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Abstract. Manufacturing process optimisation usually amounts to searching optima in high-dimensional parameter spaces. In industrial practice, 

this search is most often directed by human-subjective expert judgment and trial-and-error experiments. In contrast, high-fidelity simulation 

models in combination with general-purpose optimisation algorithms, e.g. finite element models and evolutionary algorithms, enable a 

methodological, virtual process exploration and optimisation. However, reliable process models generally entail significant computation times, 

which often renders classical, iterative optimisation impracticable. Thus, efficiency is a key factor in optimisation. One option to increase 

efficiency is surrogate-based optimisation (SBO): SBO seeks to reduce the overall computational load by constructing a numerically inexpensive, 

data-driven approximation („surrogate“) of the expensive simulation. Traditionally, classical regression techniques are applied for surrogate 

construction. However, they typically predict a predefined, scalar performance metric only, which limits the amount of usable information gained 

from simulations. The advent of machine learning (ML) techniques introduces additional options for surrogates: in this work, a deep neural 

network (DNN) is trained to predict the full strain field instead of a single scalar during textile forming („draping“). Results reveal an improved 

predictive accuracy as more process-relevant information from the supplied simulations can be extracted. Application of the DNN in an SBO-

framework for blank holder optimisation shows improved convergence compared to classical evolutionary algorithms. Thus, DNNs are a 

promising option for future surrogates in SBO. 

Keywords: Neural Networks; Deep Learning; Machine Learning; Optimisation; Surrogate; Draping; Textile forming; Manufacturing; Production 

1 Introduction 

Optimum operation of production lines in terms of part quality, cycle time or cost generally requires diligent parameterisation 

of manufacturing processes. In practice, identification of such optimum parameters during production ramp-up usually involves 

many time- and resource-intensive experimental trials and experiential expert judgment. Thus, an entirely experimental optimisation 

rapidly becomes cumbersome. This holds all the more for complex processes and delicate materials, e.g. such as technical textiles 

used in fibre-reinforced components. 

High-fidelity process models, e.g. finite element (FE) simulations, offer means for virtual process analysis. In combination with 

general-purpose optimisation algorithms, e.g. evolutionary algorithms [1], they provide options to systematically and reliably 

optimise manufacturing. Often termed “virtual process optimisation”, such approaches may help determine promising parameters 

prior to actual experimental trials. Despite significant process improvements being reported, e.g. [2], reliable models typically 

require considerable computation times of e.g. hours and days. Iterative optimisation then becomes time-consuming and, in many 

cases, impracticable. Consequently, time-efficiency is a key factor during optimisation. 

One option to reduce the overall computational load is surrogate-based optimisation (SBO). SBO employs numerically efficient 

approximations of the high-fidelity process model, the “surrogate”, which guide the optimiser in the parameter space [3]. In material 

forming, as considered in this work, most SBO-applications focus on metal forming, e.g. [4]-[6]. Recent work of the authors 

additionally addresses textile forming [7],[8]. All studies report a significant speed-up of optimisation. 

Although simulations typically provide detailed process information, most surrogate techniques of prior work consider scalar or 

low-dimensional product attributes only. This „compression“ or „truncation“ of data limits the amount of usable information gained 
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from simulations. Advanced Machine Learning (ML) techniques, e.g. deep learning (DL), enable novel surrogate types, which do 

not merely reflect an abstract performance scalar but consider full-field simulation data [7]-[11]. According studies report high 

surrogate accuracy and thus tacitly expect improved optimisation performance, yet fall short on quantitative comparison: To the 

authors’ knowledge, to date no benchmark against classical, scalar surrogate techniques is available and only [7] gives a brief 

glimpse on SBO with DL-models. This work aims to substantiate and enhance current findings with numerical evidence regarding 

optimisation performance. 

The scope of this study is twofold: first, predictive accuracy of DL-surrogates is compared to classical surrogates (full-field vs. 

scalar surrogates) for different number of training samples. Full-field prediction is achieved with a deep neural network (DNN). It 

predicts the entire strain field with 𝑛el = 22080 elements during textile forming. Second, four different SBO-strategies give insight 

into optimisation performance and the observed convergence is benchmarked against a state-of-the-art evolutionary algorithm (EA). 

2 Workflow and Use-case 

Due to their superior mechanical properties, continuous-fibre reinforced plastics (CoFRP) have drawn increasing attention in 

weight-sensitive industries. However, they typically invoke higher cost, not least due to higher engineering effort for defect-free 

production. Manufacturing of CoFRP-components typically comprises multiple steps, often including a forming step of an initially 

flat textile (“draping“), e.g. woven fabrics as considered in this work. 

Woven fabrics show a comparably low shear stiffness compared to tensile stiffness in warp or weft direction. This makes in-

plane shear the predominant deformation mechanism, which is quantified by the in-plane shear angle 𝛾12 (Fig. 1 a). For brevity, 

this work uses 𝛾 = 𝛾12. Alike any other material, woven fabrics show a material-dependent forming limit, which is usually 

quantified by the locking-angle 𝛾𝑙𝑜𝑐𝑘. Excessive shear beyond 𝛾𝑙𝑜𝑐𝑘  increases the likelihood of unwanted defects, such as wrinkling 

or poor permeability during subsequent resin infiltration (“dry spots”). Therefore, 𝛾 is often minimised in process optimisation. 

2.1 Simulation Model for Optimisation 

This work studies forming of the double-dome geometry, a common benchmark geometry in textile forming. Regarding forming 

simulation, a macroscopic FE-based modelling approach is applied. It employs constitutive descriptions of the relevant deformation 

mechanisms by subroutines within the FE-solver ABAQUS/EXPLICIT. See [12]-[14] for modelling and parameterisation details. 

Superposition of membrane and shell elements ensures decoupling of membrane and bending behaviour and a non-linear shear 

modulus captures material-specific shear locking. Discrete rigid surfaces model the tool surfaces and the tool closes within  

𝑡tool = 2 𝑠 in a single stroke. Figure 1 b) shows an example simulation setup along with an according forming result (shear angles). 

 

a) b) 

Fig. 1. Visualisation of shear angle and example of textile wrinkling [2] a), forming simulation setup and an example forming result 

(top view on shear angle distribution) b).  
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Process manipulation is possible through 60 grippers modelled by springs (0.01 𝑁

𝑚𝑚
 ≤ 𝑐𝑖 ≤ 1 𝑁

𝑚𝑚
). They are uniformly distributed 

around a rectangular blank of thickness 𝑠 = 0.3 mm, cf. Fig. 1 b). Similar to conventional blank holders, they introduce tensile 

membrane forces into the textile which restrain material draw-in during tool closure. An in-house-developed pre- and 

postprocessing framework allows for fully-automatic model generation and result analysis during optimisation. Despite symmetry 

of geometry and material, no symmetry conditions are applied, since – in principle – springs may become asymmetric during 

optimisation. 

2.2 Surrogate Approach 

In general, a process simulation may be seen as a function φsim: 𝑃 ↦ 𝐴 which maps process parameters 𝒑 ∈ 𝑃 to a part quality 

attribute 𝒂 ∈ 𝐴. In many cases, 𝐴 quantifies part quality by extent of defects, e.g. formation of wrinkles or cracks. This work 

considers 𝛾 as a proxy to wrinkling as outlined above. Please note, that 𝛾 is an elemental quantity and thus the overall product 

quality 𝒂 = 𝜸 = (𝛾1, . . . , 𝛾𝑛el)𝑻 is a vector in ℝ𝑛el  with 𝑛el being the count of fabric element. Analogously, the circumferential 

spring stiffnesses represent the variable process parameter search space, i.e. 𝒑 = 𝒄 = (𝑐1, . . . , 𝑐60)𝑇. 

Ultimately, an objective function 𝑓: 𝐴 ↦ 𝑄 must map the part quality attributes to a scalar performance metric 𝑞 ∈ 𝑄 ⊂ ℝ. 

Virtual process optimisation then amounts to finding   

 𝒑∗ = arg min( 𝑞 ) = arg min(𝑓(𝒂)) = arg min( 𝑓( φsim(𝒑)) )      . (1) 

However, evaluating φsim is often so costly that a direct optimisation using iterative algorithms takes prohibitively long. For 

increased efficiency, surrogate-based optimisation (SBO) proposes devising an easy-to-evaluate approximation 𝜇surr: 𝑃 ↦ 𝑄 with 

 𝜇surr ≈  𝑓(φsim(𝒑))   ∀   𝒑 ∈ 𝑃adm ⊂ 𝑃        . (2) 

Therein, 𝑃adm denotes the search space for optimisation. Consequently, optimisation takes place on 𝜇surr instead of 𝑓(φsim). 

In general, φsim is a „black-box“-function, i.e. it can be evaluated but it otherwise unknown. In such cases data-driven 

approximations based on 𝑛 input-output-observations 𝐷𝑛 = {(𝒑𝟏, 𝑓(𝒂𝟏)), . . . (𝒑𝒏, 𝑓(𝒂𝒏))} are suitable. For this, a plethora of 

different techniques exists [15], e.g. polynomial regression, Support-Vector techniques or Neural Networks. Differences in model 

function aside, they all follow the notion of tuning model parameters 𝜽 ∈ 𝛩 towards minimisation of an error metric 𝜀err, e.g. mean 

squared error (MSE) 

 εerr
MSE(𝐷𝑛 , 𝜽) =

1

𝑛
∑ (𝒂𝑖 − 𝒂̂𝑖)

2 =
𝑛

𝑖=1

1

𝑛
∑ (𝒂𝑖 − μsurr(𝒑𝑖 , 𝜽))

2𝑛

𝑖=1
 (3) 

, which is also used in this work. 

This work concentrates on deep neural networks (DNN) since they pose several advantages: first, they are universal 

approximators [16]. That is, given sufficient data they can reproduce any continuous function irrespective of its complexity and 

thus promise general suitability as surrogates. Additionally, over the last decades a large community of researchers developed 

specialised sub-types of DNNs for specific tasks (image-recognition, time-series-analysis,…) and embodied them in novel 

ML-algorithms, e.g. advanced Reinforcement Learning techniques. For the authors, these developments can be means to more 

capable engineering surrogates beyond ‘simple’ input-output-relations. Building an understanding for their fundamental behaviour 

in engineering tasks – as pursued in this work – certainly is a prerequisite to this. In general, DNNs consist of complex parallel and 

series connections of so-called „neurons“, whose individual parameters constitute the model parameters 𝜽. Within 𝑘𝑡𝑟𝑛 “training 

episodes” 𝜽 is gradually adjusted to minimise εerr
MSE(𝐷𝑛 , 𝛉). See [17] for details on DNNs and their training. 

Prior work focuses on emulating the scalar objective function 𝑓(φsim) only. However, in intricate cases, results are not as 

convincing [7]. Therefore, this work suggests bringing the surrogate closer to simulation results. More precisely, instead of training 

the surrogate to mimic the scalar objective function, i.e. 

 𝜇surr(𝒑) ≈ 𝑓(𝒂) = 𝑓(φsim(𝒑))   , (4) 

this work trains the surrogate to predict the complete strain field 

 𝜇surr(𝒑) = 𝒂̂ ≈ 𝒂 = φsim(𝒑)   . (5) 

Thereby, additional positional information is introduced to the surrogate: for example, the influence of each spring mainly affects 

its immediate vicinity on the textile. Such local influence cannot be resolved in a global scalar metric, which consequently leads to 

a loss of information in the database. Training the surrogate on field-data retains this information and may thus increase accuracy. 
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2.3 Surrogate-based Optimisation 

The obtained surrogate model 𝜇surr from Section 2.2 can be used for SBO. However, being an entirely statistical model, 𝜇surr 

inevitably introduces deviations compared to the original function φsim. Therefore, a single optimisation on 𝜇surr may not yield 

the true optimum of 𝑓( φsim(𝒑)). SBO aims at iterative removal of these deviations by sequential updates with new observations 

(simulations). A common approach is to directly evaluate the found optimum 𝒑𝐬𝐮𝐫𝐫
∗  of 𝜇surr, i.e. evaluating 𝒂𝐬𝐢𝐦

∗ = φsim(𝒑𝐬𝐮𝐫𝐫
∗ ). 

The new observation (𝒑𝐬𝐮𝐫𝐫
∗ , 𝒂𝐬𝐢𝐦

∗ ) is then fed back into the database 𝐷𝑛 and training continues for 𝑘𝑡𝑟𝑛 episodes (gradient-descents). 

Thereby the surrogate refines in vicinity of potential optima and explores its most promising parameter regions until triggering of 

a termination criterion. Figure 2 illustrates the approach schematically. 

Fig. 2. Scheme of surrogate-based optimisation as applied in this work. 

3 Results and Discussion 

3.1 Surrogate Construction 

This work investigates the effect of different surrogate strategies at the example of artificial neural networks (ANNs). More 

specifically, two effects are studied: first, the effect of depth of ANNs (i.e. number of layers) and, second, the effect of full-field-

data instead of scalar-data during model training. To this, three types of ANNs are considered as shown in Fig. 3: the SS-type 

(shallow network, scalar information), the DS-type (deep network, scalar information) and DF-type (deep network, field 

information).  

 

Fig. 3. Visualisation of the three considered network types: a) SS-type (shallow network, scalar information), 

b) DS-type (deep network, scalar information) and c) DF-type (deep network, field information) 

 

Each network is a feed-forward network whose layers are fully connected. All neurons use ReLu-activation. For each network 

type (SS, DS, DF) an extensive hyperparameter study was performed to determine an optimal number of neurons and layers. The 

studied networks range from 25 to 10 000 neurons per layer and 2 to 5 hidden layers. Since the number of parameters is much larger 

than the number of supplied data points, i.e. highly flexible network, measures were investigated to prevent overfitting, such as 

dropout, L1- and L2-regularisation, mini-batches and batch normalisation. Yet, only the mini-batches and batch normalisation 

proved useful. The selected network architectures are summarised in Fig. 4 a). 
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 To evaluate each network’s data efficiency, different-sized databases 𝑛 ∈ {100, 250, 500, 1000} are sampled. Performance is 

evaluated on an additional, separate validation set with 100 samples. For both, training and validation set, Latin Hypercube sampling 

is used. Figure 4 b) and c) visualise the findings. 
 

 
Number of  

neurons per layer 

Layer 

no. 
SS DS DF 

Input 60 60 60 

1 100 2500 500 

2 1 2500 500 

3 - 2500 500 

Output - 1 22080 

  

a) b) c) 

Fig. 4. Performance comparison of three different network types with a summary of their layer-architecture a) and b) absolute and c) relative 

predictive error. 

More specifically, Fig. 4 b) shows the evolution of prediction accuracy as measured by root mean square error (RMSE) for each 

ANN. For all ANNs the RMSE reduces with more available data, underpinning validity of the universal approximation theorem. 

However, large performance differences appear when data becomes sparse, e.g. 𝑛 = 100: although trained on the same data, the 

SS-type cannot capture 𝛾 as accurately as the DS- and the DF-type and results in a constantly higher RMSE. Similar holds for  

DS- and DF-type, albeit at lesser extent. Figure 4 c) quantifies this reduction: using additional layers, i.e. changing from SS to DS, 

reduces the error by ≈ 40 % (100 samples). Yet, this advantage gradually becomes less significant as more data becomes available 

– loosely speaking, the SS-network „catches up“. Similar hold for the additional change from DS to DF since an additional ≈ 20 % 

(100 samples) is apparent. Therefore, it may be stated, that both measures, deepening the network and training on full-field data, 

significantly improves predictive accuracy, especially in sparse-data situations.  

3.2 Optimisation performance 

In SBO, sequential surrogate refinement with new samples is essential, for which two different paradigms prevail: samples can 

be placed either in parameter regions with little evidence to facilitate discovery of new, potentially better optima (“exploration”), 

or near already localised optima for perfection of parameter combinations (“exploitation”). 

This work studies the exploration-exploitation-balance by two different hyperparameters for optimisation configuration: one 

hyperparameter is the initial database size 𝑛. In general, greater values of 𝑛 introduce more prior information to the surrogate. Thus, 

it can directly exploit the most promising regions and spend less effort on additional exploration. Obviously, this comes at the cost 

of increased effort prior to optimisation. The second hyperparameter is the number of ANN-training episodes 𝑘𝑡𝑟𝑛 during 

SBO-loops (cf. Fig. 2). In general, the higher 𝑘𝑡𝑟𝑛, the more emphasis lies on new samples during optimisation and the stronger the 

attraction of an optimum, i.e. stronger exploitation. Both parameters comprise two levels, 𝑛 ∈ {𝑛𝑚𝑖𝑛; 𝑛𝑚𝑎𝑥} = {100; 1000} and 

𝑘trn ∈ {𝑘min; 𝑘max} = {2; 25}, respectively. 

The vector-norm 𝑝𝑚 = ‖𝜸‖𝑚 = ( ∑  |𝛾𝑖|
𝑚

𝑖  )−𝑚 constitutes the objective function. While it includes the maximum norm 

(𝑚 = ∞) and the sum of all values (𝑚 = 1) as limit cases, this work employs 𝑚 = 4 as a tradeoff between suppression of maximum 

shear and formation of shear angles in general. Figure 5 shows the evolution of the objective function 𝑝4(𝒂𝑠𝑖𝑚
∗ ) and the surrogate 

prediction 𝑝4(𝒂𝑠𝑢𝑟𝑟
∗ ) during optimisation. To allow investigation of long term behaviour, no automatic stopping criterion is set, but 

optimisations are terminated manually when both, a minimum iteration number 𝑖𝑚𝑖𝑛 = 450 and a minimum predictive error of 

Δ𝑝4 = |𝑝4(𝒂𝑠𝑖𝑚
∗ ) − 𝑝4(𝒂𝑠𝑢𝑟𝑟

∗ )| ≈ 3°, are reached. 
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Fig. 5. Optimisation progress for each SBO-configuration. Surrogate predictions 𝑝4(𝒂surr) are given in black (moving average) and gray, 

while the coloured graphs represent simulation results 𝑝4(𝒂s𝑖𝑚). The initial 𝑝4(𝒂surr)-values of the left column are omitted 

in the plot for readability. Their respective values are directly printed for reference. 

Each subplot refers to a combination of hyperparameters and shows two different graphs, the surrogate prediction 𝑝4(𝒂𝑠𝑢𝑟𝑟
∗ ) and 

the actual simulation result 𝑝4(𝒂𝑠𝑖𝑚
∗ ). To alleviate the erratic appearance of the graphs, a moving-average over 𝑚avg = 15 iterations 

smoothens each curve. The dashed horizontal line denotes the best value of the objective function 𝑝4
∗(𝒂surr

∗ ) ever found in this 

work. It is deemed the best available approximation of the true – but unknown – optimum and is thus used for reference during 

subsequent algorithm comparison. 

Some volatility aside, all graphs show three common characteristics: first, the objective function 𝑝4(𝒂sim
∗ ) overall decreases 

which validates the general suitability of “full field”-DNNs as surrogate models. Second, the surrogate predictions approach the 

simulation results, corroborating the successful learning process on new samples. Third, the surrogate constantly underestimates 

simulation results. 

Main differences between the graphs lie in their shape with two different, column-wise characteristics. Overall, in both columns 

the graphs maintain their general shape, yet, the bottom plots are significantly compressed to the left: In the left column (𝑛 = 100 

samples), the graphs of 𝑝4(𝒂sim
∗ ) initially waver around an approximately constant value, while the surrogate 𝑝4(𝒂sim

∗ ) constantly 

improves its accuracy. In iteration 𝑖 ≈ 550 (top) and 𝑖 ≈ 130 (bottom), the surrogate improvements become slower and the 

objective function 𝑝4(𝒂sim
∗ ) begins to decline. This hints that the surrogate first eliminates its bias (“exploration”) and, with 

sufficient accuracy, starts converging to an optimum. 

The opposite holds for the right column (large database with 𝑛 = 1000), where both graphs show an initial descent and, from 

iteration 𝑖 ≈ 120 (top) or 𝑖 ≈ 10 (bottom) onwards, some wavering around a constant value. Since the surrogate is relatively 

accurate already at start it may directly converge to an optimum without further exploration. However, the absolute value of the 

objective function is higher than on the left, which implies a local rather than a global optimum.  
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For final efficiency assessment, Fig. 6 visualises the convergence of each configuration along with a (non-surrogate) evolutionary 

algorithm (EA) from the DAKOTA-toolbox on default settings [18]. The graphs show the evolution of 𝑝4(𝒂𝑠𝑖𝑚
∗ ), i.e. the FE-

simulation with the so-far-best quality metric. Formally, it is the lower envelope of the erratic graphs in Fig. 5. Note that due to 

initial database-sampling the graphs are offset by 𝑛 = 100 and 𝑛 = 1000 simulations, respectively. 

Fig. 6. Convergence of a classical evolutionary algorithm (EA) and each SBO-configuration (left). The EA terminated in iteration 𝑖trm
𝐸𝐴 = 4875 

without further improvement (omitted for readability). Forming results before and after optimisation show a successful reduction of 𝛾𝑚𝑎𝑥 (right). 

The graphs distil the essence of the previous plots: despite a faster descent of the objective function, the optimisation results with 

the large database 𝐷1000 are inferior to the smaller database 𝐷100. Not just in terms of quality but also efficiency: While 

configuration “𝑛 = 100, 𝑘𝑡𝑟𝑛 = 25” has found its final result in iteration 𝑖 ≈ 600,  the “𝑛 = 1000”-configurations require 𝑖 ≈
1100 and 𝑖 ≈ 1300 iterations, respectively. Please note, that each SBO outperforms the EA in terms of efficiency and “𝑛 = 100, 

𝑘𝑡𝑟𝑛 = 25” also in terms of quality. Please also note, that “𝑛 = 100, 𝑘𝑡𝑟𝑛 = 2” might have given a similarly good result, but was 

manually terminated due to excessive computation time (>10 weeks). At this time, the objective function was still descending, 

albeit at slow rate (cf. Fig. 5 top left). From an engineering perspective, Fig. 6 (right) shows a successful reduction of maximum 

shear by ≈ 7.2° or ≈ 14.3 %, respectively. After optimisation, the grippers restrain the material draw-in such as to avoid local shear 

concentration but make the deformation stretch over a wider expanse. 

4 Summary and Conclusion 

This work examines the use of deep neural networks as surrogate models in virtual manufacturing process optimisation at the 

example of gripper-assisted textile forming. Different network types are compared. Best prediction performance is achieved using 

a deep neural network which predicts the full strain field instead of just a single performance scalar. The network is also integrated 

in an SBO-framework to study suitability and convergence behaviour during optimisation. Four SBO-configurations with different 

exploration-vs-exploitation balances are investigated. In each case, the developed SBO-framework outperformed a current state-

of-the-art evolutionary algorithm in terms of efficiency. One case gave an even better result. Results further hint that “online”-

simulations during SBO-loops contribute significantly more to convergence than “offline”-simulations from prior sampling. 

Further research is still envisaged. The presented results show that a smaller database – and thus a less accurate surrogate (!) – 

can indeed lead to better optimisation results. This observation requires a more comprehensive investigation and more ideally, a 

quantifiable criterion towards selecting the size of the initial database. It also implies that global accuracy metrics, e.g. MSE, might 

not be the best measure for surrogate quality assessment in SBO. In the long term, surrogate models may also be equipped with 

additional capabilities: as shown in [19], convolutional neural networks (CNN) are able to learn system dynamics from data and 

predict physical effects in real-world engineering problems. First results for textile draping appear promising: [20] and [21] hint 

that CNNs can learn to assess formability of new components from generic draping examples. [22] further shows that – in principle 

– CNNs can additionally be used to estimate optimal process parameters for new components. Thus, DL-techniques appear a 

promising and efficient tool for process design at early stages of product development. 
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