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Chapter 1

Introduction

1.1 Motivation

Trading frictions such as transaction costs play a fundamental role for investors in financial

markets. These frictions have a particularly strong impact on bond markets due to bonds

being one of the most traded assets. In 2020, market participants in the United States

purchased and sold on average each day bonds with a nominal value of more than 950

billion USD, dwarfing the daily trading volume in US equities of about 480 billion USD.1

However, while the digitization of exchanges over the last decades, e.g., with the transition

from floor trading to electronic trading, led to diminishing trading costs in equity markets,

investors still face a rather opaque and costly environment in most bond markets because

of the markets’ structure. Typically, bond markets are organized via a decentralized dealer

network as over-the-counter markets. I.e., an investor trying to execute a transaction has to

search for a dealer taking the counterpart and the price she pays or gets materializes as the

result of the bilateral customer-dealer negotiation.2 As a result, managing liquidity risks

throughout each stage of an investment strategy is crucial for bond market investors and

often determines the strategy’s success. For example, during the initial set up, an investor

needs to negotiate favorable quotes to minimize her initial costs but also to compensate

for the transaction costs she expects to incur when liquidating the position (see, e.g.,

1For data on trading volume for 2020 on US bond markets see sifma (2021b) and on US equity markets
see sifma (2021a).

2Electronic trading on bond markets has become more prevalent during the last years. While it has
been mostly adopted on U.S. treasury markets with roughly 70% of volume being traded via e-trading
platforms (see Greenwich Associates, 2018), it remains however rather an exception in other bond markets
such as the U.S. corporate bond market where only between 19% to 26% of the volume in the first three
quarters of 2018 was traded electronically (see Greenwich Associates, 2019).
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Chapter 1. Introduction

Amihud and Mendelson, 1986). In a later stage, she needs to monitor the liquidity of her

portfolio closely and adjust it accordingly to ensure that she can either react on negative

market shifts or that the timely countermeasures prevent an unfavorable development in

liquidity. Thus, for an effective management of these risks, investors are required to be

able to accurately assess a bond’s current liquidity as well as to anticipate possible changes

in its future liquidity state.

The aim of this dissertation is to resolve issues that limit investors in their capability to

manage liquidity risks by offering guidance to a more accurate liquidity measurement and

a better understanding of liquidity effects on bond markets. In particular, throughout the

thesis, we first introduce a liquidity measurement approach that incorporates the unique

nature of over-the-counter bond trading. Second, we develop a sophisticated procedure to

forecast individual bond liquidity as well as statistical tests to compare forecast models in

such a setting. We exploit our new approaches in extensive empirical studies to reevaluate

and gain further insights on liquidity effects in bond markets.

Measuring an asset’s current liquidity is more involved for investors in over-the-counter

bond markets than for assets traded on an exchange. In the absence of publicly available

quotes and a limit order book, the literature has developed a battery of liquidity mea-

sures that exploit prices from past transactions and try to extract transaction costs from

them (see Schestag, Schuster, and Uhrig-Homburg, 2016, for an overview of the most

common measures). Working with past transactions however has the drawback that the

past trading volumes usually do not coincide with the investor’s actual trading demand

during the initial set up of her strategy. For example, a retail investor exploiting data

from large institutional trades faces the problem that she usually won’t get as favorable

quotes from her dealer as the past institutional investors. Due to the decentralized mar-

ket structure, institutional investors are favored in the bilateral negotiations for several

reasons. First, smaller investors are limited in the resources they can spend on the search

for a counterparty for their trade while large investors can request multiple quotes and

pick the most favorable offer. Second, once retail investors find a dealer they face fixed

costs that are relatively more costly when trading a small volume (see Harris and Piwowar,

2006). And further, they lack the bargaining power of institutional investors because for

example price discovery can not happen via quotes on public exchanges and thus bond

investors are required to have a much better knowledge on the fair value of a bond (see,

e.g., Green, Hollifield, and Schürhoff, 2007a,b). As a result, transaction costs diminish

with increasing trading volume (see, e.g., Edwards, Harris, and Piwowar, 2007). Hence,

if, as mentioned above, the trade sizes of the past transactions differ strongly from the

2



1.1. Motivation

investor’s desired trade size, the extracted trading costs are unlikely to be of value in the

negotiations between the investor and her dealer.

The challenge imposed by trading costs depending on trade size is not only restricted

to the initial set up of an investor’s trading strategy but also transfers to monitoring the

liquidity of her bond portfolio. Tracking changes over different months is usually done by

estimating the average liquidity in the respective months. However, due to the cost-size

dependence, this approach can be misleading in case that the average trade volume in the

months differs strongly. In particular, changing average trade sizes are highly prevalent

in two situations. The first case applies for the majority of bonds in the corporate bond

market that are traded only a few times with randomly different trade volumes. If the

random changes in trade size between months are sufficiently large, investors subsequently

observe upward or downward jumps in average trading costs. And second, when assets are

“fire sold”, the market is flooded with large trades at high discounts (see, e.g., Feldhütter,

2012). In this case, investors observe an increase in average trade size but also a decrease

in average trading cost due to the negative cost-size relationship. In this dissertation,

we adapt the literature’s standard liquidity measures to sever them from their purely

mechanical link between trade volume and transaction costs. In addition, the adapted

measures provide tailored guidance to investors on the average transaction costs to be

paid for each desired trade demand.

Regarding the formation of expectations on a bond’s liquidity in a future state, in-

vestors face the challenge that the literature so far does not provide guidance with an

established forecasting model. Rather, researchers tend to use a bond’s current liquidity

as proxy in empirical applications when formally expected liquidity is required (see, e.g.,

Bao, Pan, and Wang, 2011; Dick-Nielsen, Feldhütter, and Lando, 2012, among others).

This approach yet has various major shortcomings. First, a large part of bond investors

do not pursue short-term strategies. As a result, it is highly questionable to assume that

the liquidity of a bond is unaltered at the future selling date.3 In fact, for example, bonds

typically become more illiquid as they age (see, e.g., Jankowitsch, Nashikkar, and Subrah-

manyam, 2011). Moreover, if investors assume that the liquidity of bonds will not change,

they can only act on deteriorations in liquidity when they have occurred. Such behavior

3The inverse of the average yearly turnover in the U.S. corporate bond market during the time period
from October 2004 to June 2017 is larger than one. Employing the inverse of the turnover as a proxy for
an investor’s expected holding period, i.e., that investors on average keep the bonds longer than a year in
their portfolio. Further, note that bond investors usually have the option to hold until maturity to avoid
liquidation costs. However, given the average time to maturity of roughly nine years in our sample, the
expected holding period implies that a large part of investors indeed sell their positions before the bonds
mature.

3



Chapter 1. Introduction

can lead to particularly strong losses in an investor’s portfolio when liquidity dries up,

e.g., during crisis periods. Acting late also has a negative impact when investors want to

sell similar positions and the liquidation costs are internalized by the remaining investors.

As a result, later trading investors are penalized with losses in the value of their position,

which are further exacerbated when liquidity deteriorates (see, e.g., Goldstein, Jiang, and

Ng, 2017). To overcome these shortcomings, we fill this gap and propose a dynamic fore-

cast model for bond liquidity. Exploiting the model’s predictions allows us to gain further

insights into the strategic behavior of corporate bond fund investors.

From an econometric perspective, investors and researchers need appropriate statisti-

cal tests to compare competing forecast models they develop to form their expectations

of a bond’s future liquidity. Although there is a broad variety of studies developing test

procedures to compare forecast models’ performances in various settings (see, e.g., Diebold

and Mariano, 1995; Clark and McCracken, 2001, for the general case or for nested mod-

els), these tests are based on a time series of forecasts for a single asset. However, in

bond markets, we observe in general a large and diverse amount of issuers with several

outstanding bonds. As a result of the additional heterogeneity in the cross-section, the

standard tests are not suitable for comparing the accuracy of forecasts for individual bond

liquidity. We analyze this issue and develop new statistical tests to provide researchers

and practitioners with a tool kit to compare their forecast models in bond markets or in

other financial markets with a vast cross-section.

1.2 Structure of the Dissertation

This dissertation is structured as follows:

In Chapter 2, which is based on the working paper Reichenbacher and Schuster (2020)4,

we focus on the challenges in OTC bond markets to accurately measure a bond’s current

liquidity when using past transaction data. To this end, we develop a new liquidity

measurement approach for bond markets to overcome existing measures’ weaknesses. As

discussed above, the literature’s measures suffer from the combination of two effects. First,

transaction costs in OTC markets strongly depend on trade size (see, e.g., Edwards, Har-

ris, and Piwowar, 2007). Second, many bonds trade only scarcely with strongly differing

4An earlier version of this paper was part of the habilitation thesis Schuster (2020). However, the
current version differs significantly from this earlier version. While each section has been revised, the
main difference lies in the new section 3 regarding the higher measurement precision of the new liquidity
measures.
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trading volumes. Therefore, changes in average transaction costs often indicate chang-

ing trade sizes rather than changes in the liquidity. We combine full-sample information

for the size-cost relation with individual transaction data to eliminate such measurement

problems. We show that our new measures are more precise in situations when less obser-

vations are available to calculate the liquidity measures, but also in asset fire sale situations

when the average trade size increases systematically. Finally, exploiting the higher mea-

surement precision, our size-adapted measures uncover the joint pricing of liquidity level

and market liquidity risk in the cross-section of U.S. corporate bonds.

Chapters 3 and 4 focus on providing guidance for researchers and practitioners when

predicting a bond’s future liquidity. In Chapter 3, that builds on the working paper

Reichenbacher, Schuster, and Uhrig-Homburg (2020), we introduce an approach to forecast

individual bond liquidity and apply it to the U.S. corporate bond market. Our forecast

approach is twofold. In each month, we start with possible predictors drawn from the

literature on drivers of liquidity and identify the variables that have the strongest predictive

power for the most recent past using three different statistical methods. We calibrate for

each predictor set a linear model. Our final predictions are then the result of combining

the predictions of these three dynamic models to obtain the most accurate estimate for

future bond liquidity (see, e.g., Rapach, Strauss, and Zhou, 2010). We compare the

new prediction methodology with the above discussed current literature’s approach in

empirical applications to use a bond’s liquidity of today as the best estimate for its liquidity

tomorrow. Our approach generates significantly lower forecasting errors and is much better

able to capture the premium for expected liquidity in bond yields. We further provide

evidence that investors in corporate bond funds actively anticipate liquidity deterioration

in underperforming funds and sell their shares in advance to secure a first-mover advantage.

Chapter 4, which is based on the working paper Reichenbacher and Schienle (2021),

addresses the challenges when testing for equal predictive accuracy of forecast models in

the context of large panel data. The setting is characterized by forecast errors that exhibit

strong heterogeneity across both dimensions the cross-section and the time series. We

introduce new testing procedures that detect the heterogeneous structure in a clustering

pre-step in a data-driven way. The standard errors in the Diebold and Mariano (1995)

type test statistics are then adjusted accordingly based on this pre-step. We illustrate the

new tests in the empirical setting of Chapter 3 and compare the predictive accuracy of

different forecast models for individual bond liquidity. We show that without adequate

control for two-dimensional heterogeneity in forecast errors, test results can be misleading

or inconclusive.

5



Chapter 1. Introduction

Chapter 5 recapitulates the main results presented in this dissertation and gives an

outlook on possible future research questions.

6



Chapter 2

Size-Adapted Bond Liquidity

Measures and Their Asset Pricing

Implications

2.1 Introduction

Quantifying transaction costs of bonds is important for investors, issuers, and regulators.

Investors, for example, have to trade off the higher yield they get from illiquid bonds with

the higher cost of trading. Regulators and central banks closely monitor the liquidity of

a market and issuers have to pay higher yields to compensate for their bonds’ illiquidity.

Despite their importance, measuring a bond’s transaction costs is difficult mainly due to

the over-the-counter (OTC) nature of bond trading. If, for example, an investor wants

to compare the costs of trading for two different bonds, she can request quotations from

dealers. But due to large search costs, she is typically restricted to only a few observations.

Moreover, requesting individual quotations is not feasible when monitoring the liquidity

of a large bond portfolio. As an alternative, the investor can use a standard liquidity

measure based on past transaction data. These measures typically assess a bond’s costs

of trading as average across all individual trades. Considering the strong dependence of

transaction costs on trade size (see, e.g., Edwards, Harris, and Piwowar, 2007; Feldhütter,

2012), they depend heavily on the particular trade-size pattern observed for that bond.

Thus, a fair comparison of the liquidity of different bonds or across time is in general not

possible.

7
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To illustrate this point, Panel A of Figure 2.1 depicts all buy and sell trade prices for a

particular bond on one day. Using the average buy and sell price to calculate transaction

costs, we get a relative bid-ask spread of roughly 2.5%. Now assume that, on the following

day, the demand to trade large positions and the supply of liquidity stay identical but no

investor has trading needs for volumes of less than $500,000. On that day, the resulting

bid-ask spread would be just 0.2% (see Panel B of Figure 2.1). So comparing those two

days, an observer would mistakenly conclude that the liquidity of this bond improved

strongly, although it did not change at all. Increases in the average transaction size might

occur after a rating downgrade, when investors want to sell large positions, and bias

observed liquidity changes around these events. Variations in the observed average trade

sizes also occur idiosyncratically, especially for the majority of bonds that trade only a

few times during a month. Some researchers try to address this problem and delete all

transactions below a threshold, which is in most cases $100,000. This approach has two

major shortcomings. First, about two thirds of the transactions in the U.S. corporate bond

market are retail-sized trades below $100,000. As a result, large amounts of information are

ignored, for which we show that they are valuable to accurately assess a bond’s liquidity.

Second, Figure 2.1 shows that the negative dependence of transaction costs on volume

persists beyond $100,000. Similarly, calculating transaction costs weighted by trade size

strongly depends on the availability of large trades.

In this chapter, we introduce a two-stage approach to eliminate the size dependence of

transaction costs in the bond market. In the first step, we estimate a market-wide function

for the dependence of transaction costs on trade size. In the second step, we calculate a

scaling factor for each bond and each month that scales the market-wide function so that it

best explains the observed transaction costs for this bond. This factor can be interpreted

as a measure of relative liquidity of the bond compared to a bond with average liquidity.

Although the literature is aware of the relation between trade size and transaction costs in

OTC markets, it is usually ignored when calculating common transaction cost measures.

We are the first to incorporate this relation directly into liquidity measures, making them

immune to changes in the individually observed trade-size pattern. Importantly, our new

approach offers investors an easy way to calculate transaction costs for arbitrary position

sizes as the product of the individual scaling factor and the market-wide transaction cost

function evaluated at the trade size in question.5

5In the stock market, price impact measures like λ (see, e.g., Kyle, 1985; Hasbrouck, 2009) are typically
employed to calculate size-dependent trading costs (see, e.g., Goyenko, Holden, and Trzcinka, 2009).
Schestag, Schuster, and Uhrig-Homburg (2016) find that these measures do not work well in the bond
market.
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Figure 2.1: Daily trades in a heavily traded bond
This figure depicts an exemplary trading day in a U.S. corporate bond. The trading day is
selected as the one with the largest number of observations for both buy and sell trades. The
bond is issued by General Motors, has a fixed coupon of 8.375%, and matures in July 2033. The
trading day is March 17, 2005. Blue crosses represent trades in which the customer buys (ask)
and orange dots depict trades in which the customer sells (bid). The blue dashed line indicates
the average buy price, the orange solid line the average sell price, and the red arrow the bid-ask
spread. Panel A includes all available trades, while Panel B shows only trades with a trading
volume larger than $500,000.
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Chapter 2. Size-Adapted Bond Liquidity Measures and Their Asset Pricing Implications

The combination of the full-sample information for the market-wide cost function with

the individual transaction data to extract a bond’s relative liquidity exploits all available

information in a natural way. For that reason, our size-adapted measurement approach can

be calculated with the same data requirements as standard measures when there is only

one observation for transaction costs available. The new methodology is straightforward

to implement and can be applied to adapt a large number of commonly used transaction

cost measures. As different high-frequency liquidity measures are closely connected (see

Schestag, Schuster, and Uhrig-Homburg, 2016), we exemplarily implement our approach

for the Schultz (2001) and the average bid-ask spread measure (see, e.g., Hong and Warga,

2000), which are two established transaction cost measures. We use U.S. corporate bond

transaction data from Enhanced TRACE for the period from October 1, 2004 to December

31, 2014.

We demonstrate that our size-adapted liquidity measures are associated with a higher

measurement precision, which stems from two sources. First, the adapted measures are

more accurate when there are less observations to calculate the liquidity measure. This

situation occurs for the vast majority of corporate bonds that are only traded scarcely.

In a bootstrap-like exercise, we analyze the error in the liquidity measures for highly

traded bonds when a part of their trades is discarded. We find that our two size-adapted

liquidity measures are on average associated with about 10% to 30% lower measurement

errors. Hypothesizing that more precise liquidity measures will better explain the liquidity-

related component of bond yield spreads, we run a second test. In a panel setting inspired

by Friewald, Jankowitsch, and Subrahmanyam (2012), we regress yield spread changes on

the changes of individual bond transaction costs and a set of control variables. The part

of the R2
adj that can be attributed to transaction costs almost doubles when using our

size-adapted measures compared to their standard counterparts. In a robustness analysis,

we show that deleting small trades as well as a simple trade-size weighting perform worse

than unadjusted standard measures. This result shows that the transaction costs of small

trades contain valuable information.

Second, our size-adapted liquidity measures are more precise in fire sale situations

when the average trade size increases systematically. Using rating downgrades to junk

status as a natural experiment, we show that the new measures are able to better capture

the liquidity deterioration associated with the resulting fire sale. Standard transaction

cost measures exhibit a systematic bias in such stress events. As a result, they do not

detect a systematic change in liquidity. This might be the reason why existing studies on

such events often focus on price impact measures (see Bao, O’Hara, and Zhou, 2018) or

10



2.1. Introduction

use non-standard liquidity measures (see Dick-Nielsen and Rossi, 2019, who use returns

of liquidity providing dealers).

In the second part of the chapter, we show that ignoring the dependence of common

liquidity measures on the trade-size pattern can have a strong impact on the results when

studying the asset pricing implications of liquidity. Accordingly, our size-adapted liquidity

measures help to reconcile conflicting findings of previous studies regarding the question

whether the level of liquidity or the risk of changing market-wide liquidity is priced. Build-

ing on the predictions of Amihud and Mendelson’s (1986) model, there is a large literature

confirming the influence of a bond’s liquidity on its expected return (see, e.g., Amihud

and Mendelson, 1991; Chen, Lesmond, and Wei, 2007; Bao, Pan, and Wang, 2011). In

contrast to that, the results for bond market liquidity risk are conflicting. Whereas stud-

ies like Lin, Wang, and Wu (2011), Dick-Nielsen, Feldhütter, and Lando (2012), and Bai,

Bali, and Wen (2019) confirm that bonds with a stronger return sensitivity to market-wide

liquidity shocks earn higher expected returns, Bongaerts, de Jong, and Driessen (2017)

do not find a significant bond market liquidity risk premium. These authors develop an

integrated asset-pricing model to simultaneously analyze the effects of liquidity level and

market liquidity risk on ex ante expected bond returns. We find that due to the strong

correlation of transaction costs and liquidity beta, it is very difficult to disentangle the

effects of liquidity level and risk. Indeed, when using standard measures of liquidity, the

observed pricing pattern is strongly affected by the way test assets are constructed or

betas are estimated, explaining the conflicting results. In contrast, when using our more

precise size-adapted liquidity measures, we consistently find that both liquidity level and

bond market liquidity risk are priced in the cross-section of expected bond returns. Eco-

nomically, the part of yield spreads related to liquidity level and risk is large and amounts

to 0.8% to 0.9% p.a. for each of the two dimensions. More broadly, our work also con-

tributes to the literature on the risk versus characteristics debate (see, e.g., Davis, Fama,

and French, 2000 or Daniel, Titman, and Wei, 2001 for the stock market and Gebhardt,

Hvidkjaer, and Swaminathan, 2005 for the corporate bond market). Specifically, we show

that an imprecise measurement of the characteristic can cause misleading conclusions on

the question whether the characteristic or the associated risk are priced.

The plan for the rest of the chapter is as follows. In Section 2.2, we develop our size-

adapted measurement approach. In Section 2.3, we show in several situations that our

newly developed size-adapted measures are more precise than their standard (unadapted)

counterpart. In Section 2.4, we perform asset pricing tests to answer the question whether

the level of liquidity or market liquidity risk are priced. Finally, Section 2.6 concludes.
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2.2 Size-Adapted Liquidity Measures

In this section, we describe our size-invariant liquidity measurement approach. We use

a two-stage procedure to estimate the (relative) liquidity of a bond in each month. We

implement this approach for two established transaction cost measures in Sections 2.2.2

and 2.2.3, using bond data from Enhanced TRACE from October 1, 2004 to December

31, 2014 (see Appendix A.1 for details on the data).

2.2.1 Basic Measurement Approach

Measuring the liquidity of a bond using common high-frequency liquidity measures is

usually based on average transaction costs in this bond. As illustrated in Figure 2.1, such

averaging across different transaction sizes ignores the size-dependence of transaction costs

and a fair comparison between the liquidity of different bonds or even between a bond’s

liquidity for different periods is not possible.6 Researchers often address this problem

by excluding small trades entirely from the analysis. We show in Appendix A.2 that

using this approach, a daily or monthly liquidity measure often cannot be calculated for a

particular bond at all. Moreover, we show that small trades contain valuable information

on a bond’s liquidity and the combination of institutional and retail-sized trades offers the

most comprehensive information set.

We develop a two-step liquidity measurement approach that combines information from

all trade sizes in a natural way. In the first step, we estimate a function c(vol) capturing

the dependence of transaction costs on the traded (notional) volume vol. This transaction

cost function serves as a market-wide benchmark for all bonds, representing an average

state of liquidity. To ensure the highest possible generality for the cost function, we employ

a nonparametric estimation based on all observations of all available bonds in the sample.7

We verify later that the general form of the transaction cost function does not change much

over time and confirm that small changes have no significant impact. In the second step,

the liquidity of a bond i in month t (or day t) is measured relative to this market-wide

6The negative relation is unchanged after the introduction of the Volcker rule (see, e.g., Adrian,
Fleming, Shachar, and Vogt, 2017; Bessembinder, Jacobsen, Maxwell, and Venkataraman, 2018) and it
also holds for trades executed via electronic trading platforms (see Hendershott and Madhavan, 2015).

7It is also possible to estimate the function using parametric functional forms, which are in general
easier to compute (see Edwards, Harris, and Piwowar, 2007). As a robustness check in Section 2.5.2, we
repeat our asset pricing analyses from Section 2.4 employing liquidity measures based on a parametric
functional form.
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and time invariant function. We use the (estimated) transaction costs tck,i,t of all observed

transactions k of bond i in month t. We then express the relative liquidity of bond i in

month t by an individual scaling factor sfi,t, estimated in the following regression

tck,i,t = sfi,t · c(volk,i,t) + εk,i,t, (2.1)

where volk,i,t denotes the transaction volume of the k-th transaction and εk,i,t an error

term. A liquid bond is characterized by a scaling factor below 1, which indicates that its

transaction costs for all trade sizes are smaller than those of an average bond. Similarly, an

illiquid bond has a scaling factor larger than 1. Because all scaling factors are based on the

same market-wide transaction cost function, changing trade-size patterns for a particular

bond do not affect the factor estimate. Thus, our measure allows for a direct comparison

of the liquidity of different bonds or different observation months. Most importantly, the

full information regarding a bond’s liquidity across trade sizes can be expressed as one

number that is easy to interpret.8 Thus, we can use the scaling factor sfi,t as a measure

for the liquidity of bond i in month t.9

The size-invariant measurement approach described by Equation (2.1) can be applied

to a broad variety of common liquidity measures. We choose to adapt the transaction cost

measure of Schultz (2001) and the average bid-ask spread measure (see, e.g., Hong and

Warga, 2000) as both exploit information on a transaction’s trade side.

2.2.2 Size-Adapted Schultz (2001) Measure

The first measure that we adapt to the new approach is the (relative) Schultz (2001)

liquidity measure that is based on the model

∆k,i,t = αi,t + ci,t ·Dk,i,t + εk,i,t. (2.2)

Here, ci,t approximates the average (relative) half-spread of bond i in month t. ∆k,i,t

denotes the (relative) price deviation of the trade price to a consensus price for trade k.

Dk,i,t is a trade side indicator that equals 1 for customer buys, −1 for customer sells, and

8We have experimented with more sophisticated functional forms that allow, e.g., transaction costs for
large trade sizes to vary (relatively) stronger than transaction costs for small trades (see, e.g., Anderson
and Stulz, 2017). The higher complexity only increases the precision very moderately.

9Note that the interpretation as a liquidity measure would not be possible if the transaction cost
function were estimated for each bond and/or each month separately (see, e.g., Edwards, Harris, and
Piwowar, 2007).
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0 if the trade is between two dealers. We obtain daily consensus prices from Bloomberg.

Following the intuition in (2.1), we replace in (2.2) the average half-spread with the

market-wide cost function c(volk,i,t) of trading the transaction volume volk,i,t multiplied

by the bond-individual scaling factor sfSchultzi,t , leading to

∆k,i,t = αi,t + sfSchultzi,t · c(volk,i,t) ·Dk,i,t + εk,i,t. (2.3)

We can now interpret the scaling factor sfSchultzi,t as a measure for the relative liquidity of

bond i in month t.

To estimate Equation (2.3), it would be best to simultaneously solve for the transaction

cost function c(·) and the scaling factors. However, as such a simultaneous optimization is

numerically problematic, we implement an iterative two-stage weighted regression. In the

first step, we estimate a nonparametric function c(·) from all observations in the sample

using the scaling factor estimates from the previous iteration.10 In the second step, we

use the transaction cost function from the first step and estimate (2.3) for each month

t and each bond i separately to obtain individual scaling factors sfSchultzi,t . We exclude

negative bid-ask spreads with the constraint sfSchultzi,t ≥ 0. We weight observations in

both steps to ensure that different volume segments contribute equally to the market-wide

transaction cost function and the scaling factors. In this spirit, we define eleven seg-

ments centered symmetrically around the individual trade sizes $10,000, $25,000, $50,000,

$100,000, $200,000, $500,000, $1 million, $2 million, $5 million, $10 million, and $20 mil-

lion.11 To put equal weight on each segment, we weight each trade with the inverse of the

full sample number of observations in the respective volume segment. To ensure that the

cost function represents a state of average liquidity, we rescale it after each iteration such

that the average of all scaling factors equals 1. We iterate over steps one and two until

convergence.12 Note that the data requirements to estimate an individual scaling factor

sfSchultzi,t in (2.3), given a market-wide function c(volk,i,t), are identical to the standard

Schultz (2001) measure in (2.2), i.e., the regression is identified whenever we have at least

two trades with different trade sides Dk,i,t and the corresponding consensus prices.

The resulting transaction cost function is depicted in Figure 2.2. Consistent with

previous studies, we find a negative relation between transaction costs and trade size.

10We employ locally weighted scatterplot smoothing (LOESS) as the nonparametric regression method.
In the first iteration, we set all scaling factors to 1.

11Our results do not depend on the exact specification of these segments.
12The iteration terminates when the average absolute difference between the factors of the current and

the previous iteration is below 10−6.
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Figure 2.2: Market-wide transaction cost functions of U.S. corporate bonds
The figure depicts transaction costs dependent on trade size for the size-adapted Schultz (2001)
measure (orange solid line) and the size-adapted average bid-ask spread measure (blue dashed
line). The transaction cost functions are based on a nonparametric regression. They are esti-
mated with the two-step measurement approach described in Sections 2.2.2 and 2.2.3.

For example, a retail investor who wants to trade a position of $10,000 pays on average

round-trip costs between 1.5% and 2%. In contrast, an institutional position of $5 million

trades at bid-ask spreads of only about 20 basis points. The literature mainly attributes

this difference to the stronger negotiation power of institutional investors that is due to

their lower search costs (see Feldhütter, 2012; Green, Hollifield, and Schürhoff, 2007b) or

their more precise knowledge of a bond’s fair value (see Green, Hollifield, and Schürhoff,

2007a). Fixed costs per trade might be playing a role as well (see Harris and Piwowar,

2006). For very large volumes though, we observe a slight increase in transaction costs.

This increase likely comes from their higher inventory risk (Stoll, 1978) or difficulties in

finding counterparties for these extremely large positions.

2.2.3 Size-Adapted Average Bid-Ask Spread Measure

The second measure that we adapt to our size-invariant measurement approach is the

relative difference of average bid and ask prices

AvgBidAski,d =
P buy
i,d − P sell

i,d

0.5 ·
(
P buy
i,d + P sell

i,d

) , (2.4)

where P buy
i,d = 1

nbuyi,d

∑nbuyi,d

k=1 P
buy
k,i,d is the average customer buy price, P sell

i,d = 1
nselli,d

∑nselli,d

k=1 P
sell
k,i,d
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gives the average sell price, and n
buy/sell
i,d is the number of buy/sell trade prices P

buy/sell
k,i,d

for bond i on day d, respectively. This measure was introduced by Hong and Warga (2000)

and Chakravarty and Sarkar (2003). We can calculate it for each day with at least one

buy and one sell trade. For a monthly measure, we calculate the mean of all daily bid-ask

spreads.

Starting from our new approach (2.1), the adaption of this measure is slightly more

involved than for the Schultz (2001) measure. Since the difference of average bid and ask

prices is only available on a per day and not on a per trade basis, we have to evaluate

the market-wide cost function for each trade that goes into the calculation of the daily

average separately and then compute the average:

AvgBidAski,d = sfAvgBidAski,t · 1

2

 1

nbuyi,d

nbuyi,d∑
k=1

c(volbuyk,i,d) +
1

nselli,d

nselli,d∑
k=1

c(volsellk,i,d)

+ εi,d, (2.5)

where we plug in daily average bid-ask spreads AvgBidAski,d from (2.4) as the left hand

side of (2.5). We again scale the average of the market-wide transaction cost function with

a bond-individual scaling factor sfAvgBidAski,t . Because, in general, the number of sell and

buy trades on a given day is not identical, the underlying prices enter with differing weights

into the calculation of AvgBidAski,d. To match this imbalance, we calculate the average

of the market-wide cost function c(vol
buy/sell
k,i,d ) separately for both sides before computing

the overall average. Again n
buy/sell
i,d is the number of buy/sell trades and vol

buy/sell
k,i,d gives

the trade size of the k-th buy/sell trade.

We implement the size-adapted average bid-ask spread measure using the iterative

two-stage weighted regression described in Section 2.2.2. We have to adjust this proce-

dure to account for the fact that there is only one observation per day. The details on

the adjustments are described in Appendix A.3. The data requirements to estimate an

individual scaling factor remain the same as for the unadapted average bid-ask spread

measure. Thus, a monthly size-adapted bid-ask spread measure can be calculated if we

observe sell and buy prices for at least one day.

The resulting transaction cost function is again depicted in Figure 2.2. Both size-

adapted measures share the decreasing transaction cost and size relation and the slight

increase at the right tail. They are not fully identical, though, which is caused by the

different data requirements of the standard measures. Whereas the Schultz (2001) measure

requires a daily consensus price, the average bid-ask spread measure can be calculated only
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A: Schultz (2001) measure

B: Average bid-ask spread measure

Figure 2.3: Time variation of transaction cost functions
Panels A and B depict quarterly transaction cost functions for the Schultz (2001) and average
bid-ask spread measure. Transaction cost functions are estimated with the two-step measurement
approach described in Sections 2.2.2 and 2.2.3. We use either all observations (black solid line)
or all observations in a quarter (dashed lines) for the estimation. Quarterly transaction cost
functions are estimated for the time period from October 2004 to December 2014. To ensure
comparability, we scale the quarterly transaction cost functions to the average level of the function
that is based on all observations.
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when data on buy and sell trades are available on the same day.

Having introduced both size-adapted measures, we can now verify that the general

transaction cost function does not change much over time and that small deviations have

no significant impact on the scaling factors. First, in Figure 2.3, we plot a (normalized)

function for each quarter during our observation period. For both liquidity measures, the

pattern of a strongly decreasing function and a slight increase at the right tail is stable

over time. All quarterly functions are located within a narrow range. Next, we replace

our estimated transaction cost functions for both liquidity measures with an interpolated

function based on average trading costs for different trade sizes from Edwards, Harris, and

Piwowar (2007).13 Calculating the monthly scaling factors relative to this function, we

observe for both liquidity measures extremely strong average cross-sectional correlations

of 0.97 and 0.98 between the scaling factors of the original and the interpolated curve for

the Schultz (2001) and the average bid-ask spread measures, respectively. Consistent with

these high correlations, we find that our results in the following sections remain unchanged

when employing the Edwards, Harris, and Piwowar (2007) transaction cost function.

Finally, Figure 2.4 shows average liquidity for all bonds calculated with either the two

standard measures or the two size-adapted measures for the time period of October 2004

to December 2014. All measures show a strong increase of transaction costs during the

financial crisis. Comparing standard and size-adapted measures, the increase is stronger for

the size-adapted measures, pointing to a possible underestimation of liquidity deterioration

by the standard measures. In contrast, standard measures overestimate the post-crisis

market liquidity compared to the pre-crisis level (see, e.g., Choi and Huh (2019)). While

the standard measures indicate a clear improvement in market liquidity, the size-adapted

measures point to a rather similar level of liquidity pre and post crisis. Finally, the two

size-adapted measures are very consistent and move very closely together.

2.3 Precision of Liquidity Measurement

From a conceptual perspective, the main difference between standard liquidity measures

and their size-adapted counterparts is the dependence on the underlying trade-size pattern.

As discussed in the introduction, changes in the average trade size must not necessarily

relate to changes in a bond’s “true” liquidity but are mechanically linked to changes in

13See their Table IV for transaction costs of trade sizes between $5,000 and $10 million. We use a flat
extrapolation for trades below and above these thresholds.
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A: Standard measures
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Figure 2.4: Time series of U.S. corporate bond transaction costs
The figure depicts the time series of average liquidity across all bonds for the Schultz (2001)
measure (orange solid lines) and the average bid-ask spread measure (blue dashed lines). In
Panel A, we employ the standard version of the two liquidity measures and in Panel B their size-
adapted counterpart of Sections 2.2.2 and 2.2.3. The time period spans from October 2004 to
December 2014. Both size-adapted measures can be interpreted as a scaling factor that, together
with the transaction cost functions in Figure 2.2, can be used to calculate transaction costs for
arbitrary trade sizes. For ease of comparability, we scale the standard measures such that the
time-series average equals 1.
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the standard liquidity measure.

To examine the mechanical relation between trade size and liquidity measures, we

calculate average monthly cross-sectional correlations of the liquidity measures with the

bond’s (logarithmic) average trade size. We further calculate correlations with other bond

characteristics such as rating, age, duration, and amount outstanding.14

The results for the standard and size-adapted versions of the Schultz (2001) and the

average bid-ask spread measures are presented in Panel A and B of Table 2.1. As ex-

pected, we see that standard and size-adapted measures show a different relation to the

average trade size. While the size-adapted Schultz (2001) measure only exhibits a rather

low correlation of -0.12 and the size-adapted average bid-ask spread shows virtually no

correlation, both standard measures are strongly and significantly correlated to trade size

with correlations of -0.40 and -0.48. Thus, consistent with the intuition illustrated in Fig-

ure 1, a smaller average trade size leads standard measures to report higher transaction

costs. In contrast, we find similar correlations of standard and size-adapted measures with

rating, age, duration, and amount outstanding. Interestingly, we see high correlations of

0.68 and 0.85 between the standard measures and their size-adapted versions showing a

shared common liquidity component.

In the remainder of this section, we show that the strong dependence of the standard

measures on average trade size leads to more noisy and, under particular circumstances,

biased measures of liquidity.

2.3.1 Unsystematic Measurement Error

Comparing the precision of liquidity measures is difficult because a bond’s true liquidity

is not observable. We therefore propose two alternative approaches. First, we construct

an artificial benchmark from highly traded bonds because their liquidity can be measured

with the highest possible precision. Second, we employ an indirect approach exploiting

the liquidity premium embedded in corporate bond yields. Because changes in a bond’s

(true) liquidity should be reflected in changes in the yield spread, we expect measures with

lower estimation noise to be better able to explain yield spread shifts.

14We measure a bond’s rating as the average numerical rating across the three rating agencies S&P,
Fitch, and Moody’s (S&P and Fitch AAA=1, AA+=2, ... and for Moody’s Aaa=1, Aa1=2, ...). We test
the average cross-sectional correlations for significance by first transforming the monthly correlations with
Fisher’s Z and then running a t-test on the time series of the transformed values with Newey and West
(1987) correction of six lags.
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Table 2.1: Average cross-sectional correlations
This table reports average cross-sectional correlations for the standard and size-adapted liquidity measures with average trade size and
various bond characteristics. We calculate the logarithm of a bond’s monthly average trade size from TRACE as well as its age and
duration. The credit rating is measured as the average across numerical ratings from S&P, Moody’s, and Fitch (AAA=1, AA+=2, ...).
The history of the outstanding amount is from Reuters Eikon. In Panel A, we employ the Schultz (2001) measures of Section 2.2.2
and in Panel B the average bid-ask spread measures of Section 2.2.3. We test the average cross-sectional correlations for significance
by running a t-test with Newey and West (1987) correction of six lags on their Fisher’s Z transformed time series. ** and * represent
statistical significance at the 1% and 5% level.

Panel A: Schultz (2001) measure

Average Rating Age Duration Amount Size-adapted

trade size outstanding measure

Standard measure -0.40** 0.17** 0.19** 0.32** -0.28** 0.85**

Size-adapted measure -0.12** 0.21** 0.12** 0.41** -0.14**

Panel B: Average bid-ask spread measure

Average Rating Age Duration Amount Size-adapted

trade size outstanding measure

Standard measure -0.48** 0.06* 0.13** 0.35** -0.38** 0.68**

Size-adapted measure -0.01 0.20** 0.07** 0.42** -0.11**
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In the first, direct approach, we randomly delete trades of the synthetic benchmark

bonds, mirroring the trading pattern of scarcely and moderately traded bonds. We then

calculate the liquidity measures based only on the information from the remaining trades.

Finally, we approximate the estimation noise as the difference of the liquidity measures

calculated with the full and partial information set. We implement this exercise in a

bootstrap-like manner, randomly assigning the trading patterns of bonds picked from

one of four different trading activity categories (see Appendix A.4 for a more detailed

description of the bootstrapping). The four trading activity categories are less than 5

trades per month, 5 to 9 trades, 10 to 19 trades, and 20 to 30 trades. They cover about

50% of the observation months in our sample.

The results of the bootstrapping are presented in Panel A of Table 2.2 for the Schultz

(2001) measure and in Panel B for the average bid-ask spread measure. Consistent with

our expectation, we find that the measurement errors decrease monotonously for trading

categories with more trades. For the standard liquidity measures, the average root-mean-

squared percentage error (RMSPE) ranges between 0.586 and 0.858 for 5 to 9 trades and

between 0.335 and 0.543 for 20 to 30 trades. For less than 5 trades, it is particularly

difficult to capture liquidity. As a result, the measurement errors are with 0.838 and 0.989

for the standard Schultz (2001) and average bid-ask spread measure relatively high. When

measuring liquidity with our size-adapted measures, we find that the errors are smaller

compared to their standard counterparts. On average, the RMSPEs are roughly 17% to

30% lower when the liquidity measures are calculated based on 5 to 30 trades. When

trading is extremely scarce with less than 5 trades available, we still observe between 8%

to 9% lower measurement errors with our size-adapted measures. Summarizing, our new

size-invariant measurement approach decreases estimation noise consistently for scarcely

and for moderately traded bonds.

For the second, indirect approach, we exploit Amihud and Mendelson’s (1986) hypoth-

esis that an illiquid asset commands a higher (expected) return and thus trades at a larger

spread between the bond’s yield and the Treasury curve. Given idiosyncratic changes in

the average trade size, especially for rarely traded bonds, we expect that monthly changes

in the standard measures are less informative for the liquidity related changes in a bond’s

yield spread. To test our hypothesis, we follow closely the approach of Friewald, Jankow-

itsch, and Subrahmanyam (2012) and perform panel data regressions of yield spreads on

transaction cost measures, while controlling for autocorrelation in the spreads and other
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2.3. Precision of Liquidity Measurement

Table 2.2: Estimation noise in scarcely traded bonds
This table reports estimation errors when mirroring the trading pattern of scarcely and moder-
ately traded bonds on the bond observation months with the 1% highest number of trades, which
serve as benchmark. We employ four different trading activity categories ranging from less than
5 trades up to 20 to 30 trades. In each of the 100 runs of the bootstrap-like procedure, bonds of
the respective trading activity category are selected and assigned randomly to a heavily traded
benchmark bond. We then select the most appropriate trades of the benchmark bond to mirror
the trading pattern of the scarcely traded bond and estimate the liquidity measures based on the
full and the reduced information set. Lastly, we calculate the root-mean-squared percentage er-
ror (RMSPE) as the difference between the two estimates. The results of the average estimation
errors for the standard and size-adapted Schultz (2001) measure of Section 2.2.2 are presented
in Panel A and for the two versions of the average bid-ask spread measure of Section 2.2.3 in
Panel B.

Panel A: Schultz (2001) measure

trades

<5 5 to 9 10 to 19 20 to 30

Standard liquidity measure 0.989 0.858 0.673 0.543

Size-adapted measure 0.900 0.709 0.532 0.429

∆(RMSPE) -9.0% -17.4% -21.0% -21.0%

Observations 3,880

Panel B: Average bid-ask spread measure

trades

<5 5 to 9 10 to 19 20 to 30

Standard liquidity measure 0.836 0.586 0.424 0.335

Size-adapted measure 0.768 0.445 0.296 0.246

∆(RMSPE) -8.1% -24.1% -30.2% -26.6%

Observations 5,230
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effects:

∆(Yield spread)i,t = α + β ·∆(Yield spread)i,t−1 + γ ·∆(Transaction costs)i,t

+ δ ·∆(Controls)i,t + εi,t, (2.6)

where we use either the standard or the size-adapted versions of the Schultz (2001) or the

average bid-ask spread measure as proxy for transaction costs. We calculate yield spreads

as the difference between the bond’s yield and the yield of a (theoretical) risk-free Treasury

bond having the same cash flow structure. To obtain a bond’s daily yield spread, we

calculate the volume-weighted average from all reported trades in TRACE in the bond on

the specific day (for details, we refer to Appendix A.1). We then take averages of the daily

observations to arrive at the monthly level. In the choice of the control variables, we lean on

Friewald, Jankowitsch, and Subrahmanyam (2012). We control for monthly changes in the

logarithm of the amount outstanding (our data from Reuters Eikon includes reopenings,

repurchases, and other (early) redemptions). Moreover, we employ the logarithm of the

average trade size and the number of trades. Finally, we include changes in 21 rating

dummies based on the bond’s average numerical rating across the three agencies Standard

& Poor’s, Moody’s, and Fitch.15 Yield spread changes and transaction cost changes are

winsorized each month at the 1% and 99% level.

The results of the monthly panel regression for both the Schultz (2001) and the average

bid-ask spread measure are presented in Table 2.3. For both measures, we use three

different specifications. First, in specifications (1) and (4), we explain yield spread changes

solely with their first lag and the control variables. This specification is the baseline from

which we can analyze the increase in explanatory power after including a transaction cost

measure. In specifications (2) and (5), we include the standard measures, while in (3) and

(6), we add the size-adapted versions.

In the specifications without a transaction cost measure, we find a positive but in-

significant autocorrelation of yield spread changes.16 The remaining control variables are

broadly consistent with the findings in Friewald, Jankowitsch, and Subrahmanyam (2012).

15To calculate the average numerical rating, we transform the ratings to integer numbers (for S&P and
Fitch AAA=1, AA+=2, ... and for Moody’s Aaa=1, Aa1=2, ...). For k = 1, . . . , 21, we then set the k-th
rating dummy to 1, if k − 0.5 ≤ average rating < k + 0.5.

16In contrast to our findings, Friewald, Jankowitsch, and Subrahmanyam (2012) observe a negative
autocorrelation of yield spreads which is attributable to microstructure noise. However, our positive
autocorrelation coefficient is consistent with Duffee (1998). Note that if we follow Friewald, Jankowitsch,
and Subrahmanyam (2012) and switch our observation frequency from monthly to weekly, we also find a
negative estimate. Thus, microstructure noise seems to be less important on the monthly level.
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Table 2.3: Yield spread regressions: All trades
This table reports results for the panel regression model (2.6) explaining monthly yield spread changes with monthly changes in
standard or size-adapted transaction cost measures. The control variables are trade size, number of trades, and amount outstanding.
We further employ rating dummies as a proxy for credit risk. Specifications (1) and (4) are the baseline regressions that include only
lagged yield spread changes and the control variables. In (2) and (5), we add standard transaction cost measures, while in (3) and (6),
we add the size-adapted versions. We winsorize yield spread and transaction cost changes at the 1% and 99% level. Standard errors
are clustered monthly and by bond. We test for differences between out-of-sample mean squared errors (MSE) using the test statistic
proposed by Harvey, Leybourne, and Newbold (1997). Comparing R2

adj or MSE, we first compare a specification to the baseline and
second to its preceding specification. The t-statistics are given in parentheses. ** and * represent statistical significance at the 1% and
5% level.

Schultz (2001) Average bid-ask spread

(1) (2) (3) (4) (5) (6)

Intercept 0.0229 0.0234 0.0236 0.0422 0.0441 0.0442
(0.80) (0.82) (0.83) (1.08) (1.16) (1.16)

∆(Yield spread)i,t−1 0.0960 0.0955 0.0956 0.0906 0.0896 0.0893
(1.43) (1.42) (1.42) (0.95) (0.96) (0.95)

∆(Standard measure)i,t 5.5337** 9.6839**
(6.95) (5.18)

∆(Adapted measure)i,t 0.0831** 0.1679**
(5.58) (4.88)

∆(Trade size)i,t -0.0132** -0.0065 -0.0149** -0.0259** -0.0124* -0.0353**
(-4.23) (-1.79) (-5.30) (-8.59) (-2.55) (-12.22)

∆(Trades)i,t 0.0055** 0.0052** 0.0052** 0.0076** 0.0071** 0.0071**
(4.39) (4.26) (4.28) (4.91) (4.70) (4.90)

∆(Amount outstanding)i,t -0.0576 -0.0499 -0.0519 -0.1527 -0.1412 -0.1382
(-0.82) (-0.71) (-0.74) (-1.90) (-1.74) (-1.75)

∆(Rating dummies)i,t Yes Yes Yes Yes Yes Yes

R2
adj 0.0776 0.0810 0.0836 0.0636 0.0701 0.0759

∆(R2
adj) 4.4% 7.7%/3.2% 10.2% 19.3%/8.3%

MSE 0.909 0.905 0.902 1.683 1.670 1.656
∆(MSE) -0.4%** -0.8%**/-0.3%** -0.77%** -1.60%**/-0.84%**

(6.24) (7.35)/(4.96) (9.39) (13.27)/(9.37)

Observations 327,251 454,46125
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If we add the standard bond liquidity measures to the regression, we find a highly

significant coefficient. Regarding the explainable part of yield spread changes, adding a

standard transaction cost measure leads to a relative improvement of the R2
adj compared

to the baseline regression of 4.4% in case of the Schultz (2001) measure and of 10.2%

in case of the average bid-ask spread. The absolute improvements in the R2
adj range

between 0.0034 and 0.0065 and are rather low, which is usually the case in this type of

regression setup. Relative and absolute improvements are quantitatively comparable to

the ones in Friewald, Jankowitsch, and Subrahmanyam (2012). These authors add four

different liquidity measures at the same time and find a combined relative improvement

of 11.7% and an absolute improvement of 0.009. When adding our size-adapted measures

instead of the standard versions, we also find a highly significant coefficient. The relative

improvement of the R2
adj compared to the baseline regression increases to 7.7% in case of

the size-adapted Schultz (2001) measure and to 19.3% in case of the size-adapted average

bid-ask spread measure.

We now validate the higher explanatory power of our less noisy size-adapted measures

out-of-sample. To this end, we estimate the panel model (2.6) using a backward-looking

rolling window of 24 months (requiring at least 12 months) and compare the implied

with the actual yield spread changes for the following month. To test if changes in the

mean squared error (MSE) are significant, we employ Diebold and Mariano (1995) tests

in the spirit of Harvey, Leybourne, and Newbold (1997).17 Consistent with our in-sample

findings, we observe at the bottom of Table 2.3 a monotonically and significantly decreasing

out-of-sample MSE when adding a transaction cost measure to the baseline model. The

additional improvements when incorporating a size-adapted liquidity measure are more

than twice as large and highly significant as well.

In the robustness section 2.5.1, we run yield-spread regressions using the approaches

from the literature to account for the larger transaction costs of small trades. It turns out

that employing only large trades with volumes of at least $100,000 or weighting by trade

size cannot improve the explanatory power of transaction cost changes in such regressions

compared to the standard, equally weighted liquidity measures. This result supports the

findings from Appendix A.2 that small trades contain valuable information. We conduct

several other unreported robustness tests (available on request). First, we show that the

17Since we use a rolling window to estimate parameters, the Diebold and Mariano (1995) test is identical
to Giacomini and White’s (2006) (unconditional) test that accounts for uncertainty in the parameter
estimation (see, e.g., Giacomini and Rossi, 2010). Furthermore, in Chapter 4, we design a test procedure
specifically for out-of-sample tests in the presence of a large panel. As a robustness check, we repeat the
analysis applying this test procedure in Appendix D.
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results are not subject to a look-ahead bias by using only data from the last quarter of 2004

(and not full sample information) to estimate the transaction cost function. Second, we

show that the different improvements between the Schultz (2001) and the average bid-ask

spread measure are partly due to their different data requirements. Third, we find similar

additional explanatory power for our size-adapted measures when we employ a bond’s

1-year probability of default instead of rating dummies to proxy for credit risk. Lastly, we

show that our findings do not change if we exclude prearranged roundtrip transactions in

the spirit of Choi and Huh (2019) that do not provide immediacy.

Summarizing, we first show directly that our size-invariant approach offers a higher

measurement precision as it is less prone to estimation noise in situations when only few

observations are available. Second, we employ an indirect approach showing that the more

precise size-adapted measures consistently increase the explainable part of yield spread

changes compared to standard liquidity measures.

2.3.2 Liquidity Measurement Bias During Fire Sales

In the previous section, we showed that our size-adapted liquidity measures are more pre-

cise due to a lower unsystematic measurement error. This advantage is relevant when

bonds trade scarcely and their changes in the trade-size pattern are mostly idiosyncratic.

However, during stress events when large investors are forced to sell their positions, the as-

sociated changes in average trade sizes become systematic and may lead to a measurement

bias in the standard liquidity measures.

To test this hypothesis, we use rating downgrades from investment grade to junk status

as a natural experiment. Ambrose, Cai, and Helwege (2008) and Ellul, Jotikasthira, and

Lundblad (2011) argue that insurance companies are forced to sell their bond positions

in such situations due to regulatory constraints. Bao, O’Hara, and Zhou (2018) find that

selling usually happens right after the downgrade event. Thus, the deterioration of the

downgraded bond’s liquidity should be accompanied by a strong increase in total trading

volume along with increased average trade sizes for sell trades. As larger trades pay lower

transaction costs, measuring liquidity with a standard measure could lead to a downward

bias and veil the increased illiquidity to an observer.

We follow Bao, O’Hara, and Zhou (2018) and define the downgrading day as the first

day on which one of the three major rating agencies S&P, Moody’s, or Fitch downgrades

an investment grade bond to a speculative grade rating of BB+/Ba1 or lower. We calculate
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the trading volume and the average trade size in the downgraded bond in the month after

the downgrade (including the downgrading day). We then compare the trading activity in

the downgrading month to the trading activity in the 30 days preceding the downgrade.

Panel A of Table 2.4 presents the changes in trading activity. We see a significant average

increase in the monthly trading volume of nearly 700%. Also, the average trade size

increases significantly by more than 200%. To test whether this change is the result of the

downgrade, we follow Bao, O’Hara, and Zhou (2018) in using bonds that are rated BB+

to BB- (Ba1 to Ba3) in the downgrading month and the month before the downgrade

as control group. As expected, there is no significant change in the trading volume or

the average trade size for the average bond in the control group. Finally, to see if rating

downgrades are associated with an increased selling pressure, we follow Bai and Collin-

Dufresne (2011) and use the percentage change in selling volume as a proxy of bond selling

pressure. Indeed, we observe a significant increase in selling volume of more than 800%

for the downgraded bonds and an insignificant change for the peer bonds. Interestingly,

the increased selling volume is accompanied by a significant increase in the average trade

size.

In Panel B, we look at the changes in liquidity during downgrade-induced fire sales

when measuring the liquidity with either the standard or the size-adapted measures of

Sections 2.2.2 and 2.2.3. As Anderson and Stulz (2017) argue, not all downgraded bonds

suffer from selling pressure as they are not necessarily held by investors who are required

to sell. We therefore restrict our sample to bonds with likely forced sells, for which we

require that selling volume in the downgrade month is greater or equal to, first, buying vol-

ume in the downgrade month and, second, selling volume in the month before. Third, we

require that selling turnover, i.e., selling volume normalized with the outstanding amount,

in the downgrade month is larger than median selling turnover in our full sample. We

then calculate the two standard liquidity measures and their size-adapted counterparts for

the month before and after the downgrade event. For comparability, we scale all measures

with their full sample mean. For both standard liquidity measures, the average difference

between the month before and after the downgrade is not significantly different from zero.

In contrast, our new size-adapted measures show, as expected, a significant increase in

transaction costs during the fire sale. Contrary to the expectation that transaction costs

increase after the stress event, the difference between the transaction cost change of the

downgraded bonds and the bonds in the peer group is (insignificantly) negative when

we employ standard measures. For both size-adapted measures, the same difference is

significantly positive, confirming hypotheses from theoretical models (see, e.g., Brunner-
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Table 2.4: Liquidity measurement bias during fire sales
This table reports changes in trading activity and in liquidity between the month before a bond
is downgraded from investment grade to junk status and the month starting with the downgrade
date. The downgrade date is set as the day for which the first acting rating agency, S&P,
Moody’s, or Fitch, rates a previously investment-grade rated bond as BB+/Ba1 or lower. For
each downgrading event, we construct a control group of bonds that have been rated BB/Ba
during the month before and the month starting with the downgrade event. In Panel A, we
show average percentage changes in total trading volume and in average trade size based on all
trades and based only on customer sell trades for the downgraded bonds and for the peer bonds
in the control group. In Panel B, we report changes in liquidity between the month before the
downgrade and the downgrade month for bonds which are likely to experience selling pressure
(see Section 2.3.2 for details). We measure liquidity using the standard or size-adapted Schultz
(2001) and average bid-ask spread measures. We also report the difference between the changes
of the downgraded bonds and the control group, as well as differences between the standard and
the size-adapted measures (diff-in-diff). To ensure comparability, we scale standard and size-
adapted measures by their sample mean. We winsorize changes in trading activity and liquidity
at the 1% and 99% level. Standard errors are clustered by firm and t-statistics are given in
parentheses. ** and * represent statistical significance at the 1% and 5% level.

Panel A: Changes in trading activity after a rating downgrade

All trades Sell trades

Trading volume Avg. trade Trading volume Avg. trade
(in %) size (in %) (in %) size (in %)

Downgraded 699.68** 237.72** 818.43** 233.85**
(4.99) (4.79) (4.40) (4.91)

Peer bonds -4.30 0.05 -3.98 -2.47
(-0.92) (0.02) (-0.75) (-0.88)

Observations 2,386

Panel B: Changes in liquidity during a fire sale

Schultz (2001) Average bid-ask spread

Standard Size-adapted Standard Size-adapted

Downgraded & 0.014 0.189* -0.073 0.165*
selling pressure (0.22) (2.33) (-1.33) (2.21)
Peer bonds 0.021* 0.041** -0.042** -0.023

(2.31) (2.77) (-3.19) (-1.84)

Difference to peer -0.007 0.148* -0.031 0.188*
(-0.10) (2.04) (-0.49) (2.58)

Diff-in-diff 0.155** 0.219**
(2.73) (2.78)

Observations 336 399
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meier and Pedersen, 2009). Lastly, the difference between the size-adapted measure and

the standard measure (difference-in-difference) is significant for both the average bid-ask

spread measure as well as the Schultz (2001) measure.

In summary, during stress events such as fire sales, the shift to a trading pattern with

larger trades leads to a downward bias in standard measures of liquidity and potentially

misleading conclusions regarding the true state of liquidity. As our size-adapted measures

explicitly take the trade-size pattern into account, they are not subject to this bias. They

could therefore help to reconcile the conflicting results whether post-crisis liquidity is lower

during stress events due to stricter regulation. Whereas Anderson and Stulz (2017) do not

find evidence for worse liquidity post-crisis using a battery of different liquidity measures,

Dick-Nielsen and Rossi (2019) and Bao, O’Hara, and Zhou (2018) find that liquidity after

stress events has decreased. Bao, O’Hara, and Zhou (2018) base their evidence mainly on

the Amihud (2002) measure, which is closely related to volatility and, for bond markets,

only relatively weakly correlated with transaction cost measures (see Schestag, Schuster,

and Uhrig-Homburg, 2016). Dick-Nielsen and Rossi (2019) develop their own measure

based on the returns of liquidity providing dealers.

2.4 The Pricing of Corporate Bond Liquidity

In this section, we analyze the effects of corporate bond liquidity and corporate bond

market liquidity risk on expected bond returns using our new measurement approach.

Previous studies find that investors are compensated for the individual level of a bond’s

transaction costs (see, e.g., Bao, Pan, and Wang, 2011). A second strand of the literature

shows that investors require a premium for a bond’s sensitivity to corporate bond market

illiquidity shocks (see, e.g., Lin, Wang, and Wu, 2011). Bongaerts, de Jong, and Driessen

(2017) analyze both effects jointly and find that only the level of liquidity but not corporate

bond market liquidity risk bears a premium. We aim to reexamine this question in this

section, exploiting the higher precision of our size-invariant measurement approach. From

an econometric perspective, a precise measurement of liquidity is important to disentangle

the effects of liquidity level and risk.

Because asset pricing results can depend on the construction of test assets (see, e.g.,

Lewellen, Nagel, and Shanken, 2010 and Ang, Liu, and Schwarz, 2020) and the estimation

of betas, we introduce four different specifications: Three portfolio sorts using different

criteria and one approach estimating the model on an individual bond basis. This exercise
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shows that the results using standard measures of liquidity are not robust to the chosen

approach. In contrast, when we use our more precise size-adapted measures, we can

consistently show that both individual bond liquidity and corporate bond market liquidity

risk are priced.

2.4.1 Asset Pricing Model

Acharya and Pedersen (2005) argue that liquidity level and risk should be analyzed jointly

due to the correlation of the two variables. In this spirit, Bongaerts, de Jong, and Driessen

(2017) propose an asset pricing model, in which both the exposure to systematic bond

market illiquidity shocks as well as the individual liquidity level can have an impact on ex-

pected bond returns. Additionally, they consider spill-over effects from the equity market.

We follow these authors and estimate the following asset pricing model. In the first step,

we regress the monthly realized excess returns rj,t on the risk factors equity market return

EQt, equity market illiquidity shocks EQLIQt, and corporate bond market illiquidity

shocks CBLIQt,

rj,t = β0
j + βEQ

j · EQt + βEQLIQ
j · EQLIQt + βCBLIQ

j · CBLIQt + εj,t, (2.7)

for each portfolio j. In the second step, we regress an estimate of monthly expected excess

returns E[rj,t+1] (see below) on the cross-section of risk sensitivities, which are estimated

on a rolling basis in the first step, and on the portfolios’ transaction cost estimates cj,t

E[rj,t+1] = λ0 + λEQ · βEQ
j,t + λEQLIQ · βEQLIQ

j,t + λCBLIQ · βCBLIQ
j,t + λc · cj,t + αj. (2.8)

We obtain market prices of the risk factors and the impact of liquidity level as the time

series averages of the monthly cross-sectional estimates for which we calculate Fama-

MacBeth standard errors.

We expect bond returns to decrease in times of equity market turmoils leading to

positive estimates for βEQ
j and a positive market risk premium λEQ. As increases in bond

market illiquidity should lead to decreasing bond returns, we expect negative estimates

for βCBLIQ
j in Equation (2.7). Further, if investors require a compensation for systematic

corporate bond market liquidity risk, more negative betas should lead to higher expected

returns, implying negative estimates for λCBLIQ. Given several possible mechanisms for

the influence of the equity market illiquidity on bond returns βEQLIQ
j , we have no ex-ante

expectation for its sign. In line with Amihud and Mendelson (1986), we expect a positive
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λc as illiquid bonds should compensate investors with higher returns.

2.4.2 Risk Factors, Returns, and Transaction Costs

For the time series regression (2.7), we calculate a bond’s realized return between the last

trading days in months t and t − 1. To obtain excess returns, we deduct the return of a

U.S. treasury bond having a maturity equal to the bond’s duration.18 For the equity risk

factors, we employ excess returns of the S&P 500 as equity market returns. We characterize

equity market liquidity using the Amihud (2002) liquidity measure and calculate its equally

weighted mean from all shares having a share code of 10 or 11 in CRSP.19 As it is common

practice, we exclude observations of extremely illiquid stocks, i.e., days without trading

and months having less than three days with positive trading volume. Further, we exclude

shares traded at NASDAQ20 and winsorize the monthly cross-section of individual liquidity

measures at the 5% and 95% level. Given the monthly aggregate Amihud (2002) liquidity

measure, we identify illiquidity shocks as residuals of the autoregressive model proposed

in Acharya and Pedersen (2005). Finally, we measure corporate bond market liquidity as

the average across all portfolios using one of the measures introduced in Section 2.2. Bond

market illiquidity shocks are then defined as the residuals of an autoregressive process with

two lags. For ease of comparability, we scale all risk factor innovations to have the same

standard deviation as the equity market excess returns.

In the cross-sectional regression (2.8), we use the forward-looking expected excess re-

turn measure of Bongaerts, de Jong, and Driessen (2017). They argue that the common

approach, using realized returns as a proxy for expected returns, leads to extremely noisy

estimates. We follow them and approximate forward-looking expected excess returns using

the bond’s yield corrected for the expected costs of default. This leads to

E[ri,t+1] = (1 + yi,t) · (1− L · πi,t)1/Ti,t − (1 + yrisk-free
i,t ), (2.9)

where we approximate bond i at time t with a zero coupon bond having a maturity equal

18We use updated data from Gürkaynak, Sack, and Wright (2007) available from the Federal Reserve
to calculate Treasury prices and returns.

19In a recent study, Lou and Shu (2017) show that the pricing of the Amihud (2002) price impact
measure in the stock market is not driven by price impact but rather by its trading volume component.
Therefore, we repeat our analyses in Section 2.4.4 using the high-low measure of Corwin and Schultz
(2012). We find that our results are robust to the choice of the stock market liquidity measure.

20Pástor and Stambaugh (2003) and Ben-Rephael, Kadan, and Wohl (2015) argue that the inflated
volume on NASDAQ would bias the Amihud (2002) measure.
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to its duration Ti,t. Further, we assume default losses to incur only at maturity, leading

to an expected return until maturity of (1 + yi,t)
Ti,t · (1−L · πi,t), where yi,t is the yield of

the bond, L gives the loss given default, and πi,t is the cumulative probability of default

(PD) over the bond’s remaining life. Lastly, we annualize the expected return and deduct

the yield of a risk-free U.S. Treasury bond having the same duration.

To calculate the cost of default, we assume a constant loss given default of 60%. We

use company-specific PDs from the Risk Management Institute (RMI) of the University

of Singapore (see Appendix A.1 for details on the matching of corporate bond data and

company-specific PDs). RMI publishes PDs for over 66,000 publicly traded companies

based on the forward intensity model of Duan, Sun, and Wang (2012). For more than

33,000 companies, these probabilities are calculated on a daily basis for a large spectrum

of maturities.21 RMI provides cumulative PDs for the maturities 1 month, 3 months, 6

months, 1 year, 2 years, 3 years, and 5 years. We use them to calculate (annualized)

conditional PDs for all possible periods (i.e., from 0 to 1 months, from 1 to 3 months,

...). Assuming a flat curve beyond 5 years, we can calculate the cumulative PD πi,t

corresponding to the bond’s duration Ti,t.

Finally, we calculate a bond’s monthly expected excess return E[ri,t+1] as the volume-

weighted average from all trades in month t. Regarding bond i’s transaction costs ci,t, we

use one of the standard or size-adapted liquidity measure from Section 2.2.22 We aggregate

returns and transaction costs to the portfolio level by calculating their equally weighted

mean.23

21See NUS-RMI (2016) for more details on the methodology. For a comparison of RMI’s PDs with
Moody’s expected default frequency (EDF) measure, see Berndt (2015).

22To ensure a tradeable strategy and to address concerns of a look-ahead bias, we estimate the market-
wide transaction cost function for our size-adapted measures based solely on the last quarter of 2004.
The liquidity measures based on this quarterly cost function exhibit a strong average cross-sectional
correlation to the full sample measures of 0.974 and 0.986 for the Schultz (2001) and the average bid-ask
spread measure, respectively. As a result, and consistent with the discussion in Section 2.2.3, the slight
variations in the transaction cost function have no major impact on the estimated scaling factors and we
verify that they do not alter our results in Section 2.4.4. Further, for comparability between the Schultz
(2001) and average bid-ask measure, we use only observations for which we can calculate both measures.

23We again winsorize realized and expected excess returns as well as transaction costs each month at
the 1% and 99% level.
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2.4.3 Four Different Specifications for the Construction of Test

Assets and the Estimation of Betas

Our first specification follows Daniel, Titman, and Wei (2001) and Bongaerts, de Jong,

and Driessen (2017) in their recommendation to sort by characteristics and factor betas

to guarantee sufficient variation across liquidity and liquidity beta in the portfolios. Thus,

we form triple-sorted portfolios based on the previous quarters’ credit quality, liquidity

level, and liquidity beta (see Appendix A.5 for details on the calculation of individual

liquidity betas). For the first stage, we proxy a bond’s credit quality with its average

rating and assign the bonds to three distinct portfolios (terciles). In the second stage, we

sort the bonds of each portfolio into liquidity terciles, which we approximate with their

amount outstanding. For the last stage, we further divide the bonds of the preceding

9 portfolios into liquidity beta quintiles. In total this sorting leads to 45 portfolios for

the Fama-MacBeth procedure. We estimate the betas of the time series regression (2.7)

using a rolling window of 24 backward-looking monthly observations (requiring at least 12

observations).

Given the contradictory findings of the literature so far, our second specification is

designed to be closely comparable to Bongaerts, de Jong, and Driessen (2017). Their

approach differs from our first specification in two distinctive features. First, Bongaerts,

de Jong, and Driessen (2017) increase the number of portfolios and allow that a bond is

assigned simultaneously to up to six portfolios. Second, to increase precision, betas are

estimated using a forward-looking kernel, which makes it impossible to collect the risk

premia with a tradeable strategy. Regarding the first feature, the authors use multiple

proxies for a bond’s credit quality and liquidity for the first and second stage of the triple

sorting. The sort on credit quality is either done using a bond’s average rating (AAA-A,

BBB, and BB-CCC) or its RMI 1-year cumulative PD (terciles). For the second sorting

stage, a bond is classified as liquid or illiquid using either its amount outstanding (median),

age (median), or number of trades (70% percentile). Using the different proxies for credit

risk and liquidity, a bond is simultaneously assigned to 6 portfolios. Given the 6 portfolios

of the two sorting steps, the number of portfolios then increases to 36. These portfolios are

finally split into a high-liquidity-beta and low-liquidity-beta category, leading to a total

number of 72 portfolios. Regarding the second feature, they run the time series regression

(2.7) using a two-sided (triangular) kernel for the rolling beta estimation. This tent-

shaped kernel is both forward- and backward-looking, with linearly decreasing weights up

to a maximum distance of 12 months relative to the current observation date. We require
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12 backward-looking observations and use a truncated form of the kernel for dates with

less than 12 future observations.

Further, we account for the suggestion in Lewellen, Nagel, and Shanken (2010) that

asset pricing tests should include additional portfolio sorts on other characteristics. In this

spirit, we introduce a third approach in which we sort bonds on their industry affiliation

in the previous quarter. We use the 4-digits GICS code of the bond’s issuer to ensure that

each portfolio includes a sufficient number of bonds. Finally, we test our asset pricing

model for individual bonds, given the argument in Ang, Liu, and Schwarz (2020) that

portfolio sorts render the estimation of risk premia inefficient due to a loss in cross-sectional

variation of the factor loadings. In both settings, we estimate the time series regression

(2.7) using a backward-looking rolling window of 24 months. Because many bonds do not

trade consecutively, we require for the individual bonds at least 12 observations.

2.4.4 Results

The results of the Fama-MacBeth regressions for all four specifications are reported in

Table 2.5. We start with examining corporate bond liquidity effects that are identified by

using the standard bond liquidity measures. The first and third column of Panel A display

results based on the first setting – the non-overlapping triple sort. We find a significantly

negative λCBLIQ in both specifications, which, in combination with the negative average

βCBLIQ, implies a positive corporate bond market liquidity risk premium.24 Moreover, we

find a positive liquidity level premium λc. These results contradict the significant level

and insignificant corporate bond market liquidity risk premium in Bongaerts, de Jong,

and Driessen (2017). Therefore, we run the Fama-MacBeth regressions again using their

measure of transaction costs based on a repeat-sales method.25 The results in specification

(5) show a significant bond market liquidity risk but insignificant level premium. Thus,

common measures show either a pricing of both liquidity level and risk or solely a pricing

of market liquidity risk.

Given the contradictory findings in the first setting, we proceed to the results of the

second setting in Panel B – the original approach of Bongaerts, de Jong, and Driessen

(2017) using overlapping portfolios. For both standard measures in specifications (1) and

(3), we now find a premium for corporate bond market liquidity risk but no premium for

24For summary and correlation statistics on expected excess returns, betas, and liquidity level, we refer
to Appendix A.6.

25For details, see Section 1.3 of Bongaerts, de Jong, and Driessen (2017).
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Table 2.5: Fama-MacBeth regression
This table reports time series averages of the monthly results from the cross-sectional Fama-
MacBeth regression (2.8). We estimate premia for equity market risk (λEQ), equity market
liquidity risk (λEQLIQ), corporate bond market liquidity risk (λCBLIQ), and individual bond
liquidity (λc). Specifications (1) and (3) use the standard measures, whereas (2) and (4) employ
their size-adapted counterparts. In specifications (5) and (6), transaction costs are calculated
with a standard and size-adapted repeat-sales method. Results in Panels A and B are based
on the non-overlapping and overlapping triple sorts. Panels C and D present the results for
the industry sort and the individual bonds (for details see Section 2.4.3). The Fama-MacBeth
t-statistics are calculated based on Newey and West (1987) standard errors with six lags and are
given in parentheses. ** and * represent statistical significance at the 1% and 5% level.

Panel A: Non-overlapping triple sort

Schultz (2001) Average bid-ask spread Repeat-sales

(1) (2) (3) (4) (5) (6)

Intercept 0.0036 -0.0010 0.0042 0.0001 0.0058 0.0015
(1.60) (-0.76) (1.36) (0.08) (1.68) (0.58)

λEQ 0.0583** 0.0538** 0.0594** 0.0530** 0.0613** 0.0606**
(4.75) (5.39) (4.89) (5.23) (5.05) (5.06)

λEQLIQ -0.0324** -0.0211** -0.0297** -0.0264** -0.0324** -0.0280**
(-3.54) (-3.14) (-3.34) (-4.26) (-3.75) (-3.38)

λStandard
CBLIQ -0.0393** -0.0447** -0.0309**

(-5.71) (-8.07) (-3.62)

λSize-adapted
CBLIQ -0.0493** -0.0449** -0.0388**

(-3.69) (-4.24) (-4.56)
λStandard

c 0.4315** 0.3601* 0.5577
(3.13) (2.54) (1.74)

λSize-adapted
c 0.0084** 0.0076** 0.0085**

(4.48) (4.92) (4.08)

R2
adj 69.8% 70.4% 70.8% 70.6% 72.1% 71.6%

Panel B: Overlapping triple sort

Schultz (2001) Average bid-ask spread Repeat-sales

(1) (2) (3) (4) (5) (6)

Intercept 0.0050 -0.0022 0.0059 0.0001 0.0041 -0.0040
(1.40) (-0.72) (1.56) (0.04) (1.37) (-1.05)

λEQ 0.0625** 0.0552** 0.0651** 0.0670** 0.0665** 0.0552**
(3.60) (3.21) (3.92) (5.07) (4.69) (3.70)

λEQLIQ -0.0365** -0.0444** -0.0290** -0.0338** -0.0307** -0.0294**
(-3.06) (-2.67) (-2.69) (-2.70) (-3.24) (-2.99)

λStandard
CBLIQ -0.0326** -0.0436** -0.0166

(-2.99) (-3.28) (-1.22)

λSize-adapted
CBLIQ -0.0526** -0.0469* -0.0447**

(-2.95) (-2.55) (-4.84)
λStandard

c 0.4769 0.4342 1.0603*
(1.51) (1.51) (2.47)

λSize-adapted
c 0.0122** 0.0076* 0.0153**

(3.12) (2.42) (3.95)

R2
adj 82.1% 82.6% 81.4% 80.7% 83.1% 84.2%
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Table 2.5 continued

Panel C: Industry sort

Schultz (2001) Average bid-ask spread Repeat-sales

(1) (2) (3) (4) (5) (6)

Intercept 0.0048* -0.0007 0.0086* 0.0000 0.0069* 0.0054
(2.13) (-0.36) (2.01) (0.01) (2.39) (1.47)

λEQ 0.0480** 0.0413** 0.0495** 0.0447** 0.0470** 0.0414**
(6.09) (5.51) (6.19) (6.01) (6.39) (5.20)

λEQLIQ -0.0178** -0.0152** -0.0208** -0.0148** -0.0184** -0.0166**
(-3.31) (-4.23) (-3.45) (-3.68) (-4.48) (-4.36)

λStandard
CBLIQ -0.0404** -0.0410** -0.0344**

(-4.11) (-4.38) (-3.17)

λSize-adapted
CBLIQ -0.0348** -0.0411** -0.0426**

(-2.79) (-3.03) (-3.05)
λStandard

c 0.4126* 0.2169 0.6426
(2.27) (0.95) (1.80)

λSize-adapted
c 0.0112** 0.0099** 0.0063*

(5.09) (4.72) (1.99)

R2
adj 70.9% 72.8% 70.6% 69.3% 71.7% 72.6%

Panel D: Individual bonds

Schultz (2001) Average bid-ask spread

(1) (2) (3) (4)

Intercept 0.0083** 0.0079** 0.0095** 0.0085**
(5.85) (6.11) (6.10) (6.92)

λEQ 0.0314** 0.0301** 0.0313** 0.0306**
(4.03) (3.70) (4.19) (4.27)

λEQLIQ -0.0154** -0.0153** -0.0151** -0.0155**
(-2.98) (-2.97) (-3.15) (-3.34)

λStandard
CBLIQ -0.0261** -0.0270**

(-3.21) (-3.53)

λSize-adapted
CBLIQ -0.0221** -0.0259**

(-2.70) (-3.02)
λStandard

c 0.4088** 0.3547**
(5.07) (4.48)

λSize-adapted
c 0.0061** 0.0047**

(6.61) (8.38)

R2
adj 41.3% 39.9% 38.9% 36.5%
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liquidity level. In contrast to the previous results but consistent with Bongaerts, de Jong,

and Driessen (2017), we find for the repeat-sales measure in (5) a significant level and an

insignificant corporate bond market liquidity risk premium. Again, common measures do

not yield a consistent pricing pattern.

Finally, as none of the preceding settings provides a stable pricing pattern, we examine

bond liquidity effects of the standard measures based on the third and fourth setting.

In Panel C, we show the results for the industry sort and in Panel D for the individual

bonds.26 Again, we find no consistent pricing pattern for the three measures. While the

Schultz (2001) measure in both settings and the average bid-ask spread in the fourth

setting indicate a pricing of both factors, the repeat-sales measure and the average bid-ask

spread in the third setting exhibit only a market liquidity risk premium. Summarizing,

none of the standard measures is able to identify a stable pricing pattern of corporate bond

liquidity level and risk across different approaches to form portfolios and to calculate betas.

While five specifications lead to the conclusion of a pricing of both liquidity effects, five

support only a significant market liquidity risk premium and one specification provides

evidence for just a liquidity level premium.

In contrast, if we measure bond market and individual bond liquidity with the size-

adapted measures of Section 2.2, we find a consistent pricing pattern. In all four panels

of Table 2.5, specifications (2) and (4) show a significantly negative λCBLIQ. In combina-

tion with the negative βCBLIQ, this implies a significantly positive corporate bond market

liquidity risk premium. Moreover, the significantly positive λc in all panels confirms a pos-

itive premium for the level of individual bond illiquidity. To support the finding that the

size-adaptation resolves the conflicting results, we further adapt the repeat-sales measure

with our new measurement approach.27 The size-adapted repeat-sales measures in speci-

fication (6) consistently show significant premia for both effects. Lastly, the intercepts in

all portfolio settings are insignificant as the theory predicts (see Bongaerts, de Jong, and

Driessen (2017) for a discussion). For the standard measures, this result holds only for

the two triple sorts. In the individual bond setting, potentially due to the noise in the

estimated betas, the intercepts are significant in all specifications. Notably, the estimates

decline absolutely across all settings when we employ our size-adapted liquidity measures.

In summary, estimating the asset pricing model using our new size-adapted approach

always leads to a significant premium for corporate bond market liquidity risk as well as

26Note that the repeat-sales measure is designed to calculate portfolio-wide transaction costs and is
not applicable to individual bonds.

27For details on the adaptation see Appendix A.7.
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for the individual liquidity level. It is interesting to note that the individual approach, in

contrast to the portfolio settings, comes to the same conclusion, independent of the choice

of the liquidity measure. On the one hand, our results thus support the recommendation

of Ang, Liu, and Schwarz (2020) to test asset pricing models using individual assets. On

the other hand, the scarce trading in the corporate bond market may render asset pricing

results based on an individual approach prone to a sample bias and lead to noisy risk

premia estimates. First, many bonds, particularly illiquid ones, are excluded when betas

are estimated individually. While our portfolio sorts on average incorporate information

of roughly 1,500 to 1,600 bonds per month, the individual approach covers only about

1,000 bonds on average. Second, on average, only about 25% of these bonds span the

full window of 24 observations when estimating their betas. Consequently, most betas

are exposed to strong estimation noise, causing the risk premia estimates (as product of

average beta and lambda estimate) to be noisy as well.

Using the results for the size-adapted measures in Panel A of Table 2.5 and the cross-

sectional average bond market liquidity beta βCBLIQ and transaction cost level c in Table

A.2 of Appendix A.6, we can quantify the market liquidity risk and level premium as

βCBLIQ ·λCBLIQ and c ·λc. The corporate bond market liquidity risk premium accounts for

an expected excess return of about 0.91% (0.77%) p.a. and the level premium is responsible

for an excess return of about 0.93% (0.83%) p.a. in case of the size-adapted Schultz (2001)

(average bid-ask spread) measure.

Aside the corporate bond liquidity effects, we consistently find a significant premium

for equity market risk and for equity market liquidity risk, confirming results of Bongaerts,

de Jong, and Driessen (2017). However, the importance of equity market-specific effects

compared to corporate bond liquidity effects varies strongly between settings employing

a standard measure and those employing the size-adapted counterpart. While the sum

of the equity effects of 1.20% and 1.15% dominate the sum of corporate bond effects of

0.57% and 0.61% for the standard Schultz (2001) and average bid-ask spread measure,

respectively, this relation is reversed when moving from standard to size-adapted liquidity

measures. Now, equity market-specific effects (0.99% to 1.00%) are much weaker than the

corporate bond market liquidity risk and level premium (1.60% to 1.84%).28 Interestingly,

the reduction in equity premia is mainly driven by the equity liquidity risk premium which

drops roughly by 30% to 50% when corporate bond liquidity is measured with the size-

adapted liquidity measures. Therefore, our new approach shows that the corporate bond

28These premia are based on the non-overlapping triple sort. In the other three settings, bond market
liquidity effects are also stronger than equity effects when liquidity is measured with our new approach.
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market-specific effects are responsible for the major share of premia in expected bond

excess returns.

2.5 Robustness

In this section, we perform two robustness checks. We first compare the explanatory power

of the alternative approaches to account for the larger transaction costs of small trades

with our size-adapted measures in the yield-spread setting of Section 2.3.1. Second, we

show that our asset pricing results are robust when using a parametric functional form

instead of the nonparametric version employed in the main analyses.

2.5.1 Simple Approaches to Account for Size-Dependence

A common approach in the literature to account for the volume-dependence of transac-

tion costs is to discard all trades below a threshold, which is in most cases $100,000. In a

similar spirit, some researches calculate volume-weighted averages so that liquidity mea-

sures effectively resemble the transaction costs of large trades when they are available. We

compare these two approaches to our size-invariant measurement approach.

To this end, we employ the yield-spread regressions from Section 2.3.1. Because yield

spreads are already calculated on a volume-weighted basis, we can evaluate the increase in

explanatory power for the size-weighted transaction cost measures immediately. Given the

relative improvement compared to the baseline regression of 7.7% and 19.3% for the size-

adapted measures in Table 2.3, volume-weighted transaction cost measures only lead to a

relative improvement of 4.0% and 8.8% (results not tabulated to conserve space). Thus,

the relative improvement of the simple, alternative approach is not only worse compared

to our new approach but is also lower than when employing the unadjusted standard

measures.

For the approach to discard trades below $100,000, we estimate Equation (2.6) for

a sample in which we calculate yield spreads and all control variables only from trades

with volumes of at least $100,000. Table 2.6 shows that the R2
adj using only trades of at

least $100,000 increases by 7.5% and 25.2% for the Schultz (2001) and average bid-ask

spread measure, respectively. To compare the standard approach based on all trades to

the approach of deleting small trades, we include a specification in which we calculate

transaction costs from all trades. In this setting, the relative improvements range between
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Table 2.6: Yield spread regressions: Trades with volumes ≥ $100,000
This table reports results for the panel regression model (2.6) explaining monthly yield spread changes based on trades with volumes
≥ $100, 000 with monthly changes in standard or size-adapted transaction cost measures. The control variables are trade size, number
of trades, and amount outstanding. We further employ rating dummies as a proxy for credit risk. Specifications (1) and (5) are the
baseline regressions that include only lagged yield spread changes and the control variables. In (2) and (6), we add standard transaction
cost measures based on trades with volumes ≥ $100, 000, while in (3) and (7) we add the measures based on all trade sizes. Finally,
(4) and (8) incorporate the size-adapted measures, which, by construction, employ all trade sizes. We winsorize yield spread and
transaction cost changes at the 1% and 99% level. Standard errors are clustered monthly and by bond. We test for differences between
out-of-sample mean squared errors (MSE) using the test statistic proposed by Harvey, Leybourne, and Newbold (1997). Comparing
R2
adj or MSE, we first compare a specification to the baseline and second to its preceding specification. The t-statistics are given in

parentheses. ** and * represent statistical significance at the 1% and 5% level.

Schultz (2001) Average bid-ask spread

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept 0.0083 0.0084 0.0088 0.0090 0.0192 0.0198 0.0208 0.0211
(0.32) (0.32) (0.34) (0.35) (0.51) (0.54) (0.58) (0.60)

∆(Yield spread)i,t−1 0.1156 0.1152 0.1156 0.1158 0.1562* 0.1562* 0.1543* 0.1553*
(1.82) (1.82) (1.82) (1.83) (2.16) (2.18) (2.19) (2.26)

∆(Standard measure)i,t 6.3869** 8.3854** 22.1686** 23.1594**
(5.61) (6.75) (5.67) (6.11)

∆(Adapted measure)i,t 0.1037** 0.2175**
(5.46) (5.60)

∆(Trade size)i,t -0.0110** -0.0056 -0.0036 -0.0133** -0.0186** 0.0014 -0.0011 -0.0238**
(-3.18) (-1.39) (-0.87) (-4.30) (-3.93) (0.20) (-0.17) (-5.51)

∆(Trades)i,t 0.0227** 0.0206** 0.0236** 0.0217** 0.0350** 0.0300** 0.0348** 0.0318**
(5.55) (5.41) (5.70) (5.53) (5.13) (4.94) (5.34) (5.12)

∆(Amount outstanding)i,t -0.0366 -0.0342 -0.0213 -0.0224 -0.2642 -0.2549 -0.2588 -0.2464
(-0.49) (-0.45) (-0.28) (-0.30) (-1.50) (-1.43) (-1.48) (-1.44)

∆(Rating dummies)i,t Yes Yes Yes Yes Yes Yes Yes Yes

R2
adj 0.0571 0.0614 0.0647 0.0693 0.0536 0.0671 0.0714 0.0833

∆(R2
adj) 7.5% 13.3%/5.4% 21.4%/7.1% 25.2% 33.2%/6.4% 55.4%/16.7%

MSE 0.682 0.679 0.676 0.673 1.403 1.380 1.372 1.350
∆(MSE) -0.4%** -0.9%**/-0.4%** -1.3%**/-0.4%** -1.6%** -2.2%**/-0.6%** -3.8%**/-1.6%**

(5.51) (7.42)/(3.58) (7.98)/(4.20) (9.92) (11.56)/(3.11) (12.73)/(6.70)

Observations 271,235 255,29441
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13.3% and 33.2%. Once again, the size-adapted versions lead to the highest improve-

ments of 21.4% and 55.4%.

Summarizing, both alternative approaches fail to better capture liquidity induced shifts

in a bond’s yield spread compared to our size-invariant measurement. Interestingly, both

approaches even lead to worse explanatory powers than the standard equally-weighted

transaction cost measures. These results show that the information in small trades is

valuable and can be best exploited with our new approach.

2.5.2 Parametric Estimation of the Market-Wide Cost Function

A precise estimation of the market-wide transaction cost function is crucial for our ap-

proach. Besides the presented nonparametric estimation of Section 2.2.1, it is also possible

to estimate the cost function with a parametric functional form. A parametric approach

is easier to implement and faster to compute. Thus, we reexamine our findings on the

corporate bond liquidity effects of Section 2.4 with size-adapted liquidity measures based

on a parametric functional form.

Following Edwards, Harris, and Piwowar (2007), we employ the following parametric

functional form to calculate transaction costs c(vol) for a trade with volume vol:

c(vol) = c0 +
c1

vol
+ c2 · ln(vol) + c3 · vol + c4 · vol2 + c5 · vol3, (2.10)

where ci ∈ R for i = 0, . . . , 5. Using this parametric function, we run the iterative two-

stage weighted regressions described in Sections 2.2.2 and 2.2.3. The resulting transaction

cost functions are depicted in Figure 2.5. Consistent with the nonparametric results of

Figure 2.2, we find a monotonically decreasing relation for trade sizes up to about $3

million and an increase for very large trades. However, the parametric forms suffer from

a slightly oscillating pattern above $1 million.

We employ the size-adapted measures based on the parametric cost function for our

asset pricing tests. Across all four different settings in Table 2.7, we find a significantly

positive corporate bond market liquidity risk and liquidity level premium for both the

Schultz (2001) and the average bid-ask spread measure. These results are confirmed when

adapting the repeat-sales measure of Section 2.4.4 using a parametric cost function. Thus,

the parametric size-adapted measures consistently imply that both corporate bond market

liquidity risk and liquidity level are priced.
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Figure 2.5: Parametric transaction cost functions of U.S. corporate bonds
The figure depicts parametric transaction cost functions for the size-adapted Schultz (2001)
measure (orange solid line) and the size-adapted average bid-ask spread measure (blue dashed
line). They are based on the parametric functional form

c(vol) = c0 +
c1

vol
+ c2 · ln(vol) + c3 · vol + c4 · vol2 + c5 · vol3.

The estimation procedure is described in Section 2.5.2.

2.6 Conclusion

In this chapter, we address the problem that common transaction cost measures for the

bond market do not account for the fact that trading costs of small trades are typically

much larger compared to large trades. We develop a simple two-stage liquidity measure-

ment approach that accounts for the size dependence and aggregates trading costs from

all trade sizes into one single value. Our approach is easily implementable, applicable to

a broad variety of liquidity measures, and has no influence on a measure’s data require-

ments. In this spirit, we adapt two standard measures of transaction costs, the Schultz

(2001) and the average bid-ask spread measure, to our new approach.

Eliminating the dependence on changes in the average trade size leads to more precise

measures of a bond’s liquidity. Our new approach reduces the unsystematic noise in

the liquidity estimates of scarcely traded bonds. We verify the lower estimation noise

by examining the measures’ capability to explain the embedded liquidity premium in

corporate bond yield spreads. Lastly, in fire sale situations when changes in the average

trade size become systematic, our size-adapted measures are able to detect the liquidity

deterioration which standard measures fail to identify.

Finally, we examine the impact of our new liquidity measures on the asset pricing impli-
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Table 2.7: Fama-MacBeth regression: Parametric transaction cost function
This table reports time series averages of the monthly results from the cross-sectional Fama-
MacBeth regression (2.8). We use the size-adapted Schultz (2001) and average bid-ask measures
based on the parametric functional form of Section 2.5.2 to calculate transaction costs. Addition-
ally, we employ in the same way a size-adapted repeat-sales method. We present results for the
overlapping and non-overlapping triple sort, the industry sort, and individual bonds (all settings
are described in Section 2.4.3). The Fama-MacBeth t-statistics are calculated based on Newey
and West (1987) standard errors with six lags and are given in parentheses. ** and * represent
statistical significance at the 1% and 5% level.

Non-overlapping triple sort Overlapping triple sort

Schultz Avg. bid-ask Repeat- Schultz Avg. bid-ask Repeat-

(2001) spread sales (2001) spread sales

Intercept -0.0003 0.0006 0.0011 -0.0017 0.0007 -0.0025

(-0.20) (0.26) (0.43) (-0.55) (0.20) (-0.70)

λEQ 0.0556** 0.0538** 0.0560** 0.0558** 0.0653** 0.0533**

(5.34) (4.61) (5.59) (3.34) (4.60) (3.29)

λEQLIQ -0.0230** -0.0275** -0.0229** -0.0438** -0.0282* -0.0320**

(-3.29) (-4.41) (-3.89) (-2.78) (-2.53) (-3.04)

λSize-adapted
CBLIQ -0.0497** -0.0434** -0.0402** -0.0510** -0.0459* -0.0517**

(-4.20) (-4.45) (-3.67) (-3.03) (-2.36) (-4.38)

λSize-adapted
c 0.0078** 0.0082** 0.0090** 0.0115** 0.0092* 0.0138**

(3.89) (4.92) (4.00) (2.78) (2.45) (3.68)

R2
adj 70.2% 70.9% 72.2% 81.8% 81.7% 84.0%

Industry sort Individual bonds

Schultz Avg. bid-ask Repeat- Schultz Avg. bid-ask

(2001) spread sales (2001) spread

Intercept -0.0004 -0.0001 0.0059 0.0078** 0.0080**

(-0.19) (-0.07) (1.58) (5.89) (6.18)

λEQ 0.0415** 0.0436** 0.0437** 0.0299** 0.0301**

(5.58) (5.85) (5.27) (3.80) (4.16)

λEQLIQ -0.0145** -0.0133** -0.0180** -0.0150** -0.0154**

(-3.72) (-3.04) (-5.06) (-3.02) (-3.27)

λSize-adapted
CBLIQ -0.0356** -0.0422** -0.0422** -0.0234** -0.0275**

(-2.91) (-3.23) (-3.20) (-2.79) (-2.96)

λSize-adapted
c 0.0109** 0.0104** 0.0071* 0.0061** 0.0055**

(4.80) (4.33) (2.53) (6.58) (7.56)

R2
adj 72.7% 70.3% 78.1% 39.9% 37.8%
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2.6. Conclusion

cations of corporate bond market liquidity risk and individual liquidity level for expected

corporate bond excess returns. Using established standard measures of the literature, we

show that they lead to inconsistent pricing patterns and that results depend critically

on the portfolio selection and beta estimation approach. In contrast, when using the

size-adapted liquidity measures, bonds with higher transaction costs or with a stronger

sensitivity to corporate bond market liquidity consistently earn higher expected excess

returns. This finding does not depend on the construction of test assets and the beta

estimation procedure. Thus, our new measurement approach uncovers that U.S. corpo-

rate bonds pay a liquidity premium for both their individual liquidity and their exposure

to market-wide bond liquidity risk. Given the economically large size of these premia,

investors should consider both effects for their optimal portfolio choice.
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Chapter 3

Expected Bond Liquidity

3.1 Introduction

A basic principle of financial economics is that expectations about future market condi-

tions influence decisions. Because liquidity is an elusive concept and the literature has

found multifaceted relations with other market factors, forming expectations about future

liquidity is difficult. In the absence of a generally accepted forecasting approach, market

participants are left alone to aggregate and extrapolate the available information when

they assess future liquidity. For example, investors require the liquidity at the future time

of sale to evaluate the expected payoff of a trading strategy. Regulators and central banks

monitor the expected development of liquidity very closely to take timely countermeasures.

Finally, issuing companies react to their bonds’ expected liquidity deteriorations to avoid

distress arising from worsening refinancing conditions (see, e.g., He and Xiong, 2012).

We are not aware of a (sophisticated) forecasting model for individual bond liquidity

in the academic literature.29 Instead, researchers employ the näıve assumption that a

bond’s liquidity today is the best estimator for its liquidity tomorrow. We fill this gap and

introduce a forecasting model for individual bond liquidity. Our objective is to employ

the information available to a contemporary forecaster to most precisely estimate a bond’s

liquidity in the month ahead. To this end, we exploit the large pool of drivers of liquidity

from the literature and dynamically select each month the subset of predictors that offers

the best predictive power given the current information set.

29Forecasting liquidity at the market level, Boyarchenko, Giannone, and Shachar (2019) find that
autoregressive models are hard to beat.
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Our forecasting procedure combines elements from machine learning with the trans-

parency of a simple linear model. In each month, our algorithm performs the following

steps based on a rolling window of the previous twelve months. First, we use three different

approaches to select the predictor variables that have the strongest forecasting power for

the most recent past. We use elastic net, a variant of stepwise regression, and a method

that relies on significant relations within the calibration window. We then calibrate a

simple linear model to the selected variables. To further increase the predictive accuracy,

we combine the forecasts from the three selection approaches to an average forecast (see,

e.g., Rapach, Strauss, and Zhou, 2010). We implement the prediction model on the U.S.

corporate bond market for the simple average bid-ask spread measure of Hong and Warga

(2000) using transaction data from Enhanced TRACE for the period from October 1, 2004

to June 30, 2017. Note that the procedure can be easily applied to any liquidity measure

and we consider a more advanced liquidity measure in the robustness section.

We evaluate the performance of the new prediction model relative to the literature’s

näıve approach on the basis of a direct and an indirect comparison. First, we compare

the forecasting errors in an out-of-sample setting for our forecasting model and the näıve

prediction. We find that our new model outperforms the näıve prediction model in every

month of our observation period from 2004 to 2017. Interestingly, the largest performance

improvements occur during the financial crisis. Overall, our forward-looking approach re-

duces the average forecasting error by about 19%. Second, in the indirect comparison, we

show that the predictions of our new model better explain the premium for expected liq-

uidity in corporate bond yields. We exploit Amihud and Mendelson’s (1986) finding that

investors require higher expected returns for assets that trade at higher (future) transac-

tion costs. Following their guidance, we regress, in a panel setting, monthly yield-spread

changes on changes in expected liquidity and a set of control variables. We compare the

results of this analysis using expected liquidity from our forecasting model with the results

when using the näıve assumption that a bond’s liquidity today is the best estimator for

its liquidity tomorrow. We find a much higher sensitivity of yield spreads to expected

liquidity combined with a higher explanatory power when we use our sophisticated model.

The about seven times higher sensitivity of yield spreads to changes in expected liquid-

ity indicates that a näıve approach strongly underestimates the influence of liquidity on

financing costs.

Finally, we leverage the forward-looking nature of our approach and shed light on the

strategic behavior of investors in corporate bond funds. When selling their shares, in-

vestors in mutual funds usually receive the net asset value as of the time of sale. Costly
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portfolio readjustments, however, happen at a later date and lead to negative externali-

ties for the investors who stay in the fund. The resulting first-mover advantage can lead

to ‘runs’ on the fund similar to bank runs. Consequently, flows out of poorly perform-

ing funds are exacerbated when the funds’ portfolio is illiquid (Goldstein, Jiang, and Ng,

2017). Given this background, we analyze whether investors anticipate liquidity deterio-

rations and incorporate this information into their redemption decisions. To discriminate

between investors who react to observed liquidity and those that actively form expecta-

tions, we regress, in a panel setting, monthly corporate bond fund flows on a fund’s current

liquidity and its expected liquidity change. For funds with a negative performance, we

find evidence consistent with investors indeed acting on expected liquidity deteriorations.

This anticipation channel reinforces the established effect that investors oversell poorly

performing funds with currently illiquid holdings. Intuitively, both effects become more

pronounced if a fund’s performance gets worse.

We do not claim that market participants have formed their expectations in exact

accordance with our prediction model, and we concede that their prediction approaches

may even work better. However, market participants’ forecasts are likely correlated with

our predictions. Indeed, our results indicate that the forecast of the marginal investor

is correlated stronger with our prediction than with a bond’s current liquidity as the

näıve prediction. This finding contrasts the practice in the literature to employ a bond’s

current liquidity when, formally, expected liquidity is required. For example, in asset

pricing applications on bond liquidity, essentially all papers use a bond’s current liquidity

(see, e.g., Bao, Pan, and Wang, 2011; Friewald, Jankowitsch, and Subrahmanyam, 2012;

Dick-Nielsen, Feldhütter, and Lando, 2012; Bongaerts, de Jong, and Driessen, 2017).30

Moreover, our robustness test using a different forecasting methodology based on a random

forest model reveals that our findings do not depend on the exact procedure used to

calculate forecasts.

The remainder of the chapter is structured as follows. In Section 3.2, we start with

presenting the pool of our candidate predictors in Section 3.2.2 and then introduce our

dynamic forecast approach in Section 3.2.3. We evaluate the forecast performance of our

new approach in Sections 3.2.4 and 3.2.5. Section 3.3 examines strategic decisions on

early redemptions of bond fund investors when a struggling fund’s liquidity is expected to

deteriorate. We conclude in Section 3.5.

30Some papers argue that (market) liquidity follows an AR-1 process (see, e.g., Amihud, 2002). If an
AR-1 process is the best model to describe liquidity movements, today’s liquidity contains all information
and could be used as proxy for tomorrow’s expected liquidity. Our results indicate that this is not the
case.
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3.2 Predicting Bond Liquidity

In this section we introduce our liquidity prediction approach. We identify a set of can-

didate predictor variables for which a close connection with bond liquidity has been doc-

umented in the literature. For each point in time, our forecasting algorithm selects from

this set of candidates the variables that have the highest predictive power in the most

recent past. Our goal is to find the best-performing model from the perspective of a con-

temporary observer, mitigating the impact of a look-ahead bias that would arise if the

variables were selected based on full-sample information. We compare the performance of

our prediction model with a näıve benchmark model assuming a bond’s liquidity in the

next month is unchanged from today. Such a näıve forecast is exactly what researchers

implicitly do when they use the currently prevailing liquidity in their applications instead

of the expected liquidity actually required. Hence, we also examine whether our measure

for predicted liquidity is able to better explain changes in bond yield spreads compared to

the näıve approach.

3.2.1 Data and Liquidity Measure

Our analysis is based on bond transaction data from Enhanced TRACE from October 1,

2004 to June 30, 2017 (see Appendix B.1 for details). Bond characteristics, rating histories,

and outstanding amounts are from Reuters Eikon and Bloomberg. We implement our

liquidity forecast for the commonly used average bid-ask spread measure of Hong and

Warga (2000) and for the more advanced liquidity measure of Chapter 2 that incorporates

the dependence of transaction costs on trade size in the robustness section. The average

bid-ask spread for bond i in month t can be calculated as

AvgBidAski,t = Avg

 P buy
i,d − P sell

i,d

0.5 ·
(
P buy
i,d + P sell

i,d

)
 , (3.1)

where P
buy/sell
i,d is the average of all buy or sell trades in bond i on day d.
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3.2.2 Drivers of Liquidity

Despite bond liquidity being persistent (see, e.g., Chordia, Sarkar, and Subrahmanyam,

2005; Acharya, Amihud, and Bharath, 2013), a large body of empirical literature shows

that it varies predictably over the lifetime of a bond. Early studies find that bonds are

typically most liquid directly after issuance and get more illiquid when they age (see, e.g.,

Warga, 1992; Hong and Warga, 2000). Bonds with a higher outstanding amount and bonds

that trade more frequently have lower transaction costs (see, e.g., Edwards, Harris, and

Piwowar, 2007; Bao, Pan, and Wang, 2011; Jankowitsch, Nashikkar, and Subrahmanyam,

2011). Riskier bonds with a higher duration and more credit risk are typically less liquid

than comparable bonds with lower risks (see, e.g., Mahanti, Nashikkar, Subrahmanyam,

Chacko, and Mallik, 2008; Hotchkiss and Jostova, 2017). Chordia, Roll, and Subrah-

manyam (2000) show for the stock market that individual trading costs move together

with market and sector specific trading costs. Liquidity is also related to broader mea-

sures of market functioning. For example, Chordia, Sarkar, and Subrahmanyam (2005)

and Goyenko and Ukhov (2009) identify bond market performance, volatility, order im-

balance, and spillover effects from the stock market as driving factors of bond market

liquidity. Additionally, these authors find that macroeconomic variables such as monetary

policy, inflation, or industrial production have a significant connection to liquidity.31

Based on this literature, we build our set of candidate predictors to forecast next

period’s bid-ask spreads ̂AvgBidAski,t+1. Given the high persistence of individual and

market liquidity, we naturally include a bond’s bid-ask spread in the current month t. Be-

cause many bonds trade very infrequently leading to potentially noisy liquidity measures,

we additionally include the moving average of the liquidity measure from the previous

twelve months. As liquidity and its standard deviation are closely related (Dick-Nielsen,

Feldhütter, and Lando, 2012), we also consider the standard deviation of the daily bid-ask

spread measure. Next, we include a bond’s age, its duration, and its (log-transformed)

outstanding amount.32 We capture trading activity with the logarithms of the average

trade size and the total trading volume. Following Chordia, Sarkar, and Subrahmanyam

(2005), we incorporate a bond’s monthly return and order imbalance as possible predic-

31We do not consider bond characteristics that usually do not change during a bond’s life such as
the coupon, the original time-to-maturity, embedded options, or industry effects (see, e.g., Edwards,
Harris, and Piwowar, 2007; Hotchkiss and Jostova, 2017; Jankowitsch, Nashikkar, and Subrahmanyam,
2011; Mahanti, Nashikkar, Subrahmanyam, Chacko, and Mallik, 2008). We capture the effects of such
time-invariant variables through a bond’s lagged liquidity.

32Note that our data for amount outstanding from Reuters Eikon includes reopenings, repurchases,
and other (early) redemptions.
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tors. We measure bond order imbalance as the difference between a bond’s buying and

selling dollar volume normalized with total trading volume. Regarding credit risk, we use

the average numerical bond rating of the three rating agencies S&P, Moody’s, and Fitch33

and the five-year CDS spread from Markit.

Given the strong commonality of individual liquidity with market-wide liquidity, we

include aggregate corporate bond market liquidity. We measure monthly market liquidity

as the equally-weighted average bid-ask spread across all bonds in the sample. Before

aggregating, we winsorize spreads at the 1% and 99% levels. In the spirit of Chordia,

Roll, and Subrahmanyam (2000), we include a more granular aggregate liquidity measure,

which is motivated by the fact that bonds with similar characteristics might be driven

by the same market forces as they are to some extent substitutes to each others. To

this end, we perform an independent triple sort in each month. Each portfolio represents

a bond segment and we use the average portfolio bid-ask spread for each bond in the

portfolio as candidate predictor. We follow Bongaerts, de Jong, and Driessen (2017) and

Downing, Underwood, and Xing (2005) by sorting on a bond’s average rating (quartiles),

on its amount outstanding (terciles), and on its time to maturity (terciles), leading to 36

different segments.34

Following Goyenko and Ukhov (2009), we include short- and long-term market returns

using the one-month and twelve-month return of the Barclay’s U.S. corporate bond index.

We also employ market volatility and order imbalance (see Chordia, Sarkar, and Subrah-

manyam, 2005). We capture bond market volatility via CBOE’s 10-year U.S. treasury note

volatility index (TYVIX) and via the annualized realized volatility of Barclay’s U.S. cor-

porate bond index within month t. Market order imbalance is calculated as the difference

between monthly aggregate buying and selling dollar volume normalized with total trading

volume. Considering spillover effects from the equity market, we use the one-month and

twelve-month return of the S&P 500. We also include equity market volatility via CBOE’s

volatility index (VIX) as well as equity market liquidity.35 Following common practice,

we use the Amihud (2002) price impact measure to approximate equity market liquidity.36

33We transform the ratings to integer numbers (AAA: 1, ... D: 22).
34As a robustness check, we also test a dependent version of the triple sort in which we first sort on

rating, then on amount outstanding, and last on time to maturity. Additionally, we test an alternative
ordering following Downing, Underwood, and Xing (2005) and sort on time to maturity, rating, and finally
on the amount outstanding. In both settings, results remain qualitatively the same.

35We do not include stock market order imbalance due to data limitations.
36We calculate a monthly measure as the equally-weighted mean from all stocks with share codes of

10 and 11 in CRSP. We exclude observations on days without trading and require at least three days
with positive trading volume per month in a stock. Further, we exclude shares traded at NASDAQ and
winsorize the monthly cross-section of individual Amihud (2002) measures at the 5% and 95% level.
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Regarding broader (macro) economic factors, we include the inflation rate using data from

the OECD as well as the one-month and six-month TED spread, the federal funds rate

to approximate monetary policy, and yearly industrial production growth using data from

the Federal Reserve Bank of St. Louis.37

We report descriptive statistics for our set of candidate predictor variables in Table

3.1. Panel A shows average cross-sectional statistics for the variables with both time-

series and cross-sectional variation. The average bond has a bid-ask spread of 1.3%, a

monthly return of 0.5%, an age of roughly four years, and a duration of roughly six years.

Regarding trading activity, the average bond has a log-transformed total trading volume of

17.6 (corresponding to about $45 million) and exhibits a slightly negative order imbalance.

Regarding credit quality, the average bond has a rating of about 8 (corresponding to

BBB+) and a credit default swap spread of 1.7% p.a. Overall, all variables show a strong

variation in the cross-section. Panel B reports time series statistics for our market and

macroeconomic variables. For both bond and equity market liquidity, the 95%-percentile

shows that during crises, market-wide trading costs and price impact have been about

two times as large as on average. Corporate bond and equity markets generate an average

yearly return of about 5% and 9% during our sample period. In aggregate, the bond market

exhibits a slightly negative order imbalance. Regarding macroeconomics, the average

inflation rate is about 2% and industrial production growths by roughly 0.7% per year.

Again, all variables show a strong variation.

Table 3.2 presents correlations for our set of candidate predictors. We additionally

include next month’s liquidity to get a first insight on which variables might have predictive

power. As expected, we observe a strong correlation of 0.71 between current liquidity and

next month’s liquidity. The high persistence is also confirmed by the correlation of 0.73

between next month’s liquidity and the moving average of the previous twelve months.

This finding shows that a näıve forecast of future liquidity using current liquidity is not

a bad starting point. However, there are several other variables that also show a strong

correlation with next month’s liquidity. Especially the trading activity variables exhibit

a promising relation. Consistent with the literature, we find that a higher average trade

size and a higher total trading volume are associated with lower bid-ask spreads. Also as

expected, we find a negative correlation of -0.43 between outstanding amount and next

month’s liquidity and confirm the well-known negative relation between credit quality and

future liquidity (see He and Xiong, 2012). Consistent with our ex-ante expectation that

37Note that data on inflation and industrial production becomes available with a time lag of one month.
Thus, we lag these two variables by one month.
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Table 3.1: Descriptive statistics for candidate predictors
This table shows descriptive statistics for the set of candidate predictors (see Section 3.2.2). In
Panel A, we report average cross-sectional statistics for transaction cost variables, bond char-
acteristics, trading activity, and credit quality variables that have both time-series and cross-
sectional variation. To this end, we first calculate each month the cross-sectional statistics and
then average over time. In Panel B, we report time series statistics for the predictor variables on
the bond market, the equity market, and the broader economic environment. We measure bond
liquidity using the average bid-ask spread measure.

Panel A: Variables with time-series and cross-sectional variation

Mean Std. dev. Q5% Q25% Q50% Q75% Q95%

Current liquidity (%) 1.30 1.22 0.05 0.42 0.96 1.87 3.65
12-month mov. avg. Liquidity (%) 1.32 1.02 0.19 0.54 1.06 1.89 3.29
Segment liquidity (%) 1.29 0.67 0.44 0.81 1.13 1.67 2.65
Volatility of liquidity (%) 0.49 0.61 0.00 0.01 0.32 0.72 1.67

Bond return (%) 0.48 2.88 -3.35 -0.59 0.39 1.49 4.52
Age (years) 4.30 3.71 0.43 1.73 3.43 5.77 11.81
Duration (years) 6.07 4.64 0.57 2.47 4.87 8.34 15.51
Amount outstanding (log USD) 19.19 1.65 15.84 18.23 19.64 20.35 21.23

Average trade size (log USD) 12.36 1.51 9.65 11.20 12.74 13.53 14.27
Total trading volume (log USD) 17.63 2.26 13.41 16.10 18.16 19.31 20.56
Bond order imbalance (%) -0.61 35.05 -65.43 -16.95 -0.41 16.14 62.43

Rating (1: AAA,..., 22: D) 7.75 3.40 2.42 5.52 7.38 9.74 14.19
CDS spread (%) 1.73 3.14 0.28 0.47 0.84 1.68 6.12

Panel B: Variables with time-series variation

Mean Std. dev. Q5% Q25% Q50% Q75% Q95%

Bond market liquidity (%) 1.29 0.48 0.73 0.86 1.29 1.55 2.24
1-month bond market return (%) 0.43 1.62 -1.84 -0.45 0.45 1.37 2.77
12-month bond market return (%) 5.44 6.43 -4.26 1.65 5.14 8.15 18.68
Bond market order imbalance (%) -0.64 2.29 -4.28 -1.90 -0.60 0.86 2.54
Bond market volatility (%) 4.79 1.80 2.75 3.52 4.34 5.72 8.31
TYVIX (%) 6.30 1.93 4.30 4.92 5.66 7.03 10.49

Stock market liquidity 0.042 0.018 0.022 0.028 0.040 0.050 0.074
1-month stock market return (%) 0.76 4.02 -7.03 -1.49 1.27 3.27 6.78
12-month stock market return (%) 9.38 15.99 -32.57 4.91 12.11 17.37 30.20
VIX (%) 19.00 8.98 11.26 13.43 16.19 21.61 36.53

Inflation (%) 2.06 1.47 -0.20 1.15 1.99 3.17 4.31
1-month TED spread (%) 0.38 0.46 0.12 0.16 0.20 0.36 1.40
6-month TED spread (%) 0.52 0.39 0.23 0.28 0.35 0.60 1.31
Federal funds rate (%) 1.36 1.86 0.08 0.12 0.19 2.39 5.25
Industrial production growth (%) 0.69 4.70 -11.63 -0.84 2.26 3.25 5.31
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Table 3.2: Liquidity and candidate predictor correlation matrix
This table reports correlations for next month’s bond liquidity and the candidate predictors (see Section 3.2.2) based on panel data.
We measure bond liquidity using the average bid-ask spread measure.

Next Current 12-month Segment Volatility Bond Age Duration Amount Average Total Bond Rating CDS Bond

month’s liquidity liquidity liquidity of return outstanding trade trading order spread market

liquidity liquidity size volume imbalance liquidity

Next month’s liquidity 1 0.71 0.73 0.63 0.40 0.00 0.17 0.32 -0.43 -0.48 -0.31 -0.01 0.09 0.27 0.36

Current liquidity 1 0.75 0.65 0.47 0.02 0.17 0.31 -0.43 -0.50 -0.32 -0.03 0.09 0.28 0.37

12-month liquidity 1 0.69 0.39 0.07 0.24 0.34 -0.54 -0.60 -0.40 0.00 0.10 0.28 0.37

Segment liquidity 1 0.32 0.05 0.10 0.41 -0.62 -0.55 -0.50 -0.02 0.11 0.23 0.56

Volatility of liquidity 1 0.03 0.08 0.20 -0.04 -0.11 0.04 -0.01 0.19 0.28 0.28

Bond return 1 0.02 0.04 -0.02 0.00 0.00 -0.05 0.04 0.00 0.05

Age 1 -0.02 -0.12 -0.13 0.00 0.01 0.09 0.09 0.00

Duration 1 -0.08 -0.06 -0.03 -0.01 -0.07 -0.04 -0.02

Amount outstanding 1 0.81 0.89 0.00 0.00 -0.12 -0.24

Average trade size 1 0.80 0.01 0.15 0.01 -0.22

Total trading volume 1 0.01 0.10 0.06 -0.17

Bond order imbalance 1 0.01 0.00 -0.01

Rating 1 0.50 -0.05

CDS spread 1 0.20

Bond market liquidity 1

Bond market return (1m)

Bond market return (12m)

Bond market order imbalance

Bond market volatility

TYVIX

Stock market liquidity

Stock market return (1m)

Stock market return (12m)

VIX

Inflation

TED spread (1m)

TED spread (6m)

Federal funds rate

Industrial production growth55
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Table 3.2 continued

Bond Bond Bond market Bond TYVIX Stock Stock Stock VIX Inflation TED TED Federal Industrial

market market order market market market market spread spread funds production

return (1m) return (12m) imbalance volatility liquidity return (1m) return (12m) (1m) (6m) rate growth

Next month’s liquidity 0.01 -0.02 -0.05 0.19 0.25 0.33 -0.08 -0.20 0.24 0.11 0.21 0.21 0.14 -0.14

Current liquidity 0.03 -0.01 -0.06 0.19 0.26 0.34 -0.06 -0.21 0.25 0.09 0.20 0.21 0.13 -0.15

12-month liquidity 0.07 0.15 -0.03 0.15 0.22 0.33 0.00 -0.12 0.19 0.04 0.10 0.12 0.12 -0.15

Segment liquidity 0.05 -0.02 -0.08 0.30 0.40 0.52 -0.10 -0.32 0.40 0.13 0.30 0.33 0.18 -0.25

Volatility of liquidity 0.02 -0.04 -0.03 0.17 0.22 0.27 -0.05 -0.20 0.22 0.04 0.15 0.18 0.06 -0.16

Bond return 0.37 0.10 -0.06 -0.07 0.02 0.08 0.18 -0.04 0.03 -0.12 -0.11 -0.01 -0.04 -0.09

Age 0.01 0.03 0.00 0.03 0.03 -0.01 0.00 0.00 0.04 -0.03 -0.01 0.03 -0.06 -0.02

Duration 0.01 0.02 0.00 0.01 0.01 -0.02 0.00 0.00 0.01 -0.03 -0.01 0.01 -0.04 -0.01

Amount outstanding -0.01 -0.06 0.04 -0.02 -0.06 -0.21 0.01 0.02 -0.04 -0.15 -0.10 0.00 -0.23 -0.03

Average trade size -0.01 -0.05 0.04 -0.02 -0.06 -0.20 0.01 0.02 -0.04 -0.15 -0.10 -0.01 -0.22 -0.04

Total trading volume 0.00 -0.03 0.03 0.01 -0.01 -0.16 0.01 0.02 0.01 -0.13 -0.08 0.01 -0.23 -0.03

Bond order imbalance -0.02 0.01 0.05 -0.01 -0.01 -0.02 -0.01 0.01 -0.01 0.00 -0.01 -0.02 0.00 0.01

Rating 0.00 0.00 0.02 -0.05 -0.06 -0.05 0.02 0.03 -0.06 -0.02 -0.04 -0.05 0.00 0.00

CDS spread 0.03 -0.06 -0.03 0.16 0.20 0.21 -0.05 -0.19 0.22 0.00 0.12 0.21 -0.04 -0.15

Bond market liquidity 0.10 -0.02 -0.15 0.53 0.72 0.93 -0.17 -0.57 0.70 0.22 0.52 0.58 0.33 -0.43

Bond market return (1m) 1 0.20 -0.10 -0.16 0.05 0.15 0.28 -0.09 0.10 -0.20 -0.24 -0.03 -0.09 -0.14

Bond market return (12m) 1 0.07 -0.14 -0.13 -0.09 0.20 0.47 -0.14 -0.16 -0.32 -0.32 -0.20 0.17

Bond market order imbalance 1 -0.14 -0.14 -0.13 0.01 0.10 -0.13 -0.08 -0.14 -0.12 -0.07 -0.03

Bond market volatility 1 0.83 0.48 -0.26 -0.52 0.71 -0.11 0.38 0.57 -0.21 -0.40

TYVIX 1 0.66 -0.23 -0.62 0.84 -0.07 0.42 0.67 -0.21 -0.50

Stock market liquidity 1 -0.06 -0.64 0.69 0.14 0.37 0.52 0.25 -0.45

Stock market return (1m) 1 0.23 -0.33 -0.22 -0.31 -0.25 -0.06 0.02

Stock market return (12m) 1 -0.63 0.12 -0.38 -0.68 -0.03 0.64

VIX 1 -0.03 0.42 0.70 -0.22 -0.47

Inflation 1 0.46 0.14 0.52 0.48

TED spread (1m) 1 0.75 0.41 -0.12

TED spread (6m) 1 0.00 -0.48

Federal funds rate 1 0.19

Industrial production growth 1
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older bonds are associated with lower liquidity, we find a positive correlation of 0.17

between age and next month’s liquidity. In the same spirit, a positive correlation of 0.32

indicates that a higher duration leads to higher bid-ask spreads. Regarding market and

macroeconomic variables, we find aggregate bond market and stock market liquidity to

have the highest correlation with next month’s liquidity of 0.36 and 0.33, respectively,

confirming the co-movement between individual and market liquidity. Not surprisingly,

our more granular aggregate liquidity measure (segment liquidity) with a correlation of

0.63 is even more strongly connected to a bond’s liquidity in the next month. Interestingly,

the sign and the magnitude of all correlations remain comparable when we consider current

liquidity instead of next month’s liquidity.

3.2.3 Prediction Model

Starting with the set of candidate predictors, we develop our forecast methodology. We

implement an estimation procedure that exploits information up to time t to forecast

liquidity in month t+ 1. In each month, we include only those variables in the model that

increase the predictive power for the most recent past so that a contemporary forecaster

would have been able to use the same information. The forecast is then based on the

linear model

̂AvgBidAski,t+1 = α̂t +
∑
m∈Mt

β̂m,t · predictorm,i,t, (3.2)

where, for each month t, we determine the set of predictor variables Mt and parameters α̂t

and β̂m,t based on a rolling window of twelve months t−12, ..., t and a two-step procedure.

In the first step, we select those variables Mt that have the highest predictive power

within the twelve-month window. Therefore, Mt adapts to new information as it becomes

available (see, e.g., Chinco, Clark-Joseph, and Ye, 2019; Pesaran and Timmermann, 1995,

for a similar argument) and naturally accommodates structural changes in the relation

between variables.38 In the second step, we calibrate α̂t and β̂m,t for the selected predictors.

To mitigate the impact of outliers on variable selection and calibration, we winsorize the

data at the 1% and 99% levels on a monthly basis.

We employ three different methods to determine the predictor set Mt in the first step.

38There are several alternatives to our approach when implementing a dynamic estimation procedure.
First, one can use a recursive scheme instead of a rolling window. Second, the literature uses various
lengths for rolling windows from twelve months up to five years (see, e.g, Fama and MacBeth, 1973;
Kacperczyk, Nieuwerburgh, and Veldkamp, 2014). We find in unreported results that the higher flexibility
of a rolling scheme and a window length of twelve months is more capable to adjust for structural changes
and outperforms alternative specifications.
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Two of the three selection methods are based on out-of-sample cross-validation. For these,

we employ a holdout procedure in which the data of the first eleven months is used to train

the model and the last month is used to validate the model’s prediction performance. The

predictor variables that lead to the lowest error on the validation set are then selected for

Mt. Our first selection algorithm is a variant of stepwise regression (see, e.g., Agarwal and

Naik, 2004; Titman and Tiu, 2011). Here, the algorithm adds variables that decrease the

mean squared error (MSE) on the validation set until no other variable leads to further

improvement. After each addition, the algorithm checks if dropping one of the selected

variables decreases the model’s error. The second selection algorithm is the elastic net

procedure, which uses a combined penalty function of LASSO and ridge methods (see, e.g.,

Kozak, Nagel, and Santosh, 2020; Panopoulou and Vrontos, 2015). Again, the parameters

controlling the number of variables included in the model are set to minimize the MSE on

the validation data set. The third selection method relies on detecting stable predictive

relations in-sample (see, e.g., Chernobai, Jorion, and Yu, 2011). The model is estimated

using all candidate predictors and Mt simply contains those variables for which we observe

a predictive relation with a significance level of lower than 5%, where we cluster standard

errors by bond.39 In the second step, we then use the full twelve months of data to calibrate

the model on the predictors selected by the three selection methods.

For the three different methods, we can now calculate bond i’s expected liquidity in the

next month ̂AvgBidAski,t+1 using Equation (3.2) and the predictors’ values in month t.40

Rapach, Strauss, and Zhou (2010) find that combining predictions of individual models

often results in superior performance. We follow these authors and average the three

forecasts to arrive at our final prediction of next month’s liquidity.41

In the robustness section 3.4.1, we also test an alternative prediction approach based

on a random forest model. Albeit the machine learning model brings a slight improvement

in terms of forecast accuracy, it should be noted that the relation of predictors to next

month’s liquidity and their economic significance is notoriously difficult to interpret within

such approaches.

39Table 3.2 shows that many possible predictors are strongly connected. To mitigate multicollinearity
issues, we exclude all variables with a variance inflation factor of 10 or higher (see, e.g., Liu and Ritter,
2011).

40In the rare case that ̂AvgBidAski,t+1 is negative, we set it to 0.
41The econometric literature finds that the simple average of different forecasts often outperforms more

sophisticated weighting schemes (the phenomenon is called ‘Forecast Combination Puzzle’, see, e.g, Smith
and Wallis, 2009). Combining the information of the three models generates the best predictions for our
sample. However, the individual models also generate good results.
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3.2.4 Prediction Results

We compare the accuracy of our new forecast methodology to the näıve benchmark model

̂AvgBidAsk
näıve

i,t+1 = AvgBidAski,t. As discussed before, researchers that apply today’s

liquidity for applications that formally require future expected liquidity implicitly employ

such a näıve model. The forecast evaluation criterion is the root mean mean squared error

(RMMSE)

RMMSEnäıve/fc =

√√√√ 1

T

T∑
t=1

1

nt

nt∑
i=1

(
AvgBidAski,t+1 − ̂AvgBidAski,t+1

)2

,

where AvgBidAski,t+1 is the realized liquidity of bond i in month t+1 and ̂AvgBidAski,t+1

is the prediction of the näıve benchmark or the forecast model for month t + 1 based on

data from t. nt is the number of bonds in month t for which we can assess liquidity in

month t+ 1. Finally, T is the number of months in our observation period. As we employ

a rolling window of twelve months to calibrate our model, predictions start in November

2005 and end in June 2017.

The average forecasting errors of the näıve benchmark and our forecast model are

reported in Panel A of Table 3.3. Using a bond’s current liquidity as the näıve forecast leads

on average to an error of 91 basis points. In comparison, our linear combination model only

has a forecasting error of 74 basis points, which corresponds to a relative outperformance

of roughly 19%.42 To get a better understanding of the superior performance of our

forecasting model, we plot the time series of the monthly root mean squared error (RMSE)

in Panel A of Figure 3.1. The performance of the new model surpasses the benchmark in

each month of our observation period. Interestingly, while the highest prediction errors

occur during the financial crisis, the largest improvement of the predictive accuracy also

seems to coincide with the crisis period. Because this period is also the period with the

highest average bid-ask spread, we plot the improvement in the RMSE of our forecasting

model relative to the average bid-ask spread in Panel B of Figure 3.1. This figure shows

that the outperformance compared to the naïıve benchmark is relatively stable over time.

Remarkably, the two months with the highest relative outperformance are within the

financial crisis (March and December 2008). Thus, the application of our new model is

especially advisable during times of liquidity stress.

42In Chapter 4, we introduce a testing procedure to compare the mean prediction error of forecast mod-
els in a panel setting. Applying this test yields that the linear combination model’s stronger performance
is significant at the 5% level.
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Table 3.3: Forecasting model
Panel A of this table reports root mean mean squared errors (RMMSE) for the forecasting model
and the näıve benchmark. The forecasting model is described in Section 3.2.3. The näıve forecast
for a bond’s liquidity in the next month equals the realization of today. We measure bond liquidity
using the average bid-ask spread measure. The full model includes all candidate predictors from
Section 3.2.2, whereas the restricted model only includes variables that are directly related to
liquidity (see Section 3.2.4). Panel B shows statistics for the variables that are selected in the
forecasting approach for the full model. Variables are ranked by the percentage of months for
which they are included. Additionally, we report the percentage of months the variables have a
positive and negative coefficient β̂ given that they are included and their economic significance
(in bps). The economic significance is calculated as the average of the monthly product of the
parameter estimate and the variable’s standard deviation within the 12-month rolling window
used for the model calibration. For the calculation of economic significance, variables that are
not selected have a coefficient of 0. All statistics are based on the average parameter across the
three individual selection approaches that form the combination model.

Panel A: Forecast performance

Full model Restricted model

RMMSE ∆ to näıve RMMSE ∆ to näıve

Forecasting model 0.74 -18.71% 0.80 -18.81%
Näıve benchmark model 0.91 0.99

Observations 230,790 511,465

Panel B: Selected variables

Econ.
Rank Effect % included % positive % negative significance

1 12-month liquidity 99.8% 100.0% 0.0% 41.8
2 Current liquidity 99.8% 100.0% 0.0% 30.4
3 Duration 92.9% 100.0% 0.0% 6.7
4 Average trade size 89.8% 0.0% 100.0% -5.3
5 CDS spread 80.7% 99.3% 0.7% 3.9
6 Segment liquidity 76.7% 98.5% 1.5% 5.1
7 Total trading volume 72.4% 100.0% 0.0% 4.5
8 Volatility of liquidity 71.7% 100.0% 0.0% 2.7
9 Amount outstanding 65.0% 1.4% 98.6% -3.4
10 Bond return 57.6% 14.2% 85.8% -1.5
11 Stock market return (1m) 45.7% 17.1% 82.9% -1.4
12 Age 42.9% 43.5% 56.5% -0.2
13 Rating 36.0% 31.1% 68.9% -0.7
14 Bond market return (1m) 33.3% 70.1% 29.9% 0.4
15 Bond market volatility 32.9% 52.6% 47.4% 0.5
16 Bond market return (12m) 31.9% 12.6% 87.4% -1.2
17 Bond market order imbalance 31.2% 45.2% 54.8% -0.3
18 Inflation 28.6% 72.6% 27.4% 0.9
19 Industrial production growth 27.9% 37.0% 63.0% 0.2
20 TED spread (1m) 27.1% 28.6% 71.4% -0.4
21 Bond order imbalance 25.7% 20.5% 79.5% -0.2
22 Stock market return (12m) 25.2% 48.8% 51.3% -0.1
23 TYVIX 24.3% 68.9% 31.1% 0.4
24 VIX 21.9% 69.6% 30.4% 0.0
25 Stock market liquidity 21.2% 67.2% 32.8% 0.2
26 TED spread (6m) 19.8% 63.9% 36.1% 0.4
27 Bond market liquidity 19.5% 69.7% 30.3% 0.4
28 Federal funds rate 18.3% 38.7% 61.3% 0.0
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Panel A: Time series of root mean squared errors (RMSE)
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Figure 3.1: Forecasting performance
This figure shows the time series performance of the näıve benchmark model and the linear
combination model (fc) of Section 3.2.3 for the average bid-ask spread measure AvgBidAsk. In
Panel A, we report the time series of the monthly root mean squared errors (RMSE). The blue
(dashed) line represents errors of the näıve benchmark model and the orange (solid) line the
errors of the forecasting model. Panel B shows the improvement in the forecasting error of the

forecasting model relative to the average liquidity, i.e.,
RMSEnäıve

t −RMSEfct
AvgBidAskt

.

Finally, to investigate the source of our model’s forecasting power, we report the pre-

dictors that our forecasting algorithm selects and their economic significance in Panel B

of Table 3.3. The variables are ranked by their selection frequency, i.e., the percentage of

months for which they are included in the model. Because our prediction model is based

on three individual selection approaches, we calculate the average frequency. In the same

spirit, we report the economic significance as the average across the monthly products

of the predictor’s average coefficient and its standard deviation in the 12-month rolling

window used for calibration. As can be expected, the current liquidity and its 12-month

moving average have the strongest impact on next month’s forecast. Both variables are

almost always included in the predictor set and a liquidity deterioration of one standard

deviation is associated with an increase of next month’s bid-ask spread of 30.4 and 41.8
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basis points, respectively. The variables on rank 3 and 4 are duration and average trade

size with an inclusion rate around 90 to 93%. A higher duration is associated with lower

liquidity, while larger average trade sizes lead to more narrow spreads. The economic

significance of both predictors with 6.7 and -5.3 basis points, is, however, much lower

compared to the two autoregressive variables. Consistent with He and Milbradt (2014),

we also find credit risk to be a strong driver of future liquidity. A bond’s credit spread is

in more than 80% of our observation months part of the predictor set and a one standard

deviation deterioration in credit quality leads to a 3.9 basis points higher bid-ask spread.

On rank 6, the 77% inclusion rate of a bond’s segment liquidity emphasizes that a bond’s

future liquidity is driven by co-movements in the bond market. A one standard deviation

decrease in liquidity of a segment is associated with a bid-ask spread increase of 5.1 basis

points. Comparing the importance of segment liquidity with that of market-wide liquid-

ity, which is on the second to last rank, indicates that there are systematic differences in

the liquidity dynamics between bonds of different characteristics. Finally, total trading

volume (rank 7), bid-ask spread volatility (rank 8), amount outstanding (rank 9), and a

bond’s return (rank 10) complete the set of variables that are selected in more than 50%

of the cases.

In the following empirical sections, we evaluate the performance of our liquidity fore-

cast in an asset pricing environment and we examine the effect of expected liquidity on

corporate bond fund flows. In such analyses, one faces the challenge that the predictor

variables can have an indirect effect on the outcome variable that is not related to liquidity.

For example, our candidate predictor set contains information on credit quality, market

factors, and macroeconomic variables. To suppress any indirect effects of these variables,

we employ a restricted version of our prediction model. To this end, we exclude all vari-

ables that are not directly related to liquidity. The restricted set of candidate predictors

then only includes the current liquidity, the 12-month moving average of liquidity, volatil-

ity of liquidity, average trade size, total trading volume, outstanding amount, segment

liquidity, and bond market liquidity.

Since an exclusion of variables with potential predictive power can lead to a loss in

forecast accuracy, we check whether the superior performance of the forward-looking ap-

proach also holds for the restricted model. Panel A of Table 3.3 shows that the restricted

model also outperforms the näıve benchmark model. Because the restricted model requires

only a fraction of the input variables, the number of observations is much higher compared

to the full model. With 80 basis points, our forecast model generates an error that is 19

basis points lower than the error of the näıve benchmark model. Again, this corresponds
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to a relative improvement of about 19%.43

3.2.5 Premia for Expected Liquidity in Bond Yields

In addition to the direct evaluation from the previous section, we take an indirect ap-

proach to evaluate our forecasting procedure based on an asset pricing analysis. For that,

we exploit the prediction of Amihud and Mendelson’s (1986) model that illiquid assets

command higher expected returns. Because (expected) cash flows to investors depend

on future transaction costs, only expected and not current liquidity matters for security

prices and expected returns.44 For that reason, the literature’s approach to use today’s

realized liquidity in asset pricing analyses is identical to employing the näıve proxy for fu-

ture expected liquidity. In this spirit, Friewald, Jankowitsch, and Subrahmanyam (2012)

examine the effect of changes in liquidity on the yield spread of bonds over the Treasury

curve. Based on the higher predictive accuracy of our new model compared to the näıve

approach, we expect to better capture changes in investors’ expectation and, as a result,

to better explain the liquidity premium embedded in bond prices.

We test our hypothesis within the setting of Friewald, Jankowitsch, and Subrahmanyam

(2012) and perform a monthly panel regression of first differences of yield spreads on

changes in expected future liquidity:

∆(Yield spread)i,t = α + β ·∆(Yield spread)i,t−1 + γ ·∆( ̂AvgBidAsk)i,t+1

+ δ ·∆(Controls)i,t + εi,t, (3.3)

where ∆( ̂AvgBidAsk)i,t+1 is the change in predicted liquidity based either on our restricted

model of Section 3.2.3 or the näıve approach. Note that ∆( ̂AvgBidAsk)i,t+1 contains only

information available in month t.45 Following Friewald, Jankowitsch, and Subrahmanyam

(2012), we control for autocorrelation in yield spreads, credit risk, and other liquidity

dimensions. The yield spread of a bond is its spread over the Treasury curve calculated

43The very similar improvements of the restricted model and the full model over the näıve benchmark
are partly due to the additional observations available when using a smaller number of predictors. When
we compare the forecasting performance of both models on the same data set, the restricted model is
dominated by the full model with a 0.4 basis points lower RMMSE.

44Note that in Amihud and Mendelson’s (1986) model, transaction costs are constant so that there is
no difference between today’s realization and future expectations of liquidity. The model can be easily
extended to allow for varying transaction costs over time.

45For the näıve approach, ∆( ̂AvgBidAsk)i,t+1 = AvgBidAski,t − AvgBidAski,t−1 (as

̂AvgBidAsk
näıve

i,t+1 = AvgBidAski,t).
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via a theoretical bond with the same cash flow structure. We calculate daily yield spreads

as volume-weighted average across all trades in TRACE. Bond i’s yield spread in month

t is then the average across all daily spreads (for more details, see Appendix B.1). We

winsorize each month yield spread changes and changes in expected liquidity at the 1%

and 99% levels. The credit risk of a bond is represented via changes in 21 rating dummies

based on the average rating of the three rating agencies S&P, Moody’s, and Fitch. We

set the k-th rating dummy to 1 if the average rating is in the interval [k − 0.5, k + 0.5),

otherwise we set its value to 0. Finally, to control for other dimensions of liquidity, we

employ monthly changes in the logarithm of the outstanding amount, changes in the

number of trades, and changes in the logarithm of the average trade size.

The results of the panel regression (3.3) are reported in Table 3.4. Specification (1) only

includes the autoregressive term and the control variables and serves as our baseline to

evaluate the impact of an inclusion of expected liquidity. We find that yield spreads show

a positive autocorrelation that is significant at the 10% level.46Consistent with intuition,

we find that a higher average trade size is associated with a significantly lower yield

spread. For the number of trades, the coefficient is counterintuitively positive. Friewald,

Jankowitsch, and Subrahmanyam (2012) attribute this result to investors splitting their

trades in an illiquid market. In specification (2), we add a bond’s current liquidity as

the näıve proxy for expected liquidity to the regression model. Consistent with previous

findings, we see a highly significant positive effect. An increase of the bid-ask spread

by 1% is associated with a yield spread increase of about 6 basis points. However, the

additional explanatory power is rather moderate with an absolute increase in the R2

of 0.0033 compared to specification (1).47 If we instead employ our forecasting model in

specification (3), we find that the size of the coefficient increases by a factor of about seven.

An increase in the expected bid-ask spread of 1% is now associated with an increase in the

yield spread of about 45 basis points. The effect on the explanatory power is also more

pronounced. The R2 increases by 0.0184 compared to specification (1), which is more than

five times the increase when employing the näıve benchmark.

We test whether this increase in explanatory power can be verified in an out-of-

sample setting. To this end, we estimate implied yield spread changes where we employ a

backward-looking rolling window of 24 months (with at least 12 months at the start of the

46The positive autocorrelation is again consistent with Duffee (1998) and when we switch from a
monthly to a weekly frequency, we also get a negative estimate.

47The increase in the R2 is comparable to the results of Friewald, Jankowitsch, and Subrahmanyam
(2012). These authors observe an increase of 0.009 when adding four different liquidity measures simul-
taneously.
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Table 3.4: Yield spread regressions: Expected liquidity proxies
This table reports results of the panel regression model (3.3) explaining yield spread changes
with changes in expected bid-ask spreads. The control variables are the logarithm of the average
trade size, the number of trades, and the logarithm of amount outstanding. Further, we employ
rating dummies to control for credit risk. We calculate a bond’s expected bid-ask spreads for
month t + 1 using either the näıve benchmark or the forecasting model. The näıve forecast
for a bond’s bid-ask spread in the next month equals the realization of today. The forecasting
model is described in Section 3.2.3 and includes only variables that are in the restricted set
of candidate predictors, i.e., directly related to liquidity (see Section 3.2.4). We measure bond
liquidity using the average bid-ask spread measure. We winsorize changes in yield spreads and
changes in expected bid-ask spreads at the 1% and 99% level. Differences in the out-of-sample
mean squared errors (MSE) are compared using the test statistic in Harvey, Leybourne, and
Newbold (1997). Standard errors are clustered by bond and month and t-statistics are given in
parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level.

(1) (2) (3)

Intercept 0.0034 0.0044 0.0091
(0.12) (0.16) (0.34)

∆(Yield spread)i,t−1 0.1760* 0.1749* 0.1667*
(1.86) (1.86) (1.84)

∆( ̂AvgBidAsk)näıve
i,t+1 0.0636***

(3.69)

∆( ̂AvgBidAsk)fc
i,t+1 0.4534***

(3.49)
∆(Trade size)i,t -0.0138*** -0.0061 0.0020

(-4.08) (-1.31) (0.29)
∆(Trades)i,t 0.0068*** 0.0066*** 0.0060***

(3.71) (3.67) (3.52)
∆(Amount outstanding)i,t 0.1347 0.1358 0.1437

(1.17) (1.20) (1.32)

∆(Rating dummies)i,t Yes Yes Yes

R2
adj 0.0624 0.0657 0.0808

∆(R2
adj) 0.0033 0.0184/0.0151

MSE 0.942 0.939 0.918
∆(MSE) -0.003*** -0.024***/-0.021***

(5.57) (14.29)/(17.56)

Observations 459,479
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observation period) to calibrate the regression model (3.3). We then calculate the mean

squared error between implied and actual changes. To test whether the resulting MSE

of specifications (1) to (3) are significantly different, we employ a Diebold and Mariano

(1995) test in the spirit of Harvey, Leybourne, and Newbold (1997).48 Consistent with

the in-sample findings, the MSE of 0.942 of the baseline model decreases significantly by

0.003 when adding the current liquidity as the näıve benchmark to the regression. For

the specification in which the forecasts are based on our linear combination model, this

decrease is much stronger with 0.024. Lastly, we test whether the mean squared errors of

the two models are significantly different. And indeed the decrease of 0.021 compared to

the benchmark proxy is highly significant. Thus, the new model offers an out-of-sample

improvement that is more than eight times the improvement of the näıve model.

Summarizing, our prediction model outperforms the literature’s approach to measure

expected liquidity using the current liquidity of a bond. We verify the superior performance

using two independent analyses. First, we directly compare the predictions with future

realizations. Second, our model’s forecasts are able to better explain yield spread changes.

Notably, the effect of a given bid-ask spread change on bond yield spreads is about seven

times larger using the forward-looking approach compared to what is standard in the

literature. It is interesting that the 19% lower forecasting error leads to such a strong

difference in the relation of expected liquidity with yield spread changes. There are two

possible channels that can explain why our forecasts perform so much better compared

to realized liquidity. First, much of the variation in liquidity is probably not predictable

as it depends on new information becoming available in the next month. Therefore, it

is possible that our model captures a much larger part of the variation that is indeed

predictable. Second, our bid-ask spread forecast is with a standard deviation of 0.27%

for the first differences much less noisy compared to realized liquidity with a standard

deviation of 0.84%. Therefore, it is possible that the results using our forecasts are less

prone to regression attenuation, which biases coefficients towards zero when regressors are

measured with errors.

48Note that, as discussed in Section 2.3.1, because of the rolling estimation, the test corresponds to
an unconditional Giacomini and White (2006) test, which takes uncertainty in the parameter estimation
into account. This test is equally suited to compare the nested and non-nested models of specifications
(1) to (3). Moreover, we design in Chapter 4 a test for equal predictive accuracy that controls for the
heterogeneity in large panel data. We robustify our results with this newly designed test in Appendix D.
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3.3. Fund Flows and Expected Liquidity Deterioration

3.3 Fund Flows and Expected Liquidity Deteriora-

tion

In this section, we investigate the impact of expected asset liquidity deterioration on cor-

porate bond fund flows. Investors monitor their mutual funds very closely and reallocate

money based on previous performance. However, the shape of this flow-performance rela-

tion differs between markets. For equity funds, investors reward funds stronger for good

performance and are less sensitive to poor performance (see, e.g., Huang, Wei, and Yan

(2007)). In contrast, investors in corporate bond funds are rather insensitive to good

past performance, but very sensitive to poor past performance. Goldstein, Jiang, and Ng

(2017) argue that the concavity of the flow-performance relation for corporate bond funds

is related to strategic complementarities among fund investors and the mismatch between

the liquidity a fund offers and the illiquidity of its portfolio holdings. If an investor sells

her shares, she usually gets the net asset value as of the time of sale. However, portfolio

readjustments happen at a later day and liquidation costs then impose negative external-

ities on the investors who remain in the fund. These effects are stronger when the fund

holds more illiquid bonds. Investors take such a first-mover advantage into account and

try to preempt other investors when they are considering redeeming the shares of a poorly

performing fund.49 In aggregate, such a behavior can lead to ‘runs’ on funds similar to

bank runs and impair financial stability (see also Chen, Goldstein, and Jian, 2010).

Ultimately, in such a redemption cascade, the first investors get the best outcomes.

For that reason, we expect that investors actively try to anticipate liquidity deterioration

of poorly performing funds and act on this expectation.

3.3.1 Methodology

We test our hypothesis by examining the flow pattern in corporate bond funds when the

liquidity of the fund’s assets is expected to decrease. To do so, we select an approach which

is inspired by Goldstein, Jiang, and Ng (2017) and perform a monthly panel regression of

49In 2016, the SEC adopted a rule that allows funds to adjust their NAVs to reflect liquidation costs
(swing pricing). The rule became effective in November 2018 (see also Capponi, Glasserman, and Weber,
2020; Jin, Kacperczyk, Kahraman, and Suntheim, 2019).
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flows in corporate bond funds on expected fund asset liquidity changes:

Flowk,t =β0 + β1 · ExpLiqChangek,t+1 + β2 · ExpLiqChangek,t+1 · 1{Alphak;t−12,t−1<0}

+ β3 · FundLiqk,t + β4 · FundLiqk,t · 1{Alphak;t−12,t−1<0}

+ β5 · 1{Alphak;t−12,t−1<0} + γ · Controlsk,t + εk,t, (3.4)

where Flowk,t is the flow of fund k in month t and 1{Alphak;t−12,t−1<0} is a dummy variable

that equals 1 if the past performance of fund k is negative and 0 otherwise. Because there

is no reason for investors to anticipate a redemption cascade when past performance is

positive, we differentiate between funds with positive and negative performance to analyze

the relation of expected liquidity changes and fund flows. Note that the anticipated liq-

uidity change for the month ahead ExpLiqChangek,t+1 can be calculated with information

from t. Further, to distinguish between investors who trade on anticipations and those

who only use realized liquidity, we include the fund’s current asset liquidity FundLiqk,t as

well as an interaction term with past performance. We also include the dummy variable

for negative past performance separately and expect that flows are negative when this

dummy variable equals 1. Lastly, we follow Goldstein, Jiang, and Ng (2017) and con-

trol for a fund’s flow in the previous month, total net assets, age, net expense ratio, if

redemption fees are charged, and monthly fixed effects.

Monthly flows in individual funds build the basis for our analysis.50 We calculate the

flow for fund k in month t as the relative monthly change in total net assets TNAk,t, ad-

justed for the fund’s return rk,t, i.e., Flowk,t =
TNAk,t−TNAk,t−1(1+rk,t)

TNAk,t−1
, using corporate bond

fund data from Morningstar (see Appendix B.2 for more details on the data). Following

the standard practice in the literature, we winsorize fund flows each month at the 1% and

99% levels. Consistent with Goldstein, Jiang, and Ng (2017), we measure fund liquidity

and expected liquidity changes as value-weighted averages across the corporate bonds in

the fund’s portfolio. Because portfolio holdings are reported at month ends, we use the

holdings from the previous month t− 1 so that the fund flows of the current month can-

not influence portfolio compositions, and merge them with asset liquidity in t. For funds

that report holdings only quarterly, we use portfolio compositions back to month t − 3.

Liquidity is measured using the average bid-ask spread measure from Section 3.2.1. For

expected bond liquidity, we employ the predictions of our restricted forecasting model of

50Goldstein, Jiang, and Ng (2017) argue that fund share-level characteristics such as expense ratios,
management fees, and redemption fees can have an influence on investor reallocation decisions and thus
use individual fund share classes as unit of observation. We follow them and, for ease of readability, use
fund and fund share class as synonym for the rest of the chapter.
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3.3. Fund Flows and Expected Liquidity Deterioration

Section 3.2.3. The expected change in fund k’s liquidity for month t + 1 is then just the

relative difference between expected liquidity for t+ 1 and current asset liquidity.

For the separation of funds regarding their past performance, we calculate a fund’s

average alpha in the preceding twelve months. Again, we follow Goldstein, Jiang, and Ng

(2017) and perform time-series regressions of excess fund returns on excess aggregate bond

market and stock market returns using a rolling window of the past twelve months. We

use the Vanguard Total Bond Market Index Fund return to approximate the aggregate

bond market return and the CRSP value-weighted market return for the aggregate stock

market return. Fund k’s Alphak;t−12,t−1 at month t is then just the estimated intercept of

the rolling regression. Finally, for the control variables, we calculate the logarithms of the

fund’s age and total net assets and create an indicator variable RearLoadk which equals

1 if the fund charges rear load fees and 0 otherwise.

3.3.2 Results

The results of the panel regression (3.4) are reported in Table 3.5. Before examining

the effect of an expected liquidity deterioration, we analyze the relation of flows and

the funds’ current asset liquidity. To this end, we estimate regression (3.4) without the

expected fund liquidity change. This setting is comparable to the original approach of

Goldstein, Jiang, and Ng (2017), which targets the amplification of flows out of poorly

performing illiquid funds. The main difference here is that we change perspective and set

the focus on a fund’s asset liquidity rather than on its performance.51 The results are given

in the first specification of Table 3.5. Consistent with Goldstein, Jiang, and Ng (2017), we

see a significantly negative coefficient for the interaction of fund asset liquidity and fund

performance. An increase of 100 basis points of the average bond bid-ask spread leads

to an additional outflow of roughly 0.61% for poorly performing funds. We can interpret

this result as a ‘run’ effect out of struggling funds exacerbated by asset illiquidity. For

funds with a positive performance over the last year, we find an insignificant effect on their

flows. This finding is consistent with the intuition that positive performance convinces

most investors to stay in the fund and thus they are not pressured to sell their shares to

avoid the negative externalities of others leaving the fund. On the contrary, it is likely

that these funds harvest illiquidity premiums, which might contribute to their good

51Goldstein, Jiang, and Ng (2017) also examine the interaction between performance and fund illiquid-
ity for funds with negative past alpha, employing performance as continuous variable and fund liquidity
as indicator variable. In the robustness section 3.4.3, we include performance measured via a continuous
variable as an additional control.
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Table 3.5: Corporate bond fund flow regression
This table reports results of the panel regressions of fund flows on expected liquidity changes of Section 3.3.1. We measure a fund’s
current and expected liquidity as the value-weighted average bid-ask spread across the bonds in the fund’s portfolio. Expected liquidity
is calculated using the restricted forecasting model of Section 3.2 and expected changes are relative to the current liquidity. Alpha is the
intercept of a regression of excess fund returns on excess corporate bond and equity market returns. The dummy variable 1{Alpha<θ}
equals 1 if alpha is below a threshold θ, where we use 0, the upper quartile (q75%), the median (q50%), and the lower quartile (q25%)
of all negative alphas. The quartiles correspond to monthly alphas of −5 bps, −12.5 bps, and −30 bps. We include lagged flow, the
(natural) logarithm of total net assets, the logarithm of fund age in years, and net expense ratio as controls. We further employ an
indicator variable that equals 1 if the fund charges rear load fees and 0 otherwise. The unit of observation is fund share class. We
cluster standard errors by fund share class and include month fixed effects. t-statistics and, for cumulated effects, F -statistics are given
in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level.

θ = 0 θ = q75% θ = q50% θ = q25%

(1) (2) (3) (4) (5) (6) (7) (8)

ExpLiqChange 0.0003 0.0004 0.0007 0.0005
(0.50) (0.79) (1.05) (0.93)

ExpLiqChange× 1{Alpha<θ} -0.0071*** -0.0083*** -0.0096*** -0.0151***
(-3.96) (-4.13) (-4.28) (-5.14)

FundLiq 0.0747 0.0289 0.1618 0.1158 0.2278* 0.1890 0.1085 0.0616
(0.53) (0.20) (1.21) (0.84) (1.77) (1.43) (0.88) (0.49)

FundLiq× 1{Alpha<θ} -0.6082*** -0.6557*** -0.7053*** -0.7356*** -1.0131*** -1.0848*** -1.2084*** -1.3802***
(-4.09) (-4.40) (-4.63) (-4.79) (-6.06) (-6.41) (-5.89) (-6.61)

1{Alpha<θ} -0.0088*** -0.0080*** -0.0070*** -0.0062*** -0.0035** -0.0022 0.0001 0.0029
(-6.41) (-5.82) (-4.82) (-4.24) (-2.08) (-1.25) (0.03) (1.26)

Lagged flow 0.1514*** 0.1513*** 0.1517*** 0.1516*** 0.1519*** 0.1518*** 0.1525*** 0.1523***
(18.25) (18.25) (18.28) (18.27) (18.29) (18.28) (18.31) (18.30)

TNA 0.0002 0.0003 0.0003* 0.0003* 0.0004** 0.0004** 0.0004** 0.0004**
(1.46) (1.49) (1.89) (1.91) (2.21) (2.19) (2.12) (2.07)

Age -0.0207*** -0.0207*** -0.0209*** -0.0209*** -0.0211*** -0.0211*** -0.0210*** -0.0210***
(-30.57) (-30.60) (-30.79) (-30.80) (-30.96) (-30.95) (-30.95) (-30.94)

Expense 0.0009 0.0010 0.0013 0.0014 0.0009 0.0009 -0.0002 -0.0002
(0.63) (0.70) (0.88) (0.92) (0.60) (0.59) (-0.12) (-0.14)

Rear load -0.0135*** -0.0136*** -0.0137*** -0.0138*** -0.0140*** -0.0140*** -0.0137*** -0.0137***
(-8.16) (-8.21) (-8.30) (-8.34) (-8.42) (-8.43) (-8.26) (-8.26)

R2
adj 0.0639 0.0640 0.0637 0.0637 0.0635 0.0635 0.0630 0.0630

Cum. effect ExpLiqChange -0.0069*** -0.0079*** -0.0090*** -0.0146***
(15.66) (16.43) (17.04) (25.35)

Cum. effect FundLiq -0.5335*** -0.6267*** -0.5435*** -0.6198*** -0.7853*** -0.8958*** -1.0999*** -1.3186***
(16.10) (21.64) (14.88) (18.25) (24.14) (29.30) (30.86) (41.06)

Econ. sign. ExpLiqChange -0.16% -0.19% -0.26% -0.45%
Econ. sign. FundLiq -0.24% -0.28% -0.25% -0.28% -0.36% -0.41% -0.54% -0.65%

Observations 223,622 223,586 223,622 223,586 223,622 223,586 223,622 223,586
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3.3. Fund Flows and Expected Liquidity Deterioration

performance. As expected, a negative performance as a standalone dummy variable

is associated with a significant outflow. Regarding the control variables, we find that

corporate bond fund flows show a significantly positive autocorrelation. Also, older funds

experience relatively more outflows. While the fund’s total net assets and its net expense

ratio do not have a significant impact on its flows, charging rear load fees is, consistent

with Goldstein, Jiang, and Ng (2017), significantly associated with flows out of the fund.

Because Goldstein, Jiang, and Ng (2017) show that the run effect is stronger for worse

performing funds, we examine three further specifications in which we employ alternative

cutoffs for the alpha indicator variable. We use cutoffs that correspond to the upper

quartile, the median, and the lower quartile of all negative (monthly) alphas, which are

−5 bps, −12.5 bps, and −30 bps, respectively. Across the four specifications (1), (3),

(5), and (7) of Table 3.5, we see that the amplification effect is indeed stronger for worse

performing funds. While a 100 basis points increase in the average bid-ask spread is

associated with a cumulated outflow of 0.53% (= 0.0747− 0.6082, see third-to-last line of

Table 3.5) for all negative performing funds in specification (1), this outflow increases to

1.10% when the fund’s alpha belongs to the 25% most negative ones (specification (7)).

Thus, the cumulated liquidity effect for the lowest alpha quartile is more than doubled

compared to the effect for all funds with negative performance.

We now present the results on our main hypothesis that investors anticipate a liquidity

deterioration and exit the fund based on their expectation using the full regression model

(3.4). In specifications (2), (4), (6), and (8), we always control for the current fund liquid-

ity. This variable captures the costs that investors expect the fund to incur when it has

to liquidate assets in response to outflows. Therefore, the effect of an expected liquidity

change can be interpreted as investors’ attempt to preempt other investors based on ex-

pected changes of these costs in the future. While specification (2) of Table 3.5 is based

on the indicator variable that simply separates funds according to the sign of their alpha,

specifications (4), (6), and (8) use the three different negative performance cutoffs from

above. The interaction term between the expected liquidity change and fund performance

is negatively significant with t-statistics between 4 and 5 in all specifications. Looking

at the cumulated effect, we find that an expected doubling of the bid-ask spread (i.e.,

an increase of 100%) is associated with significantly stronger outflows of 0.69% for funds

with a negative alpha over the last year. As hypothesized, investors seem to leave poorly

performing funds in advance if a deterioration in liquidity is expected. For funds with a

positive alpha, we see that anticipated changes in liquidity have no effect on flows, which is

consistent with the intuition that their investors are not pressured to act strategically. The
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cumulated anticipation effect is in all four settings statistically significant. Most impor-

tantly, because the incentive for investors to sell their shares as soon as possible increases

for worse performing funds, the effect increases monotonously when the performance be-

comes worse. While an expected 100% increase of the bid-ask spread is associated with

an outflow of roughly 0.69% for all funds with a negative alpha, this response increases to

0.90% for the 50% worst performing funds and more than doubles to 1.46% for the 25%

worst funds. Consistent with our previous results, we find in each setting a significantly

higher flow out of poorly performing funds if their assets are currently more illiquid. Fur-

ther, we see that the cumulated effect is always statistically significant and again becomes

stronger for worse performing funds.

Next, we want to compare the magnitude of the anticipation effect with the effect of

realized liquidity. To this end, we calculate the economic significance of both effects for

the four different settings at the bottom of Table 3.5. On the one hand, a one standard

deviation decrease in (current) fund liquidity is associated with an outflow of 0.28% for

funds with negative alpha. This effect increases to 0.65% when the fund’s alpha is below

−30 bps and thus belongs to the 25% worst funds with negative performance. On the other

hand, a one standard deviation of expected liquidity deterioration leads to an outflow of

0.16% for negatively performing funds, which increases to 0.45% for the worst quarter of

poor funds. This finding again emphasizes that with decreasing performance, the pressure

on investors to redeem their shares immediately is stronger. Comparing both effects, the

anticipation effect is roughly 60% to 70% of the size of the realized liquidity effect across the

four settings. The comparison with the settings in which we exclude liquidity expectations

(specifications (1), (3), (5), and (7)) shows that the economic significance of realized

liquidity even slightly increases when including expected liquidity changes. This finding

emphasizes that both effects indeed represent separate channels contributing to liquidity-

induced ‘fund runs’. Thus, only looking at realized liquidity severely underestimates the

magnitude of these ‘runs’ compared to the more complete picture that we provide.

Finally, we want to shed more light on the mechanism behind the anticipation effect.

Since strategic complementarities arise for investors only in case of liquidity deterioration,

we hypothesize that expected changes in fund liquidity are related asymmetrically to fund

flows. To test this hypothesis, we split the anticipated liquidity change ExpLiqChangek,t+1

in equation (3.4) into anticipated liquidity deterioration and improvement. The results

are presented in Table 3.6. For poorly performing funds, we observe indeed an asymmetric

pattern that only expected liquidity deteriorations have a significant effect on fund flows.

Lastly consistent with our previous findings, we see that both expected liquidity
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Table 3.6: Corporate bond fund flow regression - Expected liquidity deterioration vs. improvement
This table reports results of the panel regressions of fund flows on expected liquidity deterioration and expected liquidity improvement.
We measure a fund’s current and expected liquidity as the value-weighted average bid-ask spread across the bonds in the fund’s
portfolio. Expected liquidity is calculated using the restricted forecasting model of Section 3.2 and expected changes are relative to the
current liquidity. To distinguish between the effect of expected liquidity deterioration and improvement, we use two dummy variables.
1{ExpLiqChange≤0} equals 1 if liquidity is expected to improve and 1{ExpLiqChange>0} is 1 if liquidity is expected to deteriorate. Alpha is
the intercept of a regression of excess fund returns on excess corporate bond and equity market returns. The dummy variable 1{Alpha<θ}
equals 1 if alpha is below a threshold θ, where we use 0, the upper quartile (q75%), the median (q50%), and the lower quartile (q25%)
of all negative alphas. The quartiles correspond to monthly alphas of −5 bps, −12.5 bps, and −30 bps. We include lagged flow, the
(natural) logarithm of total net assets, the logarithm of fund age in years, and net expense ratio as controls. We further employ an
indicator variable that equals 1 if the fund charges rear load fees and 0 otherwise. The unit of observation is fund share class. We
cluster standard errors by fund share class and include month fixed effects. t-statistics are given in parentheses. ***, **, and * indicate
statistical significance at the 1%, 5%, and 10% level.

θ = 0 θ = q75% θ = q50% θ = q25%

ExpLiqChange× 1{ExpLiqChange≤0} -0.0031 -0.0040 -0.0036 -0.0019
(-0.62) (-0.80) (-0.74) (-0.58)

ExpLiqChange× 1{ExpLiqChange≤0} × 1{Alpha<θ} 0.0019 0.0056 0.0049 -0.0070
(0.34) (1.08) (0.98) (-0.48)

ExpLiqChange× 1{ExpLiqChange>0} 0.0004 0.0007 0.0009 0.0007
(0.80) (1.07) (1.25) (1.16)

ExpLiqChange× 1{ExpLiqChange>0} × 1{Alpha<θ} -0.0095*** -0.0127*** -0.0142*** -0.0157***
(-4.86) (-5.58) (-5.65) (-5.01)

FundLiq 0.0128 0.0923 0.1674 0.0610
(0.09) (0.66) (1.25) (0.48)

FundLiq× 1{Alpha<θ} -0.6550*** -0.7336*** -1.0856*** -1.3622***
(-4.39) (-4.78) (-6.43) (-6.30)

1{Alpha<θ} -0.0075*** -0.0055*** -0.0013 0.0030
(-5.44) (-3.69) (-0.75) (1.30)

Controls Yes Yes Yes Yes

R2
adj 0.0640 0.0637 0.0636 0.0630

Observations 223,586 223,586 223,586 223,586

73



Chapter 3. Expected Bond Liquidity

deterioration and improvement do not have a significant effect on well performing

funds.

Summarizing, our results are consistent with investors actively anticipating liquidity

deterioration in underperforming funds. Such forecasts will provide them with a first-

mover advantage when selling their shares in advance. From the perspective of financial

stability, this behavior is dangerous as it could trigger redemption spirals.

3.4 Robustness

In this section, we show that our results are robust against three critical alternative spec-

ifications. We first compare our linear forecasting model with a random forest model and

show that the empirical results of Sections 3.2.5 and 3.3 are robust also for the random

forest. Second, we use a more sophisticated liquidity measure that takes the size depen-

dence of transaction costs into account. Third, we rerun the analyses in Section 3.3 using

additional variables and interactions for the funds’ previous performance.

3.4.1 Random Forest Prediction Model

In machine learning, the random forest model has become popular as a rather simple non-

parametric alternative to classic linear prediction models (see, e.g., Behrens, Pierdzioch,

and Risse, 2018; Gu, Kelly, and Xiu, 2020). The basis for this algorithm are regression

trees that try to find similar groups among the observations. Simply speaking, the algo-

rithm adds branches to the tree at each step by sorting the observations of the previous

node into these new branches based on one of the predictor variables. At the end of this

procedure, the terminal nodes (leafs) form the partitions and an observation’s predicted

value is then the average of the left-hand side variable from all observations in the same

partition. Since the predictor variables used for branching as well as their cutoff are chosen

to get the minimal forecasting error on the validation set, a single regression tree is prone

to overfitting. To overcome this limitation, the random forest model employs a bagging

procedure that fits a regression tree for n randomly drawn samples. The final prediction

is then simply the average across the predictions of the n regression trees.52 We employ

the random forest procedure with n = 500 to our prediction approach of Section 3.2.3 for

both the full and the restricted set of candidate predictors. Similar to the out-of-sample

52We refer for a more detailed description of the random forest algorithm to Gu, Kelly, and Xiu (2020).
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Table 3.7: Robustness: Forecast performance
This table reports root mean mean squared errors (RMMSE) for the forecasting model and the
näıve benchmark. In Panel A, we employ the random forest model of Section 3.4.1 as forecasting
model and measure bond liquidity using the average bid-ask spread measure. The näıve forecast
for a bond’s liquidity in the next month equals the realization of today. In Panel B, we use the
size-adapted average bid-ask spread of Section 3.4.2 to measure a bond’s liquidity and calculate
expected size-adapted bid-ask spreads employing the forecasting model of Section 3.2.3. The full
model includes all candidate predictors from Section 3.2.2, whereas the restricted model only
includes variables that are directly related to liquidity (see Section 3.2.4).

Panel A: Random forest model

Full model Restricted model

RMMSE ∆ to näıve RMMSE ∆ to näıve

Forecasting model 0.73 -20.22% 0.80 -19.30%
Näıve benchmark model 0.91 0.99

Observations 230,790 511,465

Panel B: Size-adapted liquidity measure

Full model Restricted model

RMMSE ∆ to näıve RMMSE ∆ to näıve

Forecasting model 0.79 -22.21% 0.76 -21.57%
Näıve benchmark model 1.02 0.97

Observations 230,790 511,465

cross-validation methods in Section 3.2.3, we use a rolling window to fit the model. In

each month t, we split the observations of the previous twelve months into a training set

of eleven months and a validation set of the last month.

The predictive accuracy of the random forest model compared to the näıve benchmark

is shown in Panel A of Table 3.7. For both the full and the restricted model, we see

a decrease in RMMSE of roughly 20%, which is very similar to the improvement of the

linear forecasting model in Panel A of Table 3.3. The relation between yield spreads and

expected liquidity also remains virtually unchanged if we use the random forest instead

of our linear model as a forecasting method (see Panel A of Table 3.8). If anything, the

effect of expected liquidity is stronger.

We also analyze the robustness of our results from Section 3.3 that investors consider

realized liquidity and anticipated liquidity deteriorations to secure a first-mover advantage

when redeeming their corporate bond fund shares. In Table 3.9, we employ the random
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Table 3.8: Robustness: Yield spread regressions
This table reports results of the panel regression model (3.3) explaining yield spread changes
with changes in expected bid-ask spreads for the robustness checks of Sections 3.4.1 and 3.4.2.
The control variables are the logarithm of the average trade size, the number of trades, and
the logarithm of amount outstanding. Further, we employ rating dummies to control for credit
risk. We calculate a bond’s expected bid-ask spreads for month t + 1 using either the näıve
benchmark or the forecasting model. The näıve forecast for a bond’s liquidity in the next month
equals the realization of today. In Panel A, we employ the random forest model of Section
3.4.1 as forecasting model and measure bond liquidity using the average bid-ask spread measure.
For convenience, we reprint specifications (1) and (2) from Table 3.4. In Panel B, we use the
size-adapted average bid-ask spread of Chapter 2 to measure a bond’s liquidity and calculate
expected size-adapted bid-ask spreads employing the forecasting model of Section 3.2.3. Again,
specification (1) is repeated from Table 3.4. Forecasting models include only variables that are in
the restricted set of candidate predictors, i.e., directly related to liquidity (see Section 3.2.4). We
winsorize changes in yield spreads and changes in expected (size-adapted) bid-ask spreads at the
1% and 99% level. Differences in the out-of-sample mean squared errors (MSE) are compared
using the test statistic in Harvey, Leybourne, and Newbold (1997). Standard errors are clustered
by bond and month and t-statistics are given in parentheses. ***, **, and * indicate statistical
significance at the 1%, 5%, and 10% level.

Panel A: Random forest model

(1) (2) (3)

Intercept 0.0034 0.0044 0.0088
(0.12) (0.16) (0.33)

∆(Yield spread)i,t−1 0.1760* 0.1749* 0.1670*
(1.86) (1.86) (1.85)

∆( ̂AvgBidAsk)näıve
i,t+1 0.0636***

(3.69)

∆( ̂AvgBidAsk)fc
i,t+1 0.4429***

(3.44)
∆(Trade size)i,t -0.0138*** -0.0061 0.0022

(-4.08) (-1.31) (0.32)
∆(Trades)i,t 0.0068*** 0.0066*** 0.0059***

(3.71) (3.67) (3.49)
∆(Amount outstanding)i,t 0.1347 0.1358 0.1737

(1.17) (1.20) (1.56)

∆(Rating dummies)i,t Yes Yes Yes

R2
adj 0.0624 0.0657 0.0811

∆(R2
adj) 0.0033 0.0187/0.0154

MSE 0.942 0.939 0.915
∆(MSE) -0.003*** -0.027***/-0.024***

(5.57) (19.62)/(20.04)

Observations 459,479
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Table 3.8 continued

Panel B: Size-adapted liquidity measure

(1) (2) (3)

Intercept 0.0034 0.0051 0.0155
(0.12) (0.19) (0.62)

∆(Yield spread)i,t−1 0.1760* 0.1745* 0.1599*
(1.86) (1.87) (1.86)

∆( ̂AvgBidAsk)näıve
i,t+1 0.1112***

(3.74)

∆( ̂AvgBidAsk)fc
i,t+1 0.9300***

(3.79)
∆(Trade size)i,t -0.0138*** -0.0178*** -0.0207***

(-4.08) (-5.91) (-6.84)
∆(Trades)i,t 0.0068*** 0.0066*** 0.0060***

(3.71) (3.71) (3.64)
∆(Amount outstanding)i,t 0.1347 0.1357 0.1458

(1.17) (1.21) (1.40)

∆(Rating dummies)i,t Yes Yes Yes

R2
adj 0.0624 0.0700 0.1080

∆(R2
adj) 0.0076 0.0456/0.0380

MSE 0.942 0.933 0.882
∆(MSE) -0.009*** -0.060***/-0.051***

(8.23) (22.80)/(27.40)

Observations 459,479

forest model to calculate expected liquidity changes. Consistent with our previous findings,

we see in specifications (2), (4), (6), and (8) highly significant interaction terms with

both realized liquidity and expected liquidity changes. Again, both effects increase in the

economic significance from all funds with negative performance (specification (2)) to only

funds with the most negative alphas (specification (8)). Quantitatively, the effects are

slightly weaker compared to the linear model in Table 3.5.

3.4.2 Size-Adapted Liquidity Measure

Transaction costs in bond markets strongly depend on trade size (see, e.g., Edwards,

Harris, and Piwowar, 2007). For that reason, as discussed in Chapter 2, idiosyncratic or

systematic variations in the trade size disturb measured transaction costs. Such a bias is
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Table 3.9: Robustness: Corporate bond fund flow regression
This table reports results of the robustness checks for the impact of expected liquidity deterioration on corporate bond fund flows of Sections 3.4.1,
3.4.2, and 3.4.3. We measure a fund’s current and expected liquidity as the value-weighted average across the bonds in the fund’s portfolio. In
Panel A, we employ the random forest model of Section 3.4.1 as forecasting model and measure bond liquidity using the average bid-ask spread
measure. For convenience, specifications (1), (3), (5), and (7) are repeated from Table 3.5. In Panel B, we use the size-adapted average bid-ask
spread of Chapter 2 to measure a bond’s liquidity and calculate expected size-adapted bid-ask spreads employing the forecasting model of Section
3.2.3. Forecasting models include only variables that are in the restricted set of candidate predictors, i.e., directly related to liquidity (see Section
3.2.4). Expected liquidity changes are relative to the current liquidity. In Panel C, we employ the same specification as in Table 3.5, but include
a fund’s performance over the last year (alpha) and an interaction term as additional explanatory variables. Alpha is the intercept of a regression
of excess fund returns on excess corporate bond and equity market returns. The dummy variable 1{Alpha<θ} equals 1 if alpha is below a threshold
θ, where we use 0, the upper quartile (q75%), the median (q50%), and the lower quartile (q25%) of all negative alphas. The quartiles correspond to
monthly alphas of −5 bps, −12.5 bps, and −30 bps. We include lagged flow, the (natural) logarithm of total net assets, the logarithm of fund age
in years, and net expense ratio as controls. We further employ an indicator variable that equals 1 if the fund charges rear load fees and 0 otherwise.
The unit of observation is fund share class. We cluster standard errors by fund share class and include month fixed effects. t-statistics and, for
cumulated effects, F -statistics are given in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level.

Panel A: Random forest model

θ = 0 θ = q75% θ = q50% θ = q25%

(1) (2) (3) (4) (5) (6) (7) (8)

ExpLiqChange -0.0001 0.0000 0.0001 0.0001
(-0.20) (0.12) (0.31) (0.19)

ExpLiqChange× 1{Alpha<θ} -0.0043*** -0.0046*** -0.0047*** -0.0066***
(-3.99) (-4.13) (-4.12) (-5.22)

FundLiq 0.0747 0.0342 0.1618 0.1206 0.2278* 0.1942 0.1085 0.0723
(0.53) (0.24) (1.21) (0.89) (1.77) (1.48) (0.88) (0.58)

FundLiq× 1{Alpha<θ} -0.6082*** -0.6495*** -0.7053*** -0.7223*** -1.0131*** -1.0498*** -1.2084*** -1.2996***
(-4.09) (-4.36) (-4.63) (-4.71) (-6.06) (-6.23) (-5.89) (-6.27)

1{Alpha<θ} -0.0088*** -0.0081*** -0.0070*** -0.0064*** -0.0035** -0.0027 0.0001 0.0017
(-6.41) (-5.88) (-4.82) (-4.39) (-2.08) (-1.57) (0.03) (0.76)

Controls Yes Yes Yes Yes Yes Yes Yes Yes

R2
adj 0.0639 0.0639 0.0637 0.0637 0.0635 0.0635 0.0630 0.0630

Cum. effect ExpLiqChange -0.0044*** -0.0045*** -0.0046*** -0.0066***
(18.84) (18.92) (18.47) (28.76)

Cum. effect FundLiq -0.5335*** -0.6153*** -0.5435*** -0.6017*** -0.7853*** -0.8556*** -1.0999*** -1.2274***
(16.10) (21.35) (14.88) (17.64) (24.14) (27.71) (30.86) (37.09)

Econ. sign. ExpLiqChange -0.15% -0.17% -0.20% -0.35%
Econ. sign. FundLiq -0.24% -0.28% -0.25% -0.28% -0.36% -0.40% -0.54% -0.61%

Observations 223,622 223,586 223,622 223,586 223,622 223,586 223,622 223,586
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Table 3.9 continued

Panel B: Size-adapted liquidity measure

θ = 0 θ = q75% θ = q50% θ = q25%

(1) (2) (3) (4) (5) (6) (7) (8)

ExpLiqChange 0.0016 0.0018* 0.0021* 0.0018*
(1.56) (1.72) (1.87) (1.76)

ExpLiqChange× 1{Alpha<θ} -0.0063*** -0.0064*** -0.0066*** -0.0064***
(-4.58) (-4.51) (-4.53) (-4.43)

FundLiq 0.0002 0.0001 0.0014 0.0013 0.0022* 0.0023* 0.0015 0.0016
(0.12) (0.07) (0.98) (0.96) (1.66) (1.69) (1.13) (1.20)

FundLiq× 1{Alpha<θ} -0.0034** -0.0039*** -0.0039*** -0.0043*** -0.0055*** -0.0061*** -0.0074*** -0.0083***
(-2.41) (-2.73) (-2.64) (-2.92) (-3.19) (-3.52) (-3.39) (-3.75)

1{Alpha<θ} -0.0110*** -0.0103*** -0.0098*** -0.0090*** -0.0079*** -0.0069*** -0.0047* -0.0033
(-8.20) (-7.67) (-6.85) (-6.29) (-4.46) (-3.85) (-1.92) (-1.36)

Controls Yes Yes Yes Yes Yes Yes Yes Yes

R2
adj 0.0638 0.0639 0.0636 0.0636 0.0634 0.0634 0.0628 0.0629

Cum. effect ExpLiqChange -0.0048*** -0.0046*** -0.0045*** -0.0047***
(23.59) (21.95) (20.99) (20.03)

Cum. effect FundLiq -0.0032** -0.0038*** -0.0025* -0.0030** -0.0033* -0.0039** -0.0060*** -0.0067***
(5.67) (7.54) (2.99) (4.02) (3.58) (4.74) (7.35) (9.07)

Econ. sign. ExpLiqChange -0.16% -0.17% -0.20% -0.28%
Econ. sign. FundLiq -0.16% -0.18% -0.12% -0.15% -0.16% -0.19% -0.31% -0.34%

Observations 223,622 223,586 223,622 223,586 223,622 223,586 223,622 223,586
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Table 3.9 continued

Panel C: Alpha as continuous variable

θ = 0 θ = q75% θ = q50% θ = q25%

(1) (2) (3) (4) (5) (6) (7) (8)

ExpLiqChange 0.0002 0.0003 0.0005 0.0003
(0.31) (0.57) (0.81) (0.59)

ExpLiqChange× 1{Alpha<θ} -0.0055*** -0.0067*** -0.0083*** -0.0133***
(-3.15) (-3.48) (-3.86) (-4.65)

FundLiq -0.0793 -0.1162 -0.0129 -0.0566 0.0422 0.0034 -0.0853 -0.1320
(-0.55) (-0.79) (-0.09) (-0.40) (0.32) (0.03) (-0.69) (-1.04)

FundLiq× 1{Alpha<θ} -0.2270 -0.2773* -0.3350** -0.3658** -0.6854*** -0.7570*** -0.8667*** -1.0383***
(-1.49) (-1.81) (-2.17) (-2.35) (-4.10) (-4.48) (-4.23) (-4.98)

1{Alpha<θ} -0.0091*** -0.0085*** -0.0071*** -0.0065*** -0.0031* -0.0020 0.0017 0.0042*
(-6.67) (-6.17) (-4.91) (-4.45) (-1.85) (-1.16) (0.74) (1.80)

Alpha 0.5771*** 0.5767*** 0.7133*** 0.7147*** 0.8432*** 0.8395*** 1.1012*** 1.0939***
(3.80) (3.80) (4.75) (4.75) (5.74) (5.71) (7.91) (7.86)

(Alpha− θ)× 1{Alpha<θ} 0.4416* 0.3946* 0.1576 0.1125 -0.1883 -0.2331 -0.5482*** -0.6203***
(1.93) (1.75) (0.73) (0.53) (-0.96) (-1.22) (-2.94) (-3.44)

Controls Yes Yes Yes Yes Yes Yes Yes Yes

R2
adj 0.0644 0.0644 0.0641 0.0641 0.0639 0.0639 0.0636 0.0637

Cum. effect ExpLiqChange -0.0053*** -0.0064*** -0.0079*** -0.0130***
(10.04) (11.88) (14.17) (21.27)

Cum. effect FundLiq -0.3063** -0.3935*** -0.3479** -0.4224*** -0.6432*** -0.7536*** -0.9520*** -1.1703***
(5.14) (8.13) (5.98) (8.29) (16.31) (20.89) (23.14) (32.34)

Econ. sign. ExpLiqChange -0.12% -0.16% -0.23% -0.40%
Econ. sign. FundLiq -0.14% -0.18% -0.16% -0.19% -0.30% -0.35% -0.47% -0.58%

Observations 223,622 223,586 223,622 223,586 223,622 223,586 223,622 223,586
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particularly strong for those bonds that trade only a few times in a month. In Chapter

2, we develop a procedure to mitigate the related measurement errors. The basic idea

is to compare the transaction costs paid for a given volume to the costs usually paid for

similar trade sizes. The trade-size adapted liquidity measure is then given as the scaling

factor between the observed and the usually paid costs. To rule out that our results

are influenced by such measurement errors, we employ daily average bid-ask spreads to

estimate monthly scaling factors sfi,t using the model in (2.5). Note that the scaling factor

is a relative measure of liquidity. For example, a scaling factor of sfi,t = 2 means that

bid-ask spreads for bond i in month t are twice as large compared to the average bond

in the sample. Therefore, we can use the scaling factors instead of the standard average

bid-ask spread measure and apply our forecasting methodology of Section 3.2.3.

The results regarding the predictive accuracy of the forecasting model and the näıve

benchmark are presented in Panel B of Table 3.7. Note that the näıve benchmark now

assumes that the size-adapted liquidity measure, i.e., the scaling factor is unchanged com-

pared to the previous month. We find a reduction of the RMMSE for this liquidity measure

of about 22% for the full and the restricted model compared to the näıve benchmark. The

results of our indirect performance evaluation that relies on the relation between changes in

yield spreads and changes in expected liquidity are shown in Panel B of Table 3.8. Consis-

tent with the findings in Chapter 2, we find that the modified measure in specification (2)

based on the näıve forecast leads to a higher explanatory power and lower out-of-sample

error compared to specification (2) in Table 3.4. The explanatory power and out-of-sample

error are further improved strongly when moving to differences in expected liquidity cal-

culated with our linear forecasting model in specification (3). The improvements in the

R2
adj and the out-of-sample MSE are more than twice as large compared to Table 3.4. One

explanation for the stronger improvement is that this measure does not suffer from noise

in the estimation due to changing trade-size patterns and as a result can be predicted more

precisely. In summary, we also find for this measure that our forward-looking approach

directly and indirectly outperforms the näıve benchmark in terms of predictive accuracy.

Next, we employ the size-adapted average bid-ask spread in our fund flow analysis

of Section 3.3. The results are provided in Panel B of Table 3.9. For all performance

quantiles, we consistently find significantly negative interaction effects of realized liquidity

and expected liquidity changes. The impact of both effects on corporate bond fund flows

becomes again stronger with decreasing fund performance.
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3.4.3 Fund Flows and Alpha

Goldstein, Jiang, and Ng (2017) find that outflows are stronger for more negative alphas.

In our main analysis, we capture this dependence with dummy variables for different

thresholds of alpha. In Panel C of Table 3.9, we additionally include alpha as a continuous

variable and an interaction term with the dummy variable for negative performance. Note

that we have to use alpha minus the alpha-threshold in the interaction term so that

the functional relation between alpha and flows is continuous. Looking at specification

(1), where the dummy variable is one if alpha is negative, we find both a significantly

positive coefficient for the continuous alpha and a significantly positive interaction term.

This effect is consistent with Goldstein, Jiang, and Ng (2017) and confirms the concavity

of fund flows. A response of flows to performance becomes stronger when the alpha is

negative. Interestingly, for more negative thresholds, the interaction variable first becomes

insignificant and for the most extreme setting, where the dummy variable is only one for

the 25% most negative alphas, becomes negative (note that alpha plus the interaction

term is still positive). This result indicates that for strongly negative alphas, the relation

to flows becomes again flatter.

Most importantly, our results regarding the relation of observed liquidity and expected

liquidity changes with the outflows of poorly performing funds remain robust. The cu-

mulated effects and the economic significance again increase with decreasing fund perfor-

mance.

3.5 Conclusion

In this chapter, we propose a prediction model for individual bond liquidity. Our method-

ology incorporates a dynamic predictor selection that, first, accounts for the information

available to a contemporary forecaster and, second, allows for changing structural rela-

tions between the economic variables over time. Our approach is easy to implement for

any liquidity measure and we exemplarily apply it to the average bid-ask spread measure.

To assess the performance of the forward-looking approach, we compare it to the

literature’s current practice to use today’s liquidity as the best predictor of future liquidity.

We show that our forecasting model outperforms this näıve benchmark in every month

of our sample period. The method performs also remarkably well during the financial

crisis. Additionally, we perform an indirect performance test exploiting the relation of
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changes in market expectations for future liquidity and yield-spread changes. The new

prediction model reveals a much stronger dependence of yield spreads on liquidity changes

and strongly increases the explainable part of yield spread changes.

Finally, we use our predictions to examine the impact of declining liquidity in poorly

performing corporate bond funds on investors’ selling decision. Consistent with the im-

plications of strategic complementarities among corporate bond fund investors, we find

two types of investor behavior. First, investors actively anticipate liquidity deteriorations

in funds with poor past performance and sell their fund shares in advance to secure a

first-mover advantage. Second, investors also react stronger for funds with already illiquid

portfolio holdings. Both effects become more pronounced for funds with more negative

performance during their last twelve months. Our results emphasis the importance of the

recent regulatory change that allows to pass on the costs of redemptions to the redeeming

shareholders (swing pricing). Because the fire sales from struggling funds might also im-

pact the market as a whole, the regulator should incentivize funds to broadly use this new

possibility (for a similar argument, see the theoretical model in Capponi, Glasserman, and

Weber, 2020).
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Chapter 4

Comparing Forecast Performance of

Finance Panel Data Models

4.1 Introduction

With the digitization of financial markets during the last decades, the access for investors

and researchers to large data on assets or market participants has tremendously increased.

Exploiting this vast font of information to predict financial outcomes for individual assets

or market participants becomes more and more popular.53 In particular, the increas-

ing adoption of machine learning algorithms contributes to this popularity, because their

prediction accuracy strongly benefits from the use of extensive panel data due to the algo-

rithms’ critical dependence on comprehensive training data. As a result of the large size

of the input data, forecasters obtain similarly large panels of predictions. In such large

panels of forecasts, however, one usually faces strong heterogeneity in the prediction er-

rors. Thus, given the literature’s findings from evaluating panel regressions (see Petersen,

2009), it is mandatory to properly account for the different behavior of individual assets

or market participants in the cross-section and across time when comparing the accuracy

of different forecast models.

53For example, in the stock market, Chinco, Clark-Joseph, and Ye (2019) predict one-minute-ahead
returns of individual stocks, while Chen, Hong, and Stein (2001) predict the skewness in their daily
returns. Furthermore, Bernoth and Pick (2011) and Liu, Moon, and Schorfheide (2020) employ panel
forecast models to predict default probabilities or revenues of individual banks or insurance companies.
Note that most of these studies do not test their models for equal predictive accuracy, only Bernoth
and Pick (2011) try to draw conclusions from the average of separate Diebold and Mariano (1995) test
statistics for each individual.
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In this chapter, we introduce new statistical tests to compare the predictive accu-

racy of competing forecast models for panel data with a vast cross-section and a large

time series and respective heterogeneity in the forecast errors. Our main proposed test

adaptively controls for the heterogeneity in the data along both dimensions and tests for

overall predictive equality in the entire sample. For this, we identify sub-clusters which

are homogeneous in their predictive accuracy via unsupervised learning techniques such

as hierarchical or k-means clustering in a pre-step. These sub-clusters are then used in a

second step to obtain a corrected Diebold and Mariano (1995) type test statistic where the

cluster structure crucially determines the estimate of the normalizing standard deviation.

We generally show that the clustering matters, i.e., simply ignoring the present hetero-

geneity can lead to different test results. Moreover, we robustify the pre-step with different

clustering techniques and determine how the data-driven shape of the clusters corresponds

to economically interpretable subsets. In addition to the overall test, we also suggest a

second series of tests for detailed localized insights. For this, we test predictive accuracy in

each of the clusters separately and reach an overall decision via multiple testing strategies.

Moreover, in this case we exploit pre-knowledge on the clusters from additional observable

information in one dimension and the adaptive cluster determination is only required for

the second step. With this, we can not only test for overall equal predictive accuracy but

identify the driving clusters of the models’ forecast performance.

We illustrate the importance of our new tests in the empirical application of Chapter

3 where we predict individual bond liquidity in the U.S. corporate bond market. With a

broad spectrum of different bond issuers having various bonds outstanding and the dis-

ruptive effects caused by the financial crisis in our sample, we first show that prediction

errors of such liquidity forecasts are subject to strong two-dimensional heterogeneity. We

then employ our new tests to pairwise compare the predictive accuracy of four different

liquidity forecast models. The first model generates simple predictions based on the as-

sumption of a martingale property for liquidity. The three remaining models are based on

our dynamic approach of Chapter 3, with each model using a different method to iden-

tify liquidity predictors. We find that the dynamic models are significantly more accurate

than the simple predictions in various settings. First, all three dynamic models outperform

the simple approach regarding the average forecast performance across the entire sample.

Furthermore, they also offer a higher precision in each of the time periods before, after,

and during the financial crisis as well as when looking separately at investment grade and

speculative grade bonds. Among the dynamic forecast models, we mostly cannot reject

the null that the different models’ forecasts are equally accurate. The only exception are
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the two time periods framing the financial crisis where the dynamic model based on an

elastic net selection method is relatively more accurate than the other two dynamic mod-

els. Interestingly, we find that when we test the nulls of equal predictive accuracy and

ignore the panel’s heterogeneity or try to compute the loss differential’s standard deviation

by eliminating the forecasts’ panel structure, a large part of the test decisions become ei-

ther misleading or inconclusive. Without accounting for the forecast errors’ heterogeneity,

the test statistics are almost always highly inflated and mistakenly lead to a rejection of

the null. When exploiting an aggregation of the forecast errors over either time or the

cross-section, the decision to reject the null depends in many cases on the choice of the

aggregated dimension.

We contribute to the literature on forecast performance tests (Diebold and Mariano,

1995; Giacomini and White, 2006) by studying clustering effects caused by heterogeneity

in the standard error of the test statistic. While for standard in-sample significance tests

the impact of clustering is well explored under standard assumptions such as a random

assignment mechanism (see, e.g., Liang and Zeger, 1986; Petersen, 2009; Abadie, Athey,

Imbens, and Wooldridge, 2017), we adaptively determine and exploit the shape of the

clusters in an unsupervised pre-step. Moreover, different ways of aggregating forecast

deviations along the two panel dimensions lead to different options for test statistics, in

this case, with specific advantages depending on the application.

The remainder of this chapter is structured as follows. In Section 4.2, we first introduce

our test procedure for the pooled hypothesis test of equal predictive accuracy across the

entire sample and second for the multiple hypothesis tests in clusters. We present our

empirical setting, the results on the pre-clustering step in this setting as well as the test

results for the pooled and joint hypothesis tests in Section 4.3. We robustify our pre-

clustering approach in Section 4.4 by employing alternative clustering approaches involving

k-means clustering as well as economic reasoning. We conclude in Section 4.5.

4.2 Theory

In this section, we introduce a Diebold and Mariano (1995) type predictive accuracy test

in the context of large panel data. Our setting is characterized by large panels, i.e., panels

having both an extensive cross-section and a long time series, with respective heterogeneity

in each dimension. We assess in a pre-step the two-dimensional heterogeneity in the

forecast errors to ensure consistent test results.
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4.2.1 Set-up and Test Idea

We work with panel data, thus we observe the realized outcome yi,t+h for each cross-

sectional unit i = 1, . . . , n at time t + h = 1, . . . , T . In our case, T is large, i.e., the

forecast period comprises several years of high frequent observations. Also, working with

financial data, the cross-section n is vast, for example incorporating several hundred stocks

or thousands of bonds. Moreover, we denote by ŷi,t+h|t,m the h-step-ahead forecast of the

outcome yi,t+h from model m = 1, . . . ,M conditional on information at time t. For ease

of exposition, we formally outline the approach for two competing forecasts M = 2 where

a large number M can be accommodated by successive pairwise comparisons.

For assessing the predictive performance of different forecasts, we use a loss function

Li,t+h|t,m quantifying the accuracy of ŷi,t+h|t,m for yi,t+h (see Diebold and Mariano, 1995).

We focus on the empirically most common quadratic loss

Li,t+h|t,m(ŷi,t+h|t,m, yi,t+h) = (ŷi,t+h|t,m − yi,t+h)2 = ê2
i,t+h|t,m,

where êi,t+h|t,m is the squared prediction error SEm of model m for time t + h. The

approach can also be easily extended to other types of loss functions (see, e.g., Q-Like

loss, Patton, 2011). We abstract from estimation errors in the forecast generation step

and take ŷi,t+h|t,m as pseudo observations.

4.2.2 An overall Diebold and Mariano (1995) Test with Pre-

clustered Standard Errors

We intend to test for overall equal predictive accuracy of two forecast models m1 and m2

across the entire sample. Thus, we work with

L̄m =
1

nT

n∑
i=1

T∑
t=1

Li,t+h|t,m(ŷi,t+h|t,m, yi,t+h)

and test for

H0 : E[L̄m1 ] = E[L̄m2 ] . (4.1)

For this, we detect systematic differences in the forecast errors

∆i,t+h|t = ê2
i,t+h|t,m1

− ê2
i,t+h|t,m2
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with the following pooled Diebold and Mariano (1995) type test statistic

V̂n,T =
1

(nT )

n∑
i=1

T∑
t=1

∆i,t+h|t

σ̂(∆i,t+h|t)
(4.2)

where σ̂(∆i,t+h|t) is an estimate of the standard deviation of ∆i,t+h|t. The difficulty in our

setting is to estimate σ(∆i,t+h|t) when the forecast errors are clustered. If this heterogeneity

is ignored by using the unadjusted standard deviation and respective estimators, such

estimates can be biased, over- or underdetermining the true volatility.54 Subsequently, the

test statistic Vn,T can also be biased, resulting in potentially misleading asymptotic and

finite sample results of the overall test.

We therefore propose a clustering pre-step for identifying the heterogeneous structure

of the standard errors in a data-driven way and suggest a feasible test procedure based

on this pre-step.55 We pre-cluster according to (êi,t+h|t,m1 , êi,t+h|t,m2) simultaneously in

cross-section and time. Thus we work with

σ̂2(∆i,t+h|t) =
K∑
κ=1

L∑
λ=1

|Iκ,λ|
nT

σ̂2
κ,λ(∆i,t+h|t) (4.3)

with

σ̂2
κ,λ(∆i,t+h|t) =

W∑
l=−W

J∑
j=−J

∑
i,t∈Iκ,λ

(
1− l

M

) (
1− j

J

)
|Iκ,λ|

(
∆i−j,t+h−l|t − ∆̄

) (
∆i,t+h|t − ∆̄

)
(4.4)

where (κ, λ) marks each rectangular cluster in cross-section and time with κ = 1, . . . , K

and λ = 1, . . . , L. With Iκ,λ we count the number of (i, t) for which (êi,t+h|t,m1 , êi,t+h|t,m2)

falls into the cluster (κ, λ) and |Iκ,λ| is the number of observations in Iκ,λ. Moreover, ∆̄

is the sample mean of ∆i,t+h|t in the respective cluster. We think of the clusters as a

rectangular partition of the two-dimensional cross-section and time space. Empirically, to

partition the two-dimensional space, we employ clustering algorithms with a data-driven

choice of the number of clusters. Note that (4.4) is the standard HAC estimator (see

Newey and West, 1987) with maximum lag lengths W > 0 and J > 0 within each cluster

and (4.3) pools cluster-specific variances according to the cluster size. Generally, only

within clusters, cross-correlations appear while across cluster correlations are negligible.

54See for example Petersen (2009) for a detailed overview on the effect of biased standard errors in the
context of panel data.

55Note that our test procedure is still applicable when the panel data is homogeneous, simply by
working with a single rectangular cluster containing all observations.
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This is similar to the literature on clustered standard errors for panel data in treatment

effects (see, e.g., Liang and Zeger, 1986; Abadie, Athey, Imbens, and Wooldridge, 2017)

where, however, cluster assignment generally occurs through some underlying random law

and actual realized clusters are not pre-estimated.

For the data-driven detection of clusters, we advocate hierarchical clustering (HC) of

the forecast errors (êi,t+h|t,m1 , êi,t+h|t,m2) separately along the two dimensions.56 Please

see Appendix C.1 for a detailed description of the exact algorithm and the employed

cut-off decision for each dimension. In Section 4.4, we robustify these cluster choices

by employing alternative clustering approaches involving k-means clustering as well as

economic reasoning.

If the detection of clusters is sufficiently precise, then the pooled Diebold and Mar-

iano (1995) test statistic (4.2) asymptotically follows a standard normal distribution, in

particular

(nT )
1/2V̂n,T

d→ N(0, 1) . (4.5)

Note that due to the vast sample size in our empirical setting, the asymptotic distribution

very closely approximates the exact distribution of the test statistic in the sample.

4.2.3 Multiple Diebold and Mariano (1995) Tests in Clusters

Instead of the completely data-driven approach in Subsection 4.2.2, we can exploit pre-

knowledge about clusters in say, the cross-sectional dimension from additional information

regarding e.g. a stock’s industry affiliation or different rating classes of bonds (see also

Timmermann and Zhu, 2019). This does not only yield efficiency gains but also allows

to extract more granular information from separate within-cluster tests. For the joint

hypothesis over the entire sample, however, these multiple separate tests then reveal not

only if the null is rejected but also where in which parts of the sample it is rejected.

Without loss of generality, we assume that along the cross-sectional dimension the

clusters τ = 1, . . . , P are set according to additional observable information.57 We denote

the index set of all pairs (i, t) within this pre-set cluster as Iτ . Then only for the remaining

time-series dimension the clusters λ = λ(τ) = 1, . . . , Lτ are determined from data using

(êi,t+h|t,m1 , êi,t+h|t,m2) as a screening device for i ∈ Iτ . Thus, we work for each cluster τ

56We favor hierarchical clustering over top-down clustering algorithms such as k-means because it is
less vulnerable to noise in the data and the number of clusters is not pre-determined exogenously (see,
e.g., Kaushik and Mathur, 2014).

57If time-clusters are pre-set, then results follow immediately by interchanging the role of τ and λ.
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with

L̄τm =
1

|Iτ |

Lτ∑
λ(τ)=1

∑
i,t∈Iτ,λ(τ)

Li,t+h|t,m(ŷi,t+h|t,m, yi,t+h) (4.6)

where (τ, λ(τ)) marks each rectangular cluster in cross-section and time with τ = 1, . . . , P

and the index set Iτ,λ(τ) contains all observation pairs within this cluster. Note, that λ(τ)

might vary for different τ and that P does not need to coincide with K in (4.3). Even if κ

of (4.3) and τ of (4.6) coincide, the corresponding marginal time-series clusters generally

differ.

Thus, within each pre-set cluster τ , we can test for equal predictive accuracy of two

forecast models m1 and m2:

Hτ
0 : E[L̄τm1

] = E[L̄τm2
] (4.7)

for all τ = 1, . . . , P . For this, we detect systematic differences in the loss function ∆i,t+h|t =

Li,t+h|t,m1(ŷi,t+h|t,m1 , yi,t+h)
2 −Li,t+h|t,m2(ŷi,t+h|t,m2 , yi,t+h)

2 = ê2
i,t+h|t,m1

− ê2
i,t+h|t,m2

with the

following test statistic

V̂ τ =
1

|Iτ |
∑
i,t∈Iτ

∆i,t+h|t

σ̂τ (∆i,t+h|t)
. (4.8)

and

σ̂2
τ (∆i,t+h|t) =

Lτ∑
λ(τ)=1

|Iτ,λ(τ)|
|Iτ |

σ̂2
τ,λ(τ)(∆i,t+h|t)

where λ(τ) marks a cluster of the non-clustered dimension in cluster τ with λ(τ) =

1, . . . , Lτ and σ̂2
τ,λ(τ)(∆i,t+h|t) is as in (4.4). If the detection of τ = 1, . . . , P is sufficiently

precise, we can compute V̂ τ and obtain the p-value of each τ -specific Diebold and Mariano

(1995)-Test from the standard normal distribution of the test statistic analogous to (4.5).

Hence we can determine a test decision for each Hτ
0 in (4.7).

While these individual cluster-specific results are interesting, our main concern is still

an overall test decision on the entire sample. Thus, our focus is in testing the joint

hypothesis

H0 =
P⋂
τ=1

Hτ
0 . (4.9)

For this, we conduct multiple tests with V̂ τ yielding a separate p-value for each Hτ
0 in

(4.7) for each cluster τ = 1, . . . , P . For inferring a decision on the joint hypothesis, we

then must adjust the significance level of each individual test according to multiple testing

principles. In particular, for controlling the familywise error rate, this requires to set the
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test-levels ατ for the separate clusters in order to achieve an overall test-level α in the

joint hypothesis (4.9). We follow the procedure by Holm (1979) which allows for certain

dependence in the data.58 Hence, putting the cluster-specific p-values in ascending order,

the νth p-value needs to be assessed against the nominal level

ατν =
α

P − ν + 1
. (4.10)

The joint hypothesis (4.9) is then rejected if each individual Hτ
0 is rejected for all clusters

τ . Thus, for example, to satisfy an overall test-level of α = 5%, HτP
0 with the highest

p-value must be rejected at the 5%-level, while the νth hypothesis Hτν
0 with a lower p-

value must be rejected at the more restrictive 5
P−ν+1

%-level. In addition to the overall test

result, the joint hypothesis test also locates which clusters and parts of the sample drive

the overall result and thus provides additional insights.

As in the previous subsection, we generally propose hierarchical clustering to detect

the data-driven marginal partitions λ(τ). Again, we show in Section 4.4 that results are

robust with respect to different unsupervised learning approaches.

4.3 Empirical Results

In this section, we compare the forecast performance of several prediction models for

individual U.S. corporate bond liquidity between November 2005 and May 2017. The

U.S. corporate bond market is an optimal environment to illustrate the importance of our

new testing approach. In this market, we observe a large number of issuers with various

outstanding bonds and, in addition, disruptive effects in the time series of our sample due

to the financial crisis. As a result, individual liquidity forecast errors are likely to exhibit

heterogeneity in the cross-section of bonds and across time. We first show that prediction

errors are indeed subject to strong two-dimensional heterogeneity. We then employ our

new Diebold and Mariano (1995) type tests with pre-clustered standard errors of Sections

4.2.2 and 4.2.3 and show that they are well suited to compare predictive accuracy in large

financial forecast panels.

58Note that one could also explicitly control for the dependence structure of the test statistics of the
joint hypothesis in the spirit of Romano and Wolf (2005) but we found the Holm (1979) scheme sufficient
for our empirical applications.
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4.3.1 Empirical Setting

For our empirical analyses, we exploit our dynamic forecast approach for individual bond

liquidity in the U.S. corporate bond market of Chapter 3. We implement the dynamic

panel forecast for the average bid-ask spread measure of Hong and Warga (2000)

liquidityi,t = Avg

 P buy
i,d − P sell

i,d

0.5 ·
(
P buy
i,d + P sell

i,d

)
 ,

where we use bond transaction data from Enhanced TRACE from October 1, 2004 to

June 30, 2017 to calculate average daily buy and sell prices P
buy/sell
i,d of bond i for all days

d in month t.

The main idea of this approach is that we identify in a first step possible bond liquidity

predictors exploiting the large pool of drivers of liquidity such as bond characteristics (e.g.,

age or credit risk, see Warga, 1992; Mahanti, Nashikkar, Subrahmanyam, Chacko, and

Mallik, 2008) or broader influences on bond market liquidity (e.g., spillover effects from

the stock market or monetary policy, see Chordia, Sarkar, and Subrahmanyam, 2005;

Goyenko and Ukhov, 2009).59 In the second step, for each month t, we then determine

the set of candidate predictors that offer the strongest predictive power during the rolling

twelve month calibration period from t−12 to t and calibrate the subsequent linear forecast

panel model

liquidityi,t−k+1 = αt +
∑
v∈Vt

βv,t · predictorv,i,t−k + εi,t−k (4.11)

with k = 1, . . . , 12. Consistent with Section 3.2.3, we employ three different methods to

determine month t’s set of liquidity predictors Vt. The first two methods, a variant of

stepwise regression and elastic net, rely on a holdout procedure and select the variable

set that leads to the lowest average squared prediction error on the withheld set, the last

month of the calibration period. The third method fills the predictor set with the variables

that are individually significant at the 5% level during the twelve month calibration period

(see also Chudik, Kapetanios, and Pesaran, 2018). Based on each selection method, we

then get an estimate for bond i’s liquidity ̂liquidityi,t+1 in month t+1 using the calibrated

values α̂t and β̂m,t and the selected predictors’ realization in month t.60 Additionally, we

59See Section 3.2.2 and Appendix B.1 for details on the liquidity predictors and on bond transaction
data.

60In the rare event that ̂liquidityi,t+1 is negative, its value is set to 0. Further, we refer to Section 3.2.3
for the detailed description of the forecast methodology.
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Table 4.1: Descriptive statistics for bond liquidity forecasts
This table reports descriptive statistics for the panel forecast of individual corporate bond liquid-
ity. Forecasts are generated employing four different models. First, we estimate a bond’s future
liquidity näıvely assuming a martingale property, i.e., a bond’s current liquidity is assumed to
be the best estimate for its liquidity in the next month. Second, we use dynamic forecast models
based on two holdout procedures or on in-sample significance (see Section 4.3.1 for more details
on the forecast models). The forecast period spans from November 2005 to May 2017. Panel A
shows general information on the forecast panel data and Panel B the mean squared prediction
errors (MSE) for the four competing forecast models.

Panel A: Sample information

Avg. bonds
Observations Months Bonds per month

230,790 139 6,462 1,660

Panel B: Forecast performance

Näıve Holdout - Holdout - In-sample
model stepwise elastic net significance

MSE 0.737 0.495 0.488 0.497

consider the liquidity forecast of a näıve approach that assumes a martingale property for

bond liquidity, i.e., ̂liquidityi,t+1 = liquidityi,t.
61 Thus, our final set of competing forecast

data consists of four panels based on either the dynamic forecast model (4.11) employing

one of the three predictor selection methods or on the näıve approach.

Panel A of Table 4.1 shows general information on the bond liquidity forecasts. Con-

sistent with the setting in Section 4.2, we observe a very large panel of estimates of future

bond liquidity. After the initial twelve-month calibration window, our forecast period

starts in November 2005 and ends in May 2017 resulting in 139 months in which next

month’s liquidity is predicted on average for 1,660 bonds. Over the whole observation

period, this leads to liquidity predictions for a total of 6,462 bonds and a panel of 230,790

observations as input for the tests for equal predictive accuracy. The mean squared pre-

diction errors of the four competing models are shown in Panel B. We observe the highest

MSE of 0.737 for the näıve approach. The three dynamic models have about one third

lower MSEs ranging from 0.488 to 0.497 with the elastic net model exhibiting the lowest

61In empirical applications, in the absence of an established forecast model, researchers typically have
employed a bond’s current liquidity when formally its expected value was required (see, e.g., Bao, Pan, and
Wang, 2011; Friewald, Jankowitsch, and Subrahmanyam, 2012, among others). As a result, we motivate
in Chapter 3 this näıve approach as benchmark for the dynamic forecast models.
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average prediction error.

4.3.2 Heterogeneity and Pre-clustering

As discussed in Section 4.2.2, testing for equal precise estimation, i.e., testing the null

H0 : E[MSEm1 ] = E[MSEm2 ], demands an accurate estimate of the loss differential’s

standard deviation (4.3). Given the broad variety of corporate bonds and bond issuers in

the cross-section as well as the disruptive impact of the financial crisis, we expect however

that the models’ loss functions exhibit systematic heterogeneity along both dimensions. As

supporting evidence, we refer to descriptive stylized facts of the time series and the cross-

section of the squared prediction error for the näıve forecast approach.62 Panel A of Figure

4.1 depicts the distribution of the median squared error across time. We observe a similar

pattern for the months before and after the financial crisis with relatively low median

squared errors. As expected, the median of the squared error peaks and thus strongly

deviates from this pattern during the market turmoil of 2008 and 2009. Additionally,

the interquartile range shows an extreme variation in the cross-section during these crisis

months and also a considerable cross-sectional variation in the months before and the

three years after the financial crisis. Thus, we indeed find consistent with our ex-ante

expectation a strong heterogeneity in the forecast errors across time.

Panel B of Figure 4.1 shows the squared error distribution for the cross-section of

bonds. For the sake of clarity, we only depict 50 bonds of the five largest issuers with 10

randomly selected bonds for each issuer. Because bonds of different issuers are likely sub-

ject to different influences, we find an expected differing behavior for the median squared

prediction errors across the selected bonds. While the bonds of AT&T (six-digit CUSIP

00206R) and Walmart (six-digit CUSIP 931142) exhibit rather low median squared er-

rors, the remaining bonds, specifically those of Union Pacific (six-digit CUSIP 907818),

are associated with a higher median loss in predictive accuracy as well as with very high

interquartile ranges. Again, we find our ex-ante expectation of a strong heterogeneity of

the loss function for the cross-section of bonds confirmed. Summarizing, we observe strong

heterogeneity for the squared prediction errors along both dimensions, cross-section and

time.

Given this strong two-dimensional heterogeneity, we perform the clustering pre-step of

62For the sake of brevity, we only report results for the forecast errors based on the näıve approach.
Note that, however, the three dynamic models also exhibit similarly strong heterogeneity along the two
dimensions.
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Panel A: Heterogeneity in the time series
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Panel B: Heterogeneity in the cross-section
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Figure 4.1: Heterogeneity across time and bonds
This figure shows the heterogeneity in individual bond liquidity squared prediction errors based
on the näıve forecast approach of Section 4.3.1 assuming a bond’s current liquidity to be the
best estimate for its liquidity in the next month. In Panel A, the orange line depicts the time
series of the median squared prediction error. For each month, the vertical gray line indicates the
interquartile range. Panel B shows exemplary the heterogeneity of the squared prediction errors
across 10 randomly selected bonds from each of the five biggest issuers in the sample, Citigroup (6-
digit CUSIPS 172967), AT&T (6-digit CUSIPS 00206R), Union Pacific (6-digit CUSIPS 907818),
United Health (6-digit CUSIPS 91324P), and Walmart (6-digit CUSIPS 931142). For each
bond, the orange dot depicts the median squared prediction error and the vertical gray line the
interquartile range.
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Section 4.2.2. As described in Appendix C.1, we first identify for each pairwise comparison

of the models of Section 4.3.1 the heterogeneity in the forecast errors in the time dimension

of the two competing models by employing hierarchical clustering to their time series of

monthly averaged squared prediction errors. We select the optimal cutoff height for the

resulting tree as a trade-off between allowing for cluster-within dependencies between a

large set of observation months without allowing for spurious correlations. Thus, we obtain

for each pairwise comparison the time clusters by cutting the tree at 5% of its height. In

the same way, we next identify cross-serial error heterogeneity by employing hierarchical

clustering to the cross-section of the average squared prediction errors across time of the

two competing models. Again, we select the optimal cutoff height at 1% of the tree’s

maximum height to satisfy the above trade-off.63

Figure 4.2 depicts results of the clustering pre-step. In Panel A, we show the time and

cross-sectional clusters for the comparison of the näıve approach and the dynamic model

based on stepwise regression. In both models the monthly average squared errors exhibit

a similar, almost linear behavior with the crisis months having the highest errors. Accord-

ingly, the hierarchical clustering algorithm groups the neighboring observation months to

a set of eight time cluster. For the cross-section of bonds, we also observe similarities be-

tween the time series averages of the squared prediction errors of the two models. However,

the distribution is much more diverse. Still, our clustering algorithm is able to identify

within-cluster similarities and across-cluster heterogeneity with a set of 22 cross-sectional

clusters. Panel B, shows the clustering results for the comparison of the two dynamic

forecast models based on holdout procedures. Consistent with the strong commonality

in the two forecast approaches (only the monthly predictor selection method varies), we

observe a strong linear relation between both the time series of monthly average squared

prediction errors and the cross-section of the averages of the squared errors across time.

As a result, the hierarchical clustering groups subsequent monthly observations or bonds,

respectively, into sets of seven time clusters and 20 cross-sectional clusters.64

Lastly, we report for all model comparisons descriptive statistics for the rectangular

clusters in cross-section and time of the clustering pre-step in Table 4.2. While the time

space for the pairwise comparisons is either divided into seven or eight time clusters, the

hierarchical clustering identifies 20 to 22 cross-sectional bond clusters. As a result, we

63Note that the vast amount of 6,462 bonds results in more diverse average squared errors than for
the 139 months. As a result, the Euclidean distance to merge all observations to a single cluster is much
higher. Thus, we need to cut at a lower height in order to get a comparable result for the trade-off.

64The results of the clustering pre-step for the remaining model comparisons are shown in Appendix
C.1.
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Panel A: Pre-clustering näıve vs. stepwise
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Panel B: Pre-clustering stepwise vs. elastic net
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Figure 4.2: Pre-clustering across time and bonds
This figure shows exemplary the pre-clustering across time (left image) and bonds (right image)
for the comparison of the individual bond liquidity forecast models of Section 4.3.1. Time and
cross-sectional clusters are identified by employing hierarchical clustering either on the time
series of the average cross-sectional squared prediction errors of the competing models or on the
cross-section of the bonds’ mean squared prediction error across time. In Panel A, bond liquidity
is either predicted by the näıve approach assuming a martingale property for bond liquidity or
by the dynamic forecast model based on stepwise regression. In Panel B, both dynamic bond
liquidity forecast models exploit a holdout procedure, either stepwise regression or elastic net
(for details on the forecast models see Section 4.3.1).
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Table 4.2: Pre-clustering descriptive statistics
This table reports descriptive statistics of the pre-clustering step for the comparison of the
individual bond liquidity forecast models of Section 4.3.1. Bond liquidity is either predicted
näıvely assuming a martingale property or employing one of the dynamic forecast models based on
either two holdout procedures, stepwise regression and elastic net, or on in-sample significance of
Section 4.3.1. Time and cross-sectional clusters are identified by employing hierarchical clustering
on either the time series of the average cross-sectional squared prediction errors of the competing
models or on the cross-section of the bonds’ mean squared prediction error across time. The
forecast period spans from November 2005 to May 2017.

Time Bond Observations per cluster pair

clusters clusters mean Q25% Q50% Q75%

Näıve vs. stepwise 8 22 1334.0 71.0 297.0 1433.0
Näıve vs. elastic net 7 20 1672.4 60.8 367.5 1425.0
Näıve vs. significance 7 21 1602.7 105.0 369.0 1540.8

Stepwise vs. elastic net 7 20 1989.6 80.8 472.5 2216.0
Stepwise vs. significance 8 20 1489.0 92.0 447.0 1794.0

Elastic net vs. significance 8 20 1528.4 106.0 463.0 1825.0

obtain through the intersection of the time and cross-sectional clusters between 116 and

173 two-dimensional rectangular clusters. Each rectangular cluster contains on average

a large set of 1,334 to 1,989.6 observations. Even sparsely filled rectangular clusters in

the 25%-percentile contain a notable amount of 60.8 to 106 observations. We show in

the robustness section 4.4.1 that the size of the rectangular partitions is comparable when

employing an alternative unsupervised learning algorithm.

4.3.3 Overall test for equal predictive accuracy

We now want to test the four different forecast models for overall equal predictive accuracy

across the entire sample. Thus, we test the pooled null (4.1) with

L̄m =
1

nT

n∑
i=1

T∑
t=1

Li,t+1|t,m

(
̂liquidityi,t+1|t,m, liquidityi,t+1

)
,

where we select two of each of the four models mi and mj for pairwise comparison.

As discussed, the main difficulty in calculating the pooled Diebold and Mariano (1995)

type test statistic (4.2) is to get an accurate estimate of the loss differential’s standard
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deviation (4.3). Because of the strong heterogeneity in our forecast panel data, this is a

particular important task. Thus, we rely on the overall clustered Diebold and Mariano

(1995) test of Section 4.2.2 based on the identified two-dimensional clusters of the previous

section. In order to examine the impact of the two-dimensional heterogeneity in cross-

section and time on the test decisions, we additionally execute the overall Diebold and

Mariano (1995) test for four alternative approaches.

In the first test alternative, we do not account for any heterogeneity in the calculation

of the loss differential’s standard deviation. Consequently, this version serves as a simple

baseline from which we can assess the effect of the remaining test alternatives.65 The next

two alternative tests are inspired by Timmermann and Zhu (2019). Based on forecast

data of macroeconomic panels, these authors suggest to aggregate the forecast errors in

one dimension and compute the standard deviation in the pooled test statistic (4.2) based

on the transformed one-dimensional average loss differential. We present the approach

when exploiting cross-sectional aggregation. Let ∆̄t+1|t = 1
n

∑n
i=1 ∆i,t+1|t and transform

the loss differential at t + 1 to an average loss Rt+1|t = 1

(n)1/2
∆̄t+1|t. The robust estimate

for the standard deviation σ̂(∆i,t+1|t) is then computed by employing a Newey and West

(1987) estimator on the time series of Rt+1|t.
66 Lastly, we compute the standard deviation

(4.3) with each bond and each prediction month forming a separate cross-sectional resp.

time cluster. As a result, each rectangular cluster in cross-section and time only contains

a single observation and we can interpret this approach compared to our data-driven

clustering as an upper bound for accounting for the two-dimensional heterogeneity.

The results of the pooled hypothesis test for the five versions are presented in Table

4.3. When comparing the näıve approach with one of the three dynamic forecast models,

the difference in the mean squared prediction errors is quite large with 0.240 to 0.249.

We see much smaller differences, when we compare the dynamic forecast models among

themselves. For the elastic net model that generates on average the lowest forecast errors,

we see differences in the MSE of only 0.007 to 0.009 compared to the two remaining

forecast models. The difference between the two models based on stepwise regression and

on in-sample significance is even smaller with 0.003. As a result, we would expect to reject

the null for the pairwise comparisons between the näıve approach and the three dynamic

forecast models. Given the small differences among the dynamic models, a rejection of the

65Note that while we do not control for the heterogeneity in the two dimensions, we still control for
heteroscedasticity by computing White (1984) standard errors.

66We calculate the optimal Newey and West (1987) lag length by l =
⌊

3
4T

1/3
⌋
. Note that in case of

time series aggregation, the approach follows immediately by interchanging the role of t and i and by
employing a White (1984) estimator.
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Table 4.3: Overall test for equal predictive accuracy
This table reports test statistics for the pooled hypothesis test for equal predictive accuracy of
Section 4.3.3. We perform pairwise tests for four different forecast models for individual bond
liquidity. First, a bond’s future liquidity is näıvely predicted assuming a martingale property,
i.e., a bond’s current liquidity is assumed to be the best estimate for its liquidity in the next
month. Second, we employ dynamic forecast models based on two holdout procedures or on in-
sample significance (see Section 4.3.1 for more details on the forecast models). Each panel shows
differences in the mean squared prediction error and t-statistics in parentheses for each pairwise
comparison. In Panel A, we do not make any adjustments for the estimate of the standard
deviation in (4.1). In Panel B and C, we employ two procedures inspired by Timmermann and
Zhu (2019) where we either exploit an aggregation of the cross-section or alternatively of the
time series. In the last two panels, we execute the clustered Diebold and Mariano (1995) test
of Section 4.2.2. While each pair of a month and bond marks a separate rectangular cluster in
cross-section and time in Panel D, clusters in Panel E are identified data-driven by hierarchical
clustering. ** and * indicate statistical significance at the 1% and 5% level.

Panel A: No adjustments

Näıve Holdout Holdout In-sample
model - stepwise - elastic net significance

Näıve model - 0.243** 0.249** 0.240**
(47.70) (48.01) (45.98)

Holdout - stepwise - 0.007** -0.003**
(6.69) (-2.90)

Holdout - elastic net - -0.009**
(-11.18)

Panel B: Cross-sectional aggregation

Näıve Holdout Holdout In-sample
model - stepwise - elastic net significance

Näıve model - 0.243** 0.249** 0.240**
(3.23) (3.87) (3.97)

Holdout - stepwise - 0.007 -0.003
(1.03) (-0.57)

Holdout - elastic net - -0.009
(-1.33)

Panel C: Time series aggregation

Näıve Holdout Holdout In-sample
model - stepwise - elastic net significance

Näıve model - 0.243** 0.249** 0.240**
(23.85) (24.53) (23.72)

Holdout - stepwise - 0.007** -0.003
(4.56) (-0.28)

Holdout - elastic net - -0.009**
(-5.45)
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Table 4.3 continued

Panel D: Maximum cluster count

Näıve Holdout Holdout In-sample
model - stepwise - elastic net significance

Näıve model - 0.243** 0.249** 0.240**
(11.86) (12.23) (11.60)

Holdout - stepwise - 0.007 -0.003
(0.92) (-0.44)

Holdout - elastic net - -0.009
(-1.29)

Panel E: Hierarchical clustering

Näıve Holdout Holdout In-sample
model - stepwise - elastic net significance

Näıve model - 0.243* 0.249* 0.240*
(2.43) (2.36) (2.38)

Holdout - stepwise - 0.007 -0.003
(1.41) (-0.43)

Holdout - elastic net - -0.009
(-1.38)

null is not obvious.

Looking at the test decisions, we start exemplary with the ex-ante close comparison

between the two dynamic forecast models based on stepwise regression and elastic net. In

Panel A, our baseline approach in which the covariance matrix is not adjusted for hetero-

geneity in the two dimensions, we see a very high t-statistic of 6.69 indicating a strong

rejection of the null in favor of the elastic net model. In Panels B and C we employ the

alternative test versions based on aggregating the loss differential before calculating its

standard deviation. These two approaches lead to an inconclusive result. While the null

can not be rejected when aggregating prediction errors over the cross-section (t-statistic of

1.03), aggregating the time series is associated with a strong rejection of the null at the 1%

level (t-statistic of 4.56). Looking at Table 4.1, we see why these different test outcomes

might arise. While we have a large cross-section of on average 1,660 bonds per month, our

time series is much smaller with only 139 months. As a result, systematic differences for a

part of the bonds may vanish when calculating the average cross-sectional squared predic-

tion error, leading to a trend not to reject the null. On the other hand, when aggregating

across time, outliers, e.g., during rare crisis events, can bias the average prediction error
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4.3. Empirical Results

strongly, resulting in a tendency to reject the null. Thus, these aggregation approaches

may reduce the computation of the standard deviation to a one-dimensional problem, but

at the same time the aggregation of one dimension leads to a loss of potentially important

information. Finally, Panel D and E show the results of our approach with pre-clustered

standard errors. In both panels, we find low t-statistics of 0.92 and 1.41 indicating an

absence of evidence for rejecting the null of equal predictive accuracy. These results are

a first indication that without appropriate control for the two-dimensional heterogeneity

in the forecast errors we identified in the previous section, test decisions can become mis-

leading or inconclusive. If we ignore the heterogeneity, misleading cross-cluster prediction

variance effects lead to a severely underestimated estimate for the standard deviation (4.3)

that artificially inflates the t-statistic. Further, due to the information loss when resolving

the two-dimensional structure of our large forecast panel, the choice of which dimension

is aggregated can have an impact on the test decision.

The remaining comparisons between the dynamic models provide additional support

for our preceding findings. Again, unadjusted standard deviations in Panel A mislead

to significant rejections at the 1%-level, while the adjusted standard errors in Panel D

and E show that the predictor selection method has no significant impact on the overall

predictive accuracy. Employing the aggregation approaches, the results of the pre-clustered

approach are confirmed for the comparison between the stepwise regression and the in-

sample significance models. But for the comparison between the elastic net and the in-

sample significance models, the acceptance decision when aggregating the cross-section

contradicts the rejection of the null at the 1%-level when aggregating the time series.

Lastly, for the pairwise comparisons of the näıve forecast with the dynamic models, all

test approaches reject the hypothesis of equal predictive accuracy in favor of the dynamic

models. Interestingly, we still see a similar impact of the test approaches on the test

statistic. Unadjusted standard errors lead to highly inflated t-statistics of 45.98 to 48.01

and aggregating the cross-section or the time series leads to either moderate t-statistics

of 3.23 to 3.97 or to very high values of 23.72 to 24.53. Finally, comparing the significant

t-statistics of the two different pre-clusterings, we observe much higher t-statistics when

selecting the smallest possible rectangular clusters across the two dimensions. This indi-

cates that identifying additional cross-serial or time-serial heterogeneity can be important

to get reliable test decisions.

Summarizing, our results provide evidence that an adequate consideration of hetero-

geneity in cross-section and time is imperative when comparing forecast models for overall
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equal predictive accuracy and can be achieved with our test procedure of Section 4.2.2.

Exploiting this test procedure, we can show that the näıve forecasts are significantly less

accurate than those of the three dynamic forecast models, while the choice of the selection

method has no significant impact on their overall predictive accuracy.

4.3.4 Multiple tests for equal predictive accuracy

In the preceding section, we have tested the different liquidity forecast models for overall

equal predictive accuracy employing a pooled hypothesis test. Alternatively, one could

be interested in comparing their forecast performance during specific time periods or for

particular classes of bonds. For each time series cluster or cross-sectional cluster, we

still face the heterogeneity of the forecast errors in the non-clustered dimension. Thus,

we test the joint hypothesis (4.9) of equal predictive accuracy with our test procedure of

Section 4.2.3. Again, to examine the test outcomes’ dependence on accounting properly for

the heterogeneity in the non-clustered dimension, we additionally employ four alternative

approaches similar to the previous section.

We exploit pre-knowledge on our forecast panel data and conditional on pre-information

from covariates split the panel in either three time clusters or in two cross-sectional bond

clusters. Given the disruptive effects of the financial crisis and the following regulatory

changes, e.g., by the Volcker rule, we assign observations to either a pre-crisis, crisis, or

post-crisis cluster. Based on the NBER recession indicators, observations in the forecast

period from November 2005 to December 2007 are assigned to the pre-crisis cluster. The

crisis cluster spans from January 2008 to June 2009 and the post-crisis cluster covers

the time period from July 2009 to May 2017. In the cross-section, we illustrate our joint

hypothesis test with manually selected bond clusters based on a split into investment grade

bonds and speculative grade bonds.67 Each prediction is assigned to the respective bond

cluster based on the rating of the underlying bond in the month before the prediction

date, i.e., if the bond’s average numerical rating across the three rating agencies S&P,

Moody’s, and Fitch is above 10 (corresponding to BB+), it is assigned to the speculative

cluster and otherwise to the investment grade cluster.68 We test the resulting two joint

hypotheses controlling for the familywise error rate to achieve an overall test-level α = 5%

67Note that one could also use more sophisticated cross-sectional clusters, for example, based on mul-
tilayered portfolio sorts by various bond characteristics. However, for the sake of an easy interpretation
of this illustrative example, we use a simple one layer split by rating.

68Ratings of S&P and Fitch are transformed to integer value by AAA=1, AA+=2, . . . and for Moody’s
by Aaa=1, Aa1=2, . . . .
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Table 4.4: Multiple tests in clusters: Descriptive statistics
This table reports descriptive statistics for the liquidity forecast panel data for manually selected
time and cross-sectional bond clusters. We choose three time clusters, prior to the financial
crisis, during the financial crisis, and afterwards based on the NBER recession indicators. For
cross-sectional clusters, we split bonds into investment grade and speculative grade based on
their average rating across the three rating agencies S&P, Moody’s, and Fitch. Individual bond
liquidity forecasts are generated employing four different models. First, a bond’s future liquidity
is näıvely predicted assuming a martingale property, i.e., a bond’s current liquidity is assumed to
be the best estimate for its liquidity in the next month. Second, we use dynamic forecast models
based on two holdout procedures or on in-sample significance (see Section 4.3.1 for more details
on the forecast models). The forecast period spans from November 2005 to May 2017. Panel A
shows general information on the cluster subsamples and Panel B the mean squared prediction
errors (MSE) for the four different panel forecast models across the time and cross-sectional
cluster subsamples.

Panel A: Sample information

Avg. bonds
Cluster Observations Months Bonds per month

Pre crisis 29,032 26 2,339 1,117
Crisis 22,160 18 2,337 1,231
Post crisis 179,598 95 5,470 1,891

Investment grade 190,370 139 5,657 1,370
Speculative grade 40,420 139 1,416 291

Panel B: Forecast performance

Näıve Holdout Holdout In-sample
Cluster model - stepwise - elastic net significance

Pre crisis 0.717 0.498 0.489 0.530
Crisis 2.559 1.743 1.718 1.735
Post crisis 0.516 0.340 0.336 0.340

Investment grade 0.641 0.430 0.425 0.433
Speculative grade 1.194 0.800 0.785 0.802
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and calculate for each cluster the nominal level (4.10) accordingly. Lastly, in case of our

test procedure of Section 4.2.3, we identify for each cluster hypothesis the heterogeneity

in the non-clustered dimension in a pre-step again via hierarchical clustering.69

Sample information on the three time and the two bond cluster subsamples are pre-

sented in Panel A of Table 4.4. The post-crisis cluster is the largest among the three time

clusters covering roughly 70% of the prediction months and containing about 78% of the

observations. Additionally, this cluster has the broadest monthly cross-section with on

average 1,891 bonds and 5,470 bonds in total. Nevertheless, both preceding clusters also

contain more than 20,000 observations each and exhibit large monthly cross-sections with

on average 1,117 to 1,231 bonds. Thus, we expect that the strong heterogeneity in the

cross-section is prevalent in all time clusters. In a similar spirit, we see that the investment

grade cluster is responsible for the lion’s share of the cross-sectional clusters with more

than 80% of the observations. But each of the two bond clusters contains observations from

the entire forecast period, implying that observations in both clusters are subject to the

time series heterogeneity. With respect to the average squared prediction error of the four

forecast models of Section 4.3.1 in the time and cross-sectional clusters, we see in Panel B

of Table 4.4 a similar pattern compared to the entire sample. The näıve approach always

produces by far the highest MSE, while the average errors of the three dynamic models are

mostly comparable. Thus, consistent with the pooled hypothesis tests, we expect for both

time and cross-sectional clusters to reject the joint null (4.9) when comparing the näıve

forecasts with those of one of the three dynamic forecast models. The rejection of the joint

null for both cluster variants is analogously not obvious for the pairwise comparisons of

the three dynamic forecast models based on different predictor selection methods.

The results of the joint hypothesis tests based on the three manually selected time

clusters are presented in Table 4.5. As expected, we find for all approaches that for all

three time clusters the p-value is below their critical value of the Holm (1979) scheme when

comparing the näıve approach with the dynamic forecast models. Thus, we can reject for

these three pairwise comparisons the joint null of equal predictive accuracy at the 5% level

in favor of the dynamic models. For the pairwise comparisons of forecast models based on

stepwise regression, elastic net, or in-sample significance, we find again differing outcomes

among the test alternatives. Without adjusting for the heterogeneity in the cross-section,

we find inflated cluster test statistics with p-values virtually being zero when comparing

69Similar to Section 4.3.2, we first calculate for the time or cross-sectional cluster’s subset of forecast
errors the time series averages or the monthly cross-sectional averages, respectively. The dendogram
is then again cut at 1% resp. at 5% of the maximum height in case of an underlying time cluster or
cross-sectional cluster.
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Table 4.5: Multiple tests for equal predictive accuracy: Time clusters
This table reports test statistics for the joint hypothesis (4.9) based on three time clusters. Observations are divided into prior to the
financial crisis, during the financial crisis, and after the financial crisis based on the NBER recession indicators. We perform pairwise
tests for four different forecast models for individual bond liquidity. First, a bond’s future liquidity is näıvely predicted assuming a
martingale property, i.e., a bond’s current liquidity is assumed to be the best estimate for its liquidity in the next month. Second,
we employ dynamic forecast models based on two holdout procedures or on in-sample significance (see Section 4.3.1 for more details
on the forecast models). Each pairwise comparison entry shows the decision of the joint hypothesis in the first row and afterwards
for each time cluster the differences in the mean squared prediction error and the p-value in parentheses. In the first three columns,
we do not make any adjustments for the estimate of the standard deviation in the time cluster test statistic (4.8). In the fourth to
ninth columns, we test each time cluster employing two procedures inspired by Timmermann and Zhu (2019) where we either exploit
an aggregation of the cross-section or alternatively of the time series. In the remaining columns, we execute the joint hypothesis test
of Section 4.2.3. While in each time cluster a bond marks a separate cross-sectional cluster in the first three columns, we identify
cross-sectional heterogeneity in each time cluster in the last three columns data-driven by hierarchical clustering. Controlling for the
familywise error rate to achieve an overall test-level α = 5%, * indicates statistical significance for the respective time cluster with
respect to the according critical p-value determined by the Holm (1979) scheme.

No adjustment Cross-sectional aggregation Time series aggregation

Holdout Holdout In-sample Holdout Holdout In-sample Holdout Holdout In-sample
- stepwise - elastic net significance - stepwise - elastic net significance - stepwise - elastic net significance

Näıve Joint Reject H0 Reject H0 Reject H0 Reject H0 Reject H0 Reject H0 Reject H0 Reject H0 Reject H0
model Pre crisis 0.219* 0.228* 0.187* 0.219* 0.228* 0.187* 0.219* 0.228* 0.187*

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Crisis 0.817* 0.841* 0.825* 0.817* 0.841* 0.825* 0.817* 0.841* 0.825*

(0.000) (0.000) (0.000) (0.004) (0.000) (0.001) (0.000) (0.000) (0.000)
Post crisis 0.176* 0.180* 0.176* 0.176* 0.180* 0.176* 0.176* 0.180* 0.176*

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Holdout Joint Reject H0 - - - - -
- stepwise Pre crisis 0.009* -0.032* 0.009 -0.032 0.009* -0.032*

(0.000) (0.000) (0.132) (0.386) (0.015) (0.000)
Crisis 0.024* 0.008 0.024 0.008 0.024 0.008

(0.012) (0.341) (0.673) (0.743) (0.894) (0.364)
Post crisis 0.004* 0.001 0.004* 0.001 0.004* 0.001*

(0.000) (0.129) (0.017) (0.668) (0.000) (0.019)
Holdout Joint Reject H0 - -
- elastic net Pre crisis -0.041* -0.041 -0.041*

(0.000) (0.273) (0.000)
Crisis -0.016* -0.016 -0.016

(0.034) (0.733) (0.191)
Post crisis -0.003* -0.003 -0.003

(0.000) (0.030) (0.032)
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Table 4.5 continued

Maximum cluster count Hierarchical clustering

Holdout Holdout In-sample Holdout Holdout In-sample
- stepwise - elastic net significance - stepwise - elastic net significance

Näıve model Joint Reject H0 Reject H0 Reject H0 Reject H0 Reject H0 Reject H0
Pre crisis 0.219* 0.228* 0.187* 0.219* 0.228* 0.187*

(0.000) (0.000) (0.000) (0.020) (0.007) (0.022)
Crisis 0.817* 0.841* 0.825* 0.817* 0.841* 0.825*

(0.000) (0.000) (0.000) (0.009) (0.010) (0.010)
Post crisis 0.176* 0.180* 0.176* 0.176* 0.180* 0.176*

(0.000) (0.000) (0.000) (0.012) (0.005) (0.010)
Holdout - stepwise Joint Reject H0 - - -

Pre crisis 0.009* -0.032* 0.009* -0.032*
(0.000) (0.000) (0.000) (0.002)

Crisis 0.024* 0.008 0.024 0.008
(0.013) (0.358) (0.386) (0.621)

Post crisis 0.004* 0.001 0.004* 0.001
(0.000) (0.153) (0.002) (0.669)

Holdout - elastic net Joint Reject H0 -
Pre crisis -0.041* -0.041*

(0.000) (0.000)
Crisis -0.016* -0.016

(0.031) (0.289)
Post crisis -0.003* -0.003*

(0.000) (0.000)
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the elastic net model with the two competing dynamic models. Thus, the joint hy-

pothesis test implies a significant higher predictive accuracy of the elastic net model. In

contrast, when exploiting aggregation in the cluster loss function, the two versions in-

spired by Timmermann and Zhu’s (2019) approach suggest an acceptance of the joint

null. However, looking at the rejection decisions in the individual clusters, we see that

the decision which dimension is aggregated still has a strong impact on the test outcome.

While for both comparisons the pre-crisis cluster hypothesis is confirmed when aggregating

the cross-section, the same hypothesis is strongly rejected when aggregating across time.

Finally, our test procedure of Section 4.2.3 reveals that the predictive accuracy of the three

dynamic forecast models is insignificantly different during the financial crisis. As a result,

we can not reject the joint hypothesis of equal predictive accuracy across all time clusters.

However, outside of the financial crisis, we find a significant higher precision of the elastic

net model. Moreover, the stepwise regression model is more accurate compared to the

in-sample significance model prior to the financial crisis. Importantly, accounting for the

cross-sectional heterogeneity of forecast errors with a maximum number of rectangular

clusters leads to a notable underestimation of the loss differential’s standard deviation.

Thus, our findings confirm the results of Section 4.3.3 and emphasize the importance of a

data-driven identification of the heterogeneity in the cross-section.

Lastly, we report the test decisions of the joint hypotheses based on the two manually

selected cross-sectional clusters in Table 4.6. We find the same behavior of the alterna-

tive test approaches. While inflated cluster test statistics of the baseline approach almost

always recommend a rejection of the joint null, the two approaches exploiting an aggre-

gation of the loss differential are inconclusive in their test decisions. Finally, our test

procedure controlling for heterogeneity in the non-clustered time dimension by employ-

ing hierarchical clustering shows once more that the näıve forecast is dominated by the

three dynamic models while no significant different accuracy can be found among them

for all cross-sectional clusters. Only for speculative bonds, the dynamic forecast model

based on elastic net generates a significant lower prediction error compared to the stepwise

regression model.
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Table 4.6: Multiple tests for equal predictive accuracy: Cross-sectional clusters
This table reports test statistics for the joint hypothesis (4.9) based on two cross-sectional bond clusters. Observations are divided into
investment grade bonds and speculative grade bonds based on the underlying bond’s average rating across the three rating agencies S&P,
Moody’s, and Fitch in the month preceding the prediction. We perform pairwise tests for four different forecast models for individual
bond liquidity. First, a bond’s future liquidity is näıvely predicted assuming a martingale property, i.e., a bond’s current liquidity is
assumed to be the best estimate for its liquidity in the next month. Second, we employ dynamic forecast models based on two holdout
procedures or on in-sample significance (see Section 4.3.1 for more details on the forecast models). Each pairwise comparison entry
shows the decision of the joint hypothesis in the first row and afterwards for each cross-sectional cluster the differences in the mean
squared prediction error and the p-value in parentheses. In the first three columns, we do not make any adjustments for the estimate
of the standard deviation in the cross-sectional cluster test statistic (4.8). In the fourth to ninth columns, we test each cross-sectional
cluster employing two procedures inspired by Timmermann and Zhu (2019) where we either exploit an aggregation of the cross-section
or alternatively of the time series. In the remaining columns, we execute the joint hypothesis test of Section 4.2.3. While in each
cross-sectional cluster a month marks a separate time cluster in the first three columns, we identify time series heterogeneity in each
cross-sectional cluster in the last three columns data-driven by hierarchical clustering. Controlling for the familywise error rate to
achieve an overall test-level α = 5%, * indicates statistical significance for the respective cross-sectional cluster with respect to the
according critical p-value determined by the Holm (1979) scheme.

No adjustment Cross-sectional aggregation Time series aggregation

Holdout Holdout In-sample Holdout Holdout In-sample Holdout Holdout In-sample
- stepwise - elastic net significance - stepwise - elastic net significance - stepwise - elastic net significance

Näıve Joint Reject H0 Reject H0 Reject H0 Reject H0 Reject H0 Reject H0 Reject H0 Reject H0 Reject H0

model Investment grade 0.211* 0.216* 0.208* 0.211* 0.216* 0.208* 0.211* 0.216* 0.208*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Speculative grade 0.394* 0.408* 0.392* 0.394* 0.408* 0.392* 0.394* 0.408* 0.392*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Holdout Joint Reject H0 - - - Reject H0 -
- stepwise Investment grade 0.005* -0.003* 0.005 -0.003 0.005* -0.003

(0.000) (0.002) (0.340) (0.601) (0.002) (0.721)
Speculative grade 0.015* -0.002 0.015 -0.002 0.015* -0.002

(0.000) (0.517) (0.229) (0.694) (0.001) (0.436)
Holdout Joint Reject H0 - Reject H0

- elastic net Investment grade -0.008* -0.008 -0.008*
(0.000) (0.199) (0.000)

Speculative grade -0.017* -0.017 -0.017*
(0.000) (0.267) (0.001)
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Table 4.6 continued

Maximum cluster count Hierarchical clustering

Holdout Holdout In-sample Holdout Holdout In-sample
- stepwise - elastic net significance - stepwise - elastic net significance

Näıve Joint Reject H0 Reject H0 Reject H0 Reject H0 Reject H0 Reject H0

model Investment grade 0.211* 0.216* 0.208* 0.211* 0.216* 0.208*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Speculative grade 0.394* 0.408* 0.392* 0.394* 0.408* 0.392*
(0.000) (0.000) (0.000) (0.000) (0.001) (0.001)

Holdout Joint - - - -
- stepwise Investment grade 0.005 -0.003 0.005 -0.003

(0.441) (0.618) (0.250) (0.448)
Speculative grade 0.015 -0.002 0.015* -0.002

(0.209) (0.825) (0.011) (0.822)
Holdout Joint - -
- elastic net Investment grade -0.008 -0.008

(0.191) (0.153)
Speculative grade -0.017 -0.017

(0.259) (0.173)
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4.4 Robustness

In this section, we perform two robustness checks. We first show that results are robust

to the choice of the clustering algorithm. To this end, we employ k-means clustering as an

alternative to identify cross-sectional and time clusters. Second, we robustify the shape of

our data-driven rectangular clusters by showing that our empirical results are comparable

when we choose an economically motivated shape for the rectangular clusters.

4.4.1 K-means clustering

In the main analyses, we detect heterogeneity in the two dimensions cross-section and

time by employing a bottom-up clustering algorithm. Alternatively, top-down algorithms

such as k-means clustering are commonly employed (see, e.g., Leuz, Nanda, and Wysocki,

2003; Fuertes and Kalotychou, 2007; Schmidt, 2015). The main idea of this algorithm is

that a user selects a desired number of clusters based on her knowledge on the data, to

which all observations closest to the respective cluster center points are assigned. As a

first step, the algorithm is initialized by randomly picking for each cluster one observation

as center point. Next, the distance to the randomly selected center points is computed for

all observations and each observation is assigned to the cluster with the lowest distance to

its center point. Based on the classified observations, the center point is then recomputed

to represent the center of the underlying cluster. These steps are repeated iteratively until

the cluster compositions converge.70

We repeat the pooled and joint tests for equal predictive accuracy of Sections 4.3.3

and 4.3.4 employing k-means clustering to the pre-clustering step. For the sake of com-

parability, we use the same numbers of time and cross-sectional clusters as identified by

the hierarchical clustering. Table 4.7 shows descriptive statistics for the two-dimensional

rectangular clusters based on k-means clustering. Similar to Table 4.2 in Section 4.3.2,

on average, each cluster contains 1,382 to 2,042.4 observations. Regarding the clusters

in the 25%-percentile, we see that the k-means algorithm leads in most cases to more

sparsely filled rectangular clusters than the hierarchical clustering. Nevertheless, they still

comprise a notable amount of at least 39 observations.

The results for the overall clustered Diebold and Mariano (1995) test are presented in

70In order to avoid local minima, we execute the k-means clustering for 25 different random starting
points and select the cluster run offering the best fit.

112



4.4. Robustness

Table 4.7: Robustness: Pre-clustering descriptive statistics
This table reports descriptive statistics of the pre-clustering step for the comparison of the
individual bond liquidity forecast models of Section 4.4.1. Bond liquidity is either predicted
näıvely assuming a martingale property or employing one of the dynamic forecast models based
on either two holdout procedures, stepwise regression and elastic net, or on in-sample significance
of Section 4.3.1. Time and cross-sectional clusters are identified by employing k-means clustering
on either the time series of the average cross-sectional squared prediction errors of the competing
models or on the cross-section of the bonds’ mean squared prediction error across time. The
forecast period spans from November 2005 to May 2017.

Time Bond Observations per cluster pair

clusters clusters mean Q25% Q50% Q75%

Näıve vs. stepwise 8 22 1382.0 43.0 203.0 1458.0
Näıve vs. elastic net 7 20 1735.3 40.0 374.0 1848.0
Näıve vs. significance 7 21 1709.6 39.0 216.0 1138.0

Stepwise vs. elastic net 7 20 2042.4 109.0 451.0 1895.0
Stepwise vs. significance 8 20 1479.4 112.5 429.0 1560.0

Elastic net vs. significance 8 20 1518.4 85.3 430.5 1739.0

Panel A of Table 4.8. For all pairwise comparisons, we find highly comparable t-statistics

differing only in the first decimal to the ones based on hierarchical clustering in Panel E

of Table 4.3. Moreover, we find in Panel B and C test decisions identical to our previous

results in the last three columns of Tables 4.5 and 4.6 for the joint Diebold and Mariano

(1995) type tests for the three time clusters and for the two cross-sectional bond clusters.

For all pairwise comparisons, the decisions on the joint hypotheses as well as each decision

for the individual cluster hypotheses are the same.

4.4.2 Tests with pre-specified clusters

One critique of data-driven clustering is that it can be unclear whether the identified het-

erogeneity in the cross-section and across time follows any economic reason or is partially

based on spurious relations. In general, unsupervised clustering algorithms work fully

automatically and are essentially black boxes. As a result, controlling for potentially false

heterogeneity could have a severe impact on the pooled and joint test decisions on equal

predictive accuracy.

We challenge our detected rectangular clusters identified by hierarchical clustering with

pre-specified clusters based on simple economic reasoning. Consistent with our argument
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Table 4.8: Robustness: Test statistics for k-means clustering
This table reports test statistics for the robustness check of Section 4.4.1 for the pooled and
joint hypothesis tests for equal predictive accuracy of Sections 4.3.3 and 4.3.4. Individual bond
liquidity is predicted employing four forecast models. First, a bond’s future liquidity is näıvely
predicted assuming a martingale property, i.e., a bond’s current liquidity is assumed to be the
best estimate for its liquidity in the next month. Second, we employ dynamic forecast models
based on two holdout procedures or on in-sample significance (see Section 4.3.1 for more details
on the forecast models). We execute the clustered Diebold and Mariano (1995) tests of Sections
4.2.2 and 4.2.3 with data-driven k-means clusters. In Panel A, we compare the models pairwise
for the pooled hypothesis (4.1). In Panel B and C, we test the joint hypothesis (4.9) for either
time or cross-sectional clusters (for more details on the selected clusters, see Section 4.3.4). For
each pairwise comparison, we show first the difference in the mean squared prediction error. In
Panel A, t-statistics are given in parentheses and ** and * indicate significance at the 1% and 5%
level. In Panel B and C, p-values are given in parentheses. Controlling for the familywise error
rate to achieve an overall test-level α = 5%, * indicates for the two panels statistical significance
for the respective cluster with respect to the according critical p-value determined by the Holm
(1979) scheme.

Panel A: Pooled hypothesis

Näıve Holdout Holdout In-sample
model - stepwise - elastic net significance

Näıve model - 0.243* 0.249* 0.240*
(2.32) (2.24) (2.19)

Holdout - stepwise - 0.007 -0.003
(1.54) (-0.84)

Holdout - elastic net - -0.009
(-1.41)

Panel B: Joint hypothesis - time clusters

Holdout Holdout In-sample
- stepwise - elastic net significance

Näıve Joint Reject H0 Reject H0 Reject H0

model Pre crisis 0.219* 0.228* 0.187*
(0.022) (0.008) (0.022)

Crisis 0.817* 0.841* 0.825*
(0.004) (0.005) (0.008)

Post crisis 0.176* 0.180* 0.176*
(0.016) (0.014) (0.023)

Holdout Joint - -
- stepwise Pre crisis 0.009* -0.032*

(0.000) (0.001)
Crisis 0.024 0.008

(0.572) (0.688)
Post crisis 0.004* 0.001

(0.002) (0.633)
Holdout Joint -
- elastic net Pre crisis -0.041*

(0.000)
Crisis -0.016

(0.218)
Post crisis -0.003*

(0.000)
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Table 4.8 continued

Panel C: Joint hypothesis - cross-sectional clusters

Holdout Holdout In-sample
- stepwise - elastic net significance

Näıve Joint Reject H0 Reject H0 Reject H0

model Investment grade 0.211* 0.216* 0.208*
(0.000) (0.000) (0.000)

Speculative grade 0.394* 0.408* 0.392*
(0.001) (0.001) (0.000)

Holdout Joint - -
- stepwise Investment grade 0.005 -0.003

(0.556) (0.448)
Speculative grade 0.015* -0.002

(0.020) (0.849)
Holdout Joint -
- elastic net Investment grade -0.008

(0.123)
Speculative grade -0.017

(0.164)

for the pre-knowledge time clusters in Section 4.3.4, we again cluster observations along

the time dimension using the financial crisis as natural cutoff. Thus, we again use the

NBER recession indicators and assign observations before 2008, between 2008 and June

2009, and after June 2009 to separate time clusters. For the cross-sectional bond clusters,

we make the simple assumption that bonds issued by different companies are subject

to a heterogeneous behavior. Thus, we assign bond observations having the same six-

digits CUSIP to a cross-sectional cluster. Finally, our rectangular clusters across the two

dimensions consist of the observations in the intersection of the time and cross-sectional

clusters.

The results of the clustered Diebold and Mariano (1995) tests employing the pre-

specified clustering are presented in Table 4.9. For the pooled test statistics in Panel A,

we find comparable t-statistics that only differ in one out of the six pairwise comparisons

more than by the first decimal with respect to the statistics in Panel E of Table 4.3. For

the joint hypothesis based on time clusters selected conditional on pre-information, we

find in Panel B identical decisions for 16 of the 18 individual cluster hypotheses of the

six pairwise comparisons in the last three columns of Table 4.5. In the same spirit, Panel

C shows that 11 of the 12 individual cross-sectional cluster hypotheses share the same

test outcome as in the last three columns of Table 4.6. The remaining cluster hypothesis

decisions are identical to the outcomes when each month or bond form a separate cluster.71

71Note that our economically motivated clustering is rather rough and neglects for example possible
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Table 4.9: Robustness: Test statistics for pre-specified clusters
This table reports test statistics for the robustness check of Section 4.4.2 for the pooled and
joint hypothesis tests for equal predictive accuracy of Sections 4.3.3 and 4.3.4. Individual bond
liquidity is predicted employing four forecast models. First, a bond’s future liquidity is näıvely
predicted assuming a martingale property, i.e., a bond’s current liquidity is assumed to be the best
estimate for its liquidity in the next month. Second, we employ dynamic forecast models based
on two holdout procedures or on in-sample significance (see Section 4.3.1 for more details on the
forecast models). We execute the clustered Diebold and Mariano (1995) tests of Sections 4.2.2
and 4.2.3 with economically motivated time and bond clusters, i.e., months are clustered prior,
during, and after the financial crisis based on the NBER recession indicators while bonds are
clustered by issuer. In Panel A, we compare the models pairwise for the pooled hypothesis (4.1).
In Panel B and C, we test the joint hypothesis (4.9) for either time or cross-sectional clusters
(for more details on the selected clusters, see Section 4.3.4). For each pairwise comparison, we
show first the difference in the mean squared prediction error. In Panel A, t-statistics are given
in parentheses and ** and * indicate significance at the 1% and 5% level. In Panel B and C,
p-values are given in parentheses. Controlling for the familywise error rate to achieve an overall
test-level α = 5%, * indicates for the two panels statistical significance for the respective cluster
with respect to the according critical p-value determined by the Holm (1979) scheme.

Panel A: Pooled hypothesis

Näıve Holdout Holdout In-sample
model - stepwise - elastic net significance

Näıve model - 0.243** 0.249** 0.240**
(2.60) (2.59) (2.60)

Holdout - stepwise - 0.007* -0.003
(2.10) (-0.48)

Holdout - elastic net - -0.009
(-1.24)

Panel B: Joint hypothesis - time clusters

Holdout Holdout In-sample
- stepwise - elastic net significance

Näıve Joint Reject H0 Reject H0 Reject H0

model Pre crisis 0.219* 0.228* 0.187*
(0.000) (0.000) (0.000)

Crisis 0.817* 0.841* 0.825*
(0.000) (0.000) (0.000)

Post crisis 0.176* 0.180* 0.176*
(0.000) (0.000) (0.000)

Holdout Joint Reject H0 -
- stepwise Pre crisis 0.009* -0.032*

(0.000) (0.000)
Crisis 0.024* 0.008

(0.013) (0.358)
Post crisis 0.004* 0.001

(0.000) (0.153)
Holdout Joint Reject H0

- elastic net Pre crisis -0.041*
(0.000)

Crisis -0.016*
(0.031)

Post crisis -0.003*
(0.000)
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Table 4.9 continued

Panel C: Joint hypothesis - cross-sectional clusters

Holdout Holdout In-sample
- stepwise - elastic net significance

Näıve Joint Reject H0 Reject H0 Reject H0

model Investment grade 0.211* 0.216* 0.208*
(0.000) (0.000) (0.000)

Speculative grade 0.394* 0.408* 0.392*
(0.000) (0.000) (0.000)

Holdout Joint - -
- stepwise Investment grade 0.005 -0.003

(0.441) (0.618)
Speculative grade 0.015 -0.002

(0.209) (0.825)
Holdout Joint -
- elastic net Investment grade -0.008

(0.191)
Speculative grade -0.017

(0.259)

Summarizing, the test results of our pre-clustering based on either economic reasoning

or on the hierarchical clustering algorithm are mostly comparable. Thus, our data-driven

clustering seems to capture the relevant heterogeneity across time and in the cross-section.

Moreover, clustering algorithms do not depend on ’ad-hoc’ cluster choices by an econome-

trician, which may capture all heterogeneity but may also suffer from imprecision.

4.5 Conclusion

In this chapter, we address the problem when panel forecast errors exhibit strong hetero-

geneity in the presence of a large cross-section and time series. We develop new statisti-

cal tests to compare panel forecast models for equal predictive accuracy that specifically

account for the heterogeneity in the two dimensions. In particular, our test procedure

incorporates a pre-step in which we determine the heterogeneous structure of the forecast

errors in a data-driven way by employing hierarchical clustering.

We apply our new testing procedure empirically when comparing the accuracy of in-

dividual corporate bond liquidity forecasts of three dynamic prediction models that only

heterogeneity between bonds of different industries or of bonds belonging to different parental companies.
Thus, it is likely that the larger data-driven clusters capture some of this additional heterogeneity, leading
to the small number of deviating test decisions.
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differ in their method of selecting liquidity predictors as well as forecasts of a näıve ap-

proach assuming a martingale property for bond liquidity. We show that ignoring or

inadequately controlling for the two-dimensional heterogeneity can lead to misleading or

inconclusive decisions about rejecting the null of equal predictive accuracy for the pairwise

comparisons of the four forecast models. In contrast, our new test procedure shows that

while the näıve model is always inferior to the dynamic models, the choice of the predictor

selection method has generally no significant impact on the forecast quality of the dynamic

approach. Besides the corporate bond market, many financial markets such as the stock

market or the option market exhibit a large cross-section and offer data for a long time

period. Thus, our results emphasize the importance to control for the two-dimensional

heterogeneity whenever comparing financial panel forecast models.
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Chapter 5

Summary and Outlook

This dissertation deals with the challenges investors face when measuring and predicting

liquidity in bond markets.

Chapter 2 resolves the negative impact of the mechanical link between trading costs

and trade volume on standard bond liquidity measures. We introduce a two-stage measure-

ment approach to adapt these measures. This approach eliminates the liquidity estimates’

dependence on a bond’s average trade size by measuring liquidity relative to a market-wide

cost-size function. Consistent with the conceptual superiority, we find ample empirical ev-

idence for the average bid-ask spread measure (see, e.g., Hong and Warga, 2000) and the

Schultz (2001) measure that their adapted counterparts are associated with a significant

higher liquidity measurement precision. We find that the differences in precision have a

strong impact when studying implications of liquidity in empirical applications. While the

literature only detects significant premia for the liquidity level and the market liquidity

risk in the U.S. corporate bond market when examined separately, we find affirmative

results for both sources in a combined Fama-MacBeth regression setup when liquidity is

measured accordingly to the unique features of over-the-counter bond trading. As a possi-

bility for future research, we could extent the scope of our study to other over-the-counter

markets. For example, as a direct consequence of the financial crisis, the Dodd-Frank

Act implemented mandatory post-trade reporting in the U.S. CDS market in December

2012. Moreover, in the quest for transparency on European bond markets, the Markets

in Financial Instruments Directive (MiFID II) of the European Securities and Markets

Authority entered into force in January 2018 requiring market participants to publish

post-trade information for liquid bonds. In both markets, it would be interesting to ex-

amine a possible dependence between transaction costs and trade size and test whether
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results of the literature (see, e.g., Loon and Zhong, 2016) are robust when this relation is

tackled appropriately.

In Chapter 3, we tackle the challenge that investors are currently left alone when

forming expectations on future individual bond liquidity. We propose a dynamic fore-

cast approach building on the multifaceted relations of bond liquidity with other bond

variables identified by the literature. Exploiting this new approach, we elaborate on the

consequences when in empirical applications formally required expected liquidity is prox-

ied by the literature’s simple approach to employ current liquidity. We find in several

empirical analyses that the impact of investors’ expectations is severely underestimated

by this approach. Chapter 3 provides potential for at least two additional future research

projects. First, from a risk management perspective, it is of high interest for both in-

vestors and regulators to be able to prepare a set of countermeasures not only for the

average future scenario but also for worst case and best case scenarios. Thus, it might

be promising to extend our forecast approach to the possibility of predicting conditional

quantiles (see, e.g., Athey, Tibshirani, and Wager, 2019). Second, He and Xiong (2012)

and He and Milbradt (2014) argue that a company’s probability of default is closely linked

to its bonds’ secondary market liquidity in a default-liquidity loop. Companies in distress

face a deterioration in their bonds’ secondary market liquidity. Thus, companies have to

rollover their maturing debt by issuing new bonds at a higher face value, subsequently

amplifying their financial distress. As a result, it would be interesting to deepen our un-

derstanding on the relation between default and liquidity by analyzing the explanatory

power of a company’s expected bond liquidity at the next rollover date for its current

probability of default. Furthermore, it would be interesting to examine whether bond

liquidity via the rollover channel or stock liquidity via the information efficiency channel

(see Brogaard, Li, and Xia, 2017) provides more information on a company’s default.

Chapter 4 provides researchers and practitioners with a tool kit to compare their

forecast model in bond markets with a vast cross-section of issuers and their bonds and

a long time series. The main challenge for testing for equal predictive accuracy in such

a setting is that forecast errors exhibit a heterogeneous behavior across the panel. To

solve this problem, we suggest a pre-step that identifies the two-dimensional clusters and a

feasible Diebold and Mariano (1995) type test procedure based on this pre-clustering. Our

empirical results emphasize the importance to account for the heterogeneity in large panels

in order to get reliable and conclusive test decisions. A natural starting point for future

research would be to adapt the test procedure to situations when nested forecast models

are compared (see, e.g., Clark and McCracken, 2001) or when parameters are subject

120



to uncertainty in their estimation (see, e.g., Giacomini and White, 2006). Furthermore,

it would be interesting to provide a framework in the future that allows forecasters to

compare the quality of conditional quantile forecasts of different panel data models (see,

e.g., Giacomini and Komunjer, 2005).
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Appendix A

Additional Information on

Size-Adapted Bond Liquidity

Measures and Their Asset Pricing

Implications

A.1 Data Filters, Bond Yields, and Matching Proce-

dure

We use U.S. corporate bond transaction data from the Enhanced TRACE database from

October 1, 2004 to December 31, 2014. Starting with only investment-grade bonds in

2002, TRACE was gradually expanded to finally cover essentially all corporate bonds in

October 2004. We apply several data filters to remove bonds with special features and

erroneous trade entries. Our filters are similar to the ones used in Schestag, Schuster, and

Uhrig-Homburg (2016) and Bongaerts, de Jong, and Driessen (2017). In a first step, we

apply the procedures of Dick-Nielsen (2009, 2014) to remove duplicates, withdrawn and

corrected entries. Further, we eliminate erroneous entries and extreme outliers by applying

the median and reversal filters of Edwards, Harris, and Piwowar (2007). We demand bonds

to be actively traded for at least twelve months during our observation period or for at

least 50% of the months they are active. Additionally, we exclude observations of defaulted

bonds after the default date. We discard perpetuals, convertible and puttable bonds as well

as bonds with floating coupon payments. We also demand bonds to be USD denominated,
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senior unsecured, and we exclude guaranteed bonds. After applying all filters, our final

sample consists of 21,233 bonds and 42,190,265 trades, corresponding to roughly 53% of

the about 79 million trades in the U.S. corporate bond market during our observation

period.

For the analyses in Sections 2.3.1 and 2.4, we require yields and durations. If the

yield-to-maturity is larger than the yield-to-call, the reported yield in TRACE often (but

not always) corresponds to the yield-to-call. We calculate both yields and select the one

that is closest to the reported yield. We drop observations for which both differences

are larger than 1 basis point (about 0.7% of all observations). For the yield spreads in

Section 2.3.1, we discount the bond’s cash flows with the risk-free Treasury curve to cal-

culate the price of an artificial Treasury bond with the same cash flow structure (using

updated data from Gürkaynak, Sack, and Wright (2007) published by the Federal Reserve

on http://www.federalreserve.gov). Finally, the yield spread is defined as the continu-

ously compounded yield computed from the reported price minus the corresponding yield

calculated from the price of the artificial Treasury bond (see Gehde-Trapp, Schuster, and

Uhrig-Homburg, 2018).

For the asset pricing tests in Section 2.4, we calculate expected excess returns using

probabilities of default (PD) from the Risk Management Institute (RMI) of the University

of Singapore for all publicly traded companies (identified by the stock’s ISIN and its

Bloomberg Ticker). Since there is no consensus on a procedure to match debt and equity

data in the presence of M&A activities,72 we develop our own approach that makes use

of the specific information we get from RMI and Bloomberg. Particularly, RMI provided

us with a full list of M&A activities. Moreover, we download from Bloomberg for each

bond the ‘Issuer Equity’ ticker that contains the original issuer of the bond and thus is

unchanged after an acquisition. Moreover, we download the ‘Bond to Equity’ ticker that

always references the company currently backing the bond. Using this data, we implement

a three-step matching procedure without any manual input. First, we check if the ‘Issuer

Equity’ ticker and the ‘Bond to Equity’ ticker are identical. If they are, the bond is assigned

to this company. Second, if the two tickers differ but we have only PD data either for

the original issuer or for the current ticker, we assign the bond to its original or current

ticker but only for the time period before the first or back to the last M&A event. In the

third step, if the two tickers differ and we have PD data for both underlying companies,

72For example, some researchers match bonds and companies via the issuer-specific first 6 digits of the
CUSIP and additionally hand-match CUSIPs in case of M&A activities (see, e.g., Feldhütter and Schaefer,
2018). Others use 6-digit CUSIPS and historical CUSIPS in CRSP (see, e.g., Chordia, Goyal, Nozawa,
Subrahmanyam, and Tong, 2017 or Ederington, Guan, and Yang, 2015).

124



A.2. Information Content of Small and Large Trades

we check if we can track the acquisition path in RMI’s M&A list and assign this path if

possible. If we find only an incomplete path, we try to complete it with corporate action

data from Bloomberg by checking if the last available company on the unfinished path

is a target/parent of the ‘Bond to Equity’ ticker.73 Finally, if the ‘Issuer Equity’ ticker

is not listed in RMI’s M&A list, we use Bloomberg’s corporate action functionality and

check if the ‘Bond to Equity’ ticker is the acquirer/spin-off of the ‘Issuer Equity’ ticker

and assign this direct path if possible. In total, our matching procedure is able to assign

company-specific PDs to 16,742 bonds in the sample.

A.2 Information Content of Small and Large Trades

An econometrician who wants to measure the liquidity of a bond using past transactions

has to decide on the data that provide the most accurate and comprehensive information.

A large strand of the literature (see, e.g., Dick-Nielsen, Feldhütter, and Lando, 2012

or Feldhütter, Hotchkiss, and Oğuzhan, 2016) exclude retail trades below $100,000 for

the calculation of liquidity measures, essentially assuming that small trades provide no

meaningful information. Because about two thirds of all transactions in the corporate

bond market are below $100,000, it is often not possible to calculate a daily or even

monthly liquidity measure just from large trades. Panel A of Table A.1 shows that for

the common Schultz (2001) measure, the number of months for which a bond’s liquidity

can be assessed drops by roughly 22% when ignoring small trades below $100,000. For

the average bid-ask spread measure, this drop is with 42% even more pronounced as this

measure has more stringent data requirements (both standard measures are explained

in Sections 2.2.2 and 2.2.3). On a daily frequency, the problem is exacerbated and the

observations for which a liquidity measure can be calculated are reduced by more than

50% for both measures when using only large trades.

We next challenge the literature’s implicit assumption that small trades are uninfor-

mative for institutional trading costs when large trades are available. To this end, we run

a panel regression explaining a bond’s daily large-trade transaction costs with monthly

bid-ask spread estimates based on large or small trades:

tclarge
i,d,t = α + βlarge · tclarge

i,t\{d} + βsmall · tcsmall
i,t\{d} + εi,d,t, (A.1)

73If we are not able to complete the acquisition path, we partly assign the bond to the tickers for which
we know the mapping and drop it for the remaining period.
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Table A.1: Information content of small and large trades
Trades with a notional < $100,000 are classified as small trades, volumes ≥ $100,000 are large
trades. We measure transaction costs with either the Schultz (2001) measure or the average
bid-ask spread measure. In Panel A, we report for a monthly and daily frequency the number of
observations for which a transaction cost measure can be calculated using either all trades or only
large trades. Panels B and C report results for a panel regression explaining daily transaction
costs of large or small trades with monthly transaction costs based on either large or small trades:

tc
large/small
i,d,t = α+ βlarge · tclarge

i,t\{d} + βsmall · tcsmall
i,t\{d} + εi,d,t.

For the monthly measures, we use information from all days in the month excluding the day under
consideration. In Panel B (C), we estimate the regression models with daily transaction costs of
large (small) trades on the left-hand side. In specifications (1) and (4) ((2) and (5)), we include
only monthly transaction costs of large (small) trades on the right-hand side. Specifications (3)
and (6) combine both categories. Standard errors are clustered by bond. The t-statistics are
given in parentheses. ** and * represent statistical significance at the 1% and 5% level.

Panel A: Observations with available liquidity measure

Daily Monthly

Schultz Avg. bid-ask Schultz Avg. bid-ask
(2001) spread (2001) spread

All trades 2,967,320 2,726,414 388,029 523,096
Large trades only 1,435,389 1,210,404 302,904 303,319

Panel B: Explaining transaction costs of large trades

Schultz (2001) Average bid-ask spread

(1) (2) (3) (4) (5) (6)

Intercept 0.0025** 0.0012** 0.0008** 0.0012** 0.0005** 0.0002**
(43.59) (15.79) (18.05) (33.75) (7.24) (6.40)

tclarge
i,t\{d} 0.6257** 0.4548** 0.7895** 0.6062**

(70.57) (49.86) (123.15) (65.07)
tcsmall
i,t\{d} 0.3434** 0.1792** 0.3607** 0.1452**

(47.55) (42.13) (45.60) (30.81)

R2
adj 0.2300 0.1829 0.2626 0.3391 0.2514 0.3616

Observations 742,159 358,740

Panel C: Explaining transaction costs of small trades

Schultz (2001) Average bid-ask spread

(1) (2) (3) (4) (5) (6)

Intercept 0.0092** 0.0026** 0.0025** 0.0070** 0.0013** 0.0012**
(60.24) (27.58) (26.72) (46.04) (28.49) (27.45)

tclarge
i,t\{d} 0.8623** 0.1763** 1.2458** 0.1881**

(57.27) (20.76) (68.22) (25.27)
tcsmall
i,t\{d} 0.7832** 0.7196** 0.9047** 0.8379**

(119.35) (89.08) (261.07) (157.74)

R2
adj 0.1987 0.4329 0.4383 0.3185 0.5965 0.6005

Observations 742,159 358,740
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where we calculate the monthly measures tci,t\{d} for bond i in month t excluding the day

under consideration d. A significant estimate for βsmall would show that small trades help

to explain the transaction costs of large trades. The results of the panel regressions are

presented in Panel B of Table A.1. In specifications (1) and (4), we explain transaction

costs of large trades using only the monthly estimates from large transactions, whereas in

specifications (2) and (5), we only employ small trades. Finally, specifications (3) and (6)

use both size categories. As expected, large trades from other days of the same month

carry information for a bond’s institutional transaction costs with an R2
adj of 23% for the

Schultz (2001) measure and 33.9% for the average bid-ask spread. When substituting the

monthly bid-ask spread measure for large trades with the one calculated from small trades,

the relation is still highly significant but with moderately decreased R2
adj of 18.3% for the

Schultz (2001) and 25.1% for the average bid-ask spread measure. Most interestingly, if

we include transaction costs from both small and large trades, the R2
adj surpasses notably

the R2
adj of the specifications in which only the institutional trades are employed. These

results show not only that small trades are valuable for assessing institutional transaction

costs but rather that the combination of both size categories offers superior information.

Because retail transaction costs are relevant for a large group of corporate bond in-

vestors, we also plug in daily retail-sized transaction costs tcsmall
i,d,t as the left-hand side of

Equation (A.1). The results in Panel C of Table A.1 show that again both size categories

carry a significant information content. As in Panel B, the R2
adj are higher when explaining

bid-ask spreads using other similarly sized trades. Finally, we again observe the highest

R2
adj when employing monthly spreads of both size categories. Summarizing, incorporat-

ing past transactions of small and large trades provides the most accurate assessment of

a bond’s liquidity.

A.3 Adjustments for the Average Bid-Ask Spread

The iterative two-stage weighted regression introduced in Section 2.2.2 relies on observa-

tions entering on a per trade basis into both stages. This means that when estimating the

market-wide cost function, one transaction cost observation is uniquely assigned to one

volume. And for the second step, when estimating the individual scaling factor, each trade

is weighted with its volume category weight. In case of the average bid-ask spread mea-

sure, such an assignment is not possible as all trades in a bond i on a day d are combined

to a single observation of AvgBidAski,d. Therefore, we have to make two adjustments to
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the iterative estimation procedure.

First, when estimating the market-wide transaction cost function, we face the problem

that the nonparametric regression model only allows to estimate functions of the general

form y = m̂(x). In other words, each bid-ask spread (on the left-hand side) has to be

uniquely assigned to a trading volume vol. Since the function c(vol) is not linear in vol,

we cannot assign the average trade size of day d to AvgBidAski,d. Therefore, we calculate

AvgBidAski,d in Equation (2.4) for each traded volume on the day separately and assign

to this observation the corresponding trade size. As this adjustment can lead to several

observations representing the same day, we correct the weights of these observations such

that each day contributes equally to the estimation of the market-wide transaction cost

function. To do so, the weight of each observation is obtained by the product of its volume

category weight (see Section 2.2.2) and the ratio of how often this volume v is traded

compared to all traded volumes on the respective day for which we can calculate the size-

dependent bid-ask spread. Again, to match the imbalance between sell and buy trades

on a trading day, we calculate this ratio separately for both sides. The final ratio is then

given by 1
2

(
(# trades with volume v)buyi,d

(# trades)buyi,d

+
(# trades with volume v)selli,d

(# trades)selli,d

)
. Note that calculating the

daily average bid-ask spread for each volume separately requires at least one sell and one

buy trade with the same volume. Thus, the sample for the estimation of the market-wide

transaction cost function in the first step of the iteration is only a subset of the sample

used for the estimation of the individual scaling factors in the second step. However, since

the estimation of the market-wide transaction cost function combines data from all bonds,

the subset remains large enough to ensure a reliable estimation.

Second, since the bid-ask spread AvgBidAski,d on one day represents several volume

categories, we have to adjust the weighting in the second step of the iteration. Given

the weights of the volume categories w(·), we calculate the observation-day weight as the

average of these weights, i.e., 1
2

(
1

nbuyi,d

∑nbuyi,d

k=1 w(volbuyk,i,d) + 1
nselli,d

∑nselli,d

k=1 w(volsellk,i,d)
)

.

For the estimation with a parametric functional form in Section 2.5.2, the first step is

not necessary as Equation (2.10) is linear in the coefficients ci. Instead, in the spirit of

Edwards, Harris, and Piwowar (2007), we multiply for both measures the volume category

weight with the inverse of this category’s average squared residual and use this new weight

in the first step of each iteration. This correction is necessary as the estimation noise is

much larger for retail-sized trades. Without the correction, retail-sized trades would thus

have a much larger influence on the OLS estimation of the market-wide function, leading

to a relatively bad fit for large trades. For the nonparametric approach, such a correction
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is not necessary as the nonparametric estimation procedure automatically decreases the

weights for volumes farther away from the point that is estimated.

A.4 Bootstrapping Methodology

In our bootstrap-like procedure of Section 2.3.1, we use a subset of the trades from highly

traded bonds to find out how liquidity measures can accommodate situations when bonds

trade only scarcely or moderately. We select the trades that are part of the subset so

that they resemble the trading pattern of scarcely traded bonds. We then compare the

liquidity measure based on the subset of trades to the benchmark liquidity calculated from

all available trades.

We define highly traded bonds as the 1% of bond-month observations with the highest

number of trades. To ensure that liquidity measures do not suffer initially from a one-

sided trading pattern, we require that the highly traded bond-month observations have

at least one trade in each of the volume segments of Section 2.2.2. This leaves us with

HSchultz = 3, 880 and HAvgBidAsk = 5, 230 highly-traded bond-month observations in case

of the Schultz (2001) and the average bid-ask spread measure, respectively.

For each trading activity category and for both standard and size-adapted liquidity

measures, the bootstrapping consists of four steps:

1. Randomly assign each highly-traded observation a bond-month observation of a

scarcely traded bond that falls into the trading activity category. This step yields

H pairs consisting each of a bond-month observation with a large number of trades

and a bond-month observation with a small number of trades.

2. Select for each pair the most appropriate trades of the highly-traded observation to

mirror the trading pattern of the scarcely traded bond. The best matching trade

is selected from the trades with the same trade side in the same volume segment

having the lowest squared difference of the trade sizes.

3. Calculate the liquidity measure based on both the full set of trades (i.e., the bench-

mark) and the mirrored trading pattern. To mitigate the impact of outliers, we

winsorize both measures using the 1% and 99% quantile of the full cross-section of

bonds from the benchmark’s observation month.
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4. Calculate the root-mean-squared percentage measurement error (RMSPE) as the

difference between the two estimates across the H pairs.

We repeat these steps n = 100 times and obtain the final results as the average RMSPE

across the 100 runs.

A.5 Individual Beta Estimation

In Section 2.4.3, we perform triple sorts, sorting on credit risk, liquidity, and liquidity

betas. To estimate a bond’s sensitivity to the corporate bond market liquidity risk, we

use a Vasicek (1973)-like Bayesian approach.74 In this approach, a bond’s liquidity beta is

estimated as the variance-weighted average of the individual beta and the prior, i.e., the

beta of a double-sorted portfolio the bond is assigned to. The individual beta is estimated

(if possible) by regressing the bond’s returns on innovations in corporate bond market

liquidity.

To ensure that not all bonds from the same double-sorted portfolio have the same prior

beta, we need a finer grid for this (auxiliary) double sort. Thus, we sort bonds in the first

stage into credit rating quintiles and in the second stage into liquidity quintiles based on

a bond’s amount outstanding. For the overlapping triple sort of the second approach, we

follow Bongaerts, de Jong, and Driessen (2017) and use seven categories for the ratings

(AAA, AA, A, BBB, BB, B, CCC) and PD quintiles. The classification of liquid and

illiquid bonds is identical to the second step in the triple-sorting procedure.75 A bond is

again assigned to several portfolios simultaneously. Thus, we finally calculate the prior

beta as the average of the betas from all portfolios the bond is assigned to.

Given the returns of the auxiliary portfolios and (if possible) the individual bond

returns, we estimate the portfolio and individual betas using a rolling window of 24 months

for which we require at least 12 observations.

74For details, see Appendix B of Bongaerts, de Jong, and Driessen (2017).
75Note that we do not sort bonds with AAA and CCC rating by their liquidity, as the number of bonds

in both portfolios is not sufficient for a further classification.
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Table A.2: Fama-MacBeth analysis: Descriptives
This table reports cross-sectional descriptive statistics of the panel data for the cross-sectional regression (2.8). For all variables, we first
calculate the average across time, the statistics are then computed from the cross-section of portfolios. Sensitivities are estimated for
the risk factors equity market return (EQ), shocks in equity market liquidity (EQLIQ), and shocks in corporate bond market liquidity
(CBLIQ). Cross-sectional statistics are calculated based on the non-overlapping portfolio sort on credit quality, amount outstanding,
and liquidity beta (described in detail in Section 2.4.3). In Panels A and B, we use the standard and size-adapted Schultz (2001) or
average bid-ask-spread measure to calculate bond transaction costs and liquidity betas.

Panel A: Cross-sectional descriptives – Schultz (2001)

Standard measure Size-adapted measure

Mean Std. dev. Q5% Q50% Q95% Mean Std. dev. Q5% Q50% Q95%

E[ri,t] (%) 2.26 1.28 0.81 1.87 5.04 2.26 1.27 0.88 1.90 5.03
βEQ 0.1549 0.1017 0.0341 0.1511 0.3846 0.1550 0.0968 0.0399 0.1465 0.3885
βEQLIQ -0.0922 0.0544 -0.1702 -0.0854 -0.0143 -0.0730 0.0449 -0.1508 -0.0761 0.0090
βCBLIQ -0.1429 0.0532 -0.2516 -0.1376 -0.0650 -0.1841 0.0656 -0.2935 -0.1946 -0.0921
c (%) 1.34 0.37 0.70 1.29 1.98 1.11 0.27 0.62 1.12 1.55

Panel B: Cross-sectional descriptives – Average bid-ask spread

Standard measure Size-adapted measure

Mean Std. dev. Q5% Q50% Q95% Mean Std. dev. Q5% Q50% Q95%

E[ri,t] (%) 2.26 1.28 0.87 1.89 5.15 2.26 1.29 0.84 1.87 5.12
βEQ 0.1494 0.0972 0.0451 0.1308 0.3880 0.1546 0.1015 0.0458 0.1234 0.4090
βEQLIQ -0.0895 0.0474 -0.1491 -0.0995 -0.0131 -0.0692 0.0382 -0.1339 -0.0720 -0.0010
βCBLIQ -0.1352 0.0575 -0.2558 -0.1224 -0.0593 -0.1708 0.0646 -0.2772 -0.1590 -0.0806
c (%) 1.32 0.37 0.80 1.27 2.06 1.10 0.26 0.65 1.15 1.51
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A.6 Fama-MacBeth Descriptive Statistics

Table A.2 reports cross-sectional summary statistics for the panel of expected returns,

betas, and transaction costs of the second step cross-sectional regression (2.8) for the non-

overlapping triple sort (the first approach in Section 2.4.3, which is our main approach).76

Panel A presents the statistics for the standard and size-adapted Schultz (2001) measure

and Panel B for the average bid-ask spread measures. The choice of the corporate bond

market liquidity measure has only a slight impact on the distribution of the expected

excess returns across the triple-sorted portfolios. In the same way, portfolios show a similar

distribution regarding the size of transaction costs for both Schultz (2001) and average bid-

ask spread measures. For the equity market beta βEQ, we find positive sensitivities with

a mean beta of roughly 0.15 and a standard deviation of 0.10, indicating that corporate

bond returns decline in equity market downturns.

Regarding the market liquidity risk sensitivities, we find for almost all beta quantiles

strictly negative estimates, indicating that corporate bond returns drop when equity or

bond market illiquidity rises. The patterns, however, differ for the standard and the size-

adapted versions. In case of the standard measures, the mean equity market liquidity beta

βEQLIQ and the corporate bond market liquidity beta βCBLIQ are roughly −0.09 and −0.14,

respectively. In case of the size-adapted measures, the absolute mean βEQLIQ drops by more

than 20% and the absolute mean βCBLIQ increases by more than 25%. The (absolutely)

larger equity market liquidity betas βEQLIQ for the non-size adapted measures show that

because of their correlation, an inaccurate measurement of bond market liquidity can

increase the loadings of equity market liquidity.

Table A.3 reports cross-sectional correlations of expected excess returns, betas, and

transaction costs. In Panel A, we depict the results for the Schultz (2001) measures

and in Panel B for the average bid-ask spread measures. Independent of the choice of the

corporate bond liquidity measure, we find a comparably low negative correlation (−0.15 to

−0.18) between the equity market and the equity market liquidity beta. Corporate bond

market liquidity beta and liquidity level are mildly more correlated (−0.35 to −0.53).

Expected excess returns are correlated with equity market and equity market liquidity

betas. Corporate bond liquidity also plays an important role for expected excess returns.

Interestingly, all correlations of expected excess returns with bond market liquidity risk

76Descriptive statistics and correlations for the other two portfolio settings are qualitatively and quan-
titatively very similar to the ones in Tables A.2 and A.3. For the model estimated on individual bonds,
beta standard deviations are, as expected, strongly inflated compared to the portfolio approaches.
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Table A.3: Fama-MacBeth analysis: Average cross-sectional correlations
This table reports average cross-sectional correlations of the variables in the cross-sectional regression (2.8). We compute pairwise
cross-sectional correlations across portfolios for each month and report their average across time. The set of risk factors consists of the
equity return (EQ), shocks in equity market liquidity (EQLIQ), and shocks in corporate bond market liquidity (CBLIQ). Cross-sectional
correlations are calculated based on the non-overlapping portfolio triple sort on credit quality, amount outstanding, and liquidity beta
(described in detail in Section 2.4.3). In Panels A and B, we use the standard and size-adapted Schultz (2001) or average bid-ask-spread
measure to calculate bond transaction costs and liquidity betas.

Panel A: Cross-sectional correlation – Schultz (2001)

Standard measure Size-adapted measure

E[ri,t+1] βEQ βEQLIQ βCBLIQ c E[ri,t+1] βEQ βEQLIQ βCBLIQ c

E[ri,t+1] 1 0.71 -0.30 -0.46 0.54 1 0.70 -0.23 -0.54 0.67

βEQ 1 -0.18 -0.34 0.42 1 -0.18 -0.42 0.57

βEQLIQ 1 0.16 -0.28 1 0.02 -0.28

βCBLIQ 1 -0.35 1 -0.40

c 1 1

Panel B: Cross-sectional correlation – Average bid-ask spread

Standard measure Size-adapted measure

E[ri,t+1] βEQ βEQLIQ βCBLIQ c E[ri,t+1] βEQ βEQLIQ βCBLIQ c

E[ri,t+1] 1 0.71 -0.28 -0.54 0.47 1 0.73 -0.23 -0.62 0.65

βEQ 1 -0.17 -0.36 0.34 1 -0.15 -0.57 0.59

βEQLIQ 1 0.21 -0.24 1 0.10 -0.20

βCBLIQ 1 -0.40 1 -0.53

c 1 1133
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βCBLIQ and liquidity level c are (absolutely) stronger when using our more precise

size-adapted liquidity measures.

A.7 Adapting the Repeat-Sales Measure

Adapting the repeat-sales measure of Bongaerts, de Jong, and Driessen (2017) requires

minor changes to the iterative two-stage procedure of Sections 2.2.2 and 2.2.3. However,

employing the basic measurement approach follows the same intuition.

Starting with the unadapted measure, estimating a trade’s transaction costs is based

on the idea that trade prices consist of a bond’s fundamental value adjusted for transaction

costs (see Section 1.3 of Bongaerts, de Jong, and Driessen, 2017). As a result, the log-

difference between two consecutive prices Pk−1,i and Pk,i for bond i in portfolio j is the

change in the fundamental value and the transaction costs , i.e.,

ln(Pk,i)− ln(Pk−1,i) =

tk∑
s=tk−1+1

Rj,s + cj · (Qk,i −Qk−1,i) + ek,i. (A.2)

The fundamental return in this equation is expressed by hourly latent portfolio returns

Rj,s between the two trade times tk−1 and tk and an idiosyncratic term ek,i. Transaction

costs cj in month t are assumed to be constant within a portfolio and are multiplied with

each trade’s direction Qk,i, which equals 1 in case of a buyer-initiated trade and −1 for a

seller-initiated trade.

Applying our basic approach in (2.1) to Equation (A.2), we replace the constant port-

folio transaction costs with the market-wide cost function evaluated at the transaction’s

volume c(volk,i) multiplied by portfolio j’s individual scaling factor sfRepeatSalesj , leading

to

ln(Pk,i)−ln(Pk−1,i) =

tk∑
s=tk−1+1

Rj,s+sf
RepeatSales
j ·(c(volk,i) ·Qk,i − c(volk−1,i) ·Qk−1,i)+ek,i.

(A.3)

We estimate the scaling factor sfRepeatSalesj in (A.3) using the iterative two-stage procedure

of Sections 2.2.2 and 2.2.3.77 To prevent concerns of a look-ahead bias in Section 2.4, we

77In the first iteration, we perform an additional step and estimate a prior for the hourly portfolio
returns using the standard measure. Thus, we can estimate the transaction cost function by using the
return priors and by setting all scaling factors to 1.
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estimate in the first step the transaction cost function c(·) using only the observations of the

first quarter (see also footnote 22). In the second step, we follow Bongaerts, de Jong, and

Driessen (2017) and estimate portfolio j’s hourly returns and monthly scaling factors for an

entire quarter in a pooled regression. Consistent with the two other size-adapted measures,

the adapted repeat-sales measure can be estimated whenever the data requirements of the

standard measure are satisfied.

Similar to the average bid-ask-spread measure (see Appendix A.3), the nonparametric

estimation of the transaction cost function leads to the problem that trades do not enter

separately into Equation (A.3) but as two consecutive trades. Hence, to estimate the

market-wide transaction cost function in the first step of the iteration, we can only employ

log-differences between two consecutive trades if they share the same volume. Despite the

resulting sample reduction, using data of all bonds still ensures a reliable estimation of

the market-wide transaction cost function.
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B.1 Bond Data Filters and Yield Spread Calculation

We use transaction data from Enhanced TRACE for the U.S. corporate bond market for

the time period from October 1, 2004 to June 30, 2017. Despite TRACE being gradually

introduced starting in 2002 by the FINRA, we restrict our examination period to a start

in October 2004. After this date, market participants had to report almost all trades. To

clean the data, we apply several filters comparable to the ones used in Schestag, Schus-

ter, and Uhrig-Homburg (2016) and in Chapter 2. In a first step, we apply the standard

procedures of Dick-Nielsen (2009, 2014) to remove duplicates, withdrawn and corrected

entries. In the second step, we apply the median and reversal filter of Edwards, Harris,

and Piwowar (2007) to exclude erroneous entries and extreme outliers. Finally, we de-

mand bonds to satisfy several conditions. First, we exclude bonds with special features

(perpetuals, convertible and puttable bonds, floating coupon payments). Second, bonds

have to be senior unsecured, USD denominated, and there shall be no entity backing the

bond with a guarantee. Third, we demand bonds to be actively traded in at least twelve

months within our sample period or in 50% of the months they are active. Last, we ex-

clude observations of defaulted bonds after the default happened. Overall, our sample

consists of 25,918 bonds and 61,360,046 trades, which is approximately 57% of the about

108 million trades during our observation period.

We require a bond’s yield spread for the analysis in Section 3.2.5. If the yield-to-
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maturity is larger than the yield-to-call, the reported yield in TRACE often (but not

always) corresponds to the yield-to-call. We calculate both yields and select the one that

is closest to the reported yield. We drop observations for which both differences are larger

than 1 basis point (about 0.7% of all observations). We discount the bond’s cash flows with

the risk-free Treasury curve to calculate the price of an artificial Treasury bond with the

same cash flow structure (using updated data from Gürkaynak, Sack, and Wright (2007)

published by the Federal Reserve on http://www.federalreserve.gov). Finally, the yield

spread is defined as the continuously compounded yield computed from the reported price

minus the corresponding yield calculated from the price of the artificial Treasury bond

(see also Gehde-Trapp, Schuster, and Uhrig-Homburg, 2018).

B.2 Mutual Fund Data

We use mutual fund data from Morningstar. We identify corporate bond funds using

the Morningstar category classifications and the fund’s prospectus objective. Specifically,

funds have to be in one of the categories ‘US Fund Long-Term Bond’, ‘US Fund Interme-

diate Core Bond’, ‘US Fund Intermediate Core-Plus Bond’, ‘US Fund Short-Term Bond’,

‘US Fund Ultrashort Bond’, ‘US Fund Corporate Bond’, ‘US Fund High Yield Bond’, ‘US

Fund Target Maturity’, or ‘US Fund Multisector Bond’. Additionally, we exclude funds

with a focus on government or municipal bonds in their prospectus objective. The remain-

ing filters follow Goldstein, Jiang, and Ng (2017). We exclude index funds as well as fund

share classes during their first year. Finally, to get sufficient data coverage when merging

fund holding data with TRACE, we restrict the sample in our analyses to the time period

from January 2008 to June 2017. After applying these filters, our sample consists of 3,492

share classes from 1,005 corporate bond funds.
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C.1 Pre-clustering with hierarchical clustering

We identify in Section 4.2 rectangular clusters in cross-section and time by employing the

widely used hierarchical clustering algorithm (see, e.g., Panton, Lessig, and Joy, 1976;

Bouvatier, Lepetit, and Strobel, 2014). The main idea of this bottom-up clustering algo-

rithm is to iteratively merge clusters of observations with the lowest distance to each other.

Starting with each observation as a separate cluster, the iteration procedure stops once all

observations are assigned to the same cluster. The result is a tree called dendogram where

each cluster agglomeration is represented by a node (with the starting clusters as terminal

nodes and the final cluster containing all observations as root) and the tree’s branches in-

dicate the merging distances. In the next step, the tree is cut at a desired height. The tree

nodes which are below this height then form the final cluster of the clustering algorithm.

In particular, we detect empirically the rectangular clusters as intersection of sepa-

rately identified time and cross-sectional clusters. To this end, we obtain time clusters

by employing the hierarchical clustering to the time series of average cross-sectional pre-

diction errors of two competing models and respectively the bond clusters based on the

cross-section of average prediction errors across time. Merging observations or clusters in

each iteration to a larger cluster follows Ward’s method. Finally, we get the final cluster
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allocation by cutting the dendogram at a set percentage of the maximum height where

the specific cutoff value depends on the empirical application.

For the sake of brevity, we restrict our clustering results of the hierarchical clustering in

Section 4.3.2 to the pairwise comparisons between the dynamic model employing stepwise

regression and either the näıve approach or the dynamic model based on the elastic net

procedure. The hierarchical clustering results for the remaining model pairs are presented

in Figure C.1. While Panels A and B show the detected clusters of the näıve forecast

errors and those of the dynamic models based on the elastic net procedure and in-sample

significance, Panel C shows the clusters when comparing the dynamic stepwise and in-

sample significance models. Lastly, Panel D shows the pre-clustering of the forecast errors

for the elastic net and the in-sample significance model. Consistent with the previous

results of Section 4.3.2, we find that the forecast errors in the time series of the näıve

and the dynamic models exhibit an almost linear behavior, while the distribution in the

cross-sectional clusters is much more spread. Again, when pairwise clustering the forecast

errors of the remaining dynamic models, we find that the clustering algorithm is capable

of identifying the respective heterogeneity in the cross-sectional or time dimension and

assigns observations to separate clusters accordingly.
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Panel A: Pre-clustering näıve vs. elastic net
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Panel B: Pre-clustering näıve vs. in-sample significance
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Panel C: Pre-clustering stepwise vs. in-sample significance
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Panel D: Pre-clustering elastic net vs. in-sample significance

Time cluster Bond cluster

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4

Squared
error -

significance

Squared
error -

elastic net

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20

Squared
error -

significance

Squared
error -

elastic net

Figure C.1: Remaining pre-clustering across time and bonds
This figure shows the pre-clustering across time (left image) and bonds (right image) for the
remaining comparisons of Section C.1 for the individual bond liquidity forecast models of Section
4.3.1. Time and cross-sectional clusters are identified by either employing hierarchical clustering
on the time series or the of average cross-sectional squared prediction errors of the competing
models or on the cross-section of the bonds’ mean squared prediction error across time. In Panel
A and B, bond liquidity is once predicted by the näıve approach and second either by the dynamic
forecast model based on the elastic net or on in-sample significance. In Panel C and D, bond
liquidity is first predicted by the forecast model based on in-sample significance and second by
one of the holdout procedure models, stepwise regression or elastic net.
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Appendix D

Out-of-Sample Yield Spread

Regression Tests with Pre-Clustering

In Section 2.3.1, we calculate implied yield spread changes in an out-of-sample setting and

compare the mean squared error (MSE) with respect to the actual yield spread change

between the models based on (2.6) when either employing a standard liquidity measure

or its size-adapted counterpart. We perform a similar exercise in Section 3.2.5 but focus

on the difference in the MSE when employing either current liquidity or forecasts of our

prediction approach of Section 3.2 as proxy for expected liquidity in the regression model

(3.3). In both exercises, we test the differences in the MSE using a Diebold and Mariano

(1995) test in the spirit of Harvey, Leybourne, and Newbold (1997). However, this test is

similar to the first alternative of the overall Diebold and Mariano (1995) test in Section

4.3.3 and thus does not account for potential two-dimensional heterogeneity in the out-of-

sample errors in the cross-section and the time space. In order to rule out that our test

decisions are driven by inflated t-statistics, we repeat the out-of-sample tests and apply

our clustered Diebold and Mariano (1995) test of Section 4.2.2 to test for equal accuracy.

Consistent with our in-sample standard errors, we pre-specify each pair of observation

month and bond as a separate rectangular cluster.78

The test results for the analysis of Section 2.3.1 are presented in Panel A of Table D.1.

Consistent with the results in Table 2.3, we find that the MSE drops significantly once we

add a standard or size-adapted liquidity measure to the baseline regression that only

78Note that this is approach leads to clusters containing only one observation. However, if we are
more conservative and detect clusters data-driven by employing hierarchical clustering, our results are
qualitatively comparable.
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Table D.1: Yield spread regression tests with pre-clustering
This table reports test results for the pairwise comparisons of the out-of-sample mean squared errors (MSE) of the panel regressions of
Sections 2.3.1 and 3.2.5 when we employ the pooled hypothesis test with pre-clustered standard errors of Chapter 4. In Panel A, we
compare the MSE when we employ either standard liquidity measures or their size-adapted counterparts. In particular, we compare
a specification to the baseline specification without a liquidity measure and in case of the size-adapted measure additionally to the
specification of its standard measure. In Panel B, we compare the MSE when employing either current liquidity or expected liquidity.
Expected liquidity is either estimated via the linear combination model of Section 3.2.3 or via the random forest model of Section 3.4.1
and we measure bond liquidity using the average bid-ask spread measure. We first compare a specification to the baseline specification
without a liquidity measure and in case of an expected liquidity proxy additionally to the specification employing current liquidity.
Each month and bond pair marks a separate rectangular cluster in the pre-step. The t-statistics are given in parentheses. ***, **, and
* represent statistical significance at the 1%, 5%, and 10% level.

Panel A: Size-adapted liquidity measure

Schultz (2001) Average bid-ask spread

Baseline Standard Size-adapted Baseline Standard Size-adapted

MSE 0.909 0.905 0.902 1.683 1.670 1.656
∆(MSE) -0.004*** -0.007***/-0.003* -0.013** -0.027***/-0.014***

(3.11) (2.59)/(1.87) (2.34) (2.87)/(2.94)

Panel B: Expected liquidity

Current Exp. liquidity - Exp. liquidity -
Baseline liquidity lin. combination random forest

MSE 0.942 0.939 0.918 0.915
∆(MSE) -0.003 -0.024/-0.021 -0.027**/-0.024**

(1.47) (1.61)/(1.63) (2.08)/(2.08)
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includes lagged yield spread changes and control variables. Comparing the specifica-

tions that employ either a standard liquidity measure or its size-adapted counterpart, we

find that the additional drop in the MSE caused by the size-adaption is significant at

the 10% level in case of the Schultz (2001) measure and at the 1% level in case of the

average bid-ask spread measure. Lastly, the results for the analysis of Section 3.2.5 are

presented in Panel B of Table D.1. Interestingly, we find that the MSE of the baseline

regression now is not significantly lower compared to the specification that additionally

includes changes in the current liquidity as näıve proxy for expected liquidity. When in-

corporating expected liquidity estimates based on the linear combination model of Section

3.2.3 the drop in the MSE is surprisingly slightly insignificant too (p-value of 10.7%) as

well as the additional drop in the MSE compared to the current liquidity specification

(p-value of 10.4%). However, if we estimate expected liquidity with the random forest

model of Section 3.4.1 that offers the overall lowest MSE, we find that this specification is

associated with a significantly higher precision compared to both, the baseline regression

and the specification employing current liquidity as proxy for expected liquidity. Thus,

the clustered Diebold and Mariano (1995) test results still support the finding that the

forecasts of our prediction approach are able to better explain yield spread changes than

the literature’s näıve proxy.
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