while still accurately describing the 

membrane and bending behaviour. However, those approaches cannot model out-of-plane compaction, which is an important 

forming mechanism to predict local fibre volume contents [6] and influences the permeability of the reinforcement during processes 

such as wet compressions moulding [7,8]. To predict these effects and the final thickness of the part, a three-dimensional FE-

formulation is necessary. 

The problem with utilizing most commercially available solid elements for composite forming simulations is the occurrence of 

numerical locking phenomena, which cause a too high bending stiffness and significantly influence the forming behaviour 

especially for high aspect ratios [1]. Therefore, so-called solid-shell elements have been developed, which combine techniques like 

reduced-integration and modifications to the strain field to alleviate geometric and material locking phenomena [9]. In the context 

of forming simulations, solid-shell elements have been successfully applied to sheet metal forming [10, 11], packaging simulation 

of cardboard [12] and recently composite forming [13]. Thereby, the prismatic solid-shell element developed by Xiong et al. [13] 
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for thermoforming of thermoplastic prepregs utilizes an additional degree of freedom at the element centre for an improved 

calculation of transverse normal stresses, in combination with a discrete Kirchhoff assumption for zero transverse shear strains.  

Additionally, engineering textiles have a specific forming behaviour, which requires a membrane-bending decoupling to describe 

their deformation behaviour. Three-dimensional element formulations based on the classical continuum mechanics of Cauchy are 

not capable of modelling very low stiffness under bending, while simultaneously considering a high in-plane membrane stiffness. 

Therefore, methods based on generalized continuum mechanics can be utilized. Those so-called second-order gradient approaches 

require elements with high-order interpolation functions, which are numerically expensive and difficult to implement in a 

commercial solver [14]. As an alternative, approaches introducing a bending stiffness based on a curvature calculation with 

neighbouring elements have shown promising results for thick 3D woven reinforcements [15]. 

In the present study, the 3D hexahedral solid-shell element with only translational degrees of freedom initially proposed by 

Schwarze and Reese [2, 3] and extended to an explicit formulation by Pagani et. al. [16] is used. The selected element formulation 

is implemented as user-element (VUEL) in ABAQUS/Explicit. To ensure computational efficiency, a MATHEMATICA-based 

programming environment called ACEGEN [17] is used. ACEGEN provides a symbolic implementation and differentiation 

combined with a simultaneous runtime-optimization. This work presents a continuation of the investigations performed for the 

isotropic case in Schäfer et al. [1]. It extends the approach for the forming of highly anisotropic materials and introduces 

modifications to the hourglass stabilization to account for the anisotropy in the stabilization. The potential of this solid-shell element 

for the macroscopic forming simulation of engineering textiles is shown by comparison to commercially available shell and solid 

elements during multiple hemisphere forming tests. Furthermore, an approach for the membrane-bending decoupling within the 

linear 3D element formulation is proposed. It is based on a Taylor approximation of the strain with respect to the out-of-plane 

direction and does not require to consider the displacements of neighbouring elements. The potential of this decoupling method is 

shown by application to numerical coupon and component forming tests. 

 

Nomenclature – Solid-shell element 

•̂ Tensor in Voigt notation      {𝜉, 𝜂, 𝜁} Isoparametric coordinates  

•c Compatible part of a tensor    𝑎 Aspect ratio 

•e Enhanced part of a tensor     𝑤e Enhanced degree of freedom   

•dev Deviatoric part of a tensor     𝒖 Displacement vector 

•∗ Quantity related to out-of-plane integration   𝝃∗ Normal through the element centre 

•hg Quantity related to hourglass stabilization   𝑬 Total Green-Lagrange strain tensor  

•mem Quantity related membrane deformation   𝑺  Second Piola-Kirchhoff stress tensor 

•bend Quantity related bending deformation   ℂ  Orthotropic stiffness tensor 

2 Solid-shell element 

The investigated solid-shell element is derived from a standard isoparametric 8-node hexahedral brick-element with tri-linear 

shape functions. The details of the element formulation can be found in Schwarze & Reese [2, 3], as well as the extensions necessary 

for an explicit formulation in Pagani et. al. [16]. This section only highlights some of the main aspects of the solid-shell element 

relevant for a geometric and volumetric locking-free bending behaviour, which is necessary to accurately and efficiently describe 

the forming behaviour of thin structures with high aspect ratios [1].  

The element uses a reduced integration scheme with a single integration point in the shell plane and a variable number of 

integration points (at least 2) along the normal through the element centre defined in isoparametric coordinates by 𝝃∗ = {0,  0,  𝜁}⊤. 

This integration scheme was shown to be computationally efficient [16] and captures non-linearities in the thickness direction for 

thin structures very well, compared to commercially available explicit reduced-integration elements which mostly use a single 

integration point in the element's centre.  

The total Green-Lagrange strain tensor 𝑬 is additively split (𝑬 = 𝑬c + 𝑬e) according to the enhanced assumed strain (EAS) 

concept based on the Hu–Washizu variational principle into a compatible part 𝑬c(𝒖), depending solely on the displacement vector 

𝒖, and an enhanced part 𝑬e(𝑤e), depending on a single additional enhanced degree of freedom 𝑤e, which is utilized to prevent 

volumetric and Poisson thickness locking. The transverse shear and curvature thickness locking are cured through the assumed 

natural strain (ANS) method for the transverse shear and normal components of the covariant compatible Green-Lagrange strain. 

Another key aspect of the element is a Taylor approximation of the compatible strain with respect to element centre 𝝃 = 𝟎: 

𝑬̂c ≈ 𝑬̂𝑐
0 + 𝜁𝑬̂𝑐

ζ
+ 𝜁2𝑬̂𝑐

ζζ
⏟          

𝑬̂c
∗

+ 𝜉𝑬̂c
ξ
+ 𝜂𝑬̂c

η
+ 𝜉𝜂𝑬̂c

ξη
+ 𝜂𝜁𝑬̂c

ηζ
+ 𝜉𝜁𝑬̂c

ξζ
⏟                        

𝑬̂c
hg

, 
(1) 
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where the derivatives 𝑬̂𝒄
(•)

 are constant tensors. This allows for a separation into a strain part related to the out-of-plane integration 

𝑬̂c
∗ and a part unused by the numerical integration 𝑬̂c

hg
, which is essential to the hourglass stabilization of the reduced integration 

scheme. Similarly, a Taylor approximation of the second Piola-Kirchhoff stress along the out-of-plane direction 𝝃∗ is carried out:  

𝑺̂ ≈ 𝑺̂(𝑬̂∗)⏟  
𝑺̂∗

+
𝜕𝑺̂ 

𝜕𝑬̂
|
𝝃=𝝃∗

(𝜉𝑬̂c
ξ
+ 𝜂𝑬̂c

η
+ 𝜂𝜁𝑬̂c

ηζ
+ 𝜉𝜁𝑬̂c

ξζ
) = 𝑺̂∗ + 𝑺̂hg, (2) 

where again the stress is separated into the parts related to the out-of-plane integration and hourglass stabilization. The 

complexity of the hourglass stabilization part is reduced by replacing the in general material- and deformation-dependent tangent 
𝜕𝑺̂ 

𝜕𝑬̂
|
𝝃=𝝃∗

 with a constant hourglass stiffness matrix ℂ̂hg. This method allows for efficient analytical integration of the hourglassing 

terms while maintaining a full rank of the element formulation. For the description of the material behaviour, a Saint Venant-

Kirchhoff hyperelastic approach [18] is used, which leads to 

𝑺̂∗ = ℂ̂∗ ⋅ (𝑬̂c
∗ + 𝑬̂e

∗)     and     𝑺̂hg = ℂ̂hg ⋅ 𝑬̂c
hg

. (3) 

Adaptions for forming simulations of engineering textiles 

The above described solid-shell element has shown very promising results compared to commercially available elements in 

ABAQUS/Explicit for the forming simulation of thin structures with high aspect ratios in an isotropic case [1]. In the next step, the 

formulation is tested for highly anisotropic materials, to emulate the deformation behaviour of engineering textiles. Therefore, two 

different orthotropic stiffness matrices with high stiffness in one (ℂ̂UD) or two (ℂ̂Biax) principal material directions and low shear 

and compaction stiffnesses for both cases are chosen for this investigation. A relatively low stiffness of 1000 MPa in the principal 

material directions is chosen to reduce the explicit time increment in this comparative study, while maintaining a large anisotropy 

ratio and therefore limiting the in-plane strains in fibre direction: 

ℂ̂UD =

[
 
 
 
 
 
1000 0 0 0 0 0
0 10 0 0 0 0
0 0 10 0 0 0
0 0 0 10 0 0
0 0 0 0 10 0
0 0 0 0 0 10]

 
 
 
 
 

 MPa     and     ℂ̂Biax =

[
 
 
 
 
 
1000 0 0 0 0 0
0 1000 0 0 0 0
0 0 10 0 0 0
0 0 0 10 0 0
0 0 0 0 10 0
0 0 0 0 0 10]

 
 
 
 
 

 MPa. (4) 

The application to model a single-layer hemisphere forming test leads to hourglassing instabilities on the edges during the initial 

contact of the fabric and tool, cf. Figure 1. The location of these effects agrees with observations from single element tests with as 

few Dirichlet boundary conditions as possible, where the most critical deformation for provoking instabilities is compaction in the 

thickness direction. 

 

Fig. 1. (a) Single-layer hemisphere test with (b) a detail view of the occurring hourglassing modes along the edge of the fabric and the typical hourglass shape 

highlighted in red, occurring with unadjusted stabilization. 

Modified hourglass stabilization. In the work of Schwarze & Reese [2, 3], the hourglass stiffness matrix was approximated by a 

constant deviatoric matrix ℂ̂hg = 𝜇eff
hg
 𝕀̂dev based on an effective shear modulus 𝜇eff

hg
 and the deviatoric part of the fourth-order 

identity tensor 𝕀̂dev. A deviatoric hourglassing stiffness was chosen to ensure a volumetric locking-free stabilization, according to 

the B-Bar method developed by Hughes [19]. This approximation leads to an underestimation of the hourglassing stress for highly 

anisotropic materials because the calculated isotropic effective shear modulus is significantly too low. Therefore, the hourglassing 

stiffness matrix is replaced within this study by the material tangent evaluated in the element centre through 

ℂ̂hg =
𝜕𝑺̂ 

𝜕𝑬̂
|
𝝃={0,0,0}

, (5) 

a) b)
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which accounts for the anisotropy in the stabilization, while still allowing for an analytical integration of the hourglassing terms. 

However, this approach does not conform with the B-bar method and is therefore limited to compressible materials to prevent 

volumetric locking.  

The construction of a suitable anisotropic hourglass stiffness, which prevents volumetric locking, would require further 

investigations and is not part of this work, because the intuitive approach to only use the deviatoric part of the anisotropic stiffness 

ℂ̂hg
dev

=  𝕀̂dev: ℂ̂hg could lead to non-symmetric stiffness matrices and therefore potentially resulting in non-physical negative 

hourglassing energies. However, since the focus of this work are engineering textiles, which are compressible in most cases, and 

the choice for the hourglassing stiffness according to Equation 5 shows promising results, the influence of a possible volumetric 

locking in the hourglassing terms is assumed to be small.  

 

Membrane-bending decoupling. To describe the forming behaviour of engineering textiles, a decoupling of the in-plane 

(membrane) and out-of-plane (bending) behaviour is often introduced in approaches based on conventional shell elements. Based 

on this idea and in combination with the Taylor approximations of the strains in Equations 1, the following split is introduced to 

the stress 𝑺̂∗ by 

𝑺̂∗ = 𝑺̂mem + 𝑺̂bend     with     𝑺̂mem = ℂ̂mem ⋅ 𝑬̂c
0      and      𝑺̂bend = ℂ̂bend ⋅ (𝜁𝑬̂c

𝜁
+
1

2
𝜁2𝑬̂c

𝜁𝜁
+ 𝑬̂e

∗), (6) 

where the membrane part 𝑺̂mem is related to the constant compatible strain in the element centre 𝑬̂c
0 by a membrane stiffness 

matrix ℂ̂mem, while the bending part 𝑺̂bend is related to the out-of-plane components of the compatible strain 𝑬̂c
𝜁
 and 𝑬̂c

𝜁𝜁
 as well as 

the enhanced strains 𝑬̂e
∗  by a bending stiffness matrix ℂ̂bend. 

3 Numerical studies  

To investigate the potential of the solid-shell element formulation outlined in Section 2 for forming simulations of engineering 

textiles, two different numerical studies are shown in the following section. First, the advantages of a geometric and volumetric 

locking-free forming behaviour of the solid-shell element for highly anisotropic materials are presented through a comparison to in 

ABAQUS/Explicit commercially available shell and solid elements in a single layer hemisphere test. Similar to our previous study 

[1], where the significant influence of the element formulation on the forming behaviour even for a simple linear isotropic material 

model was shown. Secondly, it is demonstrated by a simple tensile and cantilever-bending test that the approach proposed in 

Equation 6 can be utilized for a membrane-bending-decoupling, and initial results for its influence on the forming behaviour are 

shown. 

3.1 Hemisphere test for highly anisotropic material 

To focus on the influence of the element formulation on the forming behaviour as best as possible, a single layer with a thickness 

of 𝑡 = 0.3 mm is used in multiple hemisphere tests with a total tool stroke of 35 mm, cf. Figure 1 a). The tests are performed with 

an orthotropic material law, for both stiffness matrices ℂ̂UD and ℂ̂Biax, cf. Equation 4, as well as aspect ratios (𝑎 = 𝑙e/𝑡) of 𝑎1 = 10 

and 𝑎2 = 20. The solid-shell element without the membrane-bending decoupling is compared to in ABAQUS/Explicit 

commercially available reduced integrated shell (S4R) and solid (C3D8R) elements, as well as a fully integrated solid element 

(C3D8), a reduced integrated solid element with an enhanced hourglass stabilization based on the EAS method (C3D8R-Enh) and 

a fully integrated element with incompatible modes (C3D8I).  

Figure 2 shows the results for a remaining tool stroke of Δ𝑢 = 7.0 mm because at this stage the differences in the forming 

behaviour can be better highlighted than for a completely closed tool. The wrinkling development in terms of size and pattern is 

strongly influenced by the different element types, whereas the elements known to behave too stiff under bending deformation tend 

to have larger wrinkles form. These results agree with the observations made in literature [20-23].  

Based on the assumption that the reduced integrated shell element (S4R) is locking-free even for large the aspect ratios [1, 24], 

it is used as a desired reference solution in this study. For a biaxial stiffness ℂ̂Biax and both 𝑎1 as well as 𝑎2, it shows a consistent 

forming behaviour with medium-sized wrinkles developed in all directions. For a unidirectional stiffness ℂ̂UD the results are again 

similar for both investigated aspect ratios, with the developed wrinkles mainly oriented along the axis of the highest stiffness and 

semi-circular runouts towards the edges. The only element that can achieve a forming behaviour similar to the shell for all tests is 

the solid-shell element presented in Section 2. However, looking into more detail some individual elements in the area of radius 

shows a slight hourglassing shortly before the tools are completely close even though it seems not to influence the global forming 

behaviour. This indicates that the proposed approach for the hourglass stiffness, cf. Equation 5, still needs improvements in areas 

of large compactions.  
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The deformation behaviour of the reduced integrated solid element (C3D8R) is completely different compared to all other 

examined elements. The orientation of the onset of wrinkles is only perpendicular to the edges of the thin sheet and they are larger 

compared to the reference solution. While introducing an enhanced hourglassing stabilization (C3D8R-Enh) to alleviate locking-

effects showed very promising results in the previous study for isotropic material [1], the behaviour for highly anisotropic materials 

is significantly different with an unexpected orientation of the development of wrinkles in the y-direction for a unidirectional 

(highest stiffness in the x-direction) as well as a biaxial stiffness.  

 

Fig. 2. Hemisphere test | Results for a remaining tool stroke 𝛥𝑢 of 7.0 mm for the proposed solid-shell element compared to a conventional shell (S4R) and different 

conventional solid (C3D8R-Enh, C3D8I, C3D8R, C3D8) elements with different aspect ratios of 𝑎 ∈ {10 ,20} and stiffness matrices ℂ̂ ∈ {ℂ̂Biax , ℂ̂UD} with 

coloured indicators to rate their forming behaviour (green ≙ good agreement with S4R; yellow ≙ slightly too stiff behaviour; red ≙ forming behaviour 
significantly different to S4R)  

 

Remaining tool stroke Δ𝑢 = 7.0 mm

Biaxial - ℂ̂∗ = ℂ̂Biax Unidirectional - ℂ̂∗ = ℂ̂UD

𝑎1 = 10 𝑎2 = 20 𝑎1 = 10 𝑎2 = 20
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The results of the fully integrated solid element (C3D8) in the biaxial case for a smaller aspect ratio 𝑎1 are in good agreement 

with the chosen reference. An increase in size and decrease in the number of wrinkles is observed for the larger aspect ratio 𝑎2, 

which could also be seen for the isotropic case and is expected due to its known too stiff behaviour in bending situations due to 

locking phenomena [1]. However, in the unidirectional case, the orientation of the onset of wrinkles is slightly different and the 

size is increased, which again indicates a too high bending stiffness. The fully integrated solid element C3D8I is enhanced by 

incompatible modes to prevent parasitic locking stresses in bending deformations [22]. Thus, it shows a forming behaviour very 

similar to the shell element for a smaller aspect ratio 𝑎1 and only slightly too stiff for 𝑎2.  

The hemisphere tests show that the element formulation and thus locking-free bending behaviour for larger aspect ratios have a 

significant influence on the macroscopic forming behaviour, even for a simple linear orthotropic material model. The solid-shell 

element, cf. Section 2, is the only element which consistently has a similar forming behaviour compared to the chosen reference 

shell element (S4R) for large aspect and anisotropy ratios. 

3.2 Membrane-bending decoupling 

Proof of concept. To test whether the membrane-bending decoupling based on the approach proposed in Equation 6 works, simple 

tensile and cantilever-bending tests are performed. The geometry and load conditions are shown in Figure 3. In both tests, the beam 

is discretized by one element in the thickness and 10 elements in the length direction, which yields an aspect ratio of 𝑎 = 20. Both 

tests are performed with a total of four different combinations of a higher and lower membrane as well as bending stiffness each. 

Thereby, the higher bending and membrane stiffnesses are chosen equal to Equation 4 with ℂ̂UD
mem = ℂ̂UD

bend = ℂ̂UD and the lower 

stiffnesses differ from the higher stiffnesses only in the 11-component by (ĈUD
memlow)

11
= (ĈUD

bendlow)
11
=

1

10
⋅ (ĈUD)11 =

100 MPa. 

 

 

Fig. 3. a) Tensile test| geometry and load; b) Cantilever-bending test| geometry and load 

The results of the tensile and cantilever-bending tests are shown in Table 2 (a) and (b) respectively. As expected, the tip 

displacement in the tensile test is only increased by decreasing the membrane stiffness and independent of the chosen bending 

stiffness. Analogously, this behaviour is shown for the cantilever-bending test with a decrease of the bending stiffness. This 

indicates that the proposed approach for a membrane-bending-decoupling in Equation 6 works. 

Table 2. Resulting tip displacement for (a) the tensile test and (b) the cantilever-bending tests 

a) Tensile test  b) Cantilever-bending test 

Tip displacement [mm] ℂ̂UD
bend ℂ̂UD

bendlow  Tip displacement [mm] ℂ̂UD
bend ℂ̂UD

bendlow 

ℂ̂UD
mem 6.8 6.8  ℂ̂UD

mem 1.277 12.12 

ℂ̂UD
memlow 37.5 37.5  ℂ̂UD

memlow 1.277 12.12 

Influence on the forming behaviour. The proposed membrane-bending decoupling is applied to single-layer hemisphere tests, cf. 

Figure 1 a), with 𝑎 = 20 and constant unidirectional ℂ̂UD
mem = ℂ̂UD and biaxial ℂ̂Biax

mem = ℂ̂Biax  membrane stiffnesses. The bending 

stiffness is initially equal to the respective membrane stiffness (ℂ̂UD
bend = ℂ̂UD

mem & ℂ̂Biax
bend = ℂ̂Biax

mem) and then the 11-component in the 

unidirectional, as well as additionally the 22-component in the biaxial case, is either increased (ℂ̂UD
bendhigh& ℂ̂Biax

bendhigh) or decreased 

(ℂ̂UD
bendlow& ℂ̂Biax

bendlow) by a factor 10. The results for different remaining tool strokes Δ𝑢 are shown in Figure 4.  
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Fig. 4. Hemisphere test | Results for a constant a) biaxial and b) unidirectional membrane stiffness with different bending stiffnesses at several remaining tool strokes 
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In the biaxial case, decreasing the bending stiffness leads to the onset of smaller wrinkles and an increase in their number, while 

their general orientation, as well as location, stays the same. A higher bending stiffness in the unidirectional case leads to a 

straightening of the wrinkles located towards the edges, while for a lower bending stiffness more wrinkles perpendicular to the x-

axis are forming. These results agree with the observations made in the literature [20-23]. 

4 Conclusion and outlook 

A linear solid-shell element suitable for the forming simulations of highly anisotropic materials with a membrane-bending 

decoupling based on a Tailor expansion of the strain is presented. The advantages of its locking-free bending behaviour in forming 

simulations are shown by comparison to commercially available shell and solid elements. The forming results are consistent for 

large aspect ratios and in agreement with a typical shell element, outperforming all investigated commercially available solid 

elements that either behave significantly different or too stiff due to locking phenomena. The proposed approach can show typical 

characteristics of the membrane-bending interdependency in coupon tests as well as in forming simulations. The shape, size and 

orientation of wrinkles depend on the ratio between the membrane and bending stiffness.  

These are necessary prerequisites to model the deformation of thin engineering textiles efficiently in macroscopic forming 

simulations. However, so far only linear-elastic orthotropic materials are investigated. In future studies, the material model will be 

adapted to the in general non-linear behaviour of different deformation modes of an engineering textile and validated with 

experimental test. In this context, especially the proposed calculation of the hourglassing stiffness needs to be re-evaluated, since 

during the numerical studies some slight hourglassing occurred in areas of higher compaction.  

The utilized solid-shell element formulation is known to be geometric and volumetric locking-free for isotropic and slightly 

anisotropic materials [1-3]. However, the potential occurrence of a locking phenomenon specific to engineering textiles known as 

intra-ply shear [25] or tension [26] locking needs to be investigated. In this study, the impact of this locking phenomenon is assumed 

to be small, since the principal material directions are aligned with the mesh orientation. This alignment is not always possible for 

arbitrary shaped textiles and may require further modifications to the hourglass stabilization to alleviate tension locking [26]. 

Furthermore, the benefits of modelling the thickness direction will be investigated in the context of composite forming. Since 

the state of the art forming approaches are mainly based on shell elements and therefore often limited in the consideration of the 

out-of-plane behaviour. The utilization of a fully three-dimensional approach should enable a better approximation of forming 

effects like local thickness changes and fibre volume content [6], by investigating the compaction behaviour. 
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