
Modeling Data Flow Constraints for
Design-Time Confidentiality Analyses

Sebastian Hahner, Stephan Seifermann, Robert Heinrich, Maximilian Walter
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
{sebastian.hahner, stephan.seifermann, robert.heinrich, maximilian.walter}@kit.edu

Tomáš Bureš, Petr Hnětynka
Charles University

Prague, Czech Republic
{bures, hnetynka}@d3s.mff.cuni.cz

Abstract—With the increase in connectedness and the growing
volume of data, ensuring confidentiality becomes increasingly
critical. Data-driven analyses try to cope with this complexity by
automatically verifying confidentiality at design time. However,
confidentiality constraints are manifold. Thus, analyses limit the
software architect’s possibilities of expression or require them to
use the underlying verification formalism directly. We propose
a domain-specific language to enable architects to formulate
data flow constraints using the terminology and abstraction of
the architectural domain. We present a mapping of data flow
constraints and results which is compliant to the transformation
of the architecture and evaluated based on real-world scenarios.

I. INTRODUCTION

In today’s connected world, exchanging data is essential to
many business applications. With growing system complex-
ity and size, ensuring confidentiality becomes increasingly
challenging [1]. Confidentiality demands that ”information is
not made available or disclosed to unauthorized individuals,
entities, or processes” [2]. Violations cannot only harm user’s
privacy but also have legal consequences [3].

To cope with confidentiality early in design time, data-
driven analyses have been proposed [4], [5]. These approaches
are based on Data Flow Diagrams (DFDs) which are com-
monly used in threat modeling because security ”problems
tend to follow the data flow, not the control flow” [6]. By
modeling data sources, sinks and data processing and verifying
constraints at design time, e.g., by transforming the model to
logic programs [4], confidentiality issues can be detected and
repaired earlier which can reduce cost significantly [7].

Defining confidentiality-oriented data flow constraints is
challenging: Too strict constraints may reduce functionality
and flexibility and forcing strict non-interference is considered
to be insufficient [8]. Thus, constraint definitions need to
target the flow of selected classes of confidential data directly
which is a more fine-grained approach than using standardized
metrics whose expressiveness is limited. Data-Driven Software
Architectures (DDSAs) [4] use characteristics to annotate data
and data processors on architectural level while constraints are
defined by utilizing the underlying formalism. This requires
the architect to switch between the abstraction layers of the ar-
chitecture and analysis. This gap can also be observed in other
related work [1], [5], [9], [10] and increases with the analysis
variability. It cannot be assumed that software architects know

the architectural transformation and the underlying analysis
formalism well enough to be able to define fine-grained data
flow constraints without training.

To avoid the gap, defining constraints must be possible
in the architectural domain. Here, domain-specific languages
(DSLs) offer appropriate notations by abstracting from the
verification [11]. They require less knowledge and promise
faster and less error-prone definitions [12]. Regarding the inte-
gration of a DSL into existing analysis approaches, additional
challenges occur: The DSL mapping has to be compliant to the
existing transformation of the annotated software architecture
and to the analysis formalism. References to architectural
elements must remain valid throughout the transformation.
Moreover, the mapping of analysis results is necessary in order
to present results in a meaningful way to the architect.

In this paper, we propose an approach to define data flow
constraints for data-driven analyses using the terminology
and abstraction level of the architectural domain. We start
by introducing a running example for data flow analysis in
Section II and discussing the state of the art in Section III.
We present the contributions of this paper hereafter.

C1 First, we introduce a DSL to express constraints without
knowledge of the underlying formalism or the transfor-
mation and analysis process. We list requirements and
present language constructs for the constraint definition in
Section IV. This shall enhance the architects’ formulation
capabilities compared to annotating UML models [1] or
using predefined security checks [5].

C2 Second, we present a mapping to the underlying for-
malism which is compliant to the mapping of the mod-
eled software architecture. We also define a mapping of
analysis results back into the architectural domain which
lacks in related work [1], [4], [13]. The contribution
of this paper in Section V includes the presentation of
relations between modeling and analysis which represents
a difficult problem due to additional dependencies.

The evaluation of both the DSL and the mapping in Section VI
is based on case studies from related work, e.g., the iFlow ap-
proach [1]. The results indicate that our approach is expressive
enough to model most considered scenarios and the abstraction
from the analysis formalism reduces accidental complexity.
Section VII concludes this paper.

User Smartphone

 TravelPlanner

TravelAgency Server

 CreditCardCenter

 TravelAgency
Airline Server

 Airline

Role: User

 Role: Airline

 Role: TravelAgency

Figure 1. Travel Planner deployment diagram with role annotations

II. RUNNING EXAMPLE

In this section, we introduce the running example which
will be used in the remainder of this paper. The Travel
Planner scenario is based on a case study [14] by the iFlow
approach [1] and models a flight booking system. Figure 1
shows the simplified deployment of the four components: The
TravelPlanner and CreditCardCenter apps, the TravelAgency
and the Airline.

We consider two scenarios: Requesting offers and booking
flights. Whenever users request flight offers by using the
TravelPlanner app, the TravelAgency forwards the request to
the Airline and returns the answer to the users. Users choose a
flight and book seats by directly contacting the Airline server
using the TravelPlanner app. In order to complete the booking
process, users transmit their credit card details. Since this is
considered to be confidential information, users must explicitly
allow the transmission using the CreditCardCenter app.

In order to ensure the confidentiality, we apply Role Based
Access Control (RBAC) [15] which demands that data can
only flow to entities whose role is authorized for the access.
This can be defined as data flow constraint. We annotate the
roles in Figure 1 similarly as in [4]: User, TravelAgency,
Airline. Credit card details are only released for the User role.
In order to transmit this information to the Airline server, the
Airline role has to be authorized first. A constraint violation
occurs if the information is passed without an user permit or
if it is passed to the TravelAgency which is never authorized.

III. STATE OF THE ART

The major objective of our approach is providing software
architects with means for defining confidentiality analyses
using architectural terminology and executing them in an
existing analysis formalism. The work related to our approach
falls into the following two categories.

Direct Analyses analyze architecture models directly with-
out an intermediate transformation into an analysis formalism.
Such analyses are often defined in terms of model queries
[16], [17] but can also be defined by formulas [9], [18] if the
underlying model is already given as formal system. All of
these approaches do not provide a solution for bridging the
gap between the architecture and dedicated analysis models.
However, this is what we are interested in.

Indirect Analyses analyze architecture models by first trans-
forming it into another representation to make use of an anal-
ysis formalism. Most of these analyses are predefined. There

are approaches only supporting one particular type of analysis
such as iFlow [1] or the approach of Gerking et al. [19] with
respect to information flow. However, predefined analyses do
not necessarily mean low expressiveness. UMLSec [13] covers
different analyses for confidentiality, integrity, authenticity,
freshness or even information flow. All of these approaches
do not claim to provide extensible analysis capabilities, so
they do not provide a generic solution for bridging the gap
between architecture and analysis models. Here, we identify
the biggest advantage of our approach. The question, which
category is superior is not considered in this paper.

Papers usually do not report on the transformation of the
analysis results back into the architecture, so it remains unclear
if they provide such a transformation. However, this is also an
important issue for architects that we address in our approach.

IV. MODELING DATA FLOW CONSTRAINTS

In this section, we introduce a DSL to define data flow con-
straints in the architectural domain (C1). We present language
requirements, give an overview over the syntax, and present
exemplary usage scenarios.

Based on Feature-Oriented Domain Analysis (FODA) [20],
we consider user-centered and technology-centered influences
on our DSL. Here, end-user feature requirements form a lower
limit of the desired expressiveness which the DSL has to
achieve in order to be applicable. The technology, namely
data-driven analyses, represents an upper limit of constraint
description possibilities. Put simply, constraints which cannot
be analyzed shall not be expressible using the DSL.

We extracted data flows and constraints from scenarios
described in related work presented in Section III. We identi-
fied several similarities regarding end-user requirements (R1—
R4). Data flow constraints shall use the established terminol-
ogy of DFDs [21] (R1). Constraints shall not limit all data
flows but select flows by using attributes from the architectural
model (R2). To aid the usability and understandability, data
flow selections shall be reusable, e.g., by combining attributes
or defining classes of selections (R3). Last, architects shall
be able to define variable conditions, e.g., to model access
control [22] (R4). These requirements also appear in our
running example in the context of RBAC. The upper limit
of expressiveness of the DSL is restricted by the capabilities
of the data flow analysis. For example, DDSAs provide an
interface to define constraints against the modeled software
architecture [4]. These constraints are based on the annotation
of data and data processors using characteristics.

Based on these requirements, we define a DSL to formulate
data flow constraints. Figure 2 shows the simplified abstract
syntax with exemplary values of our running example. Con-
straints represent the analysis goal, e.g., to enforce RBAC.
They contain a Rule which defines which data flows shall be
restricted. DataSelectors and DestinationSelectors are used to
formulate the selection of data flows, e.g., based on RBAC
roles and access rights. Since both represent variable values,
the Condition describes their relation. If this Condition eval-
uates to true, the Statement specifies that the flow is illegal.

0..1
Condition

Constraint

1
Rule

 1
Statement

1..*
DataSelector

1..*
DestinationSelector

EnforceRBAC

never flows roles ∩ rights = ∅

rolesaccess rights

Figure 2. Simplified abstract syntax annotated with exemplary values

Listing 1 shows our exemplary concrete syntax. Both
accessRights and userRoles are specified in the archi-
tectural model and referenced as set variables. The Condition
in line 6 describes the relation between both that would
lead to a violation of RBAC. The keywords NEVER FLOWS
and WHERE indicate the restriction of certain data flows.
This syntax enables the formulation of constraints close to
the natural language. This shall enable architects to define
constraints with no or only little training in data flow modeling.

Listing 1
CONCRETE SYNTAX OF AN CONSTRAINT TO THE RUNNING EXAMPLE

1 constraint EnforceRBAC {
2 data.attribute.accessRights.$rights{}
3 NEVER FLOWS
4 node.property.userRoles.$roles{}
5 WHERE
6 isEmpty(intersection(rights,roles))}

In the following, we describe the individual language parts in
more detail. We touch the intuitive semantics and relate to the
requirements listed above.

a) Selection: To focus the scope of single data flow
constraints, we added selection capabilities to the DSL based
on architectural elements and annotations to the architectural
model, e.g., characteristics (R2). The selection is mandatory,
because if all data flows are disallowed, any functional call
would be interpreted as constraint violation. We distinguish
between DataSelectors which select data by their characteris-
tics and DestinationSelectors which select sinks by referencing
architectural elements or characteristics (R1). Architects can
combine, invert, and predefine reusable classes of selections
(R3). To realize more complex relations between data and flow
destination, variables can be used. Instead of static values,
these are assigned during the analysis. They contain single
values or are declared as set variables. The running example
uses set variables to reference roles and access rights in RBAC.

b) Condition: To evaluate variable values, we added
Conditions. These are mandatory if one or multiple Selectors
declare variables. Otherwise, defining constraints without pre-
cise data flow selection would be possible. Conditions repre-
sent boolean expressions which state under which conditions
data flow are not allowed (R4). We provide operators which
evaluate variables, e.g., by comparing values, by checking if

a value is contained in a set or by creating an intersection
or union of set variables as shown in the running example.
Additionally, expressions can be nested and combined based
on propositional logic.

c) Statement: The Statement defines the restriction of
the selected data flows. It consists of a modality and a type.
Currently, the only supported Statement is never flows which
restricts selected data to never flow to the selected destination
(R1). If at least one such flow is found, the statement cannot be
fulfilled and thus a constraint violation occurs. We defined the
Statement to be expendable in order to support more modalities
and types in the future, e.g., to test if at least one specified
data flow exists in the modeled system.

d) Rule: Rules act as container for Selectors, Statements
and Conditions. At least one DataSelector and one Desti-
nationSelector are mandatory but multiple can be combined
to more detailed selections. Every Rule has one Statement
and requires a Condition if at least one Selector declares
variable selections. The Rule itself is contained in a named
Constraint. We choose this distinction between Rule and Con-
straint to enhance the DSL’s extensibility, e.g., by combining
the restriction from multiple rules inside one constraint using
propositional logic.

In the reminder of this chapter, we show two additional
examples to demonstrate the applicability of the DSL in
common scenarios. More examples can be found in [23].

Listing 2
CONCRETE SYNTAX OF COMMON USAGE SCENARIOS’ CONSTRAINTS

1 constraint NonInterference {
2 data.attribute.level.private
3 NEVER FLOWS
4 node.property.level.public
5 }
6
7 constraint ConfidentialDataEncryption {
8 data.class.ConfidentialData &
9 data.attribute.encryption.noEncryption

10 NEVER FLOWS
11 node.property.location.!internal
12 }
13
14 class ConfidentialData {
15 type.[personal,secret]
16 }

The first constraint in Listing 2 considers non-interference, i.e.,
”all information-flows from secret data to public observers”
[8]. We denote this using a single DataSelector in line 2 and
a single DestinationSelector in line 4. The second constraint in
line 7 is more advanced and forbids confidential data to flow
to non-internal system nodes if the data is not encrypted. In
line 11, we invert the location internal to specify that any
other locations are restricted without having to enumerate them
which would harm readability and also harm maintainability
on system changes. In line 14, we use a class to precisely de-
fine that both data characterized as personal and secret
are considered to be confidential. This does not only enhance
the understandability but also eases the reuse of the definition
of confidential data in additional constraints.

Architectural
Model Result

Model
Mapping

DSL
Mapping Analysis Result

Mapping

Constraint
Definition

Annotated
Model

Annotated Model

Transformation
Trace

Global Constants

Analysis
Interface

Transformation Trace

Transformed Model

Serialized ResultsDSL Model

DSL Model

Transformed
DSL Model

Domain Border

Analysis
Results

Ar
ch

ite
ct

ur
e

An
al

ys
is

 F
or

m
al

is
m

User Input

Figure 3. Data flow diagram of the mapping and analysis process

V. MAPPING OF ARCHITECTURE AND CONSTRAINTS

In this section, we discuss the mapping of constraints formu-
lated in our DSL to the underlying analysis formalism and the
mapping of analysis results back into the architectural domain
(C2). We show the dependencies between these mappings, the
architecture model, and the analysis formalism. Last, we give
examples based on our DSL and the DDSA approach [4]. A
prototypical implementation can be found in [24].

Figure 3 gives an overview of the data sources and processes
in the transformation and analysis using the syntax of DFDs
[21]. It consists of the three mappings of model, DSL, and re-
sults (highlighted gray), the definition and analysis processes,
sources like the Architectural Model, and sinks like the Result.

Architects perform the Constraint Definition based on the
annotated Architectural Model. Afterwards, both are mapped
to the analysis formalism. To maintain valid references from
the DSL to the Transformed Model of the architecture, the
DSL Mapping receives the Transformation Trace and is able to
resolve the mapped relations. The Transformed Model and the
Transformed DSL Model are input to the Analysis. The Analy-
sis Interface describes how analysis goals are formulated. For
example, the Analysis of DDSA uses the logic programming
language Prolog and offers an API which has to be known to
the DSL Mapping in order to generate compliant goals.

The output of the Analysis represents constraint violations
which are mapped back to the architectural domain by the
Result Mapping to ease the interpretation. Analogous to the
DSL Mapping, the Transformation Trace is used to resolve the
originating elements. Another input to the Result Mapping are
Global Constants (i.e., conventions like prefixes) which are
also visible to the DSL Mapping. They are used to identify
the meaning of parts of the Analysis Results which is not
represented by the formalism, e.g., the meaning of certain
variables. This gap exists because formalisms are usually not
built for one special analysis but exist for wider application.
E.g., Prolog is used for more than data flow analyses. The DSL
Model is required as input to the Result Mapping to match
Analysis Results with constraint details, e.g., assigning values
to specified variables. Last, the Result is shown to the architect.

We aim towards an automated approach without user inter-
ference in transformation or analysis. As the Domain Border
implicates, the transformation and analysis are hidden from
the architects. They shall only see everything above the border,
namely the Architectural Model, the Constraint Definition and
the Result which only requires already known terminology.

We exemplarily realized these mappings based on DDSA,
which offers annotations to mark data flows and data charac-
teristics in the Architectural Model. The Annotated Model is
mapped to a set of Prolog predicates [4]. We implemented a
DSL Mapping which maps constraints to Prolog goals. The
Prolog engine tries to satisfy these goals. Every solution to
the Prolog program represents one constraint violation. We
describe the semantics of our DSL based on these mappings.

Listing 3
SIMPLIFIED PROLOG CODE OF THE RUNNING EXAMPLE CONSTRAINT

1 c_EnforceRBAC(OP, S, P, VS_rights, VS_roles):-
2 S = [OP | _], stackValid(S),
3 findall(I, arg(S, P, ’rights’, I), VS_rights),
4 findall(I, op(OP, ’roles’, I), VS_roles),
5 intersection(VS_rights, VS_roles, Temp_0),
6 length(Temp_0, 0).

Listing 3 shows a simplified Prolog clause which results of
the DSL Mapping of the constraint in Listing 1. Selectors and
Conditions are mapped to predicates which are combined us-
ing conjunction. They use built-in predicates, e.g., findall
and predicates from the DDSA API, e.g., stackValid.

We highlight several parts to illustrate the mappings de-
scribed above. Line 3 and 4 reference rights and roles
which are annotated characteristics from the architectural
model. Here, the Transformation Trace is used to resolve the
mapped characteristics in the Transformed Model. The use of
predicates depends on the Selectors from the DSL Model,
e.g., the findall predicate is used because roles and
rights are set variables. Conditions are mapped from the
strictly functional paradigm to the logical paradigm, e.g., by
using temporary variables like Temp_0 and unfolding nested
expressions [25]. The snippet also shows the usage of Global
Constants, e.g., to identify the meaning of variables.

Listing 4
MAPPED ANALYSIS RESULTS OF A CONSTRAINT VIOLATION

1 CONSTRAINT
2 Constraint name: "EnforceRBAC"
3 Violations found: 1
4
5 CONSTRAINT VIOLATIONS
6 1. Parameter "CCD" not allowed in "getDetails"
7 - Call Stack: "getDetails", "bookFlight"
8 - Variables:
9 - Variable "accessRights" set to "User"

10 - Variable "userRoles" set to "Airline"

Listing 4 shows an excerpt from the mapped and Serialized
Results. In this violation, credit card details are passed in the
flight booking process without prior permission by the user.
This is detected due to the RBAC rights and roles mismatch.
The Result Mapping enables architects to identify the defect
with information on location, call stack and declared variables.

VI. EVALUATION

In this section, we present the evaluation of our approach. We
define goals, show the evaluation design, and summarize the
results. For the sake of brevity, this section does not focus on
details. A more in-depth evaluation can be found in [23].

A. Evaluation Goals

We use a Goal-Question-Metric-plan [26] to evaluate both
our DSL (C1) presented in Section IV and the mapping (C2)
shown in Section V. We define the following goals:
G1 Evaluate the expressiveness of the DSL for availability

of concepts which allow versatile data flow constraint
definitions to aid software architects.

G2 Evaluate the usability of the DSL for improvement of
architect’s analysis productivity by reducing complexity.

G3 Evaluate the mapping for preservation of semantics of the
DSL compared to the native formalism.

We choose goal G1 and G2 because a sufficient expres-
siveness has to be paired with a decent usability [11], e.g.,
by hiding complexity, requiring less knowledge or effort to
define data flow constraints. Both quality attributes cannot
substitute each other. Goal G3 evaluates the correctness of
our mapping to the underlying formalism. To be applicable,
data flow constraints which are mapped from our DSL must
yield equivalent analysis results. An erroneous transformation
would highly decrease the quality of our approach.

B. Evaluation Design

We present questions and metrics together with the evaluation
design. Our evaluation is based on data flow constraints
gathered from case studies and related work. This includes the
Geolocation scenarios derived from privacy violations in cloud
services [27], the ContactSMSManager and DistanceTracker
case studies from iFlow [28] which were used to evaluate
DDSA [4] and the SecureLinks constraint from UMLsec [13].

Goal G1 evaluates the DSL’s expressiveness. We ask:
Q1 Are the supported DSL concepts sufficient to model

constraints in the context of data flow modeling?

The answer to this question is twofold: Regarding the lower
limit, we analyze whether scenarios from additional case
studies [1], [13] can be expressed (M1.1). Additionally, we
evaluate whether the underlying data flow analysis formalism
is used comprehensively which forms the upper limit (M1.2).

Goal G2 evaluates the DSL’s usability. We ask:
Q2.1 Does the DSL provide abstraction from the underlying

formalism to the architectural domain?
Q2.2 Which knowledge is required to define constraints?
To answer question Q2.1, we evaluate whether our DSL hides
complexity by measuring the required effort to use our DSL
compared to the underlying formalism, i.e., native Prolog
code (M2.1). We build 8 classes of change scenarios and
count required atomic steps (e.g., changing an attribute) to
perform these scenarios. To answer question Q2.2, we collect
knowledge areas in the analysis process shown in Figure 3
and discuss the architect’s knowledge which is required with
and without our approach (M2.2). We distinguish between
essential and accidental complexity [29].

Goal G3 evaluates the correctness of our mapping. We ask:
Q3.1 Is the mapping correct and thus preserves semantics?
Q3.2 Does using the native analysis formalism compared to

the mapped DSL yield the same constraint violations?
Question Q3.1 evaluates the correctness of our mapping and
”whether the semantics of the input model were preserved
in the output model of a transformation” [30]. We chose to
perform a correctness proof (M3.1) as advised in the domain
of compiler construction [31]–[33]. We aim to show that the
meanings of constraints defined in our DSL (the input model)
imply the meanings of mapped constraints in the analysis
formalism (the output model). We use universal algebra for the
formalization as proposed by Jackson et al. [34] and perform
a structural induction. This can be denoted as follows:

∀r ∈ RΥDSL
: valDSL(r) =⇒ valA(JrKγ)

RΥDSL
represents all possible realizations of constraints in the

DSL domain ΥDSL. valDSL and valA yield the meaning of
a realization in the DSL or analysis domain. J Kγ represents
the transformational interpretation, i.e., the DSL Mapping. If
the implication holds for every expressible constraint r of our
DSL, the analysis shall yield results which comply with the
defined constraint despite the domain gap.

Complimentary, we answer question Q3.2 and evaluate
the mapping empirically by comparing analysis results with
and without using our DSL to define data flow constraints.
We collect existing constraints [4] which use the underlying
formalism and reformulate them using our DSL. The reformu-
lated and mapped constraints shall yield the same constraint
violations as the native constraints using the formalism di-
rectly (M3.2). We apply the metrics of binary classification
[35]. Note, that this is not equivalent to the consideration of
question Q3.1 because the reformulation also depends on the
generalization prior to the definition of the DSL. Thus, neither
of both question’s results imply each other.

C. Evaluation Results

We present and discuss our evaluation results for every ques-
tion individually. To answer question Q1, we expressed all
data flow scenarios described above using our DSL (M1.1).
We were able to formulate data flow constraints using our
DSL for all scenarios, except for one Geolocation scenario
[27]. This scenario handles personally identifiable information
which prohibits selected data flow from different location to be
joined together. This cannot be expressed using our DSL due
to the lack of consideration of interaction of multiple types of
data flows in one constraint. We consider this to be a limitation
to the current version of the DSL. Complementary, we evaluate
whether our DSL uses the analysis formalism comprehensively
(M1.2). For all elements of the analysis interface, we analyzed
whether they can be expressed using our DSL. In total, 19 of
24 Prolog predicates can be expressed. It shall be noted that the
interface also contains predicates which are meant for testing
purposes which explains the remaining gap of 5 predicates.

To answer question Q2.1, we compared the effort of dif-
ferent change scenarios while using our DSL compared to
the underlying formalism (M2.1). Here, both the DSL and
the formalism are nearly on a par with 18 compared to 19
atomic steps. We expected this result because Prolog is a high-
level programming language with much higher general expres-
siveness than our DSL. In some cases, like in the inversion
of Selectors, the DSL abstracts from multiple interface calls
and thus requires less effort. Regarding Conditions, writing
constraints directly in Prolog requires less effort due to the
good support of built-in evaluation predicates.

The abstraction cannot only be measured in terms of re-
quired effort but also regarding the required knowledge. To
answer question Q2.2, we discuss which knowledge is required
by architects to use our DSL in comparison to the underlying
formalism (M2.2). Some knowledge is required despite the
approach, namely knowledge about the Architectural Model
and its annotations. We consider this to belong to essential
complexity, since architects need to know the architecture and
its data in order to describe data flow constraints. Knowledge
about Constraint Definition and how to interpret mapped
Results is only required when using our DSL. In contrast,
using the analysis formalism directly requires knowledge
about the mapping and nature of the transformed architecture
and its elements as well as the analysis interface. Some
knowledge is never required, independent of the selected
approach, e.g., the inner details of the data flow analysis
which are hidden by the analysis interface. Regarding the
domain gap between architecture and formalism, we achieved
to only require knowledge from the architectural domain. The
DSL Mapping enables architects to define constraints without
knowing analysis details and the Result Mapping enables them
to read the results without considering the raw analysis results
in the formalism abstraction layer. We consider the DSL to be
closer to the architectural domain and thus easier to understand
by architects. We reduced what we consider to be accidental
complexity in the context of data flow constraint definitions.

In order to evaluate the mapping, we performed a correctness
proof to answer question Q3.1. We formalized the core lan-
guage presented in Section IV, its semantics, and the mapping
(M3.1). We performed a structural induction showing that
proposition holds for every analyzed constraint variation. For
the complete formalization and induction, please see [23].

To answer Q3.2, we evaluated the equivalence of analysis
results empirically and compared violations resulting from
mapped DSL constraints to violations found by using native
constraints formulated in the underlying formalism. The re-
sults consist of 100 equivalent violations. 0 violations were
missing but 9 violations were additionally found for the Con-
tactSMSManager scenarios. The results regarding equivalent
violations (true-positive), missing violations (false-negative),
and additional violations (false-positive) yield a precision of
approximately 92% and a recall of 100%. The remaining error
of additional violations was traced back to the generalization
of existing constraints described in Section IV. Here, the lack
of precision in the constraint definition results in additional
violations. This will be treated in future versions of the DSL.

D. Threats to Validity
We briefly discuss the threats to validity by using the scheme
proposed by Runeson and Höst [36]. The most noteworthy
threat to internal validity arises from the fact that several an-
swers depend on the authors’ experience. This includes formu-
lating constraints (Q1) and writing Prolog code (Q2.1). More
experienced developers might have written more optimized
code. Regarding external validity, our selection of scenarios to
evaluate the questions Q1 and Q3.2 limits the generalizability.
Our DSL expressiveness could be enhanced and validated
more comprehensively by considering more scenarios which is
a known limitation. To ensure construct validity, we included
the results of other work on the development of DSLs [11],
[12], [37]–[39] and applied a GQM-plan.

VII. CONCLUSION

In this paper, we proposed an approach to express data flow
constraints in the architectural domain. We defined a DSL
which uses the terminology known from data flow modeling
and abstracts from the analysis. We also defined mappings for
constraints and analysis results to bridge the gap between the
architectural domain and the analysis formalism. We presented
an exemplary realization of the approach based on DDSAs.
The benefit of our approach is that software architects can con-
duct confidentiality analyses without leaving the architectural
domain which shall enhance their formulation capabilities and
yield more understandable results while requiring less effort.
Both mapping and analysis are fully automated and hidden
from the architects. In future work, we want to consider more
scenarios to enhance the DSL’s expressiveness.

ACKNOWLEDGMENT

This work is funded by the DFG (German Research Founda-
tion) – project number 432576552, HE8596/1-1 (FluidTrust)
and the KASTEL institutional funding and also supported by
the Czech Science Foundation project 20-24814J.

REFERENCES

[1] K. Katkalov, K. Stenzel, M. Borek, and W. Reif, “Model-driven
development of information flow-secure systems with IFlow”, in 2013
International Conference on Social Computing, 2013, pp. 51–56.

[2] International Organization for Standardization, “ISO/IEC
27000:2018(e) information technology – security techniques
– information security management systems – overview and
vocabulary”, Standard, 2018.

[3] J. Isaak and M. J. Hanna, “User data privacy: Facebook, cambridge
analytica, and privacy protection”, Computer, vol. 51, no. 8, pp. 56–59,
2018.

[4] S. Seifermann, R. Heinrich, and R. Reussner, “Data-driven software
architecture for analyzing confidentiality”, in 2019 IEEE International
Conference on Software Architecture (ICSA), 2019, pp. 1–10.

[5] S. Peldszus, K. Tuma, D. Struber, J. Jurjens, and R. Scandariato,
“Secure data-flow compliance checks between models and code based
on automated mappings”, presented at the 2019 ACM/IEEE 22nd
International Conference on Model Driven Engineering Languages and
Systems (MODELS), 2019, pp. 23–33.

[6] A. Shostack, Threat Modeling: Designing for Security. John Wiley &
Sons, 12, 2014.

[7] B. Boehm and V. Basili, “Software defect reduction top 10 list”,
Computer, vol. 34, no. 1, pp. 135–137, 2001, Conference Name:
Computer.

[8] S. Zdancewic, “Challenges for information-flow security”, Proceedings
of the 1st International Workshop on the Programming Language
Interference and Dependence (PLID’04), p. 5, 2004.

[9] H. Yu, X. He, S. Gao, and Y. Deng, “Formal software architecture
design of secure distributed systems”, SEKE, p. 9, 2003.

[10] J. Jürjens, “Towards development of secure systems using UMLsec”,
in Fundamental Approaches to Software Engineering, red. by G. Goos,
J. Hartmanis, and J. van Leeuwen, Series Title: Lecture Notes in
Computer Science, 2001, pp. 187–200.

[11] R. Paige, J. Ostroff, and P. Brooke, “Principles for modeling lan-
guage design”, Information and Software Technology, vol. 42, no. 10,
pp. 665–675, 2000.

[12] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages”, ACM Computing Surveys, vol. 37, no. 4,
pp. 316–344, 2005.

[13] J. Jürjens, “UMLsec: Extending UML for secure systems develop-
ment”, in UML 2002 — The Unified Modeling Language, red. by
G. Goos, J. Hartmanis, and J. van Leeuwen, vol. 2460, Series Title:
Lecture Notes in Computer Science, 2002, pp. 412–425.

[14] K. Katkalov, Modeling the Travel Planner Application with IFlow,
Accessed 2/7/2021, 2013. [Online]. Available: https : / / kiv. isse . de /
projects/iflow/TravelPlannerSite/index.html.

[15] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
based access control models”, Computer, vol. 29, no. 2, pp. 38–47,
1996.

[16] M. Almorsy, J. Grundy, and A. S. Ibrahim, “Automated software
architecture security risk analysis using formalized signatures”, in 2013
35th International Conference on Software Engineering (ICSE), ISSN:
1558-1225, 2013, pp. 662–671.

[17] K. Tuma, L. Sion, R. Scandariato, and K. Yskout, “Automating the
early detection of security design flaws”, p. 11, 2020.

[18] M. Guerriero, “Defining, enforcing and checking privacy policies in
data-intensive applications”, in Proceedings of the 13th International
Conference on Software Engineering for Adaptive and Self-Managing
Systems, 2018, p. 11.

[19] C. Gerking, D. Schubert, and E. Bodden, “Model checking the in-
formation flow security of real-time systems”, in Engineering Secure
Software and Systems, 2018, pp. 27–43.

[20] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson, “Feature-oriented domain analysis (FODA) feasibility study”,
Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst, 1990.

[21] T. DeMarco, “Structure analysis and system specification”, in Pioneers
and Their Contributions to Software Engineering, 1979, pp. 255–288.

[22] R. Sandhu and P. Samarati, “Access control: Principle and practice”,
IEEE Communications Magazine, vol. 32, no. 9, pp. 40–48, 1994.

[23] S. Hahner, “Domain-specific language for data-driven design time
analyses and result mappings for logic programs”, Master’s Thesis,
Karlsruher Institut für Technologie (KIT), 2020, 138 pp. DOI: 10.5445/
IR/1000123271.

[24] ——, Domain-specific Language for Data-driven Design Time Anal-
yses and Result Mappings for Logic Programs - Data Set, Accessed
2/7/2021, 2020. [Online]. Available: https://doi.org/10.5281/zenodo.
3973100.

[25] J. Cabot, R. Clarisó, and D. Riera, “On the verification of UML/OCL
class diagrams using constraint programming”, Journal of Systems and
Software, vol. 93, pp. 1–23, 2014.

[26] V. R. Basili and D. M. Weiss, “A methodology for collecting valid soft-
ware engineering data”, IEEE Transactions on Software Engineering,
vol. SE-10, no. 6, pp. 728–738, 1984.

[27] E. Schmieders, A. Metzger, and K. Pohl, “Runtime model-based
privacy checks of big data cloud services”, in Service-Oriented Com-
puting, 2015, pp. 71–86.

[28] K. Katkalov, “Ein modellgetriebener Ansatz zur Entwicklung infor-
mationsflusssicherer Systeme”, PhD thesis, University of Augsburg,
2017.

[29] Brooks, “No silver bullet essence and accidents of software engineer-
ing”, Computer, vol. 20, no. 4, pp. 10–19, 1987.

[30] A. Narayanan and G. Karsai, “Towards verifying model transforma-
tions”, Electronic Notes in Theoretical Computer Science, vol. 211,
pp. 191–200, 2008.

[31] F. L. Morris, “Advice on structuring compilers and proving them
correct”, in Proceedings of the 1st annual ACM SIGACT-SIGPLAN
symposium on Principles of programming languages - POPL ’73,
1973, pp. 144–152.

[32] J. W. Thatcher and E. G. Wagner, “More on advice on structuring
compilers and proving them correct”, Theoretical Computer Science,
vol. 15, no. 3, p. 27, 1981.

[33] P. Dybjer, “Using domain algebras to prove the correctness of a
compiler”, in STACS 85, vol. 182, Series Title: Lecture Notes in
Computer Science, 1985, pp. 98–108.

[34] E. Jackson and J. Sztipanovits, “Formalizing the structural semantics of
domain-specific modeling languages”, Software & Systems Modeling,
vol. 8, no. 4, pp. 451–478, 2009.

[35] D. M. W. Powers, “Evaluation: From precision, recall and f-
measure to ROC, informedness, markedness and correlation”, CoRR,
vol. abs/2010.16061, 2011.

[36] P. Runeson and M. Höst, “Guidelines for conducting and reporting
case study research in software engineering”, Empirical software
engineering, vol. 14, no. 2, p. 131, 2009.

[37] A. Van Deursen, P. Klint, and J. Visser, “Domain-specific languages:
An annotated bibliography”, ACM Sigplan Notices, vol. 35, no. 6,
pp. 26–36, 2000.

[38] M. van Amstel, M. van den Brand, and L. Engelen, “An exercise in
iterative domain-specific language design?”, in Proceedings of the Joint
ERCIM Workshop on Software Evolution (EVOL) and International
Workshop on Principles of Software Evolution (IWPSE) on - IWPSE-
EVOL ’10, 2010, pp. 48–57.

[39] G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schindler, and S.
Völkel, “Design guidelines for domain specific languages”, p. 7, 2014.

https://kiv.isse.de/projects/iflow/TravelPlannerSite/index.html
https://kiv.isse.de/projects/iflow/TravelPlannerSite/index.html
https://doi.org/10.5445/IR/1000123271
https://doi.org/10.5445/IR/1000123271
https://doi.org/10.5281/zenodo.3973100
https://doi.org/10.5281/zenodo.3973100

