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Abstract system, electrolyzers are new, large consumers which

Hydrogen fueled transportation can contribute
substantially to the reduction of global carbon
emissions. However, the production of hydrogen through
electrolysis creates interdependencies with electricity
systems. Therefore, we present a new model which
couples the hydrogen supply chain with the electricity
system. We use this model to analyse a case study
of Germany in 2030. We find that if efficient
spatially resolved electricity tariffs are applied instead
of existing uniform tariffs, electrolyzers are placed
primarily at low-cost nodes and farther away from
consumption centers.  For hydrogen, this leads to
higher transportation costs, but lower production costs,
and lower total costs. Moreover, costs for congestion
management decrease substantially.

1. Introduction

To limit the global increase in temperature to
1.5°C compared to 1990 levels, greenhouse gas (GHG)
emissions must be reduced to net-zero in the next three
decades. In this endeavour, the transportation sector’s
GHG emissions are of major importance, as they amount
to 15% of global energy related emissions and continue
to rise [1]. Within the sector, passenger road vehicles
and road freight vehicles account for 44% and 30% of
emissions, respectively [2]. In both of these sub-sectors,
hydrogen Fuel Cell Electric Vehicles (FCEVs) can
contribute to emission reductions by substituting fossil
fuel vehicles. The German government aims to meet its
2030 reduction goals [3] partly by building up a national
hydrogen supply chain including domestic electrolysis,
fueling stations, and transportation [4].

The planning of such capital-intensive and long-term
infrastructure requires thorough and holistic system
analysis. From the point of view of the electricity
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might increase network flows in the system and lead
to higher congestion costs if placed amiss. Moreover,
electrolyzers are long-term installations with typical
lifetimes of ten years [5]. Once they are installed,
their effects on the system will persist for years. As
infrastructure investment decisions for 2030 are being
made today, a thorough analysis of the effects of
hydrogen supply chains on the electricity system is
needed. The European Commission has recognized this
and is calling for efficient and competitive regulation
that provides price signals to electrolyzers that reflect
their impact on energy system costs [6].

Therefore, we aim to advance this research field
by making three contributions. First, we expand
the vehicle-type-specific focus of prior studies by
including both passenger cars and freight transportation
in our analysis. We develop a mixed-integer linear
programming model to evaluate the cost-optimal
hydrogen supply chain with explicit consideration of
geographical distribution of hydrogen demand and
electrolyzer locations. Second, we analyze the effect
of two different electricity tariffs on the optimal
supply chain design and hydrogen end-use costs. We
calculate a reference uniform tariff scenario based on
the system-wide market clearing price to reflect current
regulation in most European countries. We compare
this scenario with a nodal tariff based on simulated
locational marginal shadow prices. Third, we feed back
those results and measure how hydrogen production
changes electricity wholesale prices and grid congestion
costs. In the next section, we begin by reviewing related
literature and describing prevailing research gaps.

2. Related work
Early work on spatially resolved hydrogen supply

chain models targeting the transportation sector focuses
on hydrogen production from steam methane reforming,
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coal and biomass gasification [7, 8, 9]. During the last
decade, research focus shifted to hydrogen production
from electrolysis, investigating the effects of resource
availability [10, 11, 12], emission pricing [13], and
hydrogen storage [14]. However, these studies do not
regard the interaction of hydrogen supply chains with
the existing electricity grid.

Linking the hydrogen supply chain with the national
electricity grid, [15, 5, 16] analyze scenarios of
widespread diffusion of hydrogen-fueled passenger cars
in Germany in 2050. Compared to earlier work,
they increase the spatial granularity of analysis to the
402 districts in Germany which equals the third level
of the Nomenclature of Territorial Units for Statistics
(NUTS-3) [17]. [18] analyze the costs of hydrogen
stored in liquid organic hydrogen carrier (LOHC)
material and synthetic fuels for passenger cars. In one
scenario, the authors calculate a representative nodal
price for two exemplary states in Germany and allow
transportation of hydrogen between the two states. This
leads to higher hydrogen production in the state with
lower price. Besides the limitation of state-level spatial
granularity, the authors note that analyzing feedback
effects on the electricity system represents important
future work. [19] address the optimal location of
hydrogen fueling stations for 100% heavy-duty freight
trucks on German highways in 2050, using an electricity
system planning model and truck driving data. They
exclusively regard on-site electrolysis at the stations and
find that this hinders the optimal usage of low-price
locations and increases transmission congestion. [20]
optimize the operation of a 1 MW electrolyzer over a
set of 7182 electricity tariffs in the USA. They find
that hydrogen production costs can be reduced through
flexible operation with dynamic tariffs. However, spatial
differences in electricity prices across the USA have a
larger effect on end-use costs than dynamic operation.

In summary, past research has repeatedly found
that electricity costs have a large impact on end-use
hydrogen costs. It has also found initial evidence that
spatially differentiating electricity prices influences the
optimal location of production. However, past studies
have so far largely neglected the following aspects.

First, existing studies have either focused on
hydrogen demand from passenger cars or from
heavy-duty freight vehicles. This neglects large shares
of GHG emissions and potentially distorts their findings.
Therefore, we pose Research Question (RQ) 1: What is
the cost-minimal supply chain design for the combined
hydrogen demand from passenger cars and heavy-duty
trucks in 2030 in Germany?

Second, to the best of our knowledge, no study
has assessed the impact of tariffs with different spatial

granularities on a nation-wide level. This results in RQ2:
What is the impact of uniform and nodal electricity tariff
designs on cost-minimal hydrogen supply chains and the
total costs of hydrogen?

Third, the feedback effects of hydrogen production
on the electricity system have received limited attention
in the past. The electricity system, particularly in
Germany, is already facing challenges of grid congestion
due to increasing integration of fluctuating renewable
sources and spatial imbalances of generation and
consumption [21]. This can be exacerbated by the large
scale deployment of hydrogen production for FCEVs.
To address this, we answer RQ3: What are the feedback
effects of hydrogen production on electricity wholesale
prices and congestion management costs under uniform
and nodal tariffs?

3. Methodology

To address the research questions above, we model
the hydrogen supply chain and the electricity system.
We then parametrize both models with data for the
German transportation and electricity sector in 2030.
We first parametrize and run the electricity model to
compute uniform and nodal electricity prices — as input
variables for the hydrogen model — as well as benchmark
redispatch costs. Second, we run the hydrogen model
to minimize total costs of the integrated hydrogen
supply chain through optimal spatial siting and sizing
of electrolyzers and optimal hydrogen delivery. Third,
we feed back the results as additional regional loads
from the electrolyzers into the electricity model and
calculate consequential changes in electricity prices and
redispatch costs. Both models are implemented in
Python 3.7.3, using the Gurobi solver 8.1.1. For the data
preparation of our hydrogen supply chain model, we use
the Python packages Pandas, NumPy, and Shapely; to
visualize the geographical distribution of electrolyzers
and nodal prices, we use GeoPandas, and Matplotlib.

3.1. Hydrogen supply chain model

In the following, we describe the objective function
and constraints of the hydrogen supply chain model.

3.1.1. Objective function

The model minimizes the total costs of the
hydrogen supply chain, which consists of capital costs
and operating costs for the production (PCC, POC),
conversion (CCC, COC), fueling stations (SCC, SOC)
and transportation (TCC, TOC), as shown in Equation
(1). There are three decision variables which are
represented in bold. X, indicates if an electrolyzer is
installed at a location p or not (X, € {0,1}). Y,
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indicates if hydrogen is transported from a location p to
a fueling station ¢ (Y,; € {0,1}). P and I represent
the set of all potential electrolyzer plant locations p,
and hydrogen fueling stations i, respectively. The
third decision variable is continuous (HP, € [0,0))
and denotes the daily amount of hydrogen produced
at location p [kgm,]. The model is run for three
possible states s in which hydrogen can be transported
via delivery trucks, namely gaseous (GH2), liquefied
(LH2), and bound in LOHC.

min_ ( E
X, HPy Yy s
P P P, pGP

PCCy(Xp, HP,) + CCC,

+SCC, + TCCy + Y POC,(Xp, HP,)

e (1)
+YCOC, (Xp, HP,) + SOC,
peP
+Y ) TOC(Yy,))
peP iel

All four components of capital costs include specific
annual O&M costs, and annuity factors (AF). The
annuity factors account for the depreciation of one-time
investments over multiple years and depend on weighted
average cost of capital (W ACC [%]) and the individual
depreciation years (d [-]) [22], as shown in Equation (2).

(1+ WACC) « WACC

AF =
(1+WACC) -1

2

The electrolyzer capital costs are made up
of the capacity dependent investment costs IFE
[€/kW,,;], multiplied by hydrogen’s energy density £ D
(kW hp,/kgm,], and the constant hydrogen production
HP, [kgmu,], divided by the full load hours F'LH [h]
and electricity efficiency EE [kWhpg, /kWhe] (3).
Conversion capital costs depend on capacity-specific
investment costs (/C' [€/kgm,]), the sum of converted
hydrogen across all plants ([kgm,]), and state s (4).
Fuel station capital costs equal the investment costs of
one fueling station (/.S [€]) multiplied with the number
of fueling stations (/N F'S [-]) (5). Transportation capital
costs equal the number of trucks and trailers (N1 [-]),
multiplied with the respective investment per truck
(ITRU [€]) and trailer /T RA [€]) (6).

IExED x HP,
FLH « EE (3)

PCC, =

CCCs =1Cs % (14 O0&Mg,) x AFc 4)

SCCy =18, % NFS * (1+ O&Mg,)* AFs  (5)

TCCy, =ITRU x NT % (1 + O&MTRU)
*AFTRU + ITRAS * NT (6)
*(1 4+ O&Mrra,)* AFrRA

The production operating costs of each electrolyzer
depend on its daily hydrogen output (HP, [kgm,]),
the electricity consumption (ECP [kWhel/kgm,])
and the location-specific electricity price (EP,
[€/EWhl]) (7). Similarly, the conversion operating
costs depend on daily hydrogen throughput (HPFP,
[kgr,]), the electricity required for conversion (ECC
[kWhel/kgm,]) and the electricity price (EP,
[€/kWRl]) (8). The fueling station operating costs
are formed by the output-dependent consumption of
electricity (ECS [kWhel/kgm,]) and natural gas
(GCS [kWhnG/kgm,1)), and the respective prices
(EP [€/kWh.l], and NGP [€/kWhynG]) (9). Last,
the transportation operating costs (10) are made up of
the transport distance between matched electrolyzers
and fueling stations (1T'D,,; [km]), fuel consumption
(FCT [l/km)]), fuel price (FP [€/l]), and toll (T'C
[€/km])). We approximate distances via air-line
distance and account for this heuristic by multiplying
with a detour factor of 1.3, in line with [23]. Besides,
fixed annual labor costs (LC [€]) are added.

POC, = HP, x ECP % EP, % 365 (7
COC, . = HP,* ECC, * EP, 365  (8)
SOC, = (ECS, x EP + GCS, * NGP)

« S HP, 365 @)
peEP

TOCN =2x% TDp,z’ * Yp,i

10
((FCT % FP) +TC) % 1.3 % 365 + LC (10

3.1.2. Constraints

The sum of daily hydrogen production H P must
satisfy an exogenously given demand HD (11). The
hydrogen output H P, of each electrolyzer depends
on its installed capacity, which lays between a fixed
minimum and maximum value H PCAP. Hydrogen
output can only be non-zero if an electrolyzer is installed
at the respective location (12). The daily transportation
volume HT between an electrolyzer p and a fueling
station ¢ is set equal to the capacity of a fueling station
(SCAP;). Non-zero transportation is only possible if
the transportation between p and ¢ is established (13). In
sum, the daily amount of hydrogen transported from an
electrolyzer to all fueling stations must not exceed the

Page 3303



production at this electrolyzer (14). The entire demand
of a fueling station is covered by one plant (15).

HD < Z HP, (11)
peP

HPCAP,,;, + X, < HP,

(12)
< HPCAPpup % X, VpeP

HT,,=SCAP;xY,; VpePicl (13)

ZHTW- <HP, YpeP (14)
i€l
ZYW«:1 Viel (15)
peP

3.2. Hydrogen supply chain data

In this subsection, we present the data sources,
preprocessing steps, and assumptions we use to
create the input data for demand, production, and
transportation of hydrogen. For all steps of the supply
chain, WACC is set to 4%, adopted from [24].

3.2.1. Hydrogen demand data

In the first step, we estimate total national hydrogen
demand in the transport sector and the number of fueling
stations required to satisfy the demand. In the second
step, we spatially disaggregate this total demand and
determine potential sites of fueling stations. Because
of the different refueling habits, the locations of fueling
stations for passenger cars and trucks are determined
separately.

A 2019 study by the Fraunhofer-Institute [25]
estimates the hydrogen demand for fuel cell passenger
cars and trucks in Germany by 2030. We assume that
heavy-duty trucks with a total weight above 12,000 kg
[26] will be responsible for all truck based demand,
because of their high share in transport sector emissions
[27] and clearer advantages compared to battery based
heavy-duty trucks [28]. Since these estimates have been
calculated, Germany’s [4] and the European Union’s
[6] hydrogen strategies have been published, which
both strongly promote the usage of hydrogen in the
transportation sector. Therefore, we use the upper bound
of hydrogen demand estimates from [25], shown in
Table 1. We assume the consumption of hydrogen
cars to decrease to 0.63 kg/100km, and that of trucks
to 14 kg/100km until 2030. These values are in line
with [27], and [29], respectively, and depend on future
development of FCEV technology. Annual average
mileage values for cars and trucks are adopted from the

German Federal Motor Transport Authority [30]. By
dividing the total demand by the per-km consumption
and annual mileage, we arrive at the estimated number
of FCEVs. Comparing these numbers to the numbers
of registered vehicles in 2019 [31] gives the respective
penetration rates. All data are shown in Table 1.

Table 1: Estimated FCEV demand data for 2030

Passenger cars  Trucks
Annual Demand TTWhgy, 2TWhpy,
Fuel consumption  0.63kg/100km  14kg/100km
Annual mileage 14,000km 40,000km
Penetration 2,381,190 10,715
Penetration rate 5.2% 4.9%

To select potential hydrogen fueling stations in
the next step, we break down the total demand to
NUTS-1 (federal state) level by assuming each NUTS-1
region has the same share of FCEV penetration.
The hydrogen fueling stations in our model supply
compressed gaseous hydrogen at 700 bar to fuel cell
passenger cars [32] and at 350 bar to fuel cell heavy-duty
trucks [33]. Most of the existing hydrogen stations
currently registered are small size with a capacity of
212 kg/day [34]. We assume that by 2030 all hydrogen
stations will become L-size [35] with a capacity of
1,000 kg/day. Since stations are not operating at full
capacity all the time, we assume a utilization of 70%.
Thus, the turnover of each station (SC'AP;) is 700
kg/day. Adopted from [5], station investment cost is
estimated considering scaling and learning effects (16).
At n = 400 stations, capacity C = 1,000 kg/day and the
exogenous parameters «, 3, and y presented in Table 2,
we derive investment cost per station for each hydrogen
transportation state s (s € {GH2, LH2, LOHC'}).

C
1S, =1.3%600,000EUR * y * (W)(y
g/aay (16)

#(1— B)logz(m)

Next, we identify potential locations of fueling
stations to meet the demand in each NUTS-1 region.

For passenger cars, there are 72 hydrogen fueling
stations (October 2019) in Germany [36].  Since
these will not suffice to satisfy demand in 2030, we
assume that additional fueling stations will be installed
at the same locations as existing gasoline stations.
Therefore, we use the 11,285 gasoline stations from
OpenStreetMap as further potential sites [37]. Next,
we assign the population in each NUTS-3 region to
its nearest station location [38]. Stations with highest
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Table 2: Hydrogen station assumptions

GH2 LH2 LOHC

al-] 07 06 066
8] 0.06 0.06 0.06

v [-] 06 09 14
ECS [kW halkgn,) 16 06 44
GCS cons. [kWhyalkgn,] 0 0 11.7
Depreciation years [a] 10 10 10
O&M [%] 5 5 5

associated population are selected until total hydrogen
demand from cars is covered in each NUTS-1 region.
While passenger cars are usually filled up at a nearby
station, trucks are mostly refueled along highways.
Therefore, truck fueling stations are situated based on
their distance to highways. We calculate the distance
between stations and the nearest highway [39] and select
stations from short to long distance until demand is met.

3.2.2. Hydrogen production data

Electrolysis utilizes electricity (“power”) to split
water into hydrogen and oxygen (“gas”). This
power-to-gas process is at the center of long-term
political strategies for low-carbon hydrogen supply in
Germany [4] and the European Union [6]. We therefore
focus on electrolysis for hydrogen production. Among
the existing electrolysis technologies, proton exchange
membrane (PEM) electrolysis shows a high technology
readiness level, high potential for cost reduction and
efficiency improvement [40] as well as high operational
flexibility [41]. Therefore, our work focuses on PEM
electrolysis. We assume investment costs IF of 604
€/kW,,, depreciation over 10 years, O&M costs of 4%
of investment costs and an electricity consumption of
47.6 kW hei/kgpo, based on [42, 43, 5]. Although the
commercialization of large-scale PEM is still at an early
stage, the demand for larger systems is growing rapidly
[44]. We set the minimum capacity H PCAP,,;, to
10 MW and the maximum HPCAP,,,, to 60 MW,
according to [45]. All electrolyzers operate at 70% of
full capacity (in line with the ranges of full load hours
assessed in [15, 20]) and at an efficiency of 70% [15, 5].
The energy density of hydrogen is 33.33 kW hp, /kgm, -

We set the nodes from the electricity system
model (compare Section 3.4.1) as potential locations
of electrolyzers. The employed model represents
the transmission grid and does not consider the
distribution grid, due to lack of data availability and
high computational complexity. Thus, we assume that
electrolyzers will be connected to transmission grid
nodes.

3.2.3. Hydrogen transportation data

Since related work indicates hydrogen transport via
pipelines only becomes economical for high demand
scenarios in 2050 [5], we focus on transportation via
delivery trucks. Because of hydrogen’s low density
it is commonly compressed (GH2), liquefied (LH2),
or stored into LOHC for transportation. Conversion
assumptions are adopted from [23] and are presented
in Table 3. The variable x denotes the desired output
of hydrogen. In the next step, hydrogen is filled into
trailers and transported to fueling stations via delivery
trucks. Diesel consumption of a delivery truck is 34.1
ldieser/100km [46]. Besides fuel costs, we also include
toll (0.15 €/km) and labor costs (69,300 €/year) for
the transportation, based on [23]. We assume trailer
costs of 600 €/kg for GH2, 200 €/kg for LH2, and 93
€/kg for LOHC in line with [23]. To fully utilize the
capacity of each trailer, we set trailer capacity to 700 kg.
This is somewhat lower than what is technically possible
[23, 47], but exactly meets the demand of one entire
fueling station. Besides, we assume depreciation over
twelve years and O&M costs of 2%, adopted from [5].
For trucks, investment costs of 160,000 €, depreciation
over eight years, and 12% O&M costs are assumed [5].

Table 3: Conversion assumptions, adopted from [5]

Investment [€]
1.05 % 108 (5#)066

tH2

Liquefaction

day
Hydrogenation 4.0 % 107 (ﬁ)o-%‘

Compressor 15,000 UL » 200089 4 3
Depreciation O&M Electr. cons.
years (kW he1/kgm,]

Liquefaction 20 4%  6.78

Hydrogenation 20 3%  0.37

Compressor 15 4%  calculated

3.3. Electricity system model

Next, we model the electricity system to simulate
electricity prices as input for the hydrogen model, and
to later measure feedback effects.

For the uniform tariff scenario, we employ a
merit-order model of the electricity wholesale market.
This model minimizes the hourly marginal generation
costs for the entire market area. Its constraints ensure
the hourly balancing of demand and supply and consider
the limits of available generation capacity. Like the real
market design in Germany, this merit-order model does
not consider grid constraints. Therefore, the allocation
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can be technically infeasible, in which case redispatch
is performed by the system operators. The redispatch
mechanism starts with the merit-order market allocation
and finds a new feasible cost-minimal solution that
respects grid constraints, by adequately activating and
deactivating generation capacity. = Newly activated
generators are compensated based on their operating and
opportunity costs. The additional costs caused by this
procedure are referred to as redispatch costs. Each hour
is optimized step-wise, independently of other hours.
For the detailed mathematical formulation of uniform
price and redispatch calculation we refer to [48].

For the nodal tariff scenario, we adopt and
adapt the model framework ELMOD, in particular its
implementation for the German wholesale electricity
market. The model is a nodal DC-load flow model
with a granular spatial representation of the transmission
system. For the full mathematical notation, we refer to
the ELMOD documentation [49].

We parametrize both electricity price models with
data for generation, consumption and the transmission
grid. This data needs to be granular both in the temporal
and spatial dimension, and needs to be estimated for the
scenario year 2030.

3.4. Electricity system data

The data sources and preprocessing steps for
the input data for the electricity system model are
described in this subsection. All data are published as
supplementary material, together with a more detailed
documentation [50].

3.4.1. Transmission grid data

To model the electricity grid for 2030, we start
with data of the existing grid from an open source grid
reference model [51]. We add data on transmission
lines which are planned to be expanded or newly built
until 2030, based on the grid development report of the
Federal Network Agency [52]. Each existing or planned
line has one start and one end node with a specific
name. To retrieve the coordinates of each node, we
use the Google Maps API. Following related literature,
we approximate the transmission capacity of all 220 kV
lines to be 490 MW, and that of all 380 kV lines to be
1700 MW [49, 53]. Multiple lines between two nodes
are aggregated into one by summing up the capacity
value. The resulting transmission grid representation
has 485 nodes and 663 lines.

3.4.2. Electricity demand data

To model electricity consumption, we derive
the hourly consumption forecast scenario EUCO30
for Germany in 2030 from the European Network

of Transmission System Operators for Electricity
(ENTSO-E) [54]. This scenario is available for three
different weather scenarios, based on the weather in
the years 1982 (’dry”), 1984 ("normal”) and 2007
("wet”). We average the demand values from these
three scenarios to avoid using a demand scenario that is
particularly inconsistent with our renewable generation
input data, which is only available for more recent years.
This averaging presumably smoothes out fluctuations in
demand and prices. Last, we re-scale the hourly demand
values so that the annual sum (577 TWh) equals the sum
used in the grid development plan (544 TWh) [52], to
improve consistency of grid and demand data.

Next, we spatially disaggregate the hourly demand
values. We follow the top-down methodology of
Robinius [55] and Egerer et al. [49] which is based on
the gross domestic product (GDP) and the population
of a region as proxies for its electricity consumption.
First, we derive the NUTS-2 (government regions) load
shares based on available 2030 forecasts for NUTS-2
GDP [56]. Second, we break down the load shares
by assuming that the demand share of each NUTS-3
(district) is proportional to the share of population
within its NUTS-2 region. Third, we assign all NUTS-3
demand shares to their nearest grid nodes with the
Haversine formula, based on their coordinates.

3.4.3. Electricity generation data

We derive hourly generation data from solar and
wind for 2016, 2017 and 2018 from the four national
grid operators [57] and calculate an average year.
Then, we re-scale the hourly generation values of each
technology so that the annual sum equals the sum used
in the 2030 grid development plan [52]. Next, we
spatially disaggregate hourly generation values. For
this, we use the national register for renewable power
plants, which provides installed generation capacity for
each zip code [58]. We assign hourly generation to
zip codes in proportion to their installed capacity. In
sum, we assume an annual electricity generation of 86.7
TWh from PV, compared to an average of 35.34 TWh in
2016-2018, and of 247.4 TWh from wind, compared to
an average of 108.6 TWh in 2016-2018.

For dispatchable fuel-based electricity generation
capacity, we use the power plant list provided by the
German grid regulator [59]. We filter out all relevant
plants for 2030. Next, we derive marginal costs for each
plant based on its fuel costs, efficiency, and emissions
costs, as described in [50].

Then, we match each renewable and fuel-based
power plant to the nearest node with the Haversine
formula based on their coordinates. For combined heat
and power plants (CHP) under 10 MW — which in sum
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amount to 8.4 GW — no geographical information is
given. Since regional CHP capacity is correlated with
electricity demand [60], these plants are assigned to
nodes with the same method as the demand.

4. Results

After parametrizing the hydrogen and electricity
model as described above, we derive the results which
we outline in this chapter.

4.1. Electricity system results

First, we use the electricity model to calculate
uniform and nodal prices, as well as redispatch costs
under the uniform pricing scheme. The resulting
annual average of the uniform price in 2030 is 62.61
€/MWh. Under nodal pricing, the annual average price
at different nodes varies between -54.30 and 221.00
€/MWh, with a median value of 67.80 €/ MWh. Low
prices are predominantly found in Northern Germany,
where much renewable generation capacity is installed.
Figure 1c displays the spatial distribution of nodal
prices. Annual redispatch costs are 6.16 Bn€.

4.2. Hydrogen supply chain results

Next, we use the electricity prices as input
variables for the hydrogen model to minimize costs
of hydrogen. The model returns the optimized
locations of electrolyzers, the optimized individual daily
production rate at each electrolyzer, the optimized daily
transportation volume between each electrolyzer and
fueling station, and the resulting costs of hydrogen.

The optimal locations under the uniform tariff
are presented as green triangles in Figure la. 79
electrolyzers are built to satisfy the demand. The
size of the triangles corresponds to production volume.
The electrolyzers are placed close to fueling stations
and their production rate ranges from 4,900 to 30,100
kg/day, with a median of 7,000 kg/day. The total
cost and cost shares of all components are shown in
Table 4. Production costs represent the most significant
share of the total costs, with 62% in the case of GH2.
Transportation as GH2 leads to lowest total costs. The
optimal locations of electrolyzers are identical for the
three states of transportation.

Under the nodal tariff, production is more
concentrated, as only 29 electrolyzers are built.
As depicted in Figure 1b, they are predominantly placed
in the North at nodes with particularly low electricity
costs. Furthermore, all electrolyzers operate at high
production rates. All electrolyzers except three operate
at their maximum capacity of 30,100 kg/day. The

high production at low prices leads to a reduction in
hydrogen production cost of about 2.2€/kg, compared
to the uniform tariff scenario. Meanwhile, the longer
transport distances lead to an increase in transportation
cost of about 0.6 €/kgy,. In total, the nodal tariff can
reduce total costs of hydrogen by 1.57 €/kgg, (32.5%)
in the GH2 case. Under both tariffs, hydrogen processed
and transported as GH2 has the lowest cost. For all three
states of transportation, optimal electrolyzer locations
are the same. Production rates are nearly identical,
although the higher per-kg transportation costs of LH2
and LOHC lead to slightly lower production at cheap,
but remote nodes.

Table 4: Hydrogen cost results [€/kg, ]

Nodal Tariff
LOHC

Tariff ‘
State ‘ GH2

Uniform Tariff ‘
LH2 LOHC‘ GH2 LH2

S |48 524 7.3 | 326 335 5.54

PCC | 0.60 0.60 0.60 | 0.60 0.60 0.60
CCC| 0.00 0.01 0.00 | 0.00 0.01 0.00
TCC | 028 0.16 0.13 | 028 0.16 0.13
SCC | 056 071 122 | 056 0.71 1.22
POC | 298 298 298 | 0.83 0.81 0.1
CcoCc| 0.00 043 0.82 | 000 0.11 0.80
TOC | 031 031 031 | 0.89 091 091
sSoC | 0.10 0.04 1.07 | 0.10 0.04 1.07

PCC: production capital costs, CCC: conversion capital costs, TCC: transportation
capital costs, SCC: fueling station capital costs, POC: production operating costs, COC:
conversion operating costs, TOC: transportation operating costs, SOC: fueling station
operating costs

To understand better how cost results are affected by
capital cost input assumptions, we perform a sensitivity
analysis for five key variables. We vary each of them
by +/-20% and rerun the hydrogen model. The results in
Table 5 show by how much this changes the total costs of
a GH2 based supply chain. Changes in electrolyzer and
fueling station investment costs have the largest effect on
total costs. This can be explained by the fact that these
two variables are part of the largest absolute capital cost
components (compare PCC and SCC in Table 4).

Table 5: Sensitivity analysis: GH2 cost changes

Input variable Umfgrm Noc.ial
Tariff Tariff
Electrolyzer investment 1 +2.47% +3.67%
Fueling station investment 1 | +2.30% +3.42%
WACC 1 +1.19% +1.77%
Trailer investment +0.74% +1.09%
Truck investment 1 +0.43% +0.64%
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Figure 1: Optimal electrolyzer locations under two electricity tariffs

4.3. Feedback effect results

Finally,

Table 6: Redispatch costs and uniform prices in 2030

we add the electricity demand from
hydrogen production to the associated nodes in the
electricity system and calculate electricity prices and
redispatch costs once again to assess the feedback effect
of hydrogen production on the electricity system. For
this, we use the cost-minimal GH2 hydrogen supply
chain set-up under the two tariff scenarios. As a result,
wholesale uniform prices under both uniform and nodal
tariff increase by 1.65 €/MWh, as shown in Table 6.
Compared to the benchmark scenario, annual redispatch
costs increase by 0.17 Bn€ under the uniform tariff,
and decrease by 0.57 Bn€ under the nodal tariff. This
represents a delta of 0.74 Bn€ per year, or 2.49 €/kgp,.

electricity tax (0.01537 €/kWh), surcharges (0.0386
€/kWh), and value added tax (19%) at their average
2019 levels [61] increases end-use costs to 7.48 €/kgp,
(Uniform Tariff) and 5.91 €/kgg, (Nodal Tariff).

Throughout this study, we make several necessary
simplifying assumptions. We assume that electrolyzers
can only be installed at transmission grid nodes. For
large electrolyzers, this seems justified as they create
large loads and thus require connection to sufficiently
large power transformers. Smaller scale local hydrogen
production at fueling station sites can be an alternative to
centralized production [19, 62]. While beyond the scope
of this work, a combined analysis of centralized and
decentralized production as well as imports represents
an interesting expansion for future research. Besides,
we assume a fixed daily hydrogen production rate and
do not consider time-flexible operation and storage

of hydrogen

No H, Uniform Nodal
Tariff Hy,  Tariff Hy
Redispatch 6.16 6.33 5.59 tariffs.
costs [Bn€]
Uniform price  62.61 64.26 64.26
[€/MWh]

5. Discussion

The hydrogen cost results presented above assume
that electrolyzers pay only the price of electricity
The results are in the range of [9] who
report 2.87-3.56 €/kgp, under this assumption. Adding

generation.

This is somewhat in line with [20]
who find that electrolyzers should produce in most
hours of the year, even under most dynamic electricity
Nonetheless, allowing time-flexible operation
and storage could lead to reductions of hydrogen and
redispatch costs. Moreover, our model provides high
spatial granularity, at the costs of treating Germany as
an isolated system without international transport of
electricity or hydrogen.
prices and redispatch.

This affects e.g.
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electricity
Geographic expansion to a
European model seems desirable, but would require
substantial additional modelling effort. Finally, future
work should analyze in detail the design of a transfer
payment mechanism to finance cheaper,
differentiated electricity prices for electrolyzers from

spatially



prospective redispatch cost savings.
6. Conclusion

Based on the results presented and discussed above,
we answer the three research questions posed in Section
2 as follows. The cost-minimal supply chain design
for the combined hydrogen demand from passenger cars
and heavy-duty trucks in 2030 in Germany requires
79 (uniform tariff) and 29 (nodal tariff) electrolyzers,
917 fueling stations for passenger cars, 247 fueling
stations for heavy-duty trucks, and 1164 delivery
trucks for gaseous delivery in trailers. The optimal
supply chain is strongly influenced by the electricity
tariff design. Under the currently prevailing uniform
tariff, electrolyzers are cost-minimally placed close to
consumption, i.e. in large cities, industrial centers and
along highways. Under the nodal tariff, all electrolyzers
are installed in the northern part of Germany and
hydrogen production is more concentrated at fewer
nodes. This leads to longer transportation distances
and higher costs for transportation. However, this
increase in transportation costs is outweighed by the
substantially larger savings through cheaper production.
Therefore, total end-use costs of hydrogen are lower
under the nodal tariff, with 3.26 €/kgy, compared
to 4.38 €/kgy, under a uniform tariff. Large-scale
electrolysis brings new demand to the electricity grid
and affects congestion management. Compared to
the benchmark scenario without electrolysis, redispatch
costs rise by 0.17 Bn€/year if electrolyzers are placed
under the uniform tariff. The cost-minimal supply chain
under the nodal tariff is much more system-friendly, as
it decreases redispatch costs by 0.57 Bn€/year.

In summary, our work highlights the importance of
efficient economic signals, especially spatial signals,
in future energy systems. It does so by showing that
the cost-minimal design of hydrogen supply chains,
including the location of electrolyzers and transportation
routes, highly depends on the spatial granularity of the
electricity tariff. Nodal tariffs reduce both end-use costs
for hydrogen and redispatch costs. For further progress
towards political implementation, future work should
investigate in detail how nodal tariffs for electrolyzers
— or related incentive mechanisms such as spatially
differentiated subsidies — can be financed through
transfer payments from avoided redispatch costs.
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