
Traffic Scene Perception for Automated
Driving with Top-View Grid Maps

Zur Erlangung des akademischen Grades eines

DOKTORS DER INGENIEURWISSENSCHAFTEN
(Dr.-Ing.)

von der KIT-Fakultät für Maschinenbau des
Karlsruher Instituts für Technologie (KIT)

angenommene

DISSERTATION

von

Sascha Wirges, M.Sc.

Tag der mündlichen Prüfung: 26.03.2021

Hauptreferent: Prof. Dr.-Ing. Christoph Stiller
Korreferent: Prof. Dr.-Ing. Michael Heizmann

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher
Mitarbeiter am Institut für Mess- und Regelungstechnik (MRT) des Karlsruher
Instituts für Technologie (KIT). Sie wäre nicht möglich gewesen ohne die
vielfältige Unterstützung meiner Kollegen, Familie und Freunde.

Mein erster Dank gilt Herrn Prof. Dr.-Ing. Christoph Stiller, der für perfekte
Rahmenbedingungen zur freien Forschung und damit zur Promotion (auch über
die Dauer von 4 + 𝑥, 𝑥 < 1 Jahren hinaus) gesorgt hat. Weiterhin möchte ich
mich bei Prof. Dr.-Ing. Michael Heizmann für die Übernahme des Korreferats
und das damit verbundene Interesse an meiner Arbeit bedanken.

Das MRT lebt von seinen Mitarbeitern. Ohne die vielen fachlichen Diskussio-
nen, Sommerseminare, Konferenzbesuche, Skiausflüge, Sport- und Pubquiz-
abende, Social Tuesdays und sonstigen Kneipenaufenthalte hätte ich vermutlich
nicht so lange durchgehalten! Besonders hervorheben möchte ich dabei meine
werten (Ex-)kollegen Johannes B., Philipp, Claudio, Frank, Christoph, Johannes
G., Andi, Hao, Hendrik, Max, Pio, Fabi, Eike, Sven, Marc und Flo, die meine
Zeit am MRT in vielerlei Hinsicht bereichert haben. Auch dem Sekretariat,
das in besonders unkomplizierter und sympathischer Weise stets unangenehme
Aufgaben von den Doktoranden fern hält, möchte ich herzlich danken. Mein
Dank gilt auch den Werkstätten für ihre besonders schnelle und gute Arbeit,
aus denen schöne und sichere Versuchsaufbauten entstanden sind. Nicht zuletzt
danke ich Werner, der immer für frischen Speicherplatz und Nachschub an
Studentenaccounts gesorgt hat.

Während meiner Zeit am MRT habe ich einige Studenten betreut, deren Arbeiten
wichtige Impulse für meine Forschung gegeben haben. Besonders danke ich
hierbei Shuxiao und Tom, die mich ebenfalls als Hiwis durch ihre Zuarbeit
unterstützt haben.

Abschließend möchte ich mich bei meinen Eltern bedanken, die mir so viel
ermöglicht und mich damit zu dem Menschen gemacht haben, der ich heute bin.

Mein größter Dank gilt jedoch meiner Frau Lisa, die mich auch in schwierigen
Zeiten stets ertragen, motiviert und uns dabei noch den kleinen Fritz geschenkt
hat! – Ohne dich wäre ich nicht hier.

Karlsruhe im Dezember 2020, Sascha Wirges

Kurzfassung

Ein automatisiertes Fahrzeug muss sichere, sinnvolle und schnelle Entschei-
dungen auf Basis seiner Umgebung treffen. Dies benötigt ein genaues und
recheneffizientes Modell der Verkehrsumgebung. Mit diesem Umfeldmodell
sollen Messungen verschiedener Sensoren fusioniert, gefiltert und nachfolgen-
den Teilsysteme als kompakte, aber aussagekräftige Information bereitgestellt
werden.

Diese Arbeit befasst sich mit der Modellierung der Verkehrsszene auf Basis von
Top-View Grid Maps. Im Vergleich zu anderen Umfeldmodellen ermöglichen
sie eine frühe Fusion von Distanzmessungen aus verschiedenen Quellen mit
geringem Rechenaufwand sowie eine explizite Modellierung von Freiraum.

Nach der Vorstellung eines Verfahrens zur Bodenoberflächenschätzung, das
die Grundlage der Top-View Modellierung darstellt, werden Methoden zur
Belegungs- und Elevationskartierung für Grid Maps auf Basis von mehreren,
verrauschten, teilweise widersprüchlichen oder fehlenden Distanzmessungen
behandelt. Auf der resultierenden, sensorunabhängigen Repräsentation wer-
den anschließend Modelle zur Detektion von Verkehrsteilnehmern sowie zur
Schätzung von Szenenfluss, Odometrie und Tracking-Merkmalen untersucht.

Untersuchungen auf öffentlich verfügbaren Datensätzen und einem Realfahrzeug
zeigen, dass Top-View Grid Maps durch on-board LiDAR Sensorik geschätzt
und verlässlich sicherheitskritische Umgebungsinformationen wie Beobacht-
barkeit und Befahrbarkeit abgeleitet werden können. Schließlich werden
Verkehrsteilnehmer als orientierte Bounding Boxen mit semantischen Klassen,
Geschwindigkeiten und Tracking-Merkmalen aus einem gemeinsamen Modell
zur Objektdetektion und Flussschätzung auf Basis der Top-View Grid Maps
bestimmt.

I

Abstract

An automated driving system needs to make safe, reasonable and quick decisions
based on its surroundings. This requires an accurate and computationally
inexpensive model of the traffic environment. Using this model, measurements
of multiple sensors are fused, filtered and forwarded to subsequent systems in a
condensed but meaningful way.

This work concludes research on top-view grid maps as one way to model the
traffic scene. Compared to other environment models, top-view grid maps
enable early-stage range sensor data fusion at low computational cost and an
explicit modeling of free-space.

After we revisited ground surface estimation from range sensors as a prerequisite
for top-view modeling, we present methods for occupancy and elevation grid
mapping from multiple noisy, possibly contradicting or missing range sensor
measurements. Given the resulting sensor-agnostic representation, we then
investigate models for traffic participant detection as well as scene flow, odometry
and tracking feature estimation.

Experiments on publicly available data sets and our experimental vehicle show
that we are able to reliably estimate safety-critical information such as the
observability and drivability from top-view grid maps estimated from on-board
LiDAR sensors. In addition, we are able to estimate traffic participants as
oriented bounding boxes with semantic classes, velocities and tracking features
from a joint grid map-based object detection and scene flow estimation.

III

Table Of Contents

Kurzfassung . I

Abstract . III

Abbreviations and Notations IX

1 Introduction . 1
1.1 Environment Models . 2

1.1.1 Range Images & Point Sets 2
1.1.2 Volume Grids . 3
1.1.3 Surfaces . 4

1.2 Goals & Outline of this Work 4

2 Fundamentals . 7
2.1 Evidence Theory . 7

2.1.1 Comparison to Bayesian Theory 9
2.2 Continuous Parameter Optimization 9

2.2.1 Least-Squares Optimization 9
2.2.2 Gradient Descent Methods 10
2.2.3 Robust Estimation 12

2.3 Uniform B-Splines . 13
2.4 Machine & Deep Learning 15

2.4.1 Artificial Neural Networks 15
2.4.2 Regularization . 18
2.4.3 Classification . 19

3 Ground Surface Estimation 21
3.1 Related Work . 21

V

Table Of Contents

3.2 Problem Formulation . 23
3.3 Parameter Estimation . 25
3.4 Experiments . 27

3.4.1 Comparison of Different Ground Surface Models . . 27
3.4.2 Comparison of Robustifiers 29
3.4.3 Asymmetric Cost 31
3.4.4 Control Point Distance vs. Smoothness Weight . . . 31
3.4.5 Validation on Experimental Vehicle 31

4 Evidential Occupancy & Elevation Grid Mapping 35
4.1 Related Work . 36

4.1.1 Occupancy Grid Mapping 36
4.1.2 Elevation Grid Mapping 37
4.1.3 Range Measurement Models 37

4.2 Range Sensor Noise . 40
4.3 Range Sensor Mapping . 41

4.3.1 Occupancy Mapping 41
4.3.2 Elevation Mapping 46
4.3.3 Occupancy Belief 48

4.4 Observability & Drivability 48
4.5 Static Environment Mapping with Known Poses 51

5 Object Detection Considering Uncertainties 57
5.1 Related Work . 58

5.1.1 (Range) Image Segmentation 58
5.1.2 Convolutional Object Detectors 59
5.1.3 Object Detection in Top-View Grid Maps 62

5.2 Fast Segmentation Method 63
5.3 Convolutional Object Detector 65

5.3.1 Overview . 65
5.3.2 Prior Boxes & Box Matching 65
5.3.3 Box Representation & Regression 67
5.3.4 Classification . 67
5.3.5 Uncertainty Estimation 68
5.3.6 Optimization Objective 69

VI

Table Of Contents

5.3.7 Post-Processing . 70
5.4 Experiments . 70

5.4.1 Quantitative Evaluation 70
5.4.2 Qualitative Results 73

6 Self-Supervised Scene Flow Estimation 77
6.1 Related Work . 78

6.1.1 Optical Flow Estimation 78
6.1.2 Odometry Estimation 80
6.1.3 State Estimation in Occupancy Grid Maps 80

6.2 Optical Flow Estimation in Grid Maps 81
6.2.1 Model Structure 82
6.2.2 Objectives . 83
6.2.3 Receptive Field . 85

6.3 Odometry Estimation . 86
6.4 Experiments . 87

6.4.1 Quantitative Evaluation 88
6.4.2 Qualitative Results 90

7 Joint Object Detection, Scene Flow Estimation & Tracking 93
7.1 Related Work . 94

7.1.1 Multi-Task Learning 94
7.1.2 Feature Aggregation 95

7.2 System Overview . 96
7.2.1 Association Embedding 97
7.2.2 Feature Aggregation 97
7.2.3 Loss Function . 98
7.2.4 Post-Processing . 98

7.3 Experiments . 98
7.3.1 Quantitative Evaluation 99

8 Conclusion & Future Directions 103

References . 107

A Appendix . 119

VII

Table Of Contents

A.1 Evidence Theory Example: A Crime Case 119
A.2 Generalized Charbonnier Loss 121
A.3 Robust Estimation with Graduated Non-Convexity 123

A.3.1 Graduated Non-Convexity 123
A.3.2 Black-Rangarajan Duality 124
A.3.3 The Algorithm . 125
A.3.4 Derivation of Weight Penalties 126

A.4 Non-linear Activation Functions 128
A.5 SemanticKITTI Data Set 129
A.6 Experimental Vehicle . 131
A.7 Mixture Distributions . 131
A.8 Intersection over Union of Rotated Rectangles 133
A.9 Von Mises Distribution . 135
A.10 nuScenes Data Set & Object Detection Benchmark 136

A.10.1 Object Detection Benchmark 136
A.11 Point Registration using Weighted Least-Squares 139
A.12 Publications by the Author 141
A.13 Supervised Theses . 144

VIII

Abbreviations and Notations

Abbreviations

2D Two-Dimensional

3D Three-Dimensional

AD Automated Driving

ADAM Adaptive Moment Estimation

ANN Artificial Neural Network

AOE Average Orientation Error

AORE Average Odometry Rotation Error

AOTE Average Odometry Translation Error

AP Average Precision

AR Average Recall

ASE Average Scale Error

ATE Average Translation Error

BBA Basic Belief Assignment

BCE Binary Cross Entropy

BiFPN Bidirectional Feature Pyramid Network

BN Batch Normalization

CCL Connected-Components Labeling

IX

Abbreviations and Notations

CE Cross Entropy

CNN Convolutional Neural Network

DBSCAN Density-Based Spatial Clustering Of Applications With Noise

DL Deep Learning

FFNN Feedforward Neural Network

FOV Field Of View

FPN Feature Pyramid Network

GMC Geman McClure

GNC Graduated Non-Convexity

GPU Graphics Processing Unit

IoU Intersection Over Union

KLD Kullback-Leibler Divergence

LiDAR Light Detection And Ranging

LLS Linear Least-Squares

LS Least-Squares

mAOE Mean Average Orientation Error

mAORE Mean Average Odometry Rotation Error

mAOTE Mean Average Odometry Translation Error

mAP Mean Average Precision

mASE Mean Average Scale Error

mATE Mean Average Translation Error

mAVE Mean Average Velocity Error

ML Machine Learning

NMS Non-Maximum Suppression

X

OLS Ordinary Least-Squares

PDF Probability Density Function

RADAR Radio Detection And Ranging

ReLU Rectified Linear Unit

RFS Random Finite Set

RPN Region Proposal Network

SGD Stochastic Gradient Descent

TLS Truncated Least-Squares

UBS Uniform B-Spline

WLS Weighted Least-Squares

Notations

𝑣 Scalar variable

𝒗 Vector variable

𝑽 Matrix or tensor variable

f Scalar-valued function

f,F Vector-, matrix- or tensor-valued function

XI

1 Introduction

Automated driving (AD) has the potential to reduce traffic accidents, congestion
and CO2 emissions while increasing transport capacity, personal travel comfort
and availability of transportation [Gol18]. Whereas the development of driver
assistance systems 40 years ago aimed at supporting the driver in dangerous
situations (SAE-L1), recent research is focused on automating all driving tasks
and thus entirely replacing the driver (SAE-L5) [SAE18].

As illustrated in Fig. 1.1, an AD system can be divided into several interacting
components. Driving decisions and actions are made and conducted by
behavior generation and motion planning modules based on the surrounding
traffic and the vehicle state, which is estimated in a separate module. Input
for many components is an environment model which contains the state
(e.g. position, orientation, velocity, shape, semantics) of other traffic participants
and regulatory elements (e.g. traffic lights, signs) in the vehicle’s surroundings.
An efficient and accurate environment representation (and its interpretation) is
one of the key challenges in AD.

Sensor 1

Sensor 2

Sensor M

.
.
.

Perception

Environ-
ment

Model

Behavior
Generation

Motion
Planner

Controller

Actor 1

Actor 2

Actor N

.
.
.

Figure 1.1: (Simplified) information flow in an automated vehicle. The perception module uses
sensory inputs to estimate its environment model. This information is passed to behavior
generation, where it is used by the motion planner to compute a desired trajectory.
From this trajectory, the controller then generates actor commands.

Relevant traffic information needs to be detected, filtered and condensed to
provide a more meaningful, abstract representation to subsequent modules such
as behavior generation or motion planning. To achieve robustness w.r.t. sensor
errors (e.g. noise, false/missed detections, outage), environmental conditions

1

1 Introduction

(e.g. weather, daytime, but also adversarial attacks), different sensor modalities
and technologies (e.g. cameras, ultrasound, LiDAR, RADAR) are used to
maintain diversity and redundancy. These sensor measurements may originate
from the same or different sensors at different times and may be contradicting.
Due to the restricted field of view (FOV) and mounting position of sensors and
because of occlusions, we aim to know if space can be considered free, occupied
(e.g. by other traffic participants or obstacles) or uncertain. Additionally, all
sensory information needs to be processed at minimum delay subject to memory
and computational constraints on the mobile platform. Therefore, our goal is to
develop an environment model meeting these requirements and to efficiently
estimate the state of such.

1.1 Environment Models

In the following we introduce selected environment models from a low to a high
level of abstraction. As these models only denote a subset of models presented
in literature, we refer to Schreier [Sch18] for a more detailed overview.

1.1.1 Range Images & Point Sets

Many range sensors contain a structured sensing array or record measurements
in a structured fashion (e.g. spinning range sensors). This means that sensor
readings can be laid out on a 2D grid, yielding a compact representation called
range image. Range images have the advantage that operations working on
structured data such as 2D convolutions can be applied. However, note that the
neighborhood relation between two adjacent range image readings is different
to a neighborhood relation which considers point distances in 3D Cartesian
space. A disadvantage of range images is that the grid structure cannot be
retained during sensor data fusion, i.e. when multiple range images should be
combined.

For this reason, point sets (also called point clouds) are often used as sensor-
agnostic data representation. However, point sets do not model the neighborhood
relation between points. While data from multiple sensors can be combined
easily by the union of point sets, the number of points grows with time and a

2

1.1 Environment Models

reduction strategy needs to be applied. In the perception context, it is not possible
to distinguish between observable space, i.e. the free-space between sensor
origin and reflections and non-observable space (e.g. outside the sensors’ FOV).
Furthermore, it is hard to detect and combine contradicting measurements
(e.g. noisy or false measurements). Finally, operations working on structured
data such as convolutions cannot be applied and it is computationally expensive
to establish any neighborhood relations, e.g. by building kd-trees [ML14].

1.1.2 Volume Grids

Regular volume grids tesselate the Euclidean space by volumetric elements
called voxels1. Compared to polygons (Section 1.1.3), the voxel state does
not explicitly store its coordinates. Instead, it can be inferred based on its
relative position on the grid. Depending on the application, voxels can be
stored in dense structures (contiguous memory) or sparse hierarchical structures
(e.g. quad-/octrees), which may reduce the storage demands and enable efficient
branching methods at the cost of higher hierarchy traversal times. In the context
of sensor data fusion, voxel states are usually modeled mutually independent,
enabling data fusion on a per-voxel level. If a mapping from coordinates in an
arbitrary coordinate frame to voxel states is implied, grids are often called grid
maps2.

Top-view grid maps are a specialization of volume grids which map 2D ground
coordinates to cell states from a top-down (nadir) view of the scene. Although
many graphical projections can be used to reduce the dimensionality from 3D to
2D, orthographic projections are the most commonly used. The dimensionality
reduction implies a storage reduction and a reduction of computational complex-
ity for many algorithms, e.g. convolutions. A popular storage layout are regular
grids where the cell state dimensions denote the outer storage dimension, called
multi-layer grids.

1 Similar to pixel and texel, a voxel is a portmanteau of volume and element.
2 The nomenclature in literature is sometimes not consistent to this definition, where grid maps

denote a 2D and voxel maps a 3D mapping.

3

1 Introduction

1.1.3 Surfaces

Polygon meshes usually consist of vertices, edges and convex faces and can be
used to approximate arbitrary 2D/3D surfaces. Here, vertices denote 2D/3D
points (possibly with additional information), edges denote the connection
between two points and faces denote a closed set of edges, often chosen to be
triangles. However, algorithms to estimate polygon meshes such as marching
squares/cubes often work on volume grids so that these need to be estimated
beforehand.

Rectangles and cuboids/boxes are a convex specialization of polygon meshes
with rectangular faces for which efficient algorithms exist, such as volume
or intersection computation (cf. Appendix A.8). Images/3D space can be
easily labeled with boxes by human annotators, which makes them a popular
object shape representation (e.g. pedestrians, cyclists or cars) in many publicly
available data sets (cf. [GLU12; Cae+20]).

Another surface representation are splines (cf. Section 2.3), which are often
used to model smooth surfaces. However, as splines impose smoothness, closed
surfaces with sharp edges usually need to be constructed using multiple spline
surfaces.

1.2 Goals & Outline of this Work

We aim to develop an environment model that represents the traffic scene by
observable and drivable space as well as different traffic participants in a way
that is meaningful for subsequent AD modules.

In AD, multiple noisy and possibly contradicting on-board sensor measurements
need to be combined with low latency and subject to the bounded memory
and computational power of a mobile platform. Additionally, the description
of occluded and drivable areas is a prerequisite for safe driving. As in road
scenarios all traffic participants move on a common ground surface, we may
store relevant information in a 2D structure relative to it. Thus, we believe
that top-view grid maps (cf. Section 1.1.2) are a suitable way of modeling a
traffic scenario as they leverage simple sensor data fusion and explicit cell state
modeling (e.g. for occupied, free and unknown space or elevation).

4

1.2 Goals & Outline of this Work

However, subsequent AD modules such as motion planning or behavior gen-
eration may require a more condensed representation such as discrete objects.
Here, we detect, classify and estimate the shape of relevant traffic participants
from top-view grid maps and represent them by oriented cuboids placed on the
ground surface. For tracking applications, the motion and reidentification of
traffic participants may be required as well. Therefore, we also estimate object
velocities with the vehicle odometry as by-product and a shape descriptor for
each traffic participant which can be used to identify the same object across
different frames.

Ground Surface
Estimation
(Chapter 3)

Evidential
Occupancy

and Elevation
Grid Mapping

(Chapter 4)

Object Detection
Considering
Uncertainties
(Chapter 5)

Self-Supervised
Scene Flow
Estimation
(Chapter 6)

Point sets

Traffic
participants

Odometry &
object flow

Joint Object Detection,
Scene Flow Estimation

and Tracking
(Chapter 7)

Figure 1.2: We first estimate the ground surface based on multiple range sensor measurements
represented as point sets before estimating occupancy and elevation grid maps. These
grid maps are input for the subsequent object detection and flow estimation. We also
suggest a joint approach including the estimation of shape descriptors for tracking
applications.

Figure 1.2 illustrates the dependencies between different processing stages
presented in this thesis. In Section 1.1.2 we introduced top-view grid maps as
an environment model which is well-suited for sensor data fusion, mapping and
machine learning (ML) applications.

One of the assumptions for using top-view grid maps is that the ground surface
is known a priori. Therefore, we model the ground surface as a uniform B-spline
and propose a robust estimation approach from available range measurements
represented as point sets in Chapter 3. We are able to estimate the ground
surface with low computational cost and in real-time on our experimental

5

1 Introduction

vehicle platform and find a high accuracy by evaluating our approach on the
SemanticKITTI data set [Beh+19].

To perform sensor data fusion, we collect evidence from different range sensor
measurements, combine this information into an evidential occupancy grid
representation using available height information and propose a method for
mapping static environment with known poses (Chapter 4). Compared to
related work, we focus on accurately describing the evidential mapping process
and taking height information into account which only becomes available by
the prior ground surface estimation. We validate our grid mapping approach on
our experimental vehicle.

Based on the resulting evidential layers we then introduce a deep model to
detect, classify and estimate the shape of relevant traffic participants assuming
oriented bounding boxes in Chapter 5. Leveraging self-supervision, we then
develop a model to estimate the scene flow in grid maps, which yields ego
motion and the motion of other traffic participants (Chapter 6). Subsequently,
we combine the object detection and flow estimation models into a joint model
with an additional tracking feature estimation in Chapter 7 and show that object
detection performance can be improved. In contrast to many other works, we
apply our models directly on the grid maps instead of the original point sets
which makes our approach more modular and extensible, regarding not only
multiple range sensors but also different sensor modalities.

Finally, we conclude our work and point to future work in the research field
(Chapter 8).

6

2 Fundamentals

Here, we briefly present the fundamental concepts used throughout this thesis.
In Chapter 4, we model and fuse sensor measurements by means of evidence
theory, presented in Section 2.1. The parameter optimization techniques
introduced in Section 2.2 are used for ground surface estimation (Chapter 3),
learning deep models from data (Chapters 5 to 7) and odometry estimation
in Chapter 6. In Section 2.3, we define uniform B-splines, which we use to
model the ground surface in Chapter 3. Finally, we provide an overview on
machine learning and deep learning techniques, that are the foundation for the
approaches presented in Chapters 5 to 7.

2.1 Evidence Theory

In evidence or Dempster-Shafer theory (DST), a generalization of Bayesian
theory, evidence from different sources is not only assigned to single hypotheses
under consideration but to all possible combinations. It is well-suited for sensor
data fusion as different, possibly conflicting sources can be combined using
combination rules.

LetΩ be the frame of discernment, i.e. the set of hypotheses under consideration.
The basic belief assignment (BBA)

m: 2Ω → [0, 1], m(∅) = 0,
∑︁
𝑋 ∈2Ω

m(𝑋) = 1 (2.1)

assigns evidence mass to each element of its power set 2Ω. The elements in 2Ω
that yield a non-zero value are called focal elements.

7

2 Fundamentals

Two sources of evidence m1 and m2 can be combined using different combination
rules. Dempster’s rule of combination

(m1 ⊕ m2) (𝑋) =
1

1 − 𝐶
∑︁

Ψ1∩Ψ2=𝑋

m1 (Ψ1)m2 (Ψ2), (2.2)

𝐶 =
∑︁

Ψ1∩Ψ2=∅
m1 (Ψ1)m2 (Ψ2), (2.3)

normalizes the combined result by a measure𝐶 of conflicting sources. Evidence
about a proposition 𝑋 lies within the interval [bel(𝑋), pl(𝑋)], where

bel(𝑋) =
∑︁
Ψ⊆𝑋

m(Ψ) (2.4)

pl(𝑋) =
∑︁

Ψ∩𝑋∉∅
m(Ψ) (2.5)

denote the summed evidence that other propositionsΨ strictly support 𝑋 (belief)
or do not conflict with 𝑋 (plausibility). The difference

U(𝑋) = pl(𝑋) − bel(𝑋) (2.6)

can be interpreted as the uncertainty for this proposition. If a decision between
the hypotheses in Ω has to be made, the pignistic transform [DSD04]

prob(𝜔) =
∑︁
𝜔∈Ψ

m(Ψ)
|Ψ| , bel(𝜔) ≤ prob(𝜔) ≤ pl(𝜔) (2.7)

distributes evidence mass of propositions Ψ equally between the hypotheses
𝜔 ∈ Ω.

Example 2.1: Crime Case
Appendix A.1 shows how to calculate evidential measures based on a crime case
example.

8

2.2 Continuous Parameter Optimization

2.1.1 Comparison to Bayesian Theory

A Bayesian belief function

bel : 2Ω → [0, 1], bel(∅) = 0, bel(Ω) = 1 (2.8)

can be defined similar to belief functions in evidence theory. However, its
property

bel(𝑋 ∪Ψ) = bel(𝑋) + bel(Ψ) if 𝑋 ∩Ψ = ∅ (2.9)

is relaxed in evidence theory as it is also possible to assign evidence to super
sets (e.g. 𝑋 ∪Ψ) directly. If all focal elements of the BBA are elements of Ω,
then

bel(𝑋) + bel(𝑋) = bel(𝑋) + bel(Ω \ 𝑋) = 1 (2.10)

holds and yields a Bayesian belief assignment as special case of evidence theory.

2.2 Continuous Parameter Optimization

In continuous parameter optimization, we aim to find the 𝑁p optimal parameters

𝒑∗ = arg min
𝒑

c(𝒑), 𝒑 ∈ R𝑁P , (2.11)

that minimize a cost function c : R𝑁P → R on a continuous parameter and value
space.

2.2.1 Least-Squares Optimization

If the cost function

c(𝒑) = r> (𝒑) 𝑾 r(𝒑) =
𝑾 1

2 r(𝒑)
2

(2.12)

is a linear combination of squared residuals r : R𝑁P → R𝑁R weighted by a
positive semi-definite matrix 𝑾 ∈ R𝑁R×𝑁R , it is called Least-Squares (LS)
problem. If 𝑾 is a diagonal matrix, the problem is called weighted Least-

9

2 Fundamentals

Squares (WLS) and ordinary Least-Squares (OLS) if 𝑾 is the identity matrix.
Note that in the context of LS optimization it is often referred to the cost
function

c(𝒑) =
𝑁B∑︁
𝑘=1

𝑤𝑘 ‖r𝑘 (𝒑)‖2 , 𝑤𝑘 ≥ 0 (2.13)

with 𝑁B ≤ 𝑁R individual residual block functions r𝑘 : R𝑁P → R𝑁𝑘 and non-
negative weights 𝑤𝑘 . However, it is a specialization of Eq. (2.12) for the WLS
case.

Additionally, the LS problem is called linear Least-Squares (LLS) problem if
the residual function

r(𝒑) = 𝑯𝒑︸︷︷︸
�̂�

− 𝒚, 𝑯 ∈ R𝑁R×𝑁P , 𝒚 ∈ R𝑁R (2.14)

is affine so that the cost function becomes convex. This means that if a strict
local minimum

𝜕c
𝜕 𝒑

����
𝒑=𝒑∗

= 0,
𝜕2c
𝜕 𝒑2

����
𝒑=𝒑∗

is positive-definite (2.15)

exists, it is also a global minimum of c. In this case, a closed-form solution

𝒑∗ =
(
𝑯>𝑾𝑯

)−1
𝑯>𝑾𝒚 (2.16)

exists.

2.2.2 Gradient Descent Methods

In general, cost functions are non-convex with no guarantee for a local minimum
(such as Eq. (2.15)) being the global minimum. This means that usually no
closed-form solutions to compute the optimum exist. However, iterative
optimization methods may be used that determine updated parameters

𝒑𝑘+1 = u
(
𝒑𝑘

)
(2.17)

10

2.2 Continuous Parameter Optimization

at step 𝑘 using an update function u, that reduces the cost such that

c
(
𝒑𝑘+1

)
< c

(
𝒑𝑘

)
. (2.18)

A popular family of optimization algorithms (e.g. often used in machine learning
applications) are gradient descent methods. Here, the update function

u
(
𝒑𝑘

)
= 𝒑𝑘 + 𝜆d

(
𝒈𝑘

)
, 𝒈𝑘 =

𝜕c
𝜕 𝒑

����
𝒑=𝒑𝑘

(2.19)

evaluates the cost gradient 𝒈𝑘 given the current parameters 𝒑𝑘 and updates
the parameters with learning rate 𝜆 in a direction determined by the direction
function d.

Example 2.2: Steepest Descent
In the simplest case, the direction

dSD
(
𝒈𝑘

)
= −𝒈𝑘 (2.20)

points to the steepest descent of the cost surface.

In many cases, the number of residuals or computations during optimization
(e.g. gradients) is too large to fit into memory so that the optimization needs
to be split into smaller fractions called batches. Then, a smaller number of
samples is repeatedly drawn randomly from the data set as an approximation
of the whole data set and used in optimization. Gradient descent variants that
approximate the gradient based on a subset of data are called stochastic gradient
descent (SGD) methods.

11

2 Fundamentals

Example 2.3: Adaptive Moment Estimation
A popular SGD method with the descent direction

dADAM
(
𝒈𝑘

)
= −

�̂�𝑘

(
𝒈𝑘

)√︃
�̂�2
𝑘

(
𝒈𝑘

)
+ 𝜖

, 𝜖 > 0 (2.21)

is called Adaptive Moment Estimation (ADAM) [KB14]. During optimization, the
first and second gradient moments

𝛍𝑘

(
𝒈𝑘

)
= 𝛽1𝛍𝑘−1

(
𝒈𝑘−1

)
+ (1 − 𝛽1)𝒈𝑘 , �̂�𝑘

(
𝒈𝑘

)
=

𝛍𝑘

(
𝒈𝑘

)
1 − 𝛽𝑘1

(2.22)

𝛔2
𝑘

(
𝒈𝑘

)
= 𝛽2𝛔

2
𝑘−1

(
𝒈𝑘−1

)
+ (1 − 𝛽2)𝒈2

𝑘
, �̂�2

𝑘

(
𝒈𝑘

)
=

𝛔2
𝑘

(
𝒈𝑘

)
1 − 𝛽𝑘2

(2.23)

are estimated by exponential smoothing controlled by the parameters 0 ≤ 𝛽1, 𝛽2 ≤ 1.
Note that all operations on vectors in Eqs. (2.21) to (2.23) are element-wise and a
small 𝜖 is added for numerical stability.

2.2.3 Robust Estimation

In presence of outliers, OLS optimization problems such as

min
𝒑

𝑁R∑︁
𝑘=1
‖r𝑘 (𝒑)‖2 (2.24)

yield suboptimal results as outliers gain large values and thus highly influence
the function minimum. To mitigate this issue, a non-linear robustifier ρ : R→ R
is introduced and the problem reformulated as the non-linear LS problem

min
𝒑

𝑁R∑︁
𝑘=1

ρ(‖r𝑘 (𝒑)‖). (2.25)

12

2.3 Uniform B-Splines

Example 2.4: Truncation and Huber Loss
Popular choices for robustifiers are truncations

ρ(𝑥) =
{
𝑥2 if 𝑥 ∈ [−𝑐, 𝑐]

𝑐2 otherwise
(2.26)

and specializations of the Generalized Charbonnier loss (cf. Appendix A.2) such as
the Huber loss function

H𝑐 (𝑥) =

1
2
𝑥2 if |𝑥 | ≤ 𝑐

𝑐

(
|𝑥 | − 𝑐

2

)
otherwise.

(2.27)

In the context of LS optimization, problems with truncation robustifiers as in Eq. (2.26)
are also called truncated Least-Squares (TLS) problems.

Using non-linear robustifiers makes the cost function non-convex, which leads
to convergence problems if the initial parameters are far from the optimal
parameters. Yang et al. [Yan+20] propose an iterative algorithm for robust
estimation based on the concept of graduated non-convexity and the Black-
Rangarajan duality, summarized in Appendix A.3.

2.3 Uniform B-Splines

We briefly introduce univariate splines, extend them to spline surfaces and
highlight properties of uniform B-splines (UBSs). A more detailed overview
on different splines is presented by Beck [Bec20].

A spline

s : R→ R , s(𝑥) =

s1 (𝑥) 𝑥1 ≤ 𝑥 < 𝑥2

s2 (𝑥) 𝑥2 ≤ 𝑥 < 𝑥3

...

s𝑁 (𝑥) 𝑥𝑁 ≤ 𝑥 < 𝑥𝑁+1

(2.28)

13

2 Fundamentals

is defined piece-wise by polynomial segment functions

s𝑖 (𝑥) =
𝑁C∑︁
𝑘=1

b𝑖,𝑘 (𝑥)𝑝𝑘 = 〈b𝑖 (𝑥), 𝒑〉 = 〈𝑩𝑖a(𝑥), 𝒑〉 , (2.29)

a(𝑥) =
[
1, 𝑥, 𝑥2, . . . , 𝑥𝑑

]> ∈ R𝑑+1
of degree 𝑑 with 𝑁C control points, where 𝑩𝑖 ∈ R𝑁C×(𝑑+1) denotes the spline
basis, a(𝑥) the polynomial vector and 𝒑 ∈ R𝑁C the control point vector.

B-splines are based on B-spline polynomials and can be defined by the Cox-de
Bor recursion formula [De 78, p. 90]:

b𝑖, 𝑗 ,0 (𝑥) =
{

1 if 𝑘 𝑗 ≤ 𝑥 < 𝑘 𝑗+1

0 otherwise
, (2.30)

b𝑖, 𝑗 ,𝑘 (𝑥) =
𝑥 − 𝑘 𝑗

𝑘 𝑗+𝑘 − 𝑘𝑘
b𝑖, 𝑗 ,𝑘−1 (𝑥) +

𝑘 𝑗+𝑘+1 − 𝑥
𝑘 𝑗+𝑘+1 − 𝑘 𝑗+1

b𝑖, 𝑗+1,𝑘−1 (𝑥) , (2.31)

b𝑖, 𝑗 (𝑥) = b𝑖, 𝑗 ,𝑑 (𝑥) , (2.32)

where 𝑘1, . . . , 𝑘𝑁C+𝑑+1 denote the monotonically increasing knot values. Equa-
tion (2.30) shows that a spline has bounded support as every 𝑏𝑖, 𝑗 ,0 is only
non-zero within two knots. Choosing the knot values 𝑘 𝑗 =

𝑗−1−𝑑
𝑁C−𝑑 to be uni-

formly spaced leads to UBSs in which the same basis for each segment can be
used and precomputed, yielding computational benefits.

Equations (2.28) and (2.29) define splines in the univariate case. However, we
can define segment functions s𝑖 : R2 → R,

s𝑖 (𝑥, 𝑦) =
𝑁C1∑︁
𝑗=1

𝑁C2∑︁
𝑘=1

b1,𝑖, 𝑗 (𝑥)b2,𝑖,𝑘 (𝑦)𝑝 𝑗 ,𝑘 (2.33)

to describe spline surfaces with control points 𝑝 𝑗 ,𝑘 and separable basis functions.
This scheme can be extended to splines

s𝑖 (𝒙) = 〈b𝑖 (𝒙), 𝒑〉 (2.34)

14

2.4 Machine & Deep Learning

of arbitrary dimension along all segments denoted by the inner product of
a vectorial basis functions b𝑖 : R𝑁I → R𝑁𝐶 which determine 𝑁𝐶 control
point weights depending on 𝑁𝐼 -dimensional inputs. Any vector valued spline
s : R𝑁I → R𝑁O can then be assembled by 𝑁O scalar valued splines.

2.4 Machine & Deep Learning

As a field of artifical intelligence, machine learning (ML) can be defined as
“the set of methods that can automatically detect patterns in data, and then
use the uncovered patterns to predict future data, or to perform other kinds of
decision-making under uncertainty” ([Mur12]).

ML is closely related to the field of statistics. Common tasks are classification,
regression, density estimation and clustering. Usually, one builds a parametric
model which aims to solve the task and uses optimization methods to determine
model parameters.

Deep learning (DL), as a subfield of Machine Learning, uses artificial neural
networks (ANNs) as models. Here, the adjective deep emphasizes that usually
ANNs with many interacting parameters are used, e.g. feedforward neural
networks (FFNNs) with many layers (see Section 2.4.1).

2.4.1 Artificial Neural Networks

ANNs are inspired by information processing and distributed communication
nodes in biological systems. Information processing and flow is modeled by a
directed graph where nodes represent operations and edges denote the flow of
these computation results.

In the following, we represent features by vectors (rank 1 tensors) for notational
simplicity. However, we note that tensors of any rank can always be reshaped
into a vector representation by stacking.

The smallest operational unit

f : R𝑁I → R𝑁O , f (𝒙) = a(�̃��̃� + 𝒃) = a(𝑾𝒙) (2.35)

15

2 Fundamentals

of an ANN, often called layer, applies a non-linear activation function
a : R𝑁O → R𝑁O to linearly mapped inputs 𝑾𝒙. The matrix �̃� ∈ R𝑁O×𝑁I

and the vector 𝒃 ∈ R𝑁O are called weight matrix and bias vector, respectively.
For notational simplicity, we define the augmented feature vector 𝒙 = [�̃� 1]>
and weight matrix 𝑾 =

[
�̃� 𝒃

]
and implicitly include the bias parameters when

referring to weights. Usually, the same scalar activation function is applied
separately to each output dimension. In this case, popular activation functions
are ReLU, swish or tanh, summarized in Appendix A.4. Another popular
activation function is the softmax function (cf. Eq. (2.53)).

Feedforward Neural Networks FFNNs, also called multi-layer perceptrons,
are represented by a directed acyclic graph prohibiting feedbacks. Assuming
𝑁L different layers f (𝑙) , the mapping

f (𝒙, 𝒘) = f (𝑁L) ◦ f (𝑁L−1) ◦ . . . ◦ f (2) ◦ f (1) (𝒙, 𝒘) (2.36)

= f (𝑁L)
(
f (𝑁L−1)

(
. . . f (2)

(
f (1) (𝒙, 𝒘), 𝒘

)
. . .

))
(2.37)

resembles a composition of these layers.

Convolutional Neural Networks Convolutional neural networks (CNNs) are
a specialization of ANNs, which use discrete convolutions1 with kernels of
limited support operating only on a limited amount of input features, yielding a
sparse weight matrix 𝑾 in Eq. (2.35).

In general, if the input is represented by a multidimensional signal x : Z𝑁I →
R𝑁O , the discrete 𝑁I-dimensional convolution x ∗ 𝑁I· · · ∗ g : Z𝑁I → R between x
and the kernel function g : Z𝑁I → R𝑁O may be defined by(

x ∗ 𝑁I· · · ∗ g
) (
𝑚1, . . . , 𝑚𝑁I

)
(2.38)

=

∞∑︁
𝑛1=−∞

. . .

∞∑︁
𝑛𝑁I=−∞

〈
x
(
𝑚1 − 𝑛1, . . . , 𝑚𝑁I − 𝑛𝑁I

)
, g

(
𝑛1, . . . , 𝑛𝑁I

)〉
.

1 In practice, discrete convolutions are implemented as discrete cross-correlations.

16

2.4 Machine & Deep Learning

The convolution kernel support is called perceptive field and is usually kept
symmetric and small to increase computation efficiency. In addition, as the
amount of operations grows exponentially in 𝑁I, in practice mostly 1D, 2D
or 3D convolutions are used to reduce computational cost. Vector-valued
convolutions x ∗ 𝑁I· · · ∗ g : Z𝑁I → R𝑁C may be defined by 𝑁C scalar-valued
convolutions as in Eq. (2.38) in each output dimension.

Example 2.5: Discrete 2D 3×3 Convolution

Given the kernel function g : [−1, 0, 1]2 → R𝑁𝐼 , the function

(x ∗ ∗ g) (𝑚1, 𝑚2) =
1∑︁

𝑛1=−1

1∑︁
𝑛2=−1

〈x(𝑚1 − 𝑛1, 𝑚2 − 𝑛2), g(𝑛1, 𝑛2)〉 (2.39)

defines a 2D convolution with a 3×3 kernel and 9𝑁I weights in total.

Separable convolution kernels

g
(
𝑛1, . . . , 𝑛𝑁I

)
= g1 (𝑛1) � . . . � g𝑁I

(
𝑛𝑁I

)
(2.40)

g𝑘

(
𝑛1, . . . , 𝑛𝑁I

)
= g𝑘 (𝑛1) · . . . · g𝑘

(
𝑛𝑁I

)
(2.41)

can be factorized along each dimension 𝑘 which reduces the number of
parameters and further enables parallel evaluation of the convolution. Here, �
denotes the Hadamard product.

Example 2.6: Discrete Separable 2D Convolution
Given the separable kernel function

g : [−1, 0, 1]2 → R𝑁𝐼 , g(𝑚1, 𝑚2) = g1 (𝑚1) � g2 (𝑚2), (2.42)

the function

(x ∗ ∗ g) (𝑚1, 𝑚2) =
(
x ∗ g1

)
(𝑚1) ·

(
x ∗ g2

)
(𝑚2) (2.43)

=

1∑︁
𝑛=−1
〈x(𝑚1 − 𝑛, 𝑚2), g1 (𝑛)〉 ·

1∑︁
𝑛=−1
〈x(𝑚1, 𝑚2 − 𝑛), g2 (𝑛)〉

defines a separable 2D convolution with three-element kernels and 6𝑁I weights in
total.

A discrete convolution with kernel size 2𝑘 + 1 within the valid range reduces
the spatial output size by 2𝑘 . To keep the output size constant, padding is

17

2 Fundamentals

performed to extend the spatial input size on its borders. Often, zero padding
is applied where the spatial input size is increased by adding zeros around the
border.

Learning and Training In the DL community, supervised learning is used as
a synonym for parameter optimization of ANNs in order to minimize a cost
function c()

c(𝒘) = l(�̂�, 𝒚) = l(f (𝒙, 𝒘), 𝒚) (2.44)

also called loss, given the predictions �̂� = f (𝒙, 𝒘) of a model defined by the
weights 𝒘 and examples (𝒙, 𝒚) of inputs and (ground truth) labels, respectively.
With training, we describe the implementation of the supervised learning
strategy.

Usually, SGD methods (cf. Section 2.2.2) are used to minimize Eq. (2.44). For
instance, applying the total-derivative chain rule on an FFNN (cf. Eq. (2.36)),
the gradients

𝜕l(f (𝒙, 𝒘), 𝒚)
𝜕𝒘

����
𝒘=𝒘0

=
𝜕l(�̃�, 𝒚)

𝜕�̃�

����
�̃�=f (𝒙,𝒘0)

𝜕f (𝑁𝐿) (𝒙, 𝒘)
𝜕𝒘

����
𝒘=𝒘0

𝜕f (𝑁𝐿) (𝒙, 𝒘)
𝜕𝒘

����
𝒘=𝒘0

=
𝜕f (𝑁𝐿) (�̃�, 𝒘0)

𝜕�̃�

����
�̃�=f (𝑁𝐿−1) (𝒙,𝒘0)

𝜕f (𝑁𝐿−1) (𝒙, 𝒘)
𝜕𝒘

����
𝒘=𝒘0

𝜕f (𝑁𝐿−1) (𝒙, 𝒘)
𝜕𝒘

����
𝒘=𝒘0

= . . . (2.45)

w.r.t. the weights 𝒘 can be evaluated at the weights 𝒘0 for any input 𝒙. An
algorithm to determine the output gradient w.r.t. the model weights is called
Backpropagation as it iterates from function outputs to inputs to obtain gradients.

2.4.2 Regularization

When learning models from examples, we expect them to generalize well to
similar but previously unseen examples. However, depending on the number of
parameters and learning examples, a model may overfit on the training examples,
i.e. its error for new examples is much higher than for examples it was trained
with. To mitigate this issue, regularization techniques are used which can be

18

2.4 Machine & Deep Learning

categorized into data-, architecture-, cost function- and optimization-driven
approaches [KGC17].

Batch Normalization A popular technique for data-driven regularization is
batch normalization (BN). Given a set of 𝐵 features

{
𝒙 (1) , . . . , 𝒙 (𝐵)

}
called a

batch, BN transforms features for each dimension 𝑘 to unbiased features

𝑥
(𝑏)
𝑘

=
𝑥
(𝑏)
𝑘
− 𝜇𝑘

𝜎𝑘 + 𝜖
, 𝜖 > 0 (2.46)

with unit variance by estimating the empirical mean 𝜇𝑘 and standard deviation
𝜎𝑘 across the batch. Here, 𝜖 denotes a small constant to assure numerical
stability. A feature

𝑥
(𝑏)
𝑘

= 𝛾𝑘𝑥𝑘 + 𝛽𝑘 (2.47)

in dimension 𝑘 can be recovered by the parameters 𝛾𝑘 and 𝛽𝑘 , which are learned
from all training examples. Among other aspects, BN improves generalization
by a smoother loss surface and yields better training stability and convergence
due to smaller gradients.

Weight Regularization Weight regularization is a cost function-driven regu-
larization technique where an additional weight-dependent loss 𝐿𝒘 is added to
the overall cost function.

Example 2.7: L2 Weight Decay
The loss

𝐿𝒘 = 𝜆‖𝒘‖2 (2.48)

penalizes large weights and is scaled by the constant hyperparameter 𝜆.

2.4.3 Classification

A popular application in ML is the classification of samples into one of 𝐶
classes. Given model inputs 𝒙𝑛 with corresponding categorical labels 𝑐𝑛 ∈ C
we aim to develop a model that approximates the true probability distribution
p(𝑐 |𝒙𝑛) for every sample.

19

2 Fundamentals

A common distance measure between two discrete distributions p and p̂ is the
Kullback-Leibler divergence (KLD)

KLD{p, p̂} = CE{p, p̂} − E{p} (2.49)

as the difference between the cross entropy (CE)

CE{p, p̂} = −
∑︁
𝑐∈C

p(𝑐) log(p̂(𝑐)) (2.50)

and the entropy E{p}. KLD and CE both define asymmetric distance measures
with global minima at p = p̂. Minimizing the KLD with respect to p̂ is
equivalent to minimizing the CE because E{p} is independent of p̂.

Example 2.8: Binary Cross Entropy
If |C| = 2, Eq. (2.50) can be simplified to

CE2{p, p̂} = −p(𝑐) log(p̂(𝑐)) − (1 − p(𝑐)) log(1 − p̂(𝑐)) , (2.51)

which is called binary cross entropy (BCE).

The CE is often used as objective to estimate classification model parameters
𝒑. Equation (2.50) can be efficiently evaluated because only p(𝑐 = 𝑐𝑛 |𝒙𝑛) = 1
and zero otherwise (one-hot encoding). For instance, given 𝑁 samples one may
define the classification loss

𝐿cls = −
𝑁∑︁
𝑛=1

log(p̂(𝑐𝑛 |𝒙𝑛)) (2.52)

that evaluates the estimated likelihood only at the ground truth classes 𝑐𝑛.

Given an input vector 𝒙, a popular distribution function is the softmax function

p̂(𝑐𝑛 |𝒙𝑛) = 𝜎(𝒙)𝑛 =
exp(𝑥𝑛)∑ |C |
𝑐=1 exp(𝑥𝑐)

, (2.53)

which is non-negative and fulfills
∑

𝑐∈C p̂(𝑐 |𝒙) = 1 for every 𝑛 so that it can be
interpreted as a probability mass function.

20

3 Ground Surface Estimation

Top-view grid maps provide an orthographic view of the traffic scene along
the ground surface. In the process of mapping LiDAR range measurements
(cf. Chapter 4), we aim to distinguish between ground- and non-ground
reflections, map other features such as the object height correctly and provide
information on drivable areas. To accomplish this, we require geometric
information on the ground surface.

The ground surface can be obtained from a map, estimated from range sensor
measurements or combined from multiple sources. Using map information has
the disadvantage that an accurate pose estimate (incl. roll and pitch) needs to be
available which cannot be guaranteed at all times. For this reason, we follow
the approach of estimating the ground surface from range sensor measurements
to be independent to other sources of errors (e.g. from pose estimation).

In the following, we model the ground surface g: R2 → R as a mapping from
plane coordinates to distances from that plane.

Section 3.1 provides an overview on commonly used ground surface models
and estimation techniques. We will then introduce a uniform B-spline model in
Section 3.2 and present our algorithm to estimate ground surfaces in Section 3.3.
In Section 3.4, we compare our model to other surface representations and
present ablation studies on the optimization approach.

3.1 Related Work

Instead of estimating the ground surface shape, Moosmann et al. [MPS09]
segment each point in range images using a local convexity criterion. The
method provides accurate point classification results but it is only possible to
apply this method to single range measurements in an image structure. Thus, it

21

3 Ground Surface Estimation

is hard to resolve point classification conflicts when multiple measurements are
available.

Zhang et al. [Zha+03] develop a progressive morphological filter to estimate the
ground surface in airborne LiDAR measurements represented on an elevation
grid. By gradually increasing the filter window size and using elevation
thresholds, the authors remove non-ground measurements while preserving the
ground surface elevation. Their method works well on accurate elevation maps
with large ground areas and local elevations such as buildings or trees. However,
Zhang et al. [Zha+03] do not consider measurement errors such as multi-path
propagation which would lead to false elevation estimates. In addition, the
approach is not real-time capable as the filtering has to be applied several times.

A popular representation for ground surfaces are polynomials

h(𝒙) = h(𝑥1, 𝑥2) =
〈

�̃�0
�̃�1
�̃�2
�̃�3
�̃�4
...

�̃�𝐷1𝐷2

,

1
𝑥1
𝑥2

𝑥1𝑥2
𝑥2

1
...

𝑥
𝐷1
1 𝑥

𝐷2
2

〉
= 〈�̃�, �̃�〉 (3.1)

such as planes (𝐷 = 1), quadratics (𝐷 = 2) or cubics (𝐷 = 3) which can be
expressed as a linear combination of weights �̃� and a transformed input �̃�.
This yields a system of linear equations which can be solved efficiently, e.g. by
using a linear Least-Squares (LLS) method (cf. Section 2.2.1). For example,
Saleem et al. [SRK17] use a polynomial representation to fit a ground surface
on v-disparity estimates of stereo cameras.

Wedel et al. [Wed+09] model the ground surface along the driving direction by
a univariate B-spline (cf. Section 2.3). They estimate and track its parameters
in an LLS approach combined with a Kalman filter.

Beck [Bec20] uses uniform B-spline (UBS) surfaces with smoothness regular-
ization to model viewing rays depending on camera image coordinates. He
describes smoothness of the 𝑛-th derivative by the penalty

𝜌 =

∫ 1

0

s(𝑛) (𝑥)2
d𝑥 = ‖f𝑠 (𝒑)‖2𝐹 (3.2)

22

3.2 Problem Formulation

and shows that its closed-form solution

f𝑠 (𝒑) = 𝑩𝑠 𝒑, 𝑩𝑠 = 𝑩𝑑

(∫ 1

0
a(𝑛) (𝑥) a>(𝑛) (𝑥)d𝑥

) 1
2

(3.3)

is a matrix-vector product of the control points 𝒑 and the term 𝑩𝑠 which only
depends on the spline degree and the smoothness derivative 𝑛 so that it can be
precomputed.

3.2 Problem Formulation

In this work, we use UBSs (cf. Section 2.3) to model the ground surface. Due
to their local support, splines are robust towards varying measurement densities
as it is often the case for range sensors. However, it is still possible to impose
smoothness constraints on splines to reduce overfitting, especially in areas with
few measurements.

Given 𝑁 positions 𝒙1, . . . , 𝒙𝑁 , we can denote ground surface height estimates
in the form

ℎ̂𝑛 = ĥ(𝒙𝑛, 𝒑) = 〈b(𝒙𝑛), 𝒑〉 , b : R2 → R𝑁𝐶 (3.4)

�̂� = ĥ(𝒑) =

b> (𝒙1)
b> (𝒙2)

...

b> (𝒙𝑁)

𝒑 = 𝑩 𝒑 (3.5)

with the spline control points 𝒑 ∈ R𝑁𝐶 using a vectorial basis function b
weighting 𝑁𝐶 control points depending on the 2D positions 𝒙𝑛.

Then, given 𝑁 pairs (𝒙𝑛, ℎ𝑛) of positions and height measurements we aim to
find parameters

𝒑∗ = arg min
𝒑

𝑁∑︁
𝑛=1

ρ

((
ĥ(𝒙𝑛, 𝒑) − ℎ𝑛

)2
)

(3.6)

23

3 Ground Surface Estimation

that minimize the sum of squared and robustified errors. Here, we use the
non-linear robustifier ρ : R→ R+ as the optimization needs to be robust against
outliers, i.e. non-ground points contained in the measurements. Assuming
that the conditions Eq. (A.9) on the robustifier ρ hold, we can formulate the
equivalent dual weighted Least-Squares (WLS) problem

𝒑∗ = arg min
𝒑,𝑤1 ,...,𝑤𝑁

𝑁∑︁
𝑛=1

𝑤𝑛

(
ĥ(𝒙𝑛, 𝒑) − ℎ𝑛

)2
+Φ(𝑤𝑛) (3.7)

according to the Black-Rangarajan duality (Appendix A.3.2). The weight
penalty Φ : R+ → R+ prevents the weights to become zero.

We regularize the spline towards constant slope by penalizing variations of
the second spline derivative. In absence of measurements, this will lead to
an extrapolation with constant incline. As presented by Beck [Bec20], the
closed-form solution of the smoothness cost term is a linear combination of the
control points with precomputed weights 𝑩S. This yields the final optimization
problem

𝒑∗, 𝑤∗1, . . . , 𝑤
∗
𝑁 = arg min

𝒑,𝑤1 ,...,𝑤𝑁

𝑁∑︁
𝑛=1

𝑤𝑛 (〈b(𝒙𝑛), 𝒑〉 − ℎ𝑛)2 +Φ(𝑤𝑛)

+ 𝜆‖𝑩S 𝒑‖2, (3.8)

including a weighted spline cost with weight penalty Φ and the smoothness
cost weighted by 𝜆. By reordering indices, this problem can be formulated by
the WLS problem

𝒑∗, 𝒘∗ = arg min
𝒑,𝒘

diag(�̃�)
1
2

(
�̃� 𝒑 − �̃�

)2
+

𝑁∑︁
𝑛=1

Φ(𝑤𝑛) (3.9)

with

�̃� =

[
𝑩
𝑩S

]
, �̃� =

[
𝒉
0

]
, �̃� =

[
𝑤1 . . . 𝑤𝑁 𝑤𝑆 . . . 𝑤𝑆

]>
. (3.10)

24

3.3 Parameter Estimation

3.3 Parameter Estimation

To solve Eq. (3.9), we use the iterative Graduated Non-Convexity (GNC) method
presented by Yang et al. [Yan+20]. The approach uses weight penalty functions
Φ𝜇 with a free parameter 𝜇 which controls problem convexity. The algorithm
repeats two steps in an alternating fashion while changing 𝜇 in order to decrease
convexity. In step 1, we fix the weights 𝒘 and determine the optimal control
points

𝒑∗ = arg min
𝒑

diag(𝒘)
1
2

(
�̃� 𝒑 − �̃�

)2
(3.11)

=

(
�̃�
> diag(𝒘) �̃�

)−1
�̃�
> diag(𝒘) �̃� (3.12)

of the resulting linear WLS problem. In step 2, we fix the parameters 𝒑 and
determine the weights

𝒘∗ = arg min
𝒘

𝑁∑︁
𝑛=1

𝑤𝑛 (

Δℎ𝑛︷ ︸︸ ︷
〈b(𝒙𝑛), 𝒑〉 − ℎ𝑛)2 +Φ(𝑤𝑛) (3.13)

𝑤∗𝑛 = arg min
𝑤𝑛

𝑤𝑛Δℎ
2
𝑛 +Φ(𝑤𝑛) (3.14)

independently of each other. Here, we investigate the Geman McClure (GMC)
and truncated Least-Squares (TLS) penalties

Φ𝜇,GMC (𝑤) = 𝜇𝑐2 (√𝑤 − 1
)2 (3.15)

Φ𝜇,TLS (𝑤) =
𝜇(1 − 𝑤)
𝜇 + 𝑤 𝑐2 (3.16)

25

3 Ground Surface Estimation

for which we can compute the optimal weights

𝑤∗𝑛,GMC =

(
𝜇𝑐2

𝜇𝑐2 + Δℎ2
𝑛

)2

(3.17)

𝑤∗𝑛,TLS =

1 if Δℎ2

𝑛 <
𝜇

𝜇+1𝑐
2

𝑐
√︁
𝜇(𝜇 + 1)
|Δℎ𝑛 |

− 𝜇 if 𝜇

𝜇+1𝑐
2 ≤ Δℎ2

𝑛 ≤
𝜇+1
𝜇
𝑐2

0 otherwise

(3.18)

in closed form (cf. Appendix A.3.4).

We adapt the convexity parameter 𝜇 (𝑘) in every iteration 𝑘 such that the next

𝜇 (𝑘+1) = 𝛼𝜇 (𝑘) (3.19)

is changed by a constant factor 𝛼. This factor is set to 𝛼 = 1.6−1 for the GMC
penalty and 𝛼 = 1.6 for the TLS penalty. The optimization is stopped after a
fixed number of steps or if 𝜇 (𝑘+1) < 1.

As the measurements contain outliers (non-ground points) with a biased
distribution, the method overestimates the true ground surface in general. To
mitigate this issue, we scale positive and negative errors Δℎ𝑛 differently. If
Δℎ𝑛 > 0, i.e. the point lies above the current ground estimate, we scale it with
an asymmetry ratio 𝑟asymm > 1 yielding the asymmetric error

Δℎ̃𝑛 =

{
𝑟asymm Δℎ𝑛 if Δℎ𝑛 > 0
Δℎ𝑛 otherwise

, (3.20)

which we use to substitute Δℎ𝑛 in Eqs. (3.17) and (3.18). Due to the error
scaling, points above the current ground estimate may get a lower weight because
of the higher distance. In other words, points below the current estimate are
more likely to belong to the ground.

Figure 3.1 depicts the optimal weights as a function of the height difference Δℎ
for different 𝜇 (𝑘) , i.e. at different optimization steps. Due to the change of the
convexity parameter 𝜇, measurements with larger errors yield smaller weights,
thus gain less influence on the total cost.

26

3.4 Experiments

0

0.25

0.5

0.75

1
𝑤
(𝑘
)

(G
M

C
)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4
0

0.25

0.5

0.75

1

Δℎ / m

𝑤
(𝑘
)

(T
LS

)

𝑘 = 0
𝑘 = 2
𝑘 = 4
𝑘 = 6
𝑘 = 8

Figure 3.1: Weights of GMC and TLS penalty functions for 𝑐 = 0.4 m and 𝑟asymm = 2 at different
convexity parameters 𝜇 (𝑘) changing during optimization.

3.4 Experiments

We evaluate on the training set of the SemanticKITTI data set ([Beh+19],
cf. Appendix A.5) and split all range measurements into ground, non-ground
and don’t care classes, summarized in Table 3.1.

The parameters and default values of our method are summarized in Table 3.2.

3.4.1 Comparison of Different Ground Surface Models

We first compare the accuracy of different ground surface models when only
ground points are used for estimation (outlier-free case). Here, we compare our
UBS model to cubic polynomials, estimated and precalibrated ground planes.
We randomly sample 10 % of all ground points for validation, i.e. these points
are not used during optimization. We then compare the absolute height error
between all validation points and the ground surface height estimated by the

27

3 Ground Surface Estimation

Category Classes Abs. frequency Rel. frequency
in million in %

Ground Lane marking, Other, Parking, Road,
Sidewalk Terrain 10 196.462 43.949

Non-ground

Bicycle, Bicyclist, Building, Bus, Car,
Fence, Motorcycle, Motorcyclist, Other,
Person, Pole, Traffic sign, Truck, Trunk,
Vegetation

12 559.459 54.133

Don’t care Unlabeled, Outlier 445.079 1.918

Total 23 201.000 100.000

Table 3.1: Distribution of ground, non-ground and don’t care classes constructed from the Se-
manticKITTI training data set.

Parameter Default Value Related Exp.

Ground surface model UBS Section 3.4.1

Robustifier TLS Section 3.4.2
Error threshold 𝑐 0.4 m Section 3.4.2
Initial convexity 𝜇0 1
Number of iterations 10
Asymmetry ratio 𝑟asymm 2 Section 3.4.3

Spline degree 2
Control point distance 𝑑C 2 m Section 3.4.4
Smoothness weight 𝑤S 1 Section 3.4.4
Smoothness order 2

Table 3.2: Parameters of our ground surface estimation method and their default values.

models. Figure 3.2 depicts the average absolute height errors and average errors
depending on measurement distance.

In general, the UBS model maintains the lowest errors. Compared to the
polynomial model the error only slightly increases with increasing measurement
distances as the influence of measurements to the UBS model is restricted
locally and thus is almost independent of locally varying measurement densities.

28

3.4 Experiments

0

5

10

15

20

25

Average

A
bs

.e
rr

or
/c

m

0 5 10 15 20 25 30 35 40 45 50

0

20

40

60

80

Distance / m

UBS (2500) Polynomial (10)
Estimated plane (3) Calibrated plane (0)

Figure 3.2: Abs. ground point error of different surface models (number of free parameters in
brackets) when only ground points are used for optimization. Left: Average of all
validation points. Right: Averaged within 5 m intervals of distance from the sensor.

3.4.2 Comparison of Robustifiers

Outlier Noise Estimation To justify the use of robust optimization methods,
we first aim to estimate the ground distance distribution of non-ground points,
i.e. the outlier noise. To estimate the outlier noise, we compute ground surfaces
only based on the labeled ground points and compute a histogram of the errors
between the estimated ground height and the non-ground points, which is
depicted in Fig. 3.3.

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

0
1
2
3
4
5

Ground distance / m

Re
la

tiv
e

fr
eq

ue
nc

y
/%

Figure 3.3: Ground distance histogram of non-ground points.

We observe from the histogram that the non-ground points are highly biased
with a mean of 1.09 m and with a large height range from below the estimated
surface to around 4 m. Note that the negative ground distances are likely due

29

3 Ground Surface Estimation

to the control point distance of 2 m and the smoothness weight of 1 which on
the one hand reduces overfitting on the inliers but on the other hand increases
smoothing of abrupt changes of the ground surface.

Results Figure 3.4 compares the influence of different robustifiers on the
optimization in two settings. On the one hand, we show the influence when
only ground points are used, on the other hand when all points are used
for optimization. For validation, we retain 10% of ground points in both
experiments.

0
2
4
6
8

10

A
bs

.e
rr

or
/c

m

0

10

20

30

40 OLS TLS|c=1 GMC|c=1
TLS|c=0.6 GMC|c=0.6 TLS|c=0.4
GMC|c=0.4 TLS|c=0.2 GMC|c=0.2

0
2
4
6
8

10

Average

A
bs

.e
rr

or
/c

m

0 5 10 15 20 25 30 35 40 45 50

0

10

20

30

40

Distance / m

Figure 3.4: Abs. height error between estimated ground surface and ground validation points based
on optimization using only labeled ground points (top) and including all points (bottom).
Left: Average of all validation points. Right: Averaged within 5 m intervals of distance
to the sensor.

We observe that the TLS method yields the best results in presence of outliers.
An optimal error threshold for the TLS method seems to be in the range of
20 cm to 60 cm. The GMC approach does not always yield better results than
the ordinary Least-Squares (OLS) baseline. This may be because the GMC
method does not converge within 5 iterations.

30

3.4 Experiments

3.4.3 Asymmetric Cost

Figure 3.5 summarizes the absolute errors between ground validation points
and the estimated ground surface at different asymmetry ratios.

0

1

2

3

Average

A
bs

.e
rr

or
/c

m

0 5 10 15 20 25 30 35 40 45 50

0
2
4
6
8

10
12

Distance / m

𝑟asymm = 2.5 𝑟asymm = 2
𝑟asymm = 1.5 𝑟asymm = 1

Figure 3.5: Abs. ground point error of TLS estimator for different asymmetry ratios. Left: Average
of all validation points. Right: Averaged within 5 m intervals of distance to the sensor.

We observe that the TLS estimator yields the lowest ground surface errors for
1.5 < 𝑟asymm < 2.5.

3.4.4 Control Point Distance vs. Smoothness Weight

Figure 3.6 compares the absolute errors between estimated ground surface and
ground validation points for different control point distances and smoothness
weights.

In general, we observe that smaller control point distances and smoothness
weights yield smaller errors. The influence of the smoothness weight increases
with decreasing measurement density, often in areas far away from the sensor.

3.4.5 Validation on Experimental Vehicle

We implemented the ground surface estimation on our experimental vehicle
(cf. Appendix A.6) equipped with four Velodyne VLP16 LiDARs on the roof
corners and one Velodyne VLS128 on the roof center.

31

3 Ground Surface Estimation

0
1

2

3
4

5

Average

A
bs

.e
rr

or
/c

m

𝑑C = 2 m | 𝑤S = 1 𝑑C = 2 m | 𝑤S = 2 𝑑C = 2 m | 𝑤S = 10 𝑑C = 5 m | 𝑤S = 2 𝑑C = 5 m | 𝑤S = 5
𝑑C = 5 m | 𝑤S = 10 𝑑C = 10 m | 𝑤S = 1 𝑑C = 10 m | 𝑤S = 5 𝑑C = 10 m | 𝑤S = 10

0 5 10 15 20 25 30 35 40 45 50

0
2
4
6
8

10

Distance / m

Figure 3.6: Abs. ground point error of TLS estimator for different control point distances 𝑑C and
smoothness weights 𝑤S. Left: Average of all validation points. Right: Averaged within
5 m intervals of distance to the sensor.

The optimization time mainly depends on the number of iterations, point mea-
surements and control points. The range sensor setup generates approximately
360 000 point measurements per scan at a scan rate of 10 Hz, which results in
an approximate point measurement rate of 3.6 MHz. The optimization time is
proportional to the number of iterations. However, as we receive sequential
measurements, we initialize the ground surface with the last optimization result
and perform only one iteration. Thus, we adapt the number of control points so
that the optimization satisfies soft real-time constraints.

1 2 3 4 5 6

5
10
15
20
25
30
35

Control point distance / m

R
at

e
/H

z

1512.5107.552.50
Number of control points / 1000

Figure 3.7: Ground surface estimation processing rate on the experimental vehicle depending on
the control points within a 150 m × 100 m area.

32

3.4 Experiments

Figure 3.7 summarizes the computation rates on the experimental vehicle
depending on the control points within a 150 m × 100 m area. For example, if
the ground surface estimation should process measurements at a rate of at least
10 Hz, the number of control points should be less than 3750 or in other words,
the control point distance in this area should be at least 2 m.

Figure 3.8 shows the point set from full 360° scans of all LiDARs mounted
on the experimental vehicle together with the estimated ground surface on
a drive through Karlsruhe, Germany. We observe that the ground surface
can be accurately estimated. Based on the resulting ground surface, we are
able to distinguish between ground / non-ground points by applying a simple
distance-based classifier.

Figure 3.8: Point set from full 360° scans of all LiDARs on the experimental vehicle and estimated
ground surface. The point set is colorized by the distance of points to the ground
surface with brown denoting a distance of less than 10 cm and blue above 10 cm. The
ground surface is colorized by its height relative to the vehicle reference frame.

Figures 4.8 and 4.13 illustrate more real-world examples with estimated ground
surfaces.

33

4 Evidential Occupancy & Elevation
Grid Mapping

For subsequent object detection and tracking tasks, we aim to estimate sensor-
agnostic occupancy and elevation maps from multiple noisy and possibly
contradicting measurements. This process requires an accurate estimate of the
ground surface which was presented in Chapter 3. Then, observability and
drivability information may be computed based on these grid maps.

Here, we assume the ground surface to be known so that we can distinguish
between ground/non-ground reflections and model obstacle height relative
to the ground. Furthermore, we assume a fixed elevation boundary above
ground (e.g. the vehicle height) where we consider non-ground measurements
to be obstacles. This assumption implies that obstacles are connected to the
ground which is not true in general. However, this circumstance as well as
measurements on permeable objects can be resolved as conflict in evidential
occupancy mapping (cf. Section 4.3.3).

We start by summarizing related work on occupancy and elevation mapping as
well as a versatile sensor model in Section 4.1. After making considerations on
the sensor noise in Section 4.2, we introduce our mapping approach (Section 4.3)
and the extraction of observability and drivability information (Section 4.4).
Finally, we present the mapping of static environment with known poses as an
application in Section 4.5.

We validate all processing steps on an experimental vehicle (cf. Appendix A.6)
using five attached LiDARs. To save the reader from skipping back and forth,
we provide the validation results in each section.

35

4 Evidential Occupancy & Elevation Grid Mapping

4.1 Related Work

Starting from the origins of occupancy grid mapping (Section 4.1.1), we provide
an overview on elevation mapping (Section 4.1.2) and range sensor models
(Section 4.1.3).

4.1.1 Occupancy Grid Mapping

Occupancy grid mapping of static environments was initially developed by
Elfes [Elf89] and Moravec [Mor89]. Elfes defines an occupancy grid as a
multidimensional random field that maintains stochastic estimates of the cell
occupancy states in a spatial lattice. The cell states are then recursively updated
by new measurements for which Moravec presents a computationally efficient
version of the binary Bayes filter to estimate the occupancy state. Elfes and
Moravec also describe methods for sensor fusion using multiple sensors and
correlating grid maps in order to estimate odometry.

In the Bayesian approach occupancy is modeled as a Bernoulli-distributed
random variable 𝑋 such that P(𝑋 = o) + P(𝑋 = f) = 1 where o and f denote
the occupied and free hypothesis, respectively. This approach, however, does
not consider the amount of evidence collected in order to make a guess
about the cell states which e.g. means that the case of no observations at all
and the case of conflicting measurements may lead to the same probabilities
P(𝑋 = o) = P(𝑋 = f) = 1

2 . This problem can be resolved if cell states are
explained by means of evidence theory (e.g. [Yi+00; YA06]). In evidence
theory, the frame of discernment

Ω = {o, f} (4.1)

usually contains the hypotheses occupied (o) and free (f) and basic belief
assignments (BBAs)

m: 2Ω → [0, 1], m(∅) = 0 (4.2)∑︁
∀𝜔∈2Ω

m(𝜔) = m({o}) +m({f}) +m(Ω) = 1 (4.3)

36

4.1 Related Work

are derived from single measurements that operate on the power set 2Ω =

{∅, o, f,Ω}. The cell state is then estimated by fusing multiple BBAs using
combination rules (cf. Section 2.1).

Compared to the before mentioned static grid mapping approaches, current
research is focused on dynamic environments. Usually, the dynamic state of a
cell is approximated by a set of particles. Nuss et al. [Nus+18] model the state of
multiple grid cells as a random finite set (RFS) for which they derive a filter in a
top-down manner with the binary Bayes filter being a special case under certain
assumptions. The authors also present a real-time capable filter approximation
based on evidence theory. Steyer et al. [STW18] divide the environment into
static, dynamic and free-space modeled by belief functions and use custom
combination rules to resolve conflicts. However, both authors do not further
elaborate on the design of belief assignments from range measurements.

4.1.2 Elevation Grid Mapping

Most popular occupancy mapping approaches in top-view grid maps do not
consider height or ray geometry information. Instead, elevation mapping is
often considered as a different research field. Fankhauser et al. [FBH18] present
an elevation mapping approach that takes into account sensor noise and yields
probabilistic height estimates on an elevation grid, including upper and lower
confidence bounds. Given point measurements, the authors associate points to
cells and update their elevation independently. In order to deal with dynamic
environments, Fankhauser et al. [FBH18] extend their approach by casting
rays from the sensor origin to the measurement end points in order to detect
inconsistencies and thus increase update speed. The authors report that ray
casting is performed at a frequency of 1 Hz due to its computational cost.

4.1.3 Range Measurement Models

Yang et al. [YA06] simulate 2D range sensors and model two BBAs

mo (𝜔) =

𝜆1 if 𝜔 = {o}
1 − 𝜆1 if 𝜔 = Ω

0 otherwise
, mf (𝜔) =

𝜆2 if 𝜔 = {f}
1 − 𝜆2 if 𝜔 = Ω

0 otherwise
(4.4)

37

4 Evidential Occupancy & Elevation Grid Mapping

with 0 < 𝜆1, 𝜆2 < 1 which are applied in case of reflections or ray traversals
from the sensor origin to the reflection position. The authors combine these
single measurement BBAs using Dempster’s rule with the recursive BBA

m(𝜔) (𝑡) =

m(𝜔)m(Ω) (𝑡−1) +m(Ω)m(𝜔) (𝑡−1)

1 −m(𝜔)m(Ω) (𝑡−1) −m(Ω)m(𝜔) (𝑡−1) if 𝜔 ∈ Ω

1 −m({o}) (𝑡) −m({f}) (𝑡) if 𝜔 = Ω

(4.5)

m(𝜔) (0) =
{

0 if 𝜔 ∈ Ω
1 if 𝜔 = Ω

(4.6)

which is updated for every new point measurement using either mo or mf for
m. Unfortunately, this makes the approach intractable in case of high point
measurement rates. In addition, the approach by Yang et al. [YA06] does not
consider the 3D ray geometry and partial occlusions along the height dimension.

Richter et al. [Ric+19] propose a sensor model that maps range measurements
and semantic estimates into occupancy and semantic class beliefs using also
information on the sensor ray geometry. Here, occupancy is modeled by the
two classes obstacle (O) and ground (G) which are super sets of other semantic
classes such as car, pedestrian, street or terrain. For each sensor, the authors

Δ𝑧i

Δ𝑧max

𝑑i 𝑑max

𝑧

𝑑

Figure 4.1: Illustration of the distance ratio 𝑑i
𝑑max

and the height ratio Δ𝑧i
Δ𝑧max

used to determine the
false negative probability mapping pFN for arbitrary distances 𝑑i [Ric+19]. Here, 𝑑max
denotes the sensor-dependent maximum observation distance and Δ𝑧max the elevation
boundary, depending on the vehicle height.

38

4.1 Related Work

model the BBA

m(𝜔) =

𝑝𝑡FN

(
1 − 𝑝𝑟FP

)
if 𝜔 = O

𝑝𝑟FP
(
1 − 𝑝𝑡FN

)
if 𝜔 = G

1 −
∑︁
𝜉≠Ω

m(𝜉) if 𝜔 = Ω

(4.7)

depending on the number of transmissions 𝑡, the number of reflections 𝑟, the
false positive probability 𝑝FP and the false negative probability 𝑝FN, respectively.
Whereas 𝑝FP is set to a constant value, 𝑝FN = pFN (𝑑, 𝑧) is modeled as a function
of the ray geometry and the distance to the sensor origin. They compute the
false negative probability

pFN (𝑑, 𝑧) = 1 −
(
1 − 𝑑

𝑑max

)
Δ𝑧

Δ𝑧max

(
1 − 𝑝FN, max

)
, (4.8)

based on the distance ratio 𝑑
𝑑max

, the height ratio Δ𝑧
Δ𝑧max

and a maximum false
negative rate 𝑝FN, max. Figure 4.1 illustrates the ratio on an exemplary range
sensor with five vertical beams. The false negative probability 𝑝FN increases
when the ratio between observed heightΔ𝑧 and maximum heightΔ𝑧max decreases
or when the ratio between observed distance 𝑑 and maximum distance 𝑑max
increases. Fusion of two belief maps 𝑀1 and 𝑀2 is done by applying the
conjunctive rule of combination

m(𝜔 |𝑀1 ⊕ 𝑀2) =
∑︁

𝜔1∩𝜔2=𝜔

m1 (𝜔1)m2 (𝜔2), 𝜔 ∈ 2Ω (4.9)

to the non-conflicting hypotheses and assigning the conflicting masses

𝜁 = m1 ({o})m2 ({f}) +m1 ({f})m2 ({o}) (4.10)

conservatively to the occupied hypothesis. This yields the fused BBA

mfused (𝜔) =
{

m(𝜔 |𝑀1 ⊕ 𝑀2) if 𝜔 ∈ {f,Ω}
m(𝜔 |𝑀1 ⊕ 𝑀2) + 𝜁 if 𝜔 = {o}

. (4.11)

39

4 Evidential Occupancy & Elevation Grid Mapping

4.2 Range Sensor Noise

Many available range sensors consist of a rotor on which multiple laser diodes
at different azimuth angles are mounted and a receiver which measures the
returned energy as a function of the time delay between pulse emission and
return (or an equivalent reflection distance).

The absolute rotor angle is accurately measured by an encoder with usually
negligible quantization errors1. However, LiDARs often suffer from calibration
errors due to an imprecise initial intrinsic calibration or extrinsic calibration
errors if multiple range sensor measurements are transformed to a common
reference frame. In addition, heat deformation and mechanical wear applies so
that the actual angle accuracy is rather in the range of 0.1° to 0.2°.

Range accuracy is typically limited by close-distance time difference mea-
surements and low material reflectivity. Usually, manufacturers provide the
typical accuracy which refers to ambient wall test performance that excludes
retro-reflection, averages across most channels and may vary based on factors
including but not limited to range, temperature and target reflectivity [Vel19].
Thus, in reality, the true distance accuracy deviates from the data sheet values.

In order to find suitable grid map parameters, we identify the range noise of one
sensor by measuring a static scene (≈25 × 106 points) and estimating the stan-
dard deviation of corresponding points in range direction between two frames.
Corresponding points are determined by nearest neighbor search. Figure 4.2
depicts a histogram of the standard deviation and its distance-dependence for the
Velodyne VLS128 LiDAR. Around 50 % of all measurements have a standard
deviation of less than 3 cm. However, the average standard deviation in a range
of up to 50 m is 6.55 cm. As a trade-off between high range resolution and low
computational cost during mapping and ray casting, we set the size of grid cells
in range direction to 10 cm. When rotating at 10 Hz, there are around 2200
different rotor angles per full 360° scan. To reduce aliasing artifacts, we aim to
map measurements from at least two rotor angles to one cell. Therefore, we set
the cell size in rotational direction to 0.35°.

1 The azimuthal angle resolution of Velodyne LiDARs (used in this work) is around 0.01°, yielding
a lateral error of 0.3 mm at a distance of 100 m.

40

4.3 Range Sensor Mapping

0 2 4 6 8 10 12 14 16 18 20

0

10

20

30

Radial standard deviation / cm

Re
la

tiv
e

fr
eq

ue
nc

y
/%

0 10 20 30 40 50

0

5

10

15

20

Radial distance / m

R
ad

ia
ls

ta
nd

ar
d

de
vi

at
io

n
/c

m

Figure 4.2: Radial error characteristics of the Velodyne VLS128 LiDAR.

4.3 Range Sensor Mapping

Given range measurements as a set of points with yaw angle, horizontal distance
and height above ground, we first map these points into a polar grid which
allows for efficient range traversal and parallelized ray casting and afterwards
perform remapping into Cartesian coordinates.

4.3.1 Occupancy Mapping

Here, we incorporate deviations of range measurements (𝑟𝑚, 𝜙𝑚) into the grid
mapping process by assuming that these deviations are equally distributed in

41

4 Evidential Occupancy & Elevation Grid Mapping

r

𝜙

0

0.25

0.5

0.75

1

Figure 4.3: Occupancy probability assignment. Left: All probability mass is assigned to one
cell. Right: Probability mass is distributed evenly along neighboring cells. Center:
Probability mass is distributed differently along the cells.

the range (Δ𝑟,Δ𝜙) of the grid map resolution (cf. Fig. 4.3), which we model by
the probability density function (PDF)

p(𝑟, 𝜙|𝑟𝑚, 𝜙𝑚) =
1
Δ𝑟

rect
(𝑟 − 𝑟𝑚

Δ𝑟

) 1
Δ𝜙

rect
(
𝜙 − 𝜙𝑚

Δ𝜙

)
. (4.12)

Then, up to four neighboring grid cells yield a non-zero emergence probability
which we determine for each cell by evaluating the probability

P𝑛 =

∫ 𝑟𝑛+ Δ𝑟
2

𝑟𝑛− Δ𝑟
2

∫ 𝜙𝑛+ Δ𝜙

2

𝜙𝑛− Δ𝜙

2

p(𝑟, 𝜙|𝑟𝑚, 𝜙𝑚) d𝑟d𝜙 (4.13)

=
1
Δ𝑟

∫ 𝑟𝑛+ Δ𝑟
2

𝑟𝑛− Δ𝑟
2

rect
(𝑟 − 𝑟𝑚

Δ𝑟

)
d𝑟

1
Δ𝜙

∫ 𝜙𝑛+ Δ𝜙

2

𝜙𝑛− Δ𝜙

2

rect
(
𝜙 − 𝜙𝑚

Δ𝜙

)
d𝜙 (4.14)

= max
(
1 − |𝑟𝑛 − 𝑟𝑚 |

Δ𝑟
, 0

)
max

(
1 − |𝜙𝑛 − 𝜙𝑚 |

Δ𝜙
, 0

)
(4.15)

that the observation originated from cell 𝑛. Equation (4.15) can be evaluated
efficiently by multiplying the overlap ratios in both directions.

In order to compute free space belief, we need to determine the number of
transmissions in each grid cell by accumulating the probability masses along
each azimuthal angle starting from the reflection at the largest distance. This
step is independent for each azimuthal angle, thus can be parallelized and yields
the transmissions layer after ray casting.

42

4.3 Range Sensor Mapping

-135

-90

-45

0

45

90

135

A
zi

m
ut

h
an

gl
e

/° Reflections Transmissions

5 15 25 35 45

-135

-90

-45

0

45

90

135

Radial distance / m

A
zi

m
ut

h
an

gl
e

/° Max. observed height

5 15 25 35 45
Radial distance / m

Height limit

Figure 4.4: Reflections, transmissions, max. observed height and height limit layer after polar grid
mapping. The reflections and transmissions layers count the number of reflections
and ray cast transmissions, respectively. The maximum observed height layer denotes
the maximum height above ground of all reflections in a grid cell. The height limit
layer denotes a maximum height of objects above ground obtained from ray casting.
Blue/red: Low/high values, white: No values.

43

4 Evidential Occupancy & Elevation Grid Mapping

x

y

Low

High

Figure 4.5: When mapping accumulated values (e.g. the number of reflections or transmissions)
from polar grid cells (black) to corresponding Cartesian grid cells (gray) we compensate
for the distance-dependent area ratio (color-coded) on the Cartesian cell center positions.

The first row in Fig. 4.4 depicts a full 360° VLS128 LiDAR scan mapped into
the polar reflections and transmissions layer.

The final polar maps then need to be mapped into the Cartesian domain where
we perform bilinear interpolation and store the interpolation weights in lookup
tables. Here, it is important to conserve the energy due to the range-dependent
area change when remapping from polar to Cartesian cells. Figure 4.5 indicates
the large area differences for different distances between polar and Cartesian
grids. Given a polar grid with cell sizes [Δ𝑟,Δ𝜙], a Cartesian grid with cell
sizes [Δ𝑥,Δ𝑦] at position [𝑥𝑛, 𝑦𝑛] and the offset [𝑥0, 𝑦0] between the map
origins, we compute the polar area

𝐴polar,𝑛 =
Δ𝜙

2

(
(𝑟𝑛 + Δ𝑟)2 − (𝑟𝑛 − Δ𝑟)2

)
= Δ𝜙 Δ𝑟 𝑟𝑛 (4.16)

at radius
𝑟𝑛 =

√︃
(𝑥𝑛 − 𝑥0)2 + (𝑦𝑛 − 𝑦0)2 (4.17)

and determine the ratio
𝐴cart,𝑛

𝐴polar,𝑛
=

Δ𝑥 Δ𝑦

Δ𝜙 Δ𝑟 𝑟𝑛
(4.18)

44

4.3 Range Sensor Mapping

-40

-20

0

20

40

y
/m

Reflections Transmissions

-40 -20 0 20 40

-40

-20

0

20

40

x / m

y
/m

Max. observed height

-40 -20 0 20 40
x / m

Height limit

Figure 4.6: Reflections, transmissions, max. observed height and height limit layer after Cartesian
grid mapping. The reflections and transmissions layers count the number of reflections
and ray cast transmissions, respectively. The max. observed height layer denotes the
max. height above ground of all reflections in a grid cell. The height denotes a maximum
height of objects above ground obtained from ray casting. Blue/red: Low/high values,
white: No values.

45

4 Evidential Occupancy & Elevation Grid Mapping

which is used to correct features that are accumulated in the polar grid such
as the number of reflections and transmissions. This method can be effi-
ciently implemented within the interpolation process by an additional cell-wise
multiplication.

Figure 4.6 depicts the Cartesian sensor grid layers of a full 360° VLS128
LiDAR scan mapped from their polar representations. The Cartesian sensor
grid maps of each sensor are then combined in the occupancy and elevation
mapping steps.

4.3.2 Elevation Mapping

During the polar mapping process, we also assign elevation information to grid
cells. For each grid cell, we store the smallest and highest measured height in
two layers. As depicted in Fig. 4.7, we determine the maximum observation
height and an upper height limit during ray casting. The upper height limit
denotes the height of the lowest transmission above the max. observed height,
which makes it an upper limit for the true obstacle height. Assuming the height
to be equally distributed between max. observed height and the upper height
limit, we may estimate the height as the mean of this distribution.

Radial distance

El
ev

at
io

n

Ground Height limit 𝑙height, max Observation limit 𝑙obs, max
Rays Reflections

Figure 4.7: During ray casting we determine the height limit of obstacles (blue) and the upper
observation limit (green) due to the vertical sensor field of view (FOV). We assume
that the true obstacle height is always between highest reflection points (orange) and
height limits.

46

4.3 Range Sensor Mapping

The layers containing the max. observed height and the upper height limit for an
exemplary scene are depicted in the bottom row of Fig. 4.4. Figure 4.8 depicts
the estimated ground surface as presented in Chapter 3, the upper height limit,
the max. observed height and the combined height map. The combined map is
constructed from the estimated height of non-ground obstacles and the ground
surface height sampled at cell centers if no objects are present.

-40

-20

0

20

40

y
/m

Ground surface height Height limit

-40 -20 0 20 40

-40

-20

0

20

40

x / m

y
/m

Max. observed height

-40 -20 0 20 40
x / m

Combined height map

Figure 4.8: Estimated ground surface height, height limit, max. observed height and resulting
combined height map. Blue/red: Low/high values, white: No values.

47

4 Evidential Occupancy & Elevation Grid Mapping

4.3.3 Occupancy Belief

We determine occupancy and free belief using the sensor model presented by
Richter et al. [Ric+19] (cf. Section 4.1.3). The advantage of using an evidential
sensor model is its ability to explicitly model conflicts such as erroneous
measurements, occlusions and modeling errors. In addition, this sensor
model can be efficiently evaluated as beliefs are computed using accumulated
measurements instead of being updated for every new measurement (as in
Eq. (4.5)). In this work, we substitute the height range Δ𝑧 in Eq. (4.8) by

Δ𝑧 = Δ𝑧max −
(
𝑙obs, max − 𝑙height, max

)
. (4.19)

It denotes the difference between the maximum elevation range Δ𝑧max and the
minimum observable height range obtained from the observation limit 𝑙obs, max
and the upper height limit 𝑙height, max.

For example, permeable objects such as bushes yield an almost equal number
of reflections and transmissions which are assigned to Ω. The same holds for
objects not connected to the ground (e.g. birds, hanging traffic lights or signs)
which are not regarded in our elevation model.

Figure 4.9 depicts the evidential layers after processing Cartesian occupancy
and elevation grid maps of a single 360° VLS128 LiDAR scan. Here, we
set pFP = 0.05 and pFN, max = 0.7 which we determined heuristically for the
LiDARs mounted on the vehicle. Along the occupied, free and uncertainty
belief, we can determine the pignistic occupancy probability from the evidential
layers by Eq. (2.7).

4.4 Observability & Drivability

The observability bel({o}) + bel({f}) = 1 − bel(Ω) describes observable and
conflict-free areas in the map. We define drivable areas by the compound
probability of all cells possibly occupied by the vehicle being free. As in
evidence theory

bel({f}) ≤ prob({f}) ≤ pl({f}) = 1 − bel({o}), (4.20)

48

4.4 Observability & Drivability

-40

-20

0

20

40

y
/m

m({o}) m({f})

-40 -20 0 20 40

-40

-20

0

20

40

x / m

y
/m

m(Ω)

-40 -20 0 20 40
x / m

prob({o})

Figure 4.9: Evidential basic belief layers m({o}) , m({f}) , m(Ω) and pignistic occupancy proba-
bility prob({o}) after evidential occupancy mapping.
Note that m({o}) +m({f}) +m(Ω) = 1. Blue/white: Low values. Red/black: High
values.

49

4 Evidential Occupancy & Elevation Grid Mapping

we use bel({f}) as a conservative estimate for the free space probability. Then,
if grid cells are assumed independent, the compound probability

prob({d}) =
∏
∀𝑛∈N

bel(𝑛) ({f}) (4.21)

for drivable space is the product of free beliefs in all |N | cells the vehicle may
occupy. If we rewrite drivability and belief as 2D signals

probd : Z2 → [0, 1] , belf : Z2 → [0, 1], (4.22)

the drivability can be efficiently evaluated by computing the likelihoods

log
(
probd (𝒙)

)
= log(belf (𝒙)) ∗ ∗ shape(𝒙) (4.23)

using a two-dimensional discrete convolution with an indicator function
shape : R2 → {0, 1} describing the occupancy due to the vehicle shape. Here,
we utilize the fact that

log

(∏
∀𝑛∈N

bel(𝑛) ({f})
)
=

∑︁
∀𝑛∈N

log
(
bel(𝑛) ({f})

)
. (4.24)

In this work, we simplify the vehicle shape to a circle with a diameter equal to
the vehicle’s width. This simplification does neither consider the exact vehicle
shape nor motion constraints. However, due to its rotational invariance we only
need to compute one convolution. To compute the drivability more accurately
one may perform multiple convolutions using differently oriented shape kernels
with subsequent checking of motion constraints.

We suggest approximating observable or drivable regions by polygons, which
reduces the amount of information and thus defines a simple interface to
subsequent tasks such as motion planning. We do this by thresholding the
layers extracting contours around the areas above this threshold. Figure 4.11
depicts observability, drivability and the extracted polygons at a threshold of
75 % in an exemplary scenario.

50

4.5 Static Environment Mapping with Known Poses

4.5 Static Environment Mapping with Known
Poses

As an application, we consider the problem of mapping static environments with
known poses. This includes mapping multiple sensors for short durations with
known extrinsic calibration, mapping static environment for longer durations
with single sensors and known transformations (e.g. from odometry), or both.

To perform mapping, we need to fuse multiple measurements. Here, we combine
evidential occupancy and height information differently. Evidential occupancy
is combined as in Eq. (4.11) where we account the conflicting masses to the
more conservative occupied hypothesis.

To fuse the height information, we model the height 𝐻 ∼ M as a random
variable following a mixture of 𝑁 uniform distributions with equal weights
described by the PDF

p(ℎ) = 1
𝑁

𝑁∑︁
𝑛=1

p(ℎ|𝑛), (4.25)

where the mixture PDFs

p(ℎ|𝑛) = 1
Δℎ𝑛

rect
(
ℎ − ℎ̂𝑛

Δℎ𝑛

)
(4.26)

ℎ̂𝑛 =
ℎ𝑛,ub + ℎ𝑛,lb

2
, Δℎ𝑛 = ℎ𝑛,ub − ℎ𝑛,lb (4.27)

are determined from the upper height limits ℎ𝑛,ub obtained from ray casting and
the maximum observed heights ℎ𝑛,lb of all reflections in a grid cell (cf. Fig. 4.7
for an illustration).

We then determine the mean and variance

𝜇 =
1
𝑁

𝑁∑︁
𝑛=1

𝜇𝑛 (4.28)

𝜎2 =
1
𝑁

𝑁∑︁
𝑛=1

(
𝜎2
𝑛 + 𝜇2

𝑛

)
− 𝜇2 (4.29)

51

4 Evidential Occupancy & Elevation Grid Mapping

of the mixture distribution (cf. Eqs. (A.35) and (A.36)) which we use to describe
the fused height information.

Figure 4.10 illustrates this for an example and Fig. 4.12 in a mapping scenario
where 30 range measurements are combined.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

1

2

Height ℎ

p(
ℎ
)

p(ℎ) = 1
5

(
rect

(
ℎ−1.4

0.4

)
0.4 +

rect
(
ℎ−1.5

0.2

)
0.2 +

rect
(
ℎ−1.5

0.4

)
0.4 +

rect
(
ℎ−1.25

1.3

)
1.3 +

rect
(
ℎ−1.7

1.2

)
1.2

)
𝜇 = 1.47
𝜎 = 0.17

Figure 4.10: Exemplary height mixture PDF from five uniform components with intervals [1.2, 1.6],
[1.4, 1.6], [1.3, 1.7], [0.6, 1.9] and [1.1, 2.3], its mean 𝜇 and standard deviation
𝜎.

For our experiments, observability and drivability are represented as polygons.

Figure 4.11 compares the evidential belief, observability and drivability layers
when using a single VLP16 LiDAR to the layers obtained when using the full
sensor setup (four VLP16 LiDARs and one VLS128 LiDAR).

On the one hand, we observe that using multiple sensors increases the observ-
ability and drivability by a large margin. On the other hand, we can see that our
method provides meaningful estimates for different sensor setups and implicitly
handles unobserved areas, e.g. due to sensor installation, occlusion or outage.

In contrast to the multi-sensor setup, Figs. 4.12 and 4.13 compare the different
grid map layers estimated for a single scan or 30 subsequent scans. This
validates our approach for mapping of static environment up to the grid map
resolution. Although not implemented here, we believe that the mapping
approach might even be able to handle semi-static objects such as parking
vehicles when using a time-decay model to combine measurements at different

52

4.5 Static Environment Mapping with Known Poses

-20

0

20

y
/m

bel({o}) bel({o})

-20

0

20

y
/m

bel({f}) bel({f})

-40 -20 0 20 40
-20

0

20

y
/m

Observability Observability

-40 -20 0 20 40
-20

0

20

x / m

y
/m

Drivability

-40 -20 0 20 40
x / m

Drivability

Figure 4.11: Occupied belief bel({o}) , free belief bel({f}) , observability bel({o}) + bel({f})
and drivability (cf. Eq. (4.21)) for a Velodyne VLP16 LiDAR mounted in the front
right corner (left column) and the full sensor setup (right column). On top, we also
draw white polygons defined by minimum observability and drivability, respectively.
Blue/red: low/high values.

53

4 Evidential Occupancy & Elevation Grid Mapping

times. Note that we use the range measurements and odometry transformations
provided in the KITTI odometry benchmark for this experiment.

54

4.5 Static Environment Mapping with Known Poses

-2
0020

y/m

Re
fle

ct
io

ns
Re

fle
ct

io
ns

-4
0

-2
0

0
20

40

-2
0020

x
/m

y/m

be
l(
{ f
})

+
dr

iv
ab

.
-4

0
-2

0
0

20
40

x
/m

be
l(
{ f
})

+
dr

iv
ab

.

Fi
gu

re
4.

12
:N

um
be

ro
fr

efl
ec

tio
ns

an
d

fr
ee

be
lie

fw
ith

dr
iv

ab
ili

ty
of

a
si

ng
le

36
0°

ra
ng

e
m

ea
su

re
m

en
t(

le
ft

co
lu

m
n)

an
d

30
ra

ng
e

m
ea

su
re

m
en

ts
(r

ig
ht

co
lu

m
n)

in
sc

en
e

00
of

th
e

K
IT

TI
od

om
et

ry
be

nc
hm

ar
k.

B
lu

e/
re

d:
Lo

w
/h

ig
h

va
lu

es
,w

hi
te

:N
o

va
lu

es
/b

ou
nd

ar
y.

55

4 Evidential Occupancy & Elevation Grid Mapping

-40
-20

0
20

40

-20 0 20
y / m

H
eight

H
eight

-40
-20

0
20

40

-20 0 20

x
/m

y / m

H
eightvariance

-40
-20

0
20

40
x

/m

H
eightvariance

Figure
4.13:Estim

ated
heightand

heightvariance
ofa

single
360°range

m
easurem

ent(leftcolum
n)and

30
range

m
easurem

ents(rightcolum
n)

in
scene

00
ofthe

K
ITTIodom

etry
benchm

ark.B
lue/red:Low

/high
values,w

hite:N
o

values.

56

5 Object Detection Considering
Uncertainties

The task of object detection combines three closely related subtasks: The
semantic classification of relevant objects (incl. their absence), their pose and
shape estimation. In the traffic context, this includes the detection of traffic
participants, e.g. cars, cyclists and pedestrians. In grid maps, small objects
such as pedestrians may only cover a few grid cells, depending on the cell
size1 which makes their detection a particularly hard problem (cf. Fig. 5.1).
For subsequent tracking tasks, also information about localization and shape
estimation deviations may be taken into consideration. Therefore, it is beneficial
to provide a meaningful and interpretable description of these deviations.

C
ar

s
C

yc
lis

ts
Pe

de
st

ria
ns

Figure 5.1: Occupied belief for different cars, cyclists and pedestrians. Each object is aligned with
the image center. Patch size: 10 m×10 m. Grid cell size: 12.5 cm×12.5 cm.

1 Given a grid cell size of 12.5 cm pedestrians usually cover less than 5 × 5 cells.

57

5 Object Detection Considering Uncertainties

Here, we present two approaches to object detection based on the assumption
that objects are always attached to the ground surface. Thus, an object pose can
be represented by its 2D position and yaw angle. Furthermore, we model the
object shape by a 2D polygon and a corresponding height.

Section 5.2 presents a fast and generic segmentation approach that produces
obstacles represented by position and a generic hull from grid maps. In contrast
to this method, a deep convolutional object detector, presented in Section 5.3
and learned on labeled training data, additionally estimates semantic classes
and oriented bounding boxes. Finally, we evaluate our convolutional object
detector on the nuScenes data set (Section 5.4).

5.1 Related Work

We present related work on image segmentation (Section 5.1.1) and convo-
lutional object detectors (Section 5.1.2) before we introduce more recent work
on object detection in top-view grid maps in Section 5.1.3.

5.1.1 (Range) Image Segmentation

Before the advent of machine learning (ML) models, hierarchical segmentation
methods were developed to detect obstacles in images.

To segment objects in range images, Moosmann et al. [MPS09] estimate local
surface convexity which holds if the point reconstructed from a range pixel is
behind a neighboring pixel’s plane approximation. Applying this convexity
measure as a segmentation criterion, the authors are able to distinguish between
obstacles and ground. However, the method only works on single range images
and cannot be extended to multiple sensors easily which renders this method
unsuitable for our application.

Beucher et al. [BM93] segment objects by applying the watershed algorithm
to morphologically closed binary images. Their method is split into a marker
selection and subsequent segmentation which provides closed contours in a
computationally inexpensive way.

58

5.1 Related Work

5.1.2 Convolutional Object Detectors

An object detector can be characterized by its meta-architecture and components,
namely backbone, feature fusion and heads, which are described in the following.

Meta-Architectures Object detectors can be divided into two-stage and single-
stage detectors. The Faster R-CNN meta-architecture presented by Ren et al.
[Ren+15] is a two-stage approach divided into a region proposal network (RPN)
and a box classification and regression network. The RPN extracts features
used to predict class-agnostic box candidates in a set of prior boxes defined on
the input image. Features in prior boxes with a high predicted objectness score
are then cropped and fed into the box classification and regression network.

B(𝑠) F(𝑠)I

C(𝑠)

R(𝑠)
Backbone Feature Fusion Box Regression

Classification

Figure 5.2: General structure of a single shot object detector. A backbone model takes an input
image I(𝒙) and computes 𝑆 backbone features B(𝑠) (𝒙) at different pyramid scales
which are then fused into 𝑆 features F(𝑠) (𝒙) . These features are then mapped by the
heads into classifications C(𝑠) (𝒙) and prior box-relative regressions R(𝑠) (𝒙) where
each location 𝒙 (𝑠) is mapped to all prior boxes defined at that location.

In contrast, single-stage detectors (e.g. SSD proposed by Liu et al. [Liu+16])
predict bounding boxes and semantic classes in a single feedforward CNN
without the additional RPN reducing inference time while, in many cases, still
achieving sufficiently good performance. The general structure of a single-stage
object detector is depicted in Fig. 5.2. A deep convolutional backbone maps
input images (e.g. RGB images or grid maps) to backbone features B(𝑠) (𝒙) at
𝑆 different scales which may then be fused into features F(𝑠) (𝒙). Here, each
coordinate 𝒙 (𝑠)

𝑘
defines a location where at least one prior box is defined.

The amount of prior boxes passed to the box classification and regression
network is not only much higher than actual ground truth boxes in the image
but also much higher compared to two-stage approaches that preselect object

59

5 Object Detection Considering Uncertainties

candidates. Lin et al. [Lin+17b] mitigate this class imbalance by designing a
loss function which focuses on more difficult examples, i.e. likelihoods close to
the inverse number of classes.

B(0) B(1) B(2) B(3)I B(4)

Figure 5.3: Backbone features B(0) . . .B(4) during processing. The feature value dimension
increases while spatial resolution is reduced. Here, convolutional transformations
within the network are visualized by edges.

Backbones A detection stage input consists of semantic features computed
by a deep backbone (or feature extractor) such as ResNet [He+16], Mo-
bileNet [San+18] or EfficientNet [TL19]. These models have in common that,
during processing, intermediate features B(𝒙0) decrease in spatial resolution at
increasing value dimension, which can be interpreted as semantic information
(cf. Fig. 5.3). In ResNets, computational units

X𝑘+1 = f𝑘 ◦ X𝑘 + X𝑘 ⇔ f𝑘 ◦ X𝑘 = X𝑘+1 − X𝑘 (5.1)

are implemented as residual functions between output and input features X𝑘+1
and X𝑘 , respectively. The authors show that networks with many concatenated
units can be trained without vanishing gradients. Among other aspects,
MobileNet and EfficientNet use spatially and depth-wise separable convolutions
(cf. Example 2.6) to reduce the number of parameters and thus the amount
of floating-point operations. The structure of EfficientNets is optimized by
an extensive architecture search and their capacity can be scaled by a single
hyperparameter which controls resolution, depth and width.

Feature Fusion The idea of fusing features at different scales is to combine
accurate spatial with rich semantic information. Whereas SSD [Liu+16] does not

60

5.1 Related Work

B(1)

B(2)

B(3)

F(2)

F(1)

F(3)

B(4) F(4)

(a) No fusion

B(1)

B(2)

B(3)

F(2)

F(1)

F(3)

B(4) F(4)

(b) Feature Pyramid Network
(FPN) [Lin+17a]

B(1)

B(2) F(2)

F(1)

B(4) F(4)

B(3) F(3)

(c) Bidirectional Feature
Pyramid Network
(BiFPN) [TPL20]

Figure 5.4: Feature fusion strategies. The gray nodes depict transformations while edges denote
features. Additionally, blue / red edges involve up- and downsampling, respectively.
We distinguish between no fusion (Fig. 5.4a), unidirectional fusion (Fig. 5.4b) as
applied in FPN (cf. [Lin+17a]) and bidirectional fusion (Fig. 5.4c) as applied in BiFPN
(cf. [TPL20]). The fused features F(1) , . . . , F(4) are then used as input for the object
detection head.

apply any feature fusion (cf. Fig. 5.4a), FPNs [Lin+17a] perform feature fusion
at different scales in a unidirectional, top-down manner (Fig. 5.4b). Compared
to FPNs, BiFPNs add a bottom-up path and cross-scale connections [TPL20]
for feature fusion (Fig. 5.4c).

Heads The features F(𝑠) are fed into separate classification and box regression
heads. Each head performs additional convolutions to adapt the features to its
specific task before mapping to a volume [𝑤𝑖 , ℎ𝑖 , 𝑑𝑖] where 𝑤𝑖 and ℎ𝑖 denote
width and height and 𝑑𝑖 the number of priors per position multiplied with
the number of classes (classification head) or box regression parameters (box
regression head). Thus, there is a classification and box regression for each
prior box.

Most object detectors for camera images use the same heads across all scales
(e.g. [Lin+17a; TPL20]). This accounts for the scale variance which is typical
for camera images due to the projective transformation of objects. However,
this is not the case for orthographic top-view grid maps.

61

5 Object Detection Considering Uncertainties

5.1.3 Object Detection in Top-View Grid Maps

Steyer et al. [STW17] extract clusters of moving objects by applying DBSCAN
(cf. [Est+96]) to dynamic grid cells considering Cartesian distance, velocity
difference and evidence of free space between occupied cells. However, often
static obstacles are also required by other automated driving (AD) components
making it necessary to apply DBSCAN to all grid cells which is computationally
expensive.

As 3D measurements are projected onto the ground surface, computation-
ally efficient 2D convolutions can be applied when developing convolutional
object detectors as in Complex-YOLO [Sim+18], BirdNet [Bel+18] or Top-
Net [Wir+18]. To mitigate the information loss during ground surface projection,
Yang et al. [YLU18a; YLU18b] compute occupancy features at different heights,
whereas Lang et al. [Lan+19] propose a low-level encoding of 3D point features
before ground surface projection.

Choice of Input Features There is a large variety of grid cell features used for
object detection across different publications. Often, the (normalized) number
of reflections and reflection energy are considered [GKF09; BFG15; Che+17].
Hörmann et al. [Hör+18] use occupied and free belief, per-cell 2D velocity
and its auto-covariance matrix estimated by a particle filter. To mitigate the
information loss during projection, Golovinskiy et al. [GKF09] encode the
height as a normal distribution and estimate standard deviations of points in the
ground plane.

Box Encoding To predict axis-aligned bounding boxes in camera images,
the prior box offset Δ𝒙 and box extent offset [Δ𝑤,Δℎ] are used. For oriented
bounding boxes, Jiang et al. [Jia+18] additionally estimate an angle resulting
in a minimal representation. However, during training the angle regression
loss becomes non-differentiable due to the angle wrap. Beyer et al. [BHL15]
represent the angle 𝜙 by a biternion representation [cos(𝜙), sin(𝜙)]. Modeling
the orientation as a von Mises distribution, their model learns orientation
regression using the loss 𝐿VM = 1−𝑒𝜅 (〈𝒚,𝒕 〉−1) where 𝜅 denotes the concentration
and 𝒚 and 𝒕 the ground truth and regression biternion, respectively.

62

5.2 Fast Segmentation Method

Uncertainty Estimation Uncertainty may be divided into epistemic (or
systematic) and aleatoric (or statistical) uncertainty [Gal16]. Gal et al. [GG16]
show that Bayesian inference in artificial neural networks (ANNs) to capture
epistemic uncertainty can be approximated by Monte Carlo dropout applied
to multiple forward passes during inference. This technique can be applied
to object detection problems, however, at the cost of additional computation
time due to multiple forward passes with random dropout [FRD18; Wir+19b].
Aleatoric uncertainty may be further divided into homoscedastic (or constant
variance) and heteroscedastic (or variable variance) uncertainty. In object
detection applications, Feng et al. [FRD18; Fen+19] show that estimating
heteroscedastic aleatoric uncertainty of the box regression parameters improves
accuracy.

5.2 Fast Segmentation Method

We present a fast object segmentation method for grid maps based on the free
and occupied belief layers introduced in Section 4.3. Although this method
is not able to estimate semantic classes or oriented bounding boxes, it is
computationally inexpensive, robust and reliable as it also works for generic
unseen and unlabeled objects/obstacles. Thus, it is aimed to complement our
object detector presented in Section 5.3.

We first perform morphological closing on the occupied belief bel({o}) to
increase occupied evidence in unobserved areas. Note that we apply grayscale
instead of binary morphologies. We chose the kernel size to be in the range of
0.25 m to 0.75 m depending on the sampling density. Afterwards, we determine
the difference between the morphologically closed occupied belief and the
free belief bel({f}) reducing occupied mass in areas of high free space mass,
e.g. when observing free space between parking cars or pedestrians walking
next to each other. This result is binarized with a small threshold in the range
of 0.05 to 0.15 before we apply connected-components labeling (CCL) to
obtain object clusters. Then, for each cluster we compute a 2D concave hull
approximation and assign its geometric center as object position. Finally, we
determine the object height from the minimum and maximum observed height
out of all grid cells associated to this cell.

63

5 Object Detection Considering Uncertainties

-20

-10

0

10

20

y
/m

bel({o})′ bel({f})

-20 -10 0 10 20

-20

-10

0

10

20

x / m

y
/m

bel({o})′ − bel({f})

-20 -10 0 10 20
x / m

Conn. Components & Objects

Figure 5.5: Processing steps of our fast segmentation method. The free belief bel({f}) is subtracted
from the morphologically closed occupied belief bel({o})′ resulting in bel({o})′ −
bel({f}) (lower left corner). We then apply connected-components labeling (CCL) and
a concave hull approximation on the result yielding object boundaries.

64

5.3 Convolutional Object Detector

Figure 5.5 illustrates the segmentation steps on a road-scenario recorded with
our experimental vehicle (cf. Appendix A.6). Unfortunately, there is no data
set available that allows for a detailed, quantitative evaluation.

5.3 Convolutional Object Detector

Our goal is to detect relevant traffic participants, estimate their position, shape
and semantic class. Here, we represent a shape by oriented bounding boxes.
As input, we use the fused occupancy belief and elevation grid map layers
presented in Section 4.3.

5.3.1 Overview

We follow the general structure of single-shot object detectors illustrated in
Fig. 5.2. A deep, fully convolutional backbone takes grid maps as input and
determines 𝑆 intermediate backbone features B(𝑠) on different pyramid scales
𝑠. These backbone features are then fused into 𝑆 features F(𝑠) and passed to
the classification and box regression heads, respectively.

5.3.2 Prior Boxes & Box Matching

To achieve translational invariance, we create prior boxes at different locations
on the grid map. Prior boxes are defined by their position, extent and orientation
and should ideally cover the object of interest. We create prior boxes at different
pyramid scales in order to capture objects of different sizes. Figure 5.6a
illustrates the prior box creation for multiple orientations at a single scale and
box extent (aspect ratio 2:1).

In order to train the object detector, we need to establish correspondences
between prior boxes and ground truth labels. Therefore, we perform matching
based on the rotated intersection over union (IoU) presented in Appendix A.8.
We match each labeled ground truth box to the prior box with the highest IoU,
resulting in 𝑁pos positive matches. All 𝑁neg prior boxes that are not matched to

65

5 Object Detection Considering Uncertainties

(a) Prior boxes

Δ�̂�

Δ𝒕

𝑤0

𝑙0

�̂�

𝑙

(b) Box representation

Figure 5.6: In order to achieve translational and scale invariance we create multiple, oriented prior
boxes at different locations (gray dots) and scales. Figure 5.6a illustrates the placement
of prior boxes at a single scale with four different orientations. All but one prior
box location in the top left part of the image were removed for better visualization of
different prior box orientations. As illustrated in Fig. 5.6b, we represent a box by its
translation Δ𝒕, extent Δ�̂� =

[
𝑙 − 𝑙0, �̂� − 𝑤0

]
, angle Δ�̂� and height Δℎ̂ relative to the

prior box.

a ground truth label are considered negatives and assigned to the rejection class
in the object classifier.

On each pyramid scale we use two prior box sizes at two aspect ratios (1:1 and
2:1) and six rotations (0°, 30°, 60°, 90°, 120°, 150°) yielding 24 prior boxes
per location. We create prior boxes at pyramid scale level 2 to 4 at every cell
location. With an original grid map size of 800×800 cells, this results in a total
number of

𝑁prior = 24 ·
(
2002 + 1002 + 502 + 252

)
= 1275000 (5.2)

prior boxes.

66

5.3 Convolutional Object Detector

5.3.3 Box Representation & Regression

We represent a box by its relative translation Δ𝒕, extent Δ𝒆, angle Δ𝜙 and height
Δℎ relative to its corresponding prior box. Similar to Simon et al. [Sim+18],
we model the angle as a complex number 𝑒 𝑗 𝜙 = cos(𝜙) + 𝑗 sin(𝜙) and estimate
a 2D angle biternion. In a previous work, Wirges et al. [Wir+18] observed
that this encoding is more stable during training due to its continuity and
non-vanishing gradients and thus yields higher object detection performance.
We also observed that estimation of the heading direction within −180° to 180°
is difficult in grid maps, whereas the box orientation can be estimated accurately
in a range of −90° to 90°. For this reason we split the orientation estimation into
two problems, a 𝜋-periodic angle regression and a binary heading classification.

In the following, we define the normalized box regression estimate

�̂� =

[
Δ𝑡x

𝑙0
,
Δ𝑡y

𝑤0
,
𝑙 − 𝑙0
𝑙0

,
�̂� − 𝑤0

𝑤0
, sin

(
2
(
𝜙 − 𝜙0

))
, cos

(
2
(
𝜙 − 𝜙0

))]
(5.3)

and analogously the normalized regression target 𝒃 which are independent of
prior box size and orientation. Then, the box regression loss

𝐿reg =

𝑁pos∑︁
𝑛=1
H1

(
‖ �̂�𝑛 − 𝒃𝑛‖

)
(5.4)

denotes the sum of all Huber losses (cf. Eq. (A.3)) of all 𝑁pos matched pairs of
corresponding regression targets 𝒃𝑛 and regression estimates �̂�𝑛.

5.3.4 Classification

We assign each sample to one of 𝐶 classes or an additional rejection class which
means the absence of objects for this prior box resulting in 𝐶 + 1 classes in
total. Based on the focal loss presented by Lin et al. [Lin+17b], we define the
classification loss

𝐿cls = 𝜆1𝐿dir + 𝜆2𝐿sem (5.5)

67

5 Object Detection Considering Uncertainties

as the weighted sum of the direction loss 𝐿dir for estimated direction likelihoods
p̂(𝑑𝑛) and semantic class loss 𝐿sem for estimated semantic class likelihoods
p̂(𝑐𝑛).

We define the direction loss

𝐿dir = −
𝑁pos∑︁
𝑛=1

p(𝑑𝑛) log(p̂(𝑑𝑛)) + (1 − p(𝑑𝑛)) log(1 − p̂(𝑑𝑛)) (5.6)

as the binary cross entropy (BCE) (cf. Section 2.4.3) between the true probability
distribution p of directions 𝑑𝑛 and its approximating function p̂. Then, the total
classification loss

𝐿sem = 𝛼

𝑁pos∑︁
𝑛=1
(1 − p̂(𝑐𝑛))𝛾 log(p̂(𝑐𝑛))

+ (1 − 𝛼)
𝑁neg∑︁
𝑛=1
(1 − p̂(𝑐𝑛))𝛾 log(p̂(𝑐𝑛)) (5.7)

is based on the focal loss presented by Lin et al. [Lin+17b] with the modulation
term

(
1 − 𝑐𝑚,𝑛

)𝛾 decreasing the weight of easy examples, i.e. examples with an
estimated high semantic class likelihood 𝑐𝑚. In addition, it provides balancing
by the 𝛼 parameter due to the large difference of positive and negative prior
box matches.

5.3.5 Uncertainty Estimation

In another setting, we model the object position and orientation as normally
and von-Mises distributed random variables. This approach differs from
Wirges et al. [Wir+19b] who model the box position and extent as mutually
independent normally and log-normally distributed random variables. In
subsequent experiments we observed that the variances of box position and
extent are highly correlated which leads to ambiguous position and box extent
uncertainty estimates, e.g. increasing the position instead of the box extent
variance. We resolve this ambiguity by only estimating the positional variance
which leads to better convergence during training. The orientation is modeled
as von Mises distributed random variable (cf. Appendix A.9) centered around

68

5.3 Convolutional Object Detector

the predicted orientation for which we additionally estimate the concentration
parameter 𝜅. We define the normalized regression estimate

�̂�prob =
[
�̂�, �̂�Δ𝑥 , �̂�Δ𝑦 , 𝜅

]
(5.8)

which extends the regression estimate introduced in Eq. (5.3) by the estimated
standard deviations �̂�Δ𝑥 , �̂�Δ𝑥 in 𝑥 and 𝑦 directions and the estimated von Mises
concentration 𝜅.

To estimate �̂�prob we define the probabilistic regression loss

𝐿reg, prob = 𝐿box, prob + 𝐿dir, prob (5.9)

that consists of the probabilistic box parameter regression

𝐿box, prob = �̂�−2
Δ𝑥

(
�̂�1 − 𝑏1

)2
+ �̂�−2

Δ𝑦

(
�̂�2 − 𝑏2

)2

+ log
(
�̂�2
Δ𝑥

)
+ log

(
�̂�2
Δ𝑦

)
+

6∑︁
𝑚=3

(
�̂�𝑚 − 𝑏𝑚

)2
(5.10)

and the direction loss

𝐿dir, prob = log(2𝜋I0 (𝜅)) − 𝜅 cos
(
𝜙 − 𝜙

)
, (5.11)

where we approximate I0 by Eq. (A.42).

5.3.6 Optimization Objective

The total loss
𝐿 = 𝜆1𝐿reg + 𝜆2𝐿cls + 𝜆3𝐿weight (5.12)

denotes the weighted sum of regression loss (Eq. (5.4)), classification loss
(Eq. (5.5)) and a weight penalty 𝐿weight to reduce overfitting. We use L2 weight
decay (cf. Example 2.7) which is computed on all convolution kernel weights
𝒘kernel.

69

5 Object Detection Considering Uncertainties

5.3.7 Post-Processing

At inference time, we perform greedy IoU-based non-maximum suppression
(NMS) to reduce the amount of object proposals. The NMS algorithm first
selects the proposal with the highest class score and then discards all other
proposals above a certain IoU threshold to that proposal. These steps are
repeated in an alternating fashion until no more proposals are left to compare.
Finally, we transform the coordinates of the resulting detections from grid map
to world coordinates.

5.4 Experiments

If not specified otherwise, we train all models with the parameters summarized
in Table 5.1. We choose the basic RetinaNet structure [Lin+17b] with a
ResNet-38 backbone and an FPN as default architecture due to its fast training
convergence and low memory consumption. For the same reason, we only
perform random horizontal flipping around the y-axis.

Due to memory restrictions all models are trained with a batch size of 4 on one
Nvidia GeForce RTX 2080 Ti GPU using the ADAM optimizer (cf. Example 2.3,
𝛽1 = 0.9, 𝛽2 = 0.999). After each nonlinearity, batch normalization (BN)
(cf. Section 2.4.2) is performed. We use a linear learning rate warm-up from
1 × 10−5 to 1 × 10−4 within 3000 iterations and terminate the optimization at
iteration 300 000 at a learning rate of 1 × 10−5 using a cosine learning rate
decay.

5.4.1 Quantitative Evaluation

Table 5.2 summarizes the evaluation results of different model configurations.
We use the metrics of the nuScenes object detection benchmark [Cae+20] for
evaluation (cf. Appendix A.10.1). This includes the mean average precision
(mAP) and the true positive metrics mean average translation error (mATE),
mean average scale error (mASE) and mean average orientation error (mAOE).

70

5.4 Experiments

Parameter Value

Backbone ResNet-38
Feature fusion FPN (128 filters)
Convolutions Separable 3×3 (cf. Example 2.6)
Weight decay 1 × 10−4 (L2, cf. Example 2.7)
Scales 2 to 5
Box-, class & association head Scale-dependent, N=2, F=128
IoU method Aligned, threshold 0.1
Data augmentation Random horizontal flip
NMS threshold 0.5

Table 5.1: Default object detection model parameters used in evaluation.

Data Augmentation In addition to randomly horizontal flipping, we evaluate
the effect of randomly rotated inputs on the model performance. Experiments
Obj1, Obj2 and Obj3 in Table 5.2 depict the evaluation results for no rotation,
rotations of ±15° and ±180°, respectively.

We observe that the model performance slightly increases when the model is
trained on grid maps randomly rotated in a range of ±15°. However, rotations
in a range of 360° decrease the model performance. On the one hand, we
suspect that large rotations lead to slower convergence so that training needs
more iterations to converge. On the other hand, large rotations may change the
object parameter training distribution which then varies from the evaluation set
distribution.

Box Encodings We compare three different box encodings in experiments
Obj1, Obj4 and Obj5, summarized in Table 5.2. To investigate the influence of
the Biternion encoding introduced in Section 5.3.3, we model the orientation
as single variable within −180° to 180° in the Angle encoding. Lastly, we
evaluate the uncertainty encoding presented in Section 5.3.5 (abbreviated as
Uncertainty).

Compared to Obj1 that implements the Biternion encoding, we observe that
encoding the orientation as a single variable (Obj4) decreases the performance.

We also observe that additionally estimating the positional and rotational
variance slightly increases the mATE and mASE but decreases the mAOE by

71

5 Object Detection Considering Uncertainties

ID
R

and.R
ot.

Encoding
IoU

Backbone
Fusion

m
A

P
m

ATE
m

A
SE

m
AO

E
in

°
in

%
in

cm
in

%
in

°

O
bj1

0
B

iternion
A

ligned
ResN

et-38
FPN

-128
26

.0
44

.9
31

.0
36

.1
O

bj2
±15

B
iternion

A
ligned

ResN
et-38

FPN
-128

26
.8

44
.5

30
.6

34
.4

O
bj3

±180
B

iternion
A

ligned
ResN

et-38
FPN

-128
24

.1
45

.7
30

.5
33

.2
O

bj4
0

A
ngle

A
ligned

ResN
et-38

FPN
-128

24
.2

47
.1

31
.2

39
.0

O
bj5

0
U

ncertainty
A

ligned
ResN

et-38
FPN

-128
25

.6
45

.0
35

.6
29

.2
O

bj6
0

B
iternion

Rotated
ResN

et-38
FPN

-128
29

.5
41

.3
30

.9
33

.1
O

bj7
0

B
iternion

A
ligned

Effi
cientN

et-B
2

B
iFPN

-96
20

.3
53

.4
37

.4
33

.6

Table
5.2:O

verview
on

allevaluated
objectdetectorconfigurations.The

bestresultsforeach
m

etric
are

highlighted
in

bold.

72

5.4 Experiments

a large margin. The results of Obj5 indicate that especially the orientation
estimation benefits from incorporating uncertainty measures.

Prior Boxes and IoU We compare the usage of rotated and axis-aligned prior
boxes and IoU in experiments Obj1 and Obj6 in Table 5.2.

Using rotated prior boxes and IoU computation we observe an increased mAP,
lower mATE and mAOE during evaluation. This may be explained by prior
boxes that are in general more similar to the ground truth boxes.

Backbone and Fusion Experiments Obj1 and Obj7 in Table 5.2 compare
the RetinaNet and EfficientDet architecture.

We could not observe increased performance for object detection in grid maps
when using the EfficientDet model in contrast to object detection in camera
images presented in related work [TPL20]. This, however, may be due to
differing hyperparameters when dealing with camera images and grid maps.

5.4.2 Qualitative Results

Figure 5.7 visualizes the prior box matching during training. As we create
rotated prior boxes, we are able to better fit differently rotated objects in the
scene at the cost of more prior boxes in general (compared to axis-aligned prior
boxes).

Figures 5.8 and 5.9 depict object detection results on scenes of the nuScenes
validation set. We observe that larger objects such as cars, trucks and buses
are detected at larger distances and a high recall, whereas small objects such
as pedestrians or traffic cones need to be closer to the vehicle to be detected
reliably.

73

5 Object Detection Considering Uncertainties

-30 -20 -10 0 10 20 30

-30

-20

-10

0

10

20

30

x / m

y
/m

Figure 5.7: Prior box matching during training. For each ground truth box (red), we consider the
prior box with the highest IoU (blue) as match. Prior boxes are created at different
pyramid scales to account for different object sizes. The next best prior box candidates
are depicted in light blue.

74

5.4 Experiments

-20

-10

0

10

20

y
/m

-20 -10 0 10 20

-20

-10

0

10

20

x / m

y
/m

-20 -10 0 10 20
x / m

Figure 5.8: Detected objects with class likelihoods on top of the pignistic probability grid map
layer in four exemplary scenes of the nuScenes validation set. The objects are colored
by the most likely class. Blue: car, green: barrier, yellow: pedestrian, red: cyclist,
beige: traffic cone.

75

5 Object Detection Considering Uncertainties

-40

-20

0

20

40

y
/m

-40 -20 0 20 40

-40

-20

0

20

40

x / m

y
/m

-40 -20 0 20 40
x / m

Figure 5.9: Detected objects (blue) and ground truth labels (green) on top of the sensor-relative
height of range sensor reflections (blue: low, yellow: high) in four exemplary scenarios
of the nuScenes validation set.

76

6 Self-Supervised Scene Flow
Estimation

Scene flow may be defined as the 3D motion of object surfaces [Ved+05]. Then,
optical flow can be interpreted as the projection of scene flow into the image
plane. In top-view grid maps optical flow is the planar motion as a result of
orthographically projected 3D motion of objects.

𝒗⊥

Ground
surface
h (𝒙)

𝒗 =

(
𝒗⊥

〈∇ℎ, 𝒗⊥ 〉
)
∇ℎ

Height 𝑧

Location 𝒙

〈∇ℎ, 𝒗⊥ 〉

Figure 6.1: The 3D velocity 𝒗 along a surface can be determined by the surface gradient ∇ℎ and
the planar velocity 𝒗⊥.

We assume that all traffic participants move on a common, known ground
surface. Knowing this ground surface and the optical flow as a result of
the orthographic plane projection, we are able to reconstruct the scene flow
(cf. Fig. 6.1). Therefore, we divide the problem of scene flow estimation into
two independent problems, namely ground surface estimation (presented in
Chapter 3) and optical flow estimation, which we discuss in the following.

Scene flow and odometry estimation are closely related. Given scene flow
estimates between two view points in a static environment, one can estimate
the motion between these view points. Here, optical flow estimation methods
establish feature correspondences on which odometry estimation methods
operate on.

77

6 Self-Supervised Scene Flow Estimation

After a review of related work on scene flow estimation (Section 6.1), we present
our optical flow estimation model on grid maps in Section 6.2, our approach
for odometry estimation (Section 6.3) and conduct experiments in Section 6.4.
The presented optical flow estimation method is a refined version of [Wir+19a].

6.1 Related Work

We provide an overview about related work on optical flow and odometry
estimation (Sections 6.1.1 and 6.1.2). Finally, we present recent approaches for
dynamic occupancy grid map estimation.

6.1.1 Optical Flow Estimation

Optical flow estimation is fundamental for camera-based motion estimation
algorithms and has been studied extensively since the beginning of computer
vision (cf. [HS81]).

In contrast to sparse optical flow estimation, which establishes correspondences
between a few, well-recognizable key points, dense optical flow estimation aims
to establish correspondences between all available measurements. Traditionally,
these approaches suffer from low estimation accuracy in weakly-structured
image regions. However, increased accuracy can be achieved by learning deep
convolutional models in a supervised manner.

Dosovitskiy et al. [Dos+15] and Ilg et al. [Ilg+17] develop fully-convolutional
encoder-decoder models which are applied sequentially to estimate optical flow
at different magnitudes. They start with a model to estimate a flow field for
large displacements, warp one image into the frame of the other and use the
result as input for refined flow estimation. Depending on the application, this
step is repeated several times in order to produce an accurate flow estimate.
Although their models yield accurate results, the overall training strategy is
difficult. For example, due to high memory consumption the different modules
are trained separately.

Sun et al. [Sun+18] present a pyramidal architecture that produces competitive
results while drastically reducing memory consumption. Their PWCNet uses

78

6.1 Related Work

feature pyramids that are subsequently warped in order to compute a cost volume
for a particular scale which is then used as input for the flow estimation model
(cf. Fig. 6.2). Therefore, the estimated flow from the next (lower resolution)
pyramid scale is upsampled by convolutional units and then used to warp a
feature volume from one frame into the other using bilinear interpolation. The
cost volume layer implements a normalized cross-correlation

c(𝒙,Δ𝒙) = 1
𝑁F
〈I1 (𝒙), I2 (𝒙 + Δ𝒙)〉, (6.1)

between the two image features I1, I2 : I → R𝑁F . As the correlation is
computed for every scale, the maximum displacement 𝑑 = ‖Δ𝒙‖1 can be chosen
small because a displacement of 𝑑 (𝑠) = 1 at feature scale 𝑠 corresponds to a
displacement of 𝑑 (0) = 2𝑠 at feature scale 0, i.e. the input resolution.

I(𝑠)1

f̂ (𝑠+1)2←1

I(𝑠)2

Î(𝑠)2

f̂ (𝑠)2←1

Warping Cost-Volume Flow
Estimation

Figure 6.2: Overview of a PWCNet forward flow estimation unit at pyramid scale 𝑠 (likewise for
backward flow). The inputs are the image features I(𝑠)1 and I(𝑠)2 for two different frames

and the estimated flow f̂ (𝑠+1)2←1 from the next (lower resolution) pyramid scale. Then a
warped feature volume Î(𝑠)2 is determined and used to compute the cross correlation
between original and warped features. Finally, a refined flow f̂ (𝑠)2←1 is determined by
applying convolutional layers on the feature volume I(𝑠)2 , the cost-volume and the input

flow estimate f̂ (𝑠+1)2←1 .

By assuming photo-consistency

I2 (𝒙)
!
= I1 (f2←1 (𝒙)) (6.2)

I1 (𝒙)
!
= I2 (f1←2 (𝒙)) (6.3)

between corresponding pixels in subsequent frames, Meister et al. [MHR18]
train the architecture proposed by Ilg et al. [Ilg+17] in a self-supervised fashion,
i.e. without using manually annotated data.

79

6 Self-Supervised Scene Flow Estimation

6.1.2 Odometry Estimation

Optical flow estimation may be used to estimate odometry, i.e. the pose change
over time w.r.t a fixed coordinate frame. Usually, a static scene is assumed
so that every feature only changes according to ego-motion. However, due
to other moving traffic participants in the scene and noisy flow estimates
robust optimization methods are required that suppress the influence of outliers,
i.e. features that do not change according to ego-motion. Additional constraints,
such as motion on a manifold may further increase the estimation robustness
and accuracy.

Given a set of 3D point correspondences, Horn [Hor87] introduces a closed-form
solution to estimate transformations T ∈ SE3 which minimize the sum of squared
distances. First, he determines the translational component of T by estimating
the average translation of all correspondences. To estimate the rotational
component, Horn suggests an orthonormal matrix decomposition that effectively
maximizes the similarity between transformed correspondences. Weighted
Least-Squares (WLS) approaches to estimate rigid-body transformations exist
(cf. Appendix A.11); However, these approaches expect a priori correspondence
weights.

A robust iterative approach for parameter optimization was presented by Yang
et al. [Yan+20] (cf. Section 2.2.3). Based on the Black-Rangarajan duality
and graduated non-convexity the authors develop an alternating optimization
scheme with an inner and an outer loop. In the inner loop, model parameters
and measurement weights are estimated in an alternating fashion. Starting from
a fully convex cost function, non-convexity is gradually increased in the outer
loop until a stopping criterion is met.

6.1.3 State Estimation in Occupancy Grid Maps

In presence of dynamically moving objects, the occupancy grid cell state is
often represented by occupancy and velocity information which is estimated by
recursive filters. Usually, the cell state is approximated by particles which are
created in areas of observed reflections and propagated by a constant velocity
motion model.

80

6.2 Optical Flow Estimation in Grid Maps

Nuss et al. [Nus+18] represent traffic participants by several point objects
(the grid cell centers) and model the relationship between point objects to
real objects by random finite sets (RFSs). The point objects are predicted
independently and then jointly combined in order to determine a posterior
distribution. The authors approximate the distributions by particles and present
a real-time approximation based on evidence theory.

Assuming known poses, Steyer et al. [STW18] model hypotheses for static,
dynamic occupancy, free-space and their combined hypotheses cell-wise using
evidence theory. The authors then apply a particle filter in areas of high evidence
for dynamically moving objects, reducing the amount of particles needed. In
contrast, corresponding static cells at different time steps are accumulated
directly in the grid map based on past cell measurements.

Although the above-mentioned recursive approaches make assumptions similar
to photo-consistency (Eqs. (6.2) and (6.3)) for generation and resampling of
particles, the approaches expose low-pass behavior due to slower convergence as
the underlying distribution is not known a priori. Thus, these methods need time
to converge across multiple time steps. In addition, a state estimation of every
cell requires a large amount of particles which results in large computational
cost.

6.2 Optical Flow Estimation in Grid Maps

The recursive state estimation approaches discussed in Section 6.1.3 expose
drawbacks that we aim to address with our approach. Our idea is that patterns
across multiple grid cells yield strong features for matching across subsequent
frames which are not considered in recursive, particle-based approaches. In
addition, we drop the assumption of a constant-velocity motion model and
estimate motion between two subsequent frames as a dense flow field, which
is usually not done in recursive state estimation approaches due to the large
computational cost of particle storage, update and resampling.

The estimated grid cell velocities may then be used to determine the average
velocity of detected extended objects (cf. Chapter 5).

81

6 Self-Supervised Scene Flow Estimation

6.2.1 Model Structure

Our model for optical flow estimation in grid maps is based on the concepts
presented in Unflow [MHR18] and PWCNet [Sun+18] and an extension of the
model presented by Wirges et al. [Wir+19a].

Flow est.
2← 1

Data
loss

Warping

Spatial
loss

Object
mask est.

Observability
est.

I1

I2
f̂2←1

Î2

m̂obs

m̂obj

Figure 6.3: Overview of our training strategy for self-supervised flow estimation. Our goal is to
estimate the flow f̂2←1 from two subsequent measurements I1 and I2 that transforms
coordinates from frame 1 into frame 2. During training, we determine the data loss
between the warped image Î2 and the image I2, scaled by the observability m̂obs. In
addition, we compute a smoothness loss to ensure smooth scene flow except at object
boundaries m̂obj. Note that the temporal backward direction 1← 2 and the cycle loss
are omitted here for simplicity.

Figure 6.3 depicts the signal flow in our model during training for the forward
direction, i.e. the flow f̂2←1 from frame 1 to frame 2. The backward flow
direction is computed likewise and has an equal share of the training objective.

Before flow estimation, image features I(𝑠)1 and I(𝑠)2 at different scales are
computed by the backbone and the feature fusion presented in Section 5.3 for
each input grid map at frame 1 and 2, respectively. These features are then
fed into a PWCNet [Sun+18] yielding the forward flow estimate f̂2←1 at the
input scale which is used to warp grid map 1 into frame 2 resulting in Î2. The
system output consists of the estimated forward flow f̂2←1 and a rigid body
transformation T̂2←1 between the two frames that is estimated from the forward
flow.

82

6.2 Optical Flow Estimation in Grid Maps

6.2.2 Objectives

Our self-supervised training strategy relies on the assumption of temporal
feature persistence, i.e. we assume that features do not change drastically
between two subsequent frames. As an extension of the work by Wirges et al.
[Wir+19a], we incorporate observability information directly into the training
process which is obtained by the grid mapping process presented in Chapter 4.

Given two subsequent frames 1 and 2, the estimated image coordinate

�̂�2 = f̂2←1 (𝒙1) (6.4)

in frame 2 corresponds to the image coordinate in frame 1 transformed by the
estimated forward flow f̂2←1. Here, we create coordinate-wise loss terms

L2←1 (𝒙1) = Ldata,2←1 (𝒙1) + Lspatial,2←1 (𝒙1) + Lcycle,2←1 (𝒙1) (6.5)

to penalize data, spatial and cycle inconsistencies, which we introduce in the
following. Likewise, we add these loss terms in temporal backward direction
(frame 2 to frame 1) such that the final loss

L =
∑︁
𝒙1∈I1

L2←1 (𝒙1) +
∑︁
𝒙2∈I2

L1←2 (𝒙2) (6.6)

summarizes all losses in temporal forward and backward direction on valid
image coordinates I1 and I2, respectively.

Data Consistency By claiming data consistency between two corresponding
cells, we assume that the residual

rdata,2←1 (𝒙1) = I1 (𝒙1) − I2 (�̂�2), (6.7)

which models the difference between the cell value in frame 1 and the corre-
sponding value at the transformed cell coordinate in frame 2, is small.

83

6 Self-Supervised Scene Flow Estimation

This assumption, however, is invalid if obstacles enter or leave the field of view
(FOV) or in areas unobservable in any of the frames. Therefore, we scale the
data loss by the likelihood

m̂obs (𝒙1) =
(
1 − belΩ,1 (𝒙1)

) (
1 − belΩ,2 (�̂�2)

)
(6.8)

=
(
bel{o},1 (𝒙1) + bel{f},1 (𝒙1)

) (
bel{o},2 (�̂�2) + bel{f},2 (�̂�2)

)
that a cell is observable in both frames. Here, we write bel𝜔,𝑡 for notational
simplicity as a 2D signal for proposition 𝜔 at frame 𝑡. Compared to related
work on self-supervised flow estimation (e.g. [Wir+19a; MHR18]) we do not
transform these observabilities which removes the feedback of the estimated
flow on its loss scaling, leading to an improved training convergence at the cost
of a lower total number of samples.

Then, we define the coordinate-wise loss function

Ldata,2←1 (𝒙1) = m̂obs (𝒙1) ρ
(
‖rdata,2←1 (𝒙1)‖

)
(6.9)

where we chose the robustifier ρ as the generalized Charbonnier loss C0.45,0.1
(cf. Appendix A.2) as Sun et al. [SRB14] found it to be optimal for flow
estimation problems. Note that we do not need any further regularizer to
avoid trivial solutions here because the estimated flow has no impact on the
observability mask.

Spatial Consistency We assume that the environment is composed of rigid
objects. Furthermore, we assume that the optical flow variance on a moving
rigid object is small. This assumption is, however, violated in the case of instant
centers of rotation being close to an object, especially for pedestrians which
might turn in place. On the one hand, we are not able to identify trackable
semantic features on small objects such as pedestrians due to the grid cell
resolution (typically between 9 to 16 cells) in any case. On the other hand,
cyclist and cars usually turn with a center of rotation far away so that the
violation does not have a significant impact. With this in mind, we assume the
spatial flow gradient

rspatial,2←1 (𝒙1) = ∇f̂2←1 (𝒙1) (6.10)

84

6.2 Optical Flow Estimation in Grid Maps

to be small for rigid objects. However, at object boundaries the flow might
change drastically. To model this effect, we compute a spatial mask

mobj,1 (𝒙1) = 1 − 𝜆‖∇belo (𝒙1)‖2‖∇belf (𝒙1)‖2 (6.11)

that maps to low values at rapid changes of either the occupied or the free belief,
which are modeled as 2D signals belo, belf : Z2 → [0, 1]. Here, 𝜆 denotes a
normalization constant so that the spatial mask is non-negative at all times and
∇bel(·) denote the normalized Sobel derivatives of the belief maps.

Thus, the loss

Lspatial,2←1 (𝒙1) = mobj,1 (𝒙1) ρ
(
‖rspatial,2←1 (𝒙1)‖

)
(6.12)

assures spatial flow consistency w.r.t. the assumptions made.

Cycle Consistency Forward and backward flow should compensate at corre-
sponding positions. Therefore, we model the residual

rcycle,2←1 (𝒙1) = f̂2←1 (𝒙1) + f̂1←2 (�̂�2) (6.13)

and define the loss

Lcycle,2←1 (𝒙1) = m̂obs (𝒙1) ρ
(
‖rcycle,2←1 (𝒙1)‖

)
, (6.14)

that penalizes cycle inconsistencies. Note that cycle inconsistencies are only
penalized in areas observable in both frames (cf. Eq. (6.8)).

6.2.3 Receptive Field

In the nuScenes data set all translations and rotations between two subsequent
frames are below 2.5 m and 5°, respectively. With a grid map size of 60 m×60 m
and a cell size of 12.5 cm we then determine the receptive field size as 135 cells
in width and height to fully cover these transformations. Knowing the required
receptive field size, we remove the last two layers of the PWCNet model and
thus reduce the model size by 40 % compared to the original architecture. We
call this model PWCNet-small.

85

6 Self-Supervised Scene Flow Estimation

6.3 Odometry Estimation

As the sensor platform moves, the scene flow of static environment is consistent
to this motion. Here, we estimate the sensor motion �̂�, �̂� between two frames
from the estimated observable forward flow f̂2←1.

To estimate the sensor motion in presence of other moving traffic participants,
we use the robust optimization method presented by Yang et al. [Yan+20]
(cf. Appendix A.3) to the point registration problem (cf. Appendix A.11). The
set of weighted point correspondences

(
𝒙1,𝑛, �̂�2,𝑛, 𝑤𝑛

)
consists of original grid

cell positions 𝒙1,𝑛 ∈ X1, new positions �̂�2,𝑛 = f̂2←1
(
𝒙1,𝑛

)
and weights 𝑤𝑛

which are not known a priori and initialized with 1
|O1 | . Here, O1 denotes the set

of grid cells with non-zero observability that are also observable in the other
frame.

In the inner loop, a WLS point registration (cf. Appendix A.11) to estimate the
optimal rotation and translation

�̂�, �̂� = arg min
𝑹∈SO2 ,𝒕

𝑁∑︁
𝑛=1

�̂�𝑛‖𝑹𝒙1,𝑛 + 𝒕 − �̂�2,𝑛︸ ︷︷ ︸
r𝑛 (𝑹,𝒕)

‖2 (6.15)

w.r.t. fixed weights 𝑤𝑛 and a weight estimation is executed in an alternating
fashion. Using the Geman McClure (GMC) loss

ρ(𝑥) = 𝛼2𝑥2

𝛼2 + 𝑥2 (6.16)

with the free parameter 𝛼, the weights

�̂�𝑛 =

(
𝜇𝛼2

‖r𝑛‖2 + 𝜇𝛼2

)2

(6.17)

can be determined based on the squared residual norm ‖r𝑛‖2 and the parameter
𝜇 which controls the degree of non-convexity. After convergence of the inner
loop, 𝜇 is updated towards a more non-convex overall loss function in the outer
loop and then the inner loop is repeated until a convergence criterion is met.
Here, we repeat these steps for a constant number of iterations.

86

6.4 Experiments

Parameter Value

Backbone Image pyramid
Feature fusion FPN (64 filters)
Convolutions Separable 3×3 (cf. Example 2.6)
Weight decay 1 × 10−4 (L2) (FPN only)
Scales 2 to 5
Flow estimation head PWCNet-small
Data augmentation Rotation (±5°), translation (±1 m)
GNC optimizer iterations 5

Table 6.1: Default scene flow estimation model parameters used in evaluation.

Given an estimate �̂�2←1, �̂�2←1 of the sensor motion we can then generate the
corresponding motion flow field

f̂motion,2←1 (𝒙1) = �̂�2←1𝒙1 + �̂�2←1 (6.18)

assuming static environment. Finally, we obtain motion-compensated object
flow

f̂object,2←1 (𝒙1) = f̂2←1 (𝒙1) − f̂motion,2←1 (𝒙1) (6.19)

in the fixed odometry frame by subtracting the motion from the scene flow.

6.4 Experiments

If not specified otherwise, we train all models with the parameters summarized
in Table 6.1. Here, we replace the backbone by a simple image pyramid
and use a Feature Pyramid Network (FPN) with 64 filters on each scale for
feature fusion, reducing the total number of trainable parameters to around
916 000. This step enables fast training convergence and low GPU memory
consumption. We randomly rotate one of the two grid map inputs within ±5°
and add a random translation within ±1 m. To reduce overfitting, we use L2
weight decay (cf. Example 2.7), except in the flow estimation head. We choose
the PWCNet-small configuration (cf. Section 6.2.3) as model head which is
reduced in size.

Due to memory restrictions, all models are trained with a batch size of 4
on two Nvidia GeForce RTX 2080 Ti GPUs using the ADAM optimizer

87

6 Self-Supervised Scene Flow Estimation

(cf. Example 2.3) with parameters 𝛽1 = 0.9 and 𝛽2 = 0.999. After each
nonlinearity, batch normalization (BN) (cf. Section 2.4.2) is performed. We use
a linear learning rate warm-up from 1 × 10−5 to 1 × 10−4 within 3000 iterations
and terminate the optimization after 300 000 iterations at a learning rate of
1 × 10−5 using a cosine learning rate schedule.

6.4.1 Quantitative Evaluation

Table 6.2 summarizes the evaluation results for different scene flow estimator
configurations based on the metrics introduced in the following.

Metrics As there is no densely labeled scene flow available in any data
sets, we evaluate the mean average velocity error (mAVE) of the nuScenes
object detection benchmark ([Cae+20], cf. Appendix A.10.1) and introduce
custom metrics to compare the estimated odometry to the odometry provided
in nuScenes. Note that for velocity computation, we average the object flow
along the area of ground-truth boxes as there are no object detections available
at this point.

The average odometry translation error

AOTE =
1
𝑁

𝑁∑︁
𝑛=1

‖ �̂�𝑛 − 𝒕𝑛‖
‖ 𝒕𝑛‖

(6.20)

in % denotes the average relative translation error between all frames of a
sequence. The average odometry rotation error

AORE =
1
𝑁

𝑁∑︁
𝑛=1

|𝜙𝑛 − 𝜙𝑛 |
‖ 𝒕𝑛‖

(6.21)

in °/m denotes the average rotational error normalized by the translation
between all frames of a sequence. We then determine mean average odometry
translation error (mAOTE) and mean average odometry rotation error (mAORE)
by averaging AOTE and AORE across all sequences.

88

6.4 Experiments

ID HighRes Observability Deep mAVE mAOTE mAORE
in m/s in % in °/m

Flow1 X 0.71 16.91 0.16
Flow2 X X 0.68 16.29 0.16
Flow3 0.95 83.36 0.41
Flow4 X X 0.69 16.58 0.14

Table 6.2: Overview on all evaluated scene flow estimator configurations. The best results for each
metric are highlighted in bold.

High Resolution Model We compare the influence of the data loss computa-
tion at different pyramid scales on the scene flow estimation performance. In
our baseline experiment Flow1, we compute the losses on all pyramid scales
(2 to 5), whereas in experiment Flow2, we additionally estimate the flow on
scale 1. We perform bilinear interpolation (cf. [Sun+18]) for upsampling to the
original resolution in both experiments. The evaluation results for Flow1 and
Flow2 are summarized in Table 6.2. We observe that additionally computing
the data loss on pyramid scale 1 (experiment Flow2) decreases the mAVE and
mAOTE compared to experiment Flow1. However, as more convolutions are
involved, the parameter size and inference time increases.

Observability Scaling Experiments Flow1 and Flow3 (Table 6.2) investigate
the effect on the scene flow estimation performance of the observability scaling.
In experiment Flow3, we scale all cell-wise losses equally which results in
high errors. In contrast, in experiment Flow1 we only compute losses if the
observability is above the threshold of 5 %. We observe that this step improves
the results by a large margin and believe that this is due to the suppression of
weakly observable, possibly noisy areas.

Deep Backbone Experiments Flow1 and Flow4 compare the effect of adding
a deeper ResNet-38 backbone on the scene flow estimation performance. Al-
though the depth (and with it the number of parameters) drastically increases (by
a factor of approximately 13), we observe only a minor performance improve-
ment (in contrast to related work on flow estimation on camera images [Ilg+17;
Sun+18]). Compared to optical flow estimation in camera images this may
be due to the scale invariance and simpler geometric primitives in grid maps.

89

6 Self-Supervised Scene Flow Estimation

Thus, we believe that fewer parameters are needed to describe grid map features
and that we appropriately modeled the problem.

6.4.2 Qualitative Results

Figure 6.4 illustrates the scene flow estimation process during training. The
occupied beliefs of two frames in the top left corner illustrate the data augmen-
tation in form of random rigid-body transformations applied between the two
frames. We observe that the scene flow field (top right) accurately aligns the
two frames, illustrated by the transformed occupied and free beliefs (center).
Here, the observability mask (bottom left) assures that the data consistency loss
is only evaluated in observable areas and that the flow is nearly constant within
rigid objects, which is controlled by the spatial mask (bottom right).

The scene flow estimation process during inference is depicted in Fig. 6.5.
Starting from subsequent grid maps (visualized by occupied beliefs in the
top left corner), we estimate the observable scene flow (top right, visualized
only on occupied space). We then determine the rigid-body transformation
between the two frames due to motion from the observable scene flow. Given
this transform, we can then compute the motion flow, i.e. the expected flow of
static environment due to ego motion (center left). Here, we observe an instant
center of rotation which is equivalent to vanishing motion flow at a distance
of around 40 m from the sensor. Finally, we obtain object flow, i.e. the ego
motion-compensated flow field of moving objects (center right) by subtracting
motion flow from scene flow. Note that moving vehicles in this scene expose
a non-zero object flow, highlighted by the gray boxes. As a byproduct, the
sensor odometry can be obtained by concatenating the subsequent inter-frame
transformations (bottom). The point in the odometry plot denotes the pose at
which the grid maps above were extracted.

90

6.4 Experiments

-20

-10

0

10

20
y

/m
Occupied beliefs Scene flow

-20

-10

0

10

20

y
/m

Transformed occupied beliefs Transformed free beliefs

-20 -10 0 10 20

-20

-10

0

10

20

x / m

y
/m

Observability mask

-20 -10 0 10 20
x / m

Spatial mask

Figure 6.4: During training, we aim to estimate a scene flow field (top right, HSV color encoding)
that transforms features between two subsequent frames, e.g. the occupied beliefs (top
left), resulting in aligned features, e.g. the occupied or free beliefs (center). This goal
is expressed by a data-consistency loss, weighted by an observability mask (bottom
left). To impose constant flow on rigid objects, we penalize flow changes weighted by a
spatial mask (bottom right) which describes object- or free-space boundary likelihoods.

91

6 Self-Supervised Scene Flow Estimation

-30

-20

-10

0

10

20

30

y
/m

Occupied beliefs Masked scene flow

-30 -20 -10 0 10 20 30

-30

-20

-10

0

10

20

30

y
/m

Motion flow

-30 -20 -10 0 10 20 30

Object flow

0 20 40 60 80 100 120
0

10

20

30

x / m

y
/m

Ground truth Estimation
Current position

Figure 6.5: Scene flow estimation in an exemplary right-hand bend scenario. We estimate scene
flow based on grid map features from two subsequent frames (top left). To estimate
the transform due to motion we mask the scene flow field using the occupied belief
layer (top right). Given this transform we can determine dense motion flow (middle
left). Note that the instant center of rotation is visualized as vanishing motion flow at
around 𝑦 = −40 m. Finally, we obtain object flow by subtracting motion flow from
scene flow (middle right). One can observe the non-zero flow of moving vehicles (black
rectangles). Estimated transforms between subsequent frames resemble the sensor
odometry which we compare to the nuScenes ground-truth trajectory (bottom).

92

7 Joint Object Detection, Scene Flow
Estimation & Tracking

Multi-task learning leverages the idea of improving in solving a task by training
a model to additionally solve another task [Zam+18]. Here, we aim to improve
the object detection task by also training on the scene flow estimation task
in a self-supervised fashion. This can be accomplished without the need of
manually annotated labels, thus at no additional labeling cost. By enforcing
model parameter sharing, image features can be computed once in a common
model and then reused for different tasks which reduces computational effort
and memory consumption.

In the following, we combine the approaches presented in Chapters 5 and 6
and extend our model by the estimation of features to track objects across
subsequent frames. Here, we define tracking as the reidentification of the
same object across subsequent frames1 in presence of occlusions, noise, falsely
detected or missed objects. Although there are many object tracking approaches
specialized on occupancy grid maps (e.g. [Nus+18; Ste+20]), we focus on the
tracking of arbitrary features here, which makes the approach more flexible.

After summarizing the basic concepts of feature aggregation and embedding
learning in Section 7.1 we introduce our system for joint estimation in Section 7.2.
Finally, we perform a quantitative evaluation in Section 7.3 based on the
nuScenes data set.

1 Contrary to research groups who also consider motion estimation to be part of tracking.

93

7 Joint Object Detection, Scene Flow Estimation & Tracking

7.1 Related Work

Section 7.1.1 presents an approach to dynamically adjust the influence of
different tasks during the training of multi-task models. A method for smoothing
of corresponding features across two frames is introduced in Section 7.1.2.

7.1.1 Multi-Task Learning

Usually, the overall loss function

𝐿 =

𝑁∑︁
𝑛=1

𝑤𝑛𝐿𝑛 (7.1)

is modeled as a linear combination of all task-specific losses. However, different
task-specific loss functions may map to different value ranges and thus have
different impact on the optimization. Individually tuning the task weights
𝑤𝑛 can be very expensive if there are many task objectives. To resolve this
issue, Kendall et al. [KGC18] present an automatic task weighting based on
the estimated homoscedastic aleatoric uncertainty of each task which can be
interpreted as the task-dependent uncertainty.

In the regression task the authors assume the model output �̂� ∼ N
(
f (𝒙), 𝜎reg

)
to follow a normal distribution. Maximizing the log likelihood results in the
optimal regression loss

𝐿reg (𝒙, 𝒚) =
‖𝒚 − f (𝒙)‖2

2𝜎2
reg

+ log
(
𝜎reg

)
. (7.2)

Classification outputs �̂� ∼ Softmax
(
𝜎−2

classf (𝒙)
)

are assumed to follow a Gibbs
distribution. This results in the optimal classification loss

𝐿class (𝒙, 𝒚) = −
log(Softmax(𝒚, f (𝒙)))

𝜎2
class

+ log(𝜎class). (7.3)

During training, task-uncertainties 𝜎𝑛 are optimized together with the model
parameters in order to minimize the overall loss. Here, the additional log(𝜎𝑛)

94

7.1 Related Work

terms keep the uncertainties from becoming too large. In practice, the model is
designed to predict the log variance 𝑠 = log

(
𝜎2) to improve numeric stability.

Kendall et al. [KGC18] assume different model outputs to be independent of
each other. Although this is not true in general, their approach increases the
performance for all tasks without the need for manually tuning the weights 𝑤𝑛

which are usually set to 1.

7.1.2 Feature Aggregation

Given a flow field, Zhu et al. [Zhu+17b; Zhu+17a] determine aggregated
features

𝒇 ∗𝑡0 =
∑︁
𝑡 ∈T

w
(
𝒇 𝑡0 , 𝒇 𝑡0←𝑡

)
𝒇 𝑡0←𝑡 (7.4)

as a superposition of the current feature 𝒇 𝑡0 with corresponding features 𝒇 𝑡0←𝑡

acquired at different frames 𝑡 ∈ T . The terms are weighted by the similarity
function

w(𝒙, 𝒚) = exp
(
〈𝒙, 𝒚〉
‖𝒙‖‖𝒚‖

)
(7.5)

based on the cosine similarity metric (cf. [Luo+18]) and normalized such that∑︁
𝑡 ∈T

w
(
𝒇 𝑡0 , 𝒇 𝑡0←𝑡

)
= 1 (7.6)

holds. Note that the evaluation of Eq. (7.4) may be computationally expensive
as it requires features at all time steps. To reduce computational cost, Zhu et al.
[Zhu+17b; Zhu+17a] propose to aggregate features

�̄� 𝑡𝑘 = w
(
𝒇 𝑡𝑘 , 𝒇 𝑡𝑘←𝑡𝑘−1

)︸ ︷︷ ︸
𝑤

𝒇 𝑡𝑘 +
(
1 − w

(
𝒇 𝑡𝑘 , 𝒇 𝑡𝑘←𝑡𝑘−1

))︸ ︷︷ ︸
1−𝑤

�̄� 𝑡𝑘←𝑡𝑘−1 (7.7)

during subsequent time steps 𝑡𝑘 and 𝑡𝑘−1 via exponential smoothing. This has
the effect that features with high similarity between two frames are quickly
accepted, whereas differing features are only slowly accepted.

95

7 Joint Object Detection, Scene Flow Estimation & Tracking

7.2 System Overview

F(𝑠)𝑡
I𝑡

ĉ𝑠𝑡

r̂(𝑠)𝑡

ê(𝑠)𝑡

f̂ (𝑠)𝑡←𝑡−1

F(𝑠)
𝑡−1

Backbone &
Feature Fusion

Classification

Box Regression

Embedding
Estimation

Flow
Estimation

Figure 7.1: General structure of our multi-task model. The backbone and feature fusion (cf. Sec-
tion 5.3) takes an input image I𝑡 at time 𝑡 and computes 𝑆 common features F(𝑠)𝑡 at
different pyramid scales which are passed to classification, box regression, embedding
and flow estimation. We add an estimation of object-specific feature embeddings e(𝑠)𝑡

to track objects across subsequent frames. The flow estimation head additionally takes
features F(𝑠)

𝑡−1 computed in the previous time step as input. Thus, the computationally
expensive backbone and feature fusion have to be evaluated only once for each mea-
surement.

Figure 7.1 provides an overview of our model which is based on the model
presented by Fischer [Fis20]. For each input image I𝑡 at time step 𝑡, we compute
common image features F(𝑠)𝑡 on 𝑆 pyramid scales which are subsequently used
as input for classification, box regression, association embedding and flow
estimation. Classification and box regression are conducted as presented in
Section 5.3.4 and Section 5.3.3, respectively. The embedding estimation head
(presented in Section 7.2.1) aims to determine feature embeddings that can be
used to reidentify objects across frames. The flow estimation head additionally
takes the image features F(𝑠)

𝑡−1 computed in the previous time step as input in
order to estimate a flow f̂ (𝑠)𝑡←𝑡−1 transforming spatial features from time step
𝑡 − 1 to 𝑡.

96

7.2 System Overview

7.2.1 Association Embedding

To track objects over time, we estimate an association embedding for every prior
object. The embeddings of two different objects should be different, whereas
two embeddings of the same object at different times should be similar. For two
subsequent frames, this idea can be formalized by the batch-hard triplet loss

𝐿emb =
1
|P+ |

∑︁
𝑝∈P+

max
(𝒆2, 𝑝 − 𝒆+2←1, 𝑝

2
−

𝒆2, 𝑝 − 𝒆−2←1, 𝑝

2
+ 𝛼, 0

)
(7.8)

as presented by Hermans et al. [HBL17]. For all positive priors 𝑝 ∈ P+2 in frame
2 with the feature embedding 𝒆2, 𝑝 we determine the corresponding feature
embedding 𝒆+2←1, 𝑝 in frame 1 and the hardest embedding 𝒆−2←1, 𝑝 of all other
prior objects in frame 1, i.e. the prior object

𝑝− = arg min
�̃�∈P+1 \𝑝

‖𝒆2, 𝑝 − 𝒆2←1, �̃� ‖2 (7.9)

with the smallest distance to the feature embedding of prior object 𝑝. The
parameter𝛼 ≥ 0 controls the influence of these hard negatives and is heuristically
determined as 𝛼 = 0.7 in this work (cf. [Fis20]). The feature embedding
dimension is set to 32.

At inference time, objects then can be tracked across subsequent frames by
comparing their mutual association embedding distances (e.g. by the L2 norm).

7.2.2 Feature Aggregation

We implement a simplified flow-guided feature aggregation (cf. Section 7.1.2)
to filter features and to increase the object detection performance. Due to the
orthographic projection in grid maps, visual features of different objects do
not overlap so that the main reason for rapid feature changes are occlusions,
i.e. missing features. Therefore, we determine the weight

𝑤 = bel(Ω) = 1 − bel({o}) − bel({f}) (7.10)

97

7 Joint Object Detection, Scene Flow Estimation & Tracking

based on the estimated observability (cf. Section 4.4) so that aggregated features

�̄� 𝑡𝑘 = 𝑤 𝒇 𝑡𝑘 + (1 − 𝑤) �̄� 𝑡𝑘←𝑡𝑘−1 (7.11)

remain similar in areas of low observability and are updated quickly in case of
high observability is high. Thus, compared to the approach presented by Zhu
et al. [Zhu+17b; Zhu+17a] there is no additional feature transformation model
required.

7.2.3 Loss Function

The total loss
𝐿MT = 𝐿∗class + 𝐿

∗
box + 𝐿

∗
flow + 𝜆emb𝐿emb (7.12)

denotes the sum of the object classification and box regression losses
(cf. Eq. (5.12)), scene flow estimation (cf. Eq. (6.6)) and the embedding
loss presented in Section 7.2.1. We employ uncertainty weighting as presented
in Section 7.1.1 to each component (except embeddings) where the classification
loss is adapted according to Eq. (7.3) and the box regression and flow losses
are adapted as in Eq. (7.2).

7.2.4 Post-Processing

At inference time, we perform post-processing as in Section 5.3.7. Afterwards,
we average the scene/object flow in the area an object occupies. This yields
object velocities w.r.t. the vehicle/odometry frame.

7.3 Experiments

We conduct our experiments using the nuScenes data set (cf. Appendix A.10)
with the training/validation split suggested by the authors. If not specified
otherwise we train all models with the parameters summarized in Table 7.1.

Due to memory restrictions, all models are trained with a batch size of 4
on two Nvidia GeForce RTX 2080 Ti GPUs using the ADAM optimizer

98

7.3 Experiments

Parameter Value

Backbone ResNet-38
Feature fusion FPN (128 filters)
Convolutions Separable 3×3 (cf. Example 2.6)
Weight decay 1 × 10−4 (L2, cf. Example 2.7)
Scales 2 to 5
Box, class & association head Scale-dependent, 𝑁 = 2, 𝐹 = 128
Association embedding size 32
Embedding loss bias 0.7
Embedding loss weight 0.5
Flow head PWCNet-small
intersection over union (IoU) method Aligned, threshold 0.1
Data augmentation Random horizontal flip
NMS threshold 0.5

Table 7.1: Default model parameters during evaluation.

(𝛽1 = 0.9, 𝛽2 = 0.999). After each nonlinearity, batch normalization (BN)
(cf. Section 2.4.2) is performed. We use a linear learning rate warm up
from 1 × 10−5 to 1 × 10−4 within the first 3000 iterations, a subsequent cosine
learning rate schedule and terminate the optimization at iteration 300 000 at a
learning rate of 1 × 10−5.

7.3.1 Quantitative Evaluation

To evaluate scene flow estimation and object detection we use the nuScenes
object detection benchmark metrics ([Cae+20], cf. Appendix A.10.1) and
the odometry metrics presented in Section 6.4.1. The evaluation results are
summarized in Table 7.2. We note that this evaluation investigates just two
aspects of the joint approach and that a more in-depth evaluation should be
conducted in future work.

Multi-Task Approach Table 7.3 compares the performance between our multi-
task baseline model Joint1 and the single-task models Obj1/Flow1 presented in
Table 5.2 and Table 6.2, respectively. We observe that the joint model improves
in the object detection categories, whereas the flow estimation performance
remains similar to the single-task flow estimation model.

99

7 Joint Object Detection, Scene Flow Estimation & Tracking

ID Feature mAP mATE mASE mAOE mAVE AP AR
aggreg. in % in cm in % in ° in m/s in % in %

Joint1 X 28.1 42.8 30.1 27.6 0.72 89.1 62.3
Joint2 27.2 42.7 30.1 27.8 0.71 85.6 59.5

Table 7.2: Performance if model was trained with (Joint1) and without (Joint2) feature aggregation.
Although we observe no significant improvement for true positive metrics (mATE,
mASE, mAOE, mAVE), the mAP and tracking scores increase.

ID mAP mATE mASE mAOE mAVE mAOTE mAORE
in % in cm in % in ° in m/s in % in °/m

Obj1 26.0 44.9 31.0 36.1
Flow1 0.71 16.9 0.16
Joint1 28.1 42.8 30.1 27.6 0.72 17.1 0.15

Table 7.3: Comparison between our multi-task baseline Joint1 and the single-task baselines
Obj1/Flow1, presented in Table 5.2 and Table 6.2, respectively. The joint model
improves in all object detection metrics and has a similar flow estimation performance.
Note that the mAVE for Joint1 is computed based on the true positives, whereas for
Flow1 it is computed on all labels.

Tracking To evaluate the object tracking based on association embeddings,
we determine precision and recall of object associations between two labeled
frames. In the nuScenes data set, measurements are annotated every 500 ms
(key frames), however, there are LiDAR range measurements available every
100 ms. Therefore, we track an object for five frames and then check in the
next key frame if the tracking was successful. Algorithm 7.1 describes the
evaluation procedure. For our evaluation, we set 𝑑 = 0.3 m and 𝛿 = 0.1.

Table 7.2 compares models with and without feature aggregation. Although the
positive metrics mATE, mASE, mAOE and mAVE remain similar, the mAP
increases. Additionally, feature aggregation also improves the tracking metrics
AP and AR. We therefore believe that feature aggregation leads to the better
detection and tracking of partially occluded objects.

100

7.3 Experiments

Algorithm 7.1: Association embedding evaluation
1 Initialize number of possible, correct and false tracks: 𝑁P = 𝑁TP = 𝑁FP = 0
2 for key frame i do
3 Match detections to labels with smallest L2 distance ≤ 𝑑 and assign track IDs
4 Store embeddings and track IDs in buffer
5 for n=1 to 5 do
6 Match embeddings with smallest L2 distance ≤ 𝛿 in buffer
7 Store embeddings and track IDs in buffer

8 Match detections to labels with smallest L2 distance ≤ 𝑑 and assign track IDs
9 Match embeddings with smallest L2 distance ≤ 𝛿 in buffer

10 Add number of possible (𝑁P,𝑖), correct (𝑁TP,𝑖) and false (𝑁FP,𝑖) tracks
based on matched IDs to 𝑁P, 𝑁TP and 𝑁FP

11 Calculate average precision AP =
𝑁TP

𝑁TP+𝑁FP
and recall AR =

𝑁TP
𝑁P

101

8 Conclusion & Future Directions

In this thesis, we presented and estimated an environment model for automated
driving (AD) based on top-view grid maps. We argue that top-view grid maps
are a suitable representation of the traffic environment as they enable data fusion
from multiple sensor sources and explicitly model observability, which is a
requirement for safe driving.

As a prerequisite for top-view grid mapping, we first proposed a method for
ground surface estimation from noisy range measurements represented as point
sets (Chapter 3). In our approach, we modeled the ground surface as uniform
B-spline (UBS). UBSs implicitly impose smoothness and are insensitive to
locally varying measurement densities. With robust optimization techniques
and the UBS surface model, we were able to accurately estimate the ground
surface in a wide distance range. Using this ground surface estimate, we are
able to distinguish between ground and obstacle surface reflections so that we
can model the traffic scene relative to the ground surface in top-view grid maps.

We then presented an approach for occupancy and elevation grid mapping that
considers multiple noisy and possibly contradicting range sensor measurements
(Chapter 4). Occupancy is estimated by means of evidence theory, which
allows us to explicitly model occlusions and contradictions. We presented
a computationally efficient LiDAR sensor model as basic belief assignment
(BBA), which considers the number of grid cell reflections and transmissions
within an elevation range. Given the resulting evidential occupancy information,
we then presented a method to estimate the scene drivability based on the
vehicle shape. The scene observability and drivability were represented as
polygons, which is a compact representation for subsequent AD modules. Both
ground surface estimation and grid mapping were implemented and validated
on an experimental vehicle platform where we mapped static environment with
known poses. In this sample application, we also showed how to combine
elevation information from multiple sources in a probabilistic manner.

103

8 Conclusion & Future Directions

Based on the resulting top-view grid maps, we then developed object detection
and scene flow estimation models using machine learning (ML) techniques
(Chapters 5 and 6). These models take all grid map layers as input and
output oriented bounding boxes with semantic classes and optional velocities,
which constitutes condensed and meaningful information for subsequent AD
modules. The scene flow estimation model is learned in a self-supervised
manner, i.e. without the need of manually annotated data. By applying robust
parameter optimization techniques, we were able to estimate sensor odometry
and egomotion-compensated object flow, which describes velocities w.r.t. a
static reference frame. Finally, we proposed a model for joint object detection,
scene flow and tracking feature estimation (Chapter 7). This model outputs
detected and classified objects with velocities and tracking features. All models
were quantitatively evaluated on the publicly available nuScenes data set.
Subsequently, we proved the general applicability of our models on exemplary
scenarios.

Finally, the environment model contains top-view grid maps as sensor-agnostic,
low-level information, observability and drivability polygons and traffic partici-
pants represented as oriented bounding boxes with semantic class likelihoods,
velocities and tracking features. We believe that this information improves
the performance of subsequent AD modules. For instance, our model enables
probabilistic motion planning considering occlusions and collision probabilities.

Future Directions Depending on the computational power of the AD platform
or in case of offline computation, it may also be possible to extend the top-view
grid map to a full 3D volume grid. Here, we note that the same evidential
modeling and ML models can also be applied to 3D grids, further increasing
the accuracy of object detection and flow estimation (e.g. [Lan+19; LYB19]).

In the grid mapping process, an output feature selection (evidential and height
layers) is made and accurate positional information is discarded. This reduces
the amount of information and thus restricts the performance of subsequent
ML models. To keep the spatial relationship between single points, low-level
encoders may be developed (cf. [Qi+17]). However, most low-level encoders
are still computationally more expensive compared to methods operating on
grids.

104

The research field of ML is evolving at high pace with seminal publications being
released every week. Recently, new anchor-free object detection approaches
were presented that need less (hyper-)parameters and yield more accurate results
than their anchor-based counterparts presented in this work. We refer to Tian
et al. [Tia+20] for a promising anchor-free approach to object detection.

Recently, one of the most active fields of research is the modeling and de-
velopment of multi-task approaches for object detection, flow estimation and
tracking. Here, more experiments may be conducted, e.g. by feeding back
motion prediction into the learning process.

Lastly, a large issue with supervised learning approaches remains: These
methods usually only work well on the data set they were trained on and perform
worse on other data sets. This domain gap may arise due to different sensor
characteristics or traffic scenes. Techniques for domain adaptation may mitigate
this loss in performance and are also subject to recent research (cf. [WDS20;
And20]).

105

References

[AHB87] K. S. Arun, T. S. Huang, and S. D. Blostein. “Least-Squares
Fitting of Two 3-D Point Sets”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence PAMI-9.5 (1987), pp. 698–700.
doi: 10.1109/TPAMI.1987.4767965 (cit. on p. 139).

[And20] I. Andrussow. “Unsupervised Domain Adaptation for Object
Classification On Grid Maps”. Master thesis. Karlsruhe, Germany:
Institute of Measurement and Control Systems, Karlsruhe Institute
of Technology, 2020 (cit. on p. 105).

[Bec20] J. Beck. “Camera Calibration with Non-Central Local Camera
Models”. Dissertation. Karlsruhe, Germany: Institute of Measure-
ment and Control Systems, Karlsruhe Institute of Technology,
2020. doi: 10.5445/IR/1000131090 (cit. on pp. 13, 22, 24).

[Beh+19] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C.
Stachniss, and J. Gall. “SemanticKITTI: A Dataset for Semantic
Scene Understanding of LiDAR Sequences”. In: Proc. of the
IEEE/CVF International Conf. on Computer Vision (ICCV). Seoul,
Korea, 2019, pp. 9297–9307 (cit. on pp. 6, 27, 129).

[Bel+18] J. Beltrán, C. Guindel, F. M. Moreno, D. Cruzado, F. García, and
A. D. L. Escalera. “Birdnet: A 3d Object Detection Framework
from Lidar Information”. In: 2018 21st International Conference
on Intelligent Transportation Systems (ITSC). Maui, HI (Nov. 4,
2018). Maui, HI, USA: IEEE, 2018, pp. 3517–3523. doi: 10.
1109/ITSC.2018.8569311 (cit. on p. 62).

[BFG15] P. Babahajiani, L. Fan, and M. Gabbouj. “Object Recognition in 3D
Point Cloud of Urban Street Scene”. In: Computer Vision - ACCV
2014 Workshops. Ed. by C. Jawahar and S. Shan. Cham: Springer
International Publishing, 2015, pp. 177–190. doi: 10.1007/978-
3-319-16628-5_13 (cit. on p. 62).

107

https://doi.org/10.1109/TPAMI.1987.4767965
https://doi.org/10.5445/IR/1000131090
https://doi.org/10.1109/ITSC.2018.8569311
https://doi.org/10.1109/ITSC.2018.8569311
https://doi.org/10.1007/978-3-319-16628-5_13
https://doi.org/10.1007/978-3-319-16628-5_13

References

[BHL15] L. Beyer, A. Hermans, and B. Leibe. “Biternion Nets: Continuous
Head Pose Regression from Discrete Training Labels”. In: German
Conference on Pattern Recognition. Ed. by J. Gall, P. Gehler, and
B. Leibe. Aachen, Germany: Springer International Publishing,
2015, pp. 157–168. doi: 10.1007/978-3-319-24947-6_13
(cit. on p. 62).

[BM93] S. Beucher and F. Meyer. “The Morphological Approach to
Segmentation: The Watershed Transformation”. In: Mathematical
Morphology in Image Processing 34 (1993), pp. 433–481 (cit. on
p. 58).

[BR96] M. J. Black and A. Rangarajan. “On the Unification of Line Pro-
cesses, Outlier Rejection, and Robust Statistics with Applications
in Early Vision”. In: International Journal of Computer Vision
19.1 (1996), pp. 57–91. doi: 10.1007/BF00131148 (cit. on
p. 124).

[Cae+20] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom. “nuScenes: A
Multimodal Dataset for Autonomous Driving”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). Virtual, 2020, pp. 11621–11631 (cit. on
pp. 4, 70, 88, 99, 136, 137).

[Che+17] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia. “Multi-View 3D Object
Detection Network for Autonomous Driving”. In: CVPR (2017),
pp. 1907–1915. doi: 10.1109/CVPR.2017.691 (cit. on p. 62).

[De 78] C. De Boor. A Practical Guide to Splines. Vol. 27. New York,
USA: Springer-Verlag, 1978. isbn: 978-0-387-95366-3 (cit. on
p. 14).

[Dos+15] A. Dosovitskiy, P. Fischery, E. Ilg, P. Hausser, C. Hazirbas, V.
Golkov, P. V. D. Smagt, D. Cremers, and T. Brox. “FlowNet:
Learning Optical Flow with Convolutional Networks”. In: Pro-
ceedings of the IEEE International Conference on Computer
Vision (ICCV). Santiago (Dec. 2015). Santiago, Chile: IEEE,
2015, pp. 2758–2766. doi: 10.1109/ICCV.2015.316 (cit. on
p. 78).

108

https://doi.org/10.1007/978-3-319-24947-6_13
https://doi.org/10.1007/BF00131148
https://doi.org/10.1109/CVPR.2017.691
https://doi.org/10.1109/ICCV.2015.316

[DSD04] J. Dezert, F. Smarandache, and M. Daniel. “The Generalized
Pignistic Transformation”. In: Proceedings of the 7th International
Conference on Information Fusion. Stockholm, Sweden, 2004,
pp. 384–391 (cit. on p. 8).

[Elf89] A. Elfes. “Using Occupancy Grids for Mobile Robot Perception
and Navigation”. In: Computer 22.6 (1989), pp. 46–57. doi:
10.1109/2.30720 (cit. on p. 36).

[Est+96] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. “A Density-based
Algorithm for Discovering Clusters in Large Spatial Databases
with Noise”. In: Conference on Knowledge Discovery and Data
Mining (KDD). Vol. 96. 34. Portland, OR, USA, 1996, pp. 226–
231 (cit. on p. 62).

[FBH18] P. Fankhauser, M. Bloesch, and M. Hutter. “Probabilistic Terrain
Mapping for Mobile Robots with Uncertain Localization”. In:
IEEE Robotics and Automation Letters 3.4 (2018), pp. 3019–3026.
doi: 10.1109/LRA.2018.2849506 (cit. on p. 37).

[Fen+19] D. Feng, L. Rosenbaum, F. Timm, and K. Dietmayer. “Leveraging
Heteroscedastic Aleatoric Uncertainties for Robust Real-time
Lidar 3D Object Detection”. In: 2019 IEEE Intelligent Vehicles
Symposium (IV). Paris, France, 2019, pp. 1280–1287. doi: 10.
1109/IVS.2019.8814046 (cit. on p. 63).

[Fis20] T. Fischer. “Multi-Task Learning for Object Detection and Scene
Flow Estimation using Multi-Layer Grid Maps”. Master thesis.
Karlsruhe, Germany: Institute of Measurement and Control Sys-
tems, Karlsruhe Institute of Technology, 2020 (cit. on pp. 96,
97).

[FRD18] D. Feng, L. Rosenbaum, and K. Dietmayer. “Towards Safe
Autonomous Driving: Capture Uncertainty in the Deep Neu-
ral Network for Lidar 3d Vehicle Detection”. In: Proceedings
of the IEEE Conference on Intelligent Transportation Systems.
Vol. 2018-Novem. Maui, HI, USA, 2018, pp. 3266–3273. doi:
10.1109/ITSC.2018.8569814 (cit. on p. 63).

[Gal16] Y. Gal. “Uncertainty in Deep Learning”. Dissertation. PhD the-
sis. Cambridge, UK: Department of Engineering, University of
Cambridge, 2016, p. 3 (cit. on p. 63).

109

https://doi.org/10.1109/2.30720
https://doi.org/10.1109/LRA.2018.2849506
https://doi.org/10.1109/IVS.2019.8814046
https://doi.org/10.1109/IVS.2019.8814046
https://doi.org/10.1109/ITSC.2018.8569814

References

[GG16] Y. Gal and Z. Ghahramani. “Dropout As a Bayesian Approxi-
mation: Representing Model Uncertainty in Deep Learning”. In:
vol. 3. New York City, NY, USA, 2016, pp. 1651–1660 (cit. on
p. 63).

[GKF09] A. Golovinskiy, V. G. Kim, and T. Funkhouser. “Shape-based
Recognition of 3D Point Clouds in Urban Environments”. In:
Kyoto, Japan, 2009, pp. 2154–2161. doi: 10.1109/ICCV.2009.
5459471 (cit. on p. 62).

[GLU12] A. Geiger, P. Lenz, and R. Urtasun. “Are We Ready for Au-
tonomous Driving? the KITTI Vision Benchmark Suite”. In:
IEEE Conference on Computer Vision and Pattern Recognition.
Providence, USA, 2012, pp. 3354–3361 (cit. on pp. 4, 129).

[Gol18] P. Goldin. 10 Advantages of Autonomous Vehicles. ITS, 2018.
url: https : / / www . itsdigest . com / 10 - advantages -
autonomous-vehicles (visited on 12/14/2020) (cit. on p. 1).

[HBL17] A. Hermans, L. Beyer, and B. Leibe. “In Defense of the Triplet
Loss for Person Re-Identification”. In: (2017). arXiv: 1703 .
07737 [cs.CV]. url: https://arxiv.org/abs/1703.07737
(visited on 12/06/2020) (cit. on p. 97).

[He+16] K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learning for
Image Recognition”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. Las Vegas, NV, USA,
2016, pp. 770–778 (cit. on p. 60).

[Hör+18] S. Hörmann, P. Henzler, M. Bach, and K. Dietmayer. “Object
Detection on Dynamic Occupancy Grid Maps Using Deep Learn-
ing and Automatic Label Generation”. In: 2018 IEEE Intelligent
Vehicles Symposium (IV). Changshu, China, 2018, pp. 826–833.
doi: 10.1109/IVS.2018.8500677 (cit. on p. 62).

[Hor87] B. K. P. Horn. “Closed-form Solution of Absolute Orientation
Using Unit Quaternions”. In: Journal of the Optical Society of
America A 4.4 (1987), p. 629. doi: 10.1364/josaa.4.000629
(cit. on p. 80).

[HS81] B. K. P. Horn and B. G. Schunck. “Determining Optical Flow”.
In: Artificial Intelligence 17.1-3 (1981), pp. 185–203. doi: 10.
1016/0004-3702(81)90024-2 (cit. on p. 78).

110

https://doi.org/10.1109/ICCV.2009.5459471
https://doi.org/10.1109/ICCV.2009.5459471
https://www.itsdigest.com/10-advantages-autonomous-vehicles
https://www.itsdigest.com/10-advantages-autonomous-vehicles
https://arxiv.org/abs/1703.07737
https://arxiv.org/abs/1703.07737
https://arxiv.org/abs/1703.07737
https://doi.org/10.1109/IVS.2018.8500677
https://doi.org/10.1364/josaa.4.000629
https://doi.org/10.1016/0004-3702(81)90024-2
https://doi.org/10.1016/0004-3702(81)90024-2

[Ilg+17] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and
T. Brox. “FlowNet 2.0: Evolution of Optical Flow Estimation
with Deep Networks”. In: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). Honolulu, HI, USA,
2017, pp. 2462–2470 (cit. on pp. 78, 79, 89).

[Jia+18] Y. Jiang, X. Zhu, X. Wang, S. Yang, W. Li, H. Wang, P. Fu, and
Z. Luo. “R2CNN: Rotational Region CNN for Orientation Robust
Scene Text Detection”. In: 2018 24th International Conference on
Pattern Recognition (ICPR). Beijing, China, 2018, pp. 3610–3615.
doi: 10.1109/ICPR.2018.8545598 (cit. on p. 62).

[KB14] D. P. Kingma and J. Ba. “ADAM: A Method for Stochastic
Optimization”. In: (2014). arXiv: 1412 . 6980. url: https :
//arxiv.org/abs/1412.6980 (visited on 12/06/2020) (cit. on
p. 12).

[KGC17] J. Kukačka, V. Golkov, and D. Cremers. “Regularization for
Deep Learning: A Taxonomy”. In: (2017). arXiv: 1710.10686.
url: https://arxiv.org/abs/1710.10686 (visited on
12/06/2020) (cit. on p. 19).

[KGC18] A. Kendall, Y. Gal, and R. Cipolla. “Multi-Task Learning Using
Uncertainty to Weigh Losses for Scene Geometry and Semantics”.
In: Salt Lake City, UT, USA, 2018, pp. 7482–7491. doi: 10.
1109/CVPR.2018.00781 (cit. on pp. 94, 95).

[Lan+19] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom.
“PointPillars: Fast Encoders for Object Detection from Point
Clouds”. In: 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). Long Beach, CA, USA, 2019,
pp. 12689–12697. doi: 10.1109/CVPR.2019.01298 (cit. on
pp. 62, 104).

[Lin+17a] T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie.
“Feature Pyramid Networks for Object Detection”. In: IEEE Con-
ference on Computer Vision and Pattern Recognition. Honolulu,
HI, USA, 2017, pp. 936–944. doi: 10.1109/CVPR.2017.106
(cit. on p. 61).

111

https://doi.org/10.1109/ICPR.2018.8545598
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1710.10686
https://arxiv.org/abs/1710.10686
https://doi.org/10.1109/CVPR.2018.00781
https://doi.org/10.1109/CVPR.2018.00781
https://doi.org/10.1109/CVPR.2019.01298
https://doi.org/10.1109/CVPR.2017.106

References

[Lin+17b] T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar. “Focal
Loss for Dense Object Detection”. In: Proceedings of the IEEE
International Conference on Computer Vision. Venice, Italy, 2017,
pp. 2999–3007. doi: 10.1109/ICCV.2017.324 (cit. on pp. 60,
67, 68, 70).

[Liu+16] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and
A. C. Berg. “SSD: Single Shot Multibox Detector”. In: European
Conference on Computer Vision. Vol. 9905 LNCS. Springer.
Amsterdam, Netherlands, 2016, pp. 21–37. doi: 10.1007/978-
3-319-46448-0_2 (cit. on pp. 59, 60).

[Luo+18] C. Luo, J. Zhan, X. Xue, L. Wang, R. Ren, and Q. Yang. “Cosine
Normalization: Using Cosine Similarity Instead of Dot Product
in Neural Networks”. In: Artificial Neural Networks and Machine
Learning – ICANN 2018. Rhodes, Greece: Springer International
Publishing, 2018, pp. 382–391 (cit. on p. 95).

[LYB19] X. Liu, M. Yan, and J. Bohg. “MeteorNet: Deep Learning on
Dynamic 3D Point Cloud Sequences”. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV).
Seoul, Korea, 2019 (cit. on p. 104).

[MHR18] S. Meister, J. Hur, and S. Roth. “UnFlow: Unsupervised Learning
of Optical Flow with a Bidirectional Census Loss”. In: Thirty-
Second AAAI Conference on Artificial Intelligence. New Orleans,
LA, USA, 2018, pp. 7251–7259 (cit. on pp. 79, 82, 84).

[ML14] M. Muja and D. G. Lowe. “Scalable Nearest Neighbor Algorithms
for High Dimensional Data”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 36.11 (2014), pp. 2227–2240.
doi: 10.1109/TPAMI.2014.2321376 (cit. on p. 3).

[Mor89] H. P. Moravec. “Sensor Fusion in Certainty Grids for Mobile
Robots”. In: Sensor Devices and Systems for Robotics 9.2 (1989),
pp. 253–276. doi: 10.1007/978-3-642-74567-6_19 (cit. on
p. 36).

[MPS09] F. Moosmann, O. Pink, and C. Stiller. “Segmentation of 3D Lidar
Data in Non-flat Urban Environments Using a Local Convexity
Criterion”. In: 2009 IEEE Intelligent Vehicles Symposium. Xi’an,
Shaanxi, China, 2009, pp. 215–220. doi: 10.1109/IVS.2009.
5164280 (cit. on pp. 21, 58).

112

https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/TPAMI.2014.2321376
https://doi.org/10.1007/978-3-642-74567-6_19
https://doi.org/10.1109/IVS.2009.5164280
https://doi.org/10.1109/IVS.2009.5164280

[Mur12] K. P. Murphy. Machine Learning: A Probabilistic Perspective.
Cambridge, MA, USA: The MIT Press, 2012. isbn: 0262018020
(cit. on p. 15).

[Nus+18] D. Nuss, S. Reuter, M. Thom, T. Yuan, G. Krehl, M. Maile, A.
Gern, and K. Dietmayer. “A Random Finite Set Approach for
Dynamic Occupancy Grid Maps with Real-time Application”.
In: The International Journal of Robotics Research 37.8 (2018),
pp. 841–866. doi: 10.1177/0278364918775523 (cit. on pp. 37,
81, 93).

[OMV18] J. Olivares, P. Martin, and E. Valero. “A Simple Approximation
for the Modified Bessel Function of Zero Order”. In: Journal
of Physics: Conference Series 1043.1 (2018), p. 012003. doi:
10.1088/1742-6596/1043/1/012003 (cit. on p. 136).

[Qi+17] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. “PointNet++: Deep
Hierarchical Feature Learning on Point Sets in a Metric Space”.
In: Proceedings of the 31st International Conference on Neural
Information Processing Systems. Ed. by I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett.
Vol. 30. Long Beach, CA, USA: Curran Associates, Inc., 2017,
pp. 5099–5108 (cit. on p. 104).

[Ren+15] S. Ren, K. He, R. Girshick, and J. Sun. “Faster R-CNN: Towards
Real-time Object Detection with Region Proposal Networks”. In:
Advances in Neural Information Processing Systems. Montréal,
Canada, 2015, pp. 91–99 (cit. on p. 59).

[Ric+19] S. Richter, S. Wirges, H. Königshof, and C. Stiller. “Fusion of
Range Measurements and Semantic Estimates in an Evidential
Framework”. In: tm - Technisches Messen 86.s1 (2019), pp. 102–
106. doi: 10.1515/teme-2019-0052 (cit. on pp. 38, 48).

[RZL17] P. Ramachandran, B. Zoph, and Q. V. Le. “Searching for Acti-
vation Functions”. In: (2017). arXiv: 1710.05941v2 [cs.NE].
url: https://arxiv.org/abs/1710.05941 (visited on
12/06/2020) (cit. on p. 129).

[SAE18] SAE International. Taxonomy and Definitions for Terms Related
to Driving Automation Systems for On-Road Motor Vehicles.
Standard. SAE International, 2018. url: https://saemobilus.

113

https://doi.org/10.1177/0278364918775523
https://doi.org/10.1088/1742-6596/1043/1/012003
https://doi.org/10.1515/teme-2019-0052
https://arxiv.org/abs/1710.05941v2
https://arxiv.org/abs/1710.05941
https://saemobilus.sae.org/content/J3016_201806/
https://saemobilus.sae.org/content/J3016_201806/

References

sae.org/content/J3016_201806/ (visited on 12/14/2020)
(cit. on p. 1).

[San+18] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen.
“MobileNetV2: Inverted Residuals and Linear Bottlenecks”. In:
Salt Lake City, UT, USA, 2018, pp. 4510–4520. doi: 10.1109/
CVPR.2018.00474 (cit. on p. 60).

[Sch18] M. Schreier. “Environment Representations for Automated On-
Road Vehicles”. In: At-Automatisierungstechnik 66.2 (2018),
pp. 107–118. doi: 10.1515/AUTO-2017-0104 (cit. on p. 2).

[Sim+18] M. Simon, S. Milz, K. Amende, and H.-M. Groß. “Complex-
YOLO: An Euler-Region-Proposal for Real-time 3D Object Detec-
tion on Point Clouds”. In: Proceedings of the European Conference
on Computer Vision (ECCV) Workshops. Munich, Germany, 2018,
pp. 197–209. doi: 10.1007/978-3-030-11009-3_11 (cit. on
pp. 62, 67).

[SRB14] D. Sun, S. Roth, and M. J. Black. “A Quantitative Analysis of
Current Practices in Optical Flow Estimation and the Principles
behind Them”. In: International Journal of Computer Vision
106.2 (2014), pp. 115–137 (cit. on p. 84).

[SRK17] N. H. Saleem, M. Rezaei, and R. Klette. “Extending the Stixel
World Using Polynomial Ground Manifold Approximation”. In:
24th International Conference on Mechatronics and Machine
Vision in Practice (M2VIP). Auckland, New Zealand, 2017, pp. 1–
6. doi: 10.1109/M2VIP.2017.8211440 (cit. on p. 22).

[Ste+20] S. Steyer, C. Lenk, D. Kellner, G. Tanzmeister, and D. Wollherr.
“Grid-based Object Tracking With Nonlinear Dynamic State
and Shape Estimation”. In: IEEE Transactions on Intelligent
Transportation Systems 21.7 (2020), pp. 2874–2893. doi: 10.
1109/TITS.2019.2921248 (cit. on p. 93).

[STW17] S. Steyer, G. Tanzmeister, and D. Wollherr. “Object Tracking
Based on Evidential Dynamic Occupancy Grids in Urban Envi-
ronments”. In: 2017 IEEE Intelligent Vehicles Symposium (IV).
Redondo Beach, CA, USA: IEEE, 2017, pp. 1064–1070. doi:
10.1109/IVS.2017.7995855 (cit. on p. 62).

114

https://saemobilus.sae.org/content/J3016_201806/
https://saemobilus.sae.org/content/J3016_201806/
https://saemobilus.sae.org/content/J3016_201806/
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1515/AUTO-2017-0104
https://doi.org/10.1007/978-3-030-11009-3_11
https://doi.org/10.1109/M2VIP.2017.8211440
https://doi.org/10.1109/TITS.2019.2921248
https://doi.org/10.1109/TITS.2019.2921248
https://doi.org/10.1109/IVS.2017.7995855

[STW18] S. Steyer, G. Tanzmeister, and D. Wollherr. “Grid-based En-
vironment Estimation Using Evidential Mapping and Particle
Tracking”. In: IEEE Transactions on Intelligent Vehicles 3 (3
2018), pp. 384–396. doi: 10.1109/TIV.2018.2843130 (cit. on
pp. 37, 81).

[Sun+18] D. Sun, X. Yang, M. Y. Liu, and J. Kautz. “PWC-Net: CNNs
for Optical Flow Using Pyramid, Warping, and Cost Volume”.
In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. Salt Lake City, UT, USA, 2018, pp. 8934–8943. doi:
10.1109/CVPR.2018.00931 (cit. on pp. 78, 82, 89).

[Tia+20] Z. Tian, C. Shen, H. Chen, and T. He. “FCOS: A Simple and
Strong Anchor-free Object Detector”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence (2020), pp. 1–12. doi:
10.1109/TPAMI.2020.3032166 (cit. on p. 105).

[TL19] M. Tan and Q. Le. “EfficientNet: Rethinking Model Scaling
for Convolutional Neural Networks”. In: Proceedings of the
36th International Conference on Machine Learning. Ed. by
K. Chaudhuri and R. Salakhutdinov. Vol. 97. Proceedings of
Machine Learning Research. Long Beach, CA, USA: PMLR,
2019, pp. 6105–6114 (cit. on p. 60).

[TPL20] M. Tan, R. Pang, and Q. V. Le. “EfficientDet: Scalable and
Efficient Object Detection”. In: 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). Virtual, 2020,
pp. 10778–10787. doi: 10.1109/CVPR42600.2020.01079
(cit. on pp. 61, 73).

[Ved+05] S. Vedula, S. Baker, P. Rander, R. Collins, and T. Kanade. “Three-
Dimensional Scene Flow”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 27.3 (3 2005), pp. 475–480.
doi: 10.1109/TPAMI.2005.63 (cit. on p. 77).

[Vel19] Velodyne Lidar, Inc. Velodyne Alpha Prime Data Sheet. Ed. by
Velodyne Lidar, Inc. VLS-128. Rev. 1. 2019. url: https://
velodynelidar.com/wp-content/uploads/2019/12/63-
9679_Rev-1_DATASHEET_ALPHA-PRIME_Web.pdf (visited on
12/14/2020) (cit. on p. 40).

115

https://doi.org/10.1109/TIV.2018.2843130
https://doi.org/10.1109/CVPR.2018.00931
https://doi.org/10.1109/TPAMI.2020.3032166
https://doi.org/10.1109/CVPR42600.2020.01079
https://doi.org/10.1109/TPAMI.2005.63
https://velodynelidar.com/wp-content/uploads/2019/12/63-9679_Rev-1_DATASHEET_ALPHA-PRIME_Web.pdf
https://velodynelidar.com/wp-content/uploads/2019/12/63-9679_Rev-1_DATASHEET_ALPHA-PRIME_Web.pdf
https://velodynelidar.com/wp-content/uploads/2019/12/63-9679_Rev-1_DATASHEET_ALPHA-PRIME_Web.pdf

References

[WDS20] S. Wirges, S. Ding, and C. Stiller. “Single-Stage Object Detection
from Top-View Grid Maps on Custom Sensor Setups”. In: 2020
IEEE Intelligent Vehicles Symposium (IV). Las Vegas, NV, USA,
2020. doi: 10.1109/IV47402.2020.9304759 (cit. on p. 105).

[Wed+09] A. Wedel, H. Badino, C. Rabe, H. Loose, U. Franke, and D.
Cremers. “B-Spline Modeling of Road Surfaces with an Ap-
plication to Free-Space Estimation”. In: IEEE Transactions on
Intelligent Transportation Systems 10.4 (2009), pp. 572–583. doi:
10.1109/TITS.2009.2027223 (cit. on p. 22).

[Wir+18] S. Wirges, T. Fischer, C. Stiller, and J. B. Frias. “Object Detection
and Classification in Occupancy Grid Maps Using Deep Convo-
lutional Networks”. In: 2018 21st International Conference on
Intelligent Transportation Systems (ITSC). Maui, HI, USA, 2018,
pp. 3530–3535. doi: 10.1109/ITSC.2018.8569433 (cit. on
pp. 62, 67).

[Wir+19a] S. Wirges, J. Gräter, Q. Zhang, and C. Stiller. “Self-Supervised
Flow Estimation Using Geometric Regularization with Applica-
tions to Camera Image and Grid Map Sequences”. In: 2019 IEEE
Intelligent Transportation Systems Conference (ITSC). Auckland,
New Zealand, 2019, pp. 1782–1787. doi: 10.1109/ITSC.2019.
8916989 (cit. on pp. 78, 82–84).

[Wir+19b] S. Wirges, M. Reith-Braun, M. Lauer, and C. Stiller. “Capturing
Object Detection Uncertainty in Multi-Layer Grid Maps”. In: 2019
IEEE Intelligent Vehicles Symposium (IV). Paris, France, 2019,
pp. 1520–1526. doi: 10.1109/IVS.2019.8814073 (cit. on
pp. 63, 68).

[YA06] T. Yang and V. Aitken. “Evidential Mapping for Mobile Robots
with Range Sensors”. In: IEEE Transactions on Instrumentation
and Measurement 55 (4 2006), pp. 1422–1429. doi: 10.1109/
TIM.2006.876399 (cit. on pp. 36–38).

[Yan+20] H. Yang, P. Antonante, V. Tzoumas, and L. Carlone. “Graduated
Non-Convexity for Robust Spatial Perception: From Non-Minimal
Solvers to Global Outlier Rejection”. In: IEEE Robotics and
Automation Letters 5.2 (2020), pp. 1127–1134. doi: 10.1109/
LRA.2020.2965893 (cit. on pp. 13, 25, 80, 86, 123, 125).

116

https://doi.org/10.1109/IV47402.2020.9304759
https://doi.org/10.1109/TITS.2009.2027223
https://doi.org/10.1109/ITSC.2018.8569433
https://doi.org/10.1109/ITSC.2019.8916989
https://doi.org/10.1109/ITSC.2019.8916989
https://doi.org/10.1109/IVS.2019.8814073
https://doi.org/10.1109/TIM.2006.876399
https://doi.org/10.1109/TIM.2006.876399
https://doi.org/10.1109/LRA.2020.2965893
https://doi.org/10.1109/LRA.2020.2965893

[Yi+00] Z. Yi, Y. K. Ho, C. S. Chua, and X. W. Zhou. “Multi-Ultrasonic
Sensor Fusion for Autonomous Mobile Robots”. In: Sensor Fusion:
Architectures, Algorithms, and Applications IV. Ed. by B. V.
Dasarathy. Vol. 4051. IV. Orlando, FL, USA, 2000, pp. 314–321
(cit. on p. 36).

[YLU18a] B. Yang, M. Liang, and R. Urtasun. “HDNET: Exploiting HD
Maps for 3D Object Detection”. In: Conference on Robot Learning
(CoRL). Ed. by A. Billard, A. Dragan, J. Peters, and J. Morimoto.
Vol. 87. Proceedings of Machine Learning Research CoRL. Vir-
tual: PMLR, 2018, pp. 146–155 (cit. on p. 62).

[YLU18b] B. Yang, W. Luo, and R. Urtasun. “PIXOR: Real-time 3D Object
Detection from Point Clouds”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. Salt
Lake City, UT, USA, 2018, pp. 7652–7660. doi: 10.1109/CVPR.
2018.00798 (cit. on p. 62).

[Zam+18] A. R. Zamir, A. Sax, W. Shen, L. J. Guibas, J. Malik, and S.
Savarese. “Taskonomy: Disentangling Task Transfer Learning”.
In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Salt Lake City, UT, USA, 2018, pp. 3712–3722 (cit. on
p. 93).

[Zha+03] K. Zhang, S.-C. Chen, D. Whitman, M.-L. Shyu, J. Yan, and
C. Zhang. “A Progressive Morphological Filter for Removing
Nonground Measurements from Airborne Lidar Data”. In: IEEE
Transactions on Geoscience and Remote Sensing 41.4 (2003),
pp. 872–882. doi: 10.1109/TGRS.2003.810682 (cit. on p. 22).

[Zhu+17a] X. Zhu, Y. Wang, J. Dai, L. Yuan, and Y. Wei. “Flow-guided
Feature Aggregation for Video Object Detection”. In: The IEEE
International Conference on Computer Vision (ICCV). Venice,
Italy, 2017, pp. 408–417 (cit. on pp. 95, 98).

[Zhu+17b] X. Zhu, Y. Xiong, J. Dai, L. Yuan, and Y. Wei. “Deep Feature
Flow for Video Recognition”. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). Honolulu, HI, USA,
2017, pp. 2349–2358 (cit. on pp. 95, 98).

117

https://doi.org/10.1109/CVPR.2018.00798
https://doi.org/10.1109/CVPR.2018.00798
https://doi.org/10.1109/TGRS.2003.810682

A Appendix

A.1 Evidence Theory Example: A Crime Case

A crime was committed and the suspects can be narrowed down to Sven (𝑆),
Rebekka (𝑅) and Hendrik (𝐻). There are two witnesses. One witness is certain
that the suspect was male. The other witness guesses that the suspect was less
than 30 years old.

The frame of discernment Ω = {𝑆, 𝑅, 𝐻} contains the three suspects with its
power set

2Ω = {∅, 𝑆, 𝑅, 𝐻, {𝑆, 𝑅}, {𝑆, 𝐻}, {𝑅, 𝐻},Ω}.

As the first witness says the suspect was male, we may model the BBA

m1 (𝑋) =

𝑐1 if 𝑋 = {𝑆, 𝐻}
1 − 𝑐1 if 𝑋 = Ω

0 otherwise

with confidence 𝑐1 ∈ [0, 1] and the focal elements {𝑆, 𝐻} and Ω. As the second
witness guesses that the suspect is less than 30 years old which only applies to
Rebekka and Hendrik, the BBA may be modeled as

m1 (𝑋) =

𝑐2 if 𝑋 = {𝑅, 𝐻}
1 − 𝑐2 if 𝑋 = Ω

0 otherwise

with confidence 𝑐2 ∈ [0, 1] and the focal elements {𝑅, 𝐻} and Ω. For the two
belief assignments above we can verify the properties of a BBA (cf. Eq. (2.1)).

119

A Appendix

These two witness statements can be combined to the BBA

(m1 ⊕ m2) (𝑋) =

𝑐1𝑐2 if 𝑋 = {𝐻}
𝑐1 (1 − 𝑐2) if 𝑋 = {𝑆, 𝐻}
(1 − 𝑐1) 𝑐2 if 𝑋 = {𝑅, 𝐻}
(1 − 𝑐1) (1 − 𝑐2) if 𝑋 = Ω

0 otherwise

using Dempster’s rule of combination (cf. Eq. (2.2)).

We can then determine the belief (cf. Eq. (2.4))

bel(𝑋) =

𝑐1𝑐2 if 𝑋 = {𝐻}
𝑐1𝑐2 + 𝑐1 (1 − 𝑐2) if 𝑋 = {𝑆, 𝐻}
𝑐1𝑐2 + (1 − 𝑐1) 𝑐2 if 𝑋 = {𝑅, 𝐻}
1 if 𝑋 = Ω

0 otherwise

and the plausibility (cf. Eq. (2.5))

pl(𝑋) =

1 − 𝑐2 if 𝑋 = {𝑆}
1 − 𝑐1 if 𝑋 = {𝑅}
1 − 𝑐1𝑐2 if 𝑋 = {𝑆, 𝑅}
1 otherwise

that the suspects committed the crime. Note that there is only non-zero belief for
propositions including Hendrik as he is suspected by both sources. Furthermore,
the plausibility for Sven or Rebekka having committed the crime is less than
one because either one of them is excluded by one of the witnesses.

120

A.2 Generalized Charbonnier Loss

To determine the person that most likely committed the crime, we may determine
the pignistic probability (cf. Eq. (2.7))

prob(𝜔) = 1
3
+

𝑐1 − 2𝑐2 − 𝑐1𝑐2

6
if 𝜔 = {𝑆}

𝑐2 − 2𝑐1 − 𝑐1𝑐2

6
if 𝜔 = {𝑅}

𝑐1 + 𝑐2 + 2𝑐1𝑐2

6
if 𝜔 = {𝐻}

for the three suspects. If we model the confidences of the two witnesses by
𝑐1 = 80% and 𝑐2 = 50%, we get probabilities

prob(𝑋) ≈

23.3% if 𝑋 = {𝑆}
8.3% if 𝑋 = {𝑅}
68.3% if 𝑋 = {𝐻}

.

This means that if we had to make a decision, Hendrik is the suspect that most
likely committed the crime.

A.2 Generalized Charbonnier Loss

The generalized Charbonnier loss

C𝛼,𝜖 (𝑥) =
(
𝑥2 + 𝜖2

)𝛼
(A.1)

with its derivative
C′𝛼,𝜖 (𝑥) = 2𝛼𝑥

(
𝑥2 + 𝜖2

)𝛼−1
(A.2)

has the free parameters 𝛼 and 𝜖 . As depicted in Fig. A.1 it can be specialized
to L1- (𝛼 = 0.5) and L2 losses (𝛼 = 1). The parameter 𝜖 controls the slope
smoothness close to 𝑥 = 0 and yields differentiable versions of the L1 loss for
𝜖 > 0. For 𝛼 < 1

2 , C𝛼,𝜖 yields additional robustness towards outliers due to its
sublinearity.

121

A Appendix

0

1

2

3

C 𝛼
,𝜖
,
H

1

C0.5,0 C1,0 C0.5,0.5 C0.4,0.5 H1

−3 −2 −1 0 1 2 3

−1

0

1

𝑥

C′ 𝛼
,𝜖
,
H
′ 1

Figure A.1: Instances of the generalized Charbonnier loss C𝛼,𝜖 and the smooth L1 loss H1 with
their derivatives C′𝛼,𝜖 and 𝐻 ′1, respectively.

For computational efficiency, the smooth L1 loss C0.5, 𝜖 is often approximated
by the piecewise defined Huber loss

H1 (𝑥) =

1
2
𝑥2 if |𝑥 | ≤ 1

|𝑥 | − 1
2

otherwise.
(A.3)

with the piecewise continuous derivative

H ′1 (𝑥) =

−1 if 𝑥 ≤ −1
𝑥 if −1 < 𝑥 ≤ 𝛿

1 otherwise.
(A.4)

122

A.3 Robust Estimation with Graduated Non-Convexity

A.3 Robust Estimation with Graduated
Non-Convexity

Yang et al. [Yan+20] propose an iterative algorithm for robust estimation based
on the concept of Graduated Non-Convexity (GNC) and the Black-Rangarajan
duality which is summarized in the following.

A.3.1 Graduated Non-Convexity

To improve convergence for arbitrary initial values, surrogate functions ρ𝜇 with
the free parameter 𝜇 may be used to replace the robustifiers ρ. By gradually
changing 𝜇 during optimization the surrogate functions enable the transition
from a convex to a non-convex problem.

For the Geman McClure (GMC) robustifier

ρ(𝑥) = 𝑐2𝑥2

𝑐2 + 𝑥2 (A.5)

we can verify that

ρ̃𝜇 (𝑥) =
𝜇𝑐2𝑥2

𝜇𝑐2 + 𝑥2 , lim
𝜇→∞

ρ̃𝜇 (𝑥) = 𝑥2, ρ̃1 (𝑥) = ρ(𝑥) (A.6)

is a surrogate function as it yields a convex function for 𝜇→∞ and the initial
GMC loss for 𝜇 = 1.

For the truncation robustifier (cf. Eq. (2.26))

ρ̃𝜇 (𝑥) =

𝑥2 if 𝑥2 <

𝜇

𝜇+1𝑐
2

2𝑐 |𝑥 |
√︁
𝜇(𝜇 + 1) − 𝜇

(
𝑥2 + 𝑐2

)
if 𝜇

𝜇+1𝑐
2 ≤ 𝑥2 <

𝜇+1
𝜇
𝑐2

𝑐2 otherwise

(A.7)

is a surrogate function because of

lim
𝜇→0

ρ̃′′𝜇 (𝑥) = lim
𝜇→0
−2𝜇 = 0 , lim

𝜇→∞
ρ̃𝜇 (𝑥) = ρ(𝑥). (A.8)

123

A Appendix

Figure A.2 depicts the GMC and truncation surrogate functions for different
convexity parameters 𝜇.

0

1

2

G
M

C

𝜇 = 0.1 𝜇 = 0.5 𝜇 = 1 𝜇 = 2 𝜇 = 5

−3 −2 −1 0 1 2 3
0

0.5

1

𝑥

Tr
un

ca
tio

n

Figure A.2: GMC and truncation surrogate functions for 𝑐 = 1 and different convexity parameters 𝜇.
The GMC surrogate becomes convex for 𝜇 →∞, the truncation surrogate for 𝜇 → 0.

A.3.2 Black-Rangarajan Duality

Black et al. [BR96] show that an outlier process model can be recovered from
certain robustifiers if the conditions

lim
𝑥→0

ρ̃′(𝑥) = 1 , lim
𝑥→∞

ρ̃′(𝑥) = 0 , ρ̃′′(𝑥) < 0 (A.9)

on the robustifier ρ̃(𝑥) = ρ
(√

𝑥
)

hold. Then, Eq. (2.25) is equivalent to the
problem

min
𝒑,𝑤𝑛∈[0,1]

𝑁r∑︁
𝑛=1

𝑤𝑛‖r𝑛 (𝒑)‖2 +Φρ (𝑤𝑛) , (A.10)

124

A.3 Robust Estimation with Graduated Non-Convexity

where Φρ (𝑤𝑘) acts as a weight penalty and depends on the robustifier selected.
For instance, the GMC and truncation robustifiers yield the weight penalties

Φρ,GMC (𝑤) = 𝜇𝑐2 (√𝑤 − 1
)2

, (A.11)

Φρ,TLS (𝑤) =
𝜇(1 − 𝑤)
𝜇 + 𝑤 𝑐2. (A.12)

Proofs can be found in [Yan+20].

A.3.3 The Algorithm

Yang et al. [Yan+20] model the optimization problem as

min
𝒑,𝑤𝑛∈[0,1]

𝑁r∑︁
𝑛=1

𝑤𝑛‖r𝑛 (𝒑)‖2 +Φρ̃ (𝑤𝑛) (A.13)

and propose an iterative algorithm with an outer and an inner loop. In the inner
loop, the authors perform a parameter update

𝒑 (𝑡) = arg min
𝒑

𝑁r∑︁
𝑛=1

𝑤
(𝑡−1)
𝑛 ‖r𝑛 (𝒑)‖2 (A.14)

with fixed weights 𝑤 (𝑡−1)
𝑛 and a weight update

𝑤
(𝑡)
1 , . . . , 𝑤

(𝑡)
𝑁r

= arg min
𝑤𝑛∈[0,1]

𝑁r∑︁
𝑛=1

𝑤𝑛

r𝑛 (𝒑 (𝑡))2
+Φρ̃ (𝑤𝑛) (A.15)

in an alternating fashion. In the outer loop, the non-convexity parameter 𝜇 is
adapted to gradually increase non-convexity. The optimization may be stopped
if a stopping criterion such as

‖ 𝒑 (𝑡) − 𝒑 (𝑡−1) ‖2 < 𝜖 ‖ 𝒑 (𝑡) ‖2, 𝜖 > 0 (A.16)

is met or a maximum amount of outer loop iterations is reached.

125

A Appendix

A.3.4 Derivation of Weight Penalties

Equation (A.15) can be minimized independently for each weight in order to
find an optimal weight

𝑤 = arg min
𝑤 ∈[0,1]

𝑤‖𝒓‖2 + Φρ̃ (𝑤) , (A.17)

where we omitted the indices 𝑛 and 𝑡 for better readability.

GMC Penalty Inserting the GMC penalty Φρ,GMC, we get

𝑤 = arg min
𝑤 ∈[0,1]

𝑤‖𝒓‖2 + 𝜇𝑐2 (√𝑤 − 1
)2︸ ︷︷ ︸

c(𝑤)

(A.18)

which can be derived and set to zero such that

𝜕c
𝜕𝑤

����
𝑤∗

!
= 0 = ‖𝒓‖2 + 2𝜇𝑐2

(
1 − 1
√
𝑤∗

)
(A.19)

⇔ 𝑤∗ =

(
𝜇𝑐2

𝜇𝑐2 + ‖𝒓‖2

)2

. (A.20)

Because of
𝜕2c
𝜕𝑤2 = 𝜇𝑐2𝑤−

3
2 > 0 ∀𝑤 > 0 , (A.21)

𝑤∗ is a local minimum of Eq. (A.18).

TLS Penalty Inserting the truncated Least-Squares (TLS) penalty Φρ,TLS we
get

𝑤 = arg min
𝑤 ∈[0,1]

𝑤‖𝒓‖2 + 𝜇(1 − 𝑤)
𝜇 + 𝑤 𝑐2︸ ︷︷ ︸

c(𝑤)

(A.22)

126

A.3 Robust Estimation with Graduated Non-Convexity

which can be derived and set to zero such that

𝜕c
𝜕𝑤

����
𝑤∗

!
= 0 = ‖𝒓‖2 − 𝜇𝑐2 𝜇 + 1

(𝜇 + 𝑤∗)2
(A.23)

⇔ 0 = 𝑤∗2 + 2𝜇𝑤∗ + 𝜇2 − 𝑐2

‖𝒓‖2
𝜇(𝜇 + 1) (A.24)

⇔ 𝑤∗ = −𝜇 ± 𝑐

‖𝒓‖
√︁
𝜇(𝜇 + 1). (A.25)

As
𝜕2c
𝜕𝑤2 =

2𝜇(𝜇 + 1)
(𝜇 + 𝑤)3

> 0 ∀𝑤 > 0 (A.26)

we can compute weights that minimize Eq. (A.22). Because 𝑤 ∈ [0, 1] but
Eq. (A.25) is unbounded in general, only the positive solution

𝑤∗ =
𝑐

‖𝒓‖
√︁
𝜇(𝜇 + 1) − 𝜇 (A.27)

exists and we need to check the boundaries

𝑤∗ = 0 ⇔ ‖𝒓‖2 =
𝜇 + 1
𝜇

𝑐2 , (A.28)

𝑤∗ = 1 ⇔ ‖𝒓‖2 =
𝜇

𝜇 + 1
𝑐2 (A.29)

explicitly which serve as optimal points on the borders. In conclusion, the
optimal weights

𝑤∗ =

1 if ‖𝒓‖2 <

𝜇

𝜇+1𝑐
2

𝑐

‖𝒓‖
√︁
𝜇(𝜇 + 1) − 𝜇 if 𝜇

𝜇+1𝑐
2 ≤ ‖𝒓‖2 ≤ 𝜇+1

𝜇
𝑐2

0 otherwise

(A.30)

can be computed depending on the sum of squared residuals.

Figure A.3 depicts the optimal penalty weights as a function of the residual
norm ‖𝒙‖ for different convexity parameters 𝜇.

127

A Appendix

0

0.5

1

G
M

C

𝜇 = 0.1 𝜇 = 0.5 𝜇 = 1 𝜇 = 2 𝜇 = 5

−3 −2 −1 0 1 2 3
0

0.5

1

‖𝒓 ‖

TL
S

Figure A.3: Optimal weights of GMC and TLS penalties for 𝑐 = 1 and different convexity
parameters 𝜇.

A.4 Non-linear Activation Functions

The rectified linear unit (ReLU), swish and tanh functions

aReLU (𝑥) =
{
𝑥 if 𝑥 > 0
0 otherwise

, a′ReLU (𝑥) =
{

1 if 𝑥 > 0
0 otherwise

(A.31)

aswish (𝑥) =
𝑥

1 + 𝑒−𝑥 , a′swish (𝑥) =
1 + 𝑒−𝑥 (1 + 𝑥)
(1 + 𝑒−𝑥)2

(A.32)

atanh (𝑥) =
𝑒2𝑥 − 1
𝑒2𝑥 + 1

, a′tanh (𝑥) =
2𝑒2𝑥(

𝑒2𝑥 + 1
)2 (A.33)

are commonly used as non-linear activation functions in artificial neural
networks (ANNs). These functions are depicted with their derivatives in
Fig. A.4. Whereas the gradient of the tanh function vanishes for large values,

128

A.5 SemanticKITTI Data Set

the gradient a′ReLU (𝑥) is discontinuous in 𝑥 = 0. The swish function aims to
resolve these disadvantages [RZL17].

−1

0

1

2

3

a(
𝑥
)

ReLU Swish tanh

−4 −3 −2 −1 0 1 2 3 4

0

0.5

1

𝑥

a′
(𝑥
)

Figure A.4: ReLU, swish and tanh activation functions and their derivatives.

A.5 SemanticKITTI Data Set

The SemanticKITTI data set [Beh+19] is created from sequences of the KITTI
odometry benchmark [GLU12] in which every range measurement within
a radius of 50 m is annotated with a semantic class. The range sensor is a
Velodyne HDL64E LiDAR and the measurements are provided as point set
with a total number of 23 201 points in the training set. The semantic class
distribution is summarized in Table A.1.

129

A Appendix

Category Class Abs. frequency Rel. frequency
in million in %

Ground

Road 4611.185 19.875
Sidewalk 3339.157 14.392
Parking 341.453 1.472
Other 90.597 0.391

Lane marking 1.092 0.005

Structure Building 3078.452 13.269
Other 55.569 0.240

Vehicle

Car 988.544 4.261
Truck 142.375 0.217
Other 38.645 0.167

Motorcycle 9.243 0.040
Bicycle 3.854 0.017

Bus 3.281 0.014

Nature
Vegetation 6190.375 26.682

Terrain 1812.978 7.814
Trunk 140.018 0.604

Human
Person 4.106 0.034

Bicyclist 2.949 0.013
Motorcyclist 0.869 0.004

Object

Fence 1678.806 7.236
Other 230.226 0.992
Pole 66.25 0.286

Traffic sign 14.282 0.062

Unlabeled / Outlier 445.079 1.918

Total 23 201 100.000

Table A.1: Class distribution in the SemanticKITTI training data set.

130

A.6 Experimental Vehicle

Sensor Lasers Range Range Acc. Horiz. FOV Vert. FOV
in m in cm in ° in °

Velodyne VLP16 16 100 3 360 30
Velodyne VLS128 128 200 3 360 40

Ibeo LUX4L 4 50 10 110 3.2

Table A.2: Experimental vehicle range sensor specifics.

A.6 Experimental Vehicle

Our experimental vehicle is an automated Mercedes-Benz E class limousine.
As depicted in Fig. A.5 it has mounted four Velodyne VLP16 LiDARs on the
roof corners, one Velodyne VLS128 LiDAR on the roof center and an Ibeo
LUX4L LiDAR below the front sign plate. Table A.2 summarizes key specifics.

Computations are made on a general-purpose PC with an AMD EPYC 7702P
64-Core processor and 256 GB RAM. The PC has two GPUs, an NVidia TITAN
X and a Titan V.

A.7 Mixture Distributions

A random variable 𝑿 ∼ M may follow a mixture distributionM defined by
the probability density function (PDF)

p(𝒙) =
𝑁∑︁
𝑛=1

𝑤𝑛p(𝒙 |𝑛) ,
𝑁∑︁
𝑛=1

𝑤𝑛 = 1 , (A.34)

where each mixture component 𝑿 |𝑛 ∼ D of the 𝑁 mixtures follows a certain
distribution D. A mixture distribution can be approximated by its mean

𝝁 = Ep(𝒙) {𝒙} =
∫ ∞

−∞
𝒙p(𝒙)d𝒙 =

∫ ∞

−∞
𝒙

𝑁∑︁
𝑛=1

𝑤𝑛p(𝒙 |𝑛)d𝒙

=

𝑁∑︁
𝑛=1

𝑤𝑛

∫ ∞

−∞
𝒙p(𝒙 |𝑛)d𝒙 =

𝑁∑︁
𝑛=1

𝑤𝑛Ep(𝒙 |𝑛) {𝒙} =
𝑁∑︁
𝑛=1

𝑤𝑛𝝁𝑛 (A.35)

131

A Appendix

(a) Roof-mounted LiDARs (not shown: LUX4L).

200 m

50 m

100 m

(b) Sensor setup top-view. Not to scale.
Yellow: VLP16, blue: VLS128, red: LUX4L.

Figure A.5: LiDARs mounted on the experimental vehicle.

132

A.8 Intersection over Union of Rotated Rectangles

and covariance

𝚺 = Ep(𝒙)
{
(𝒙 − 𝝁) (𝒙 − 𝝁)>

}
= Ep(𝒙)

{
𝒙𝒙>

}
− 𝝁𝝁>

=

(
𝑁∑︁
𝑛=1

𝑤𝑛Ep(𝒙 |𝑛)
{
𝒙𝒙>

})
− 𝝁𝝁>

=

(
𝑁∑︁
𝑛=1

𝑤𝑛

(
𝚺𝑛 + 𝝁𝑛𝝁

>
𝑛

))
− 𝝁𝝁> , (A.36)

where 𝝁𝑛 and𝚺𝑛 denote the mean and covariance of the 𝑛-th mixture component.

A.8 Intersection over Union of Rotated
Rectangles

The intersection over union (IoU)

IoU(𝐵1, 𝐵2) =
|𝐵1 ∩ 𝐵2 |
|𝐵1 ∪ 𝐵2 |

=
|𝐵1 ∩ 𝐵2 |

|𝐵1 | + |𝐵2 | − |𝐵1 ∩ 𝐵2 |
(A.37)

(also Jaccard index) denotes the similarity of two sets 𝐵1 and 𝐵2. This task can
be split into the intersection area computation |𝐵1 ∩ 𝐵2 | and the single box area
computations |𝐵1 | and |𝐵2 |.

Here, we only deal with rotated rectangles which are convex polygons. The
non-empty intersection between two rotated rectangles is always a convex
polygon.

Algorithm A.1 shows how the intersection area is computed. To compute
the intersection area, we interpret polygon vertices 𝒗𝑖 =

[
𝑣𝑥,𝑖 , 𝑣𝑦,𝑖 , 0

]ᵀ as 3D
vectors on the xy-plane. If the polygon is convex and its vertices are stored in
counter-clockwise order w.r.t. a reference point within the polygon, the area

𝐴 =
1
2

𝑉∑︁
𝑖=1
〈𝒆𝑧 , 𝒗𝑖 × 𝒗𝑖−1〉, 𝒗0 = 𝒗𝑉 (A.38)

133

A Appendix

Algorithm A.1: Intersection area of two rectangles
Input: Rectangles 𝐴, 𝐵
Output: Intersection area

1 hull_vertices = VertexList(∅);
2 foreach vertex 𝑣 in 𝐴 do
3 if 𝑣 inside 𝐵 then
4 hull_vertices.add(𝑣);

5 foreach vertex 𝑣 in 𝐵 do
6 if 𝑣 inside 𝐴 then
7 hull_vertices.add(𝑣);

8 foreach edge 𝑒A in 𝐴 do
9 foreach edge 𝑒B in 𝐵 do

10 if 𝑒A intersects 𝑒B then
11 hull_vertices.add(intersection(𝑒A, 𝑒B));

12 hull_vertices = sortCounterClockwise(hull_vertices);
13 hull_vertices = convexHull(hull_vertices);
14 num_vertices = len(hull_vertices);
15 if num_vertices < 3 then
16 return 0

17 reference_vertex = hull_vertices[1]; area = 0;
18 for 𝑛 = 2 to num_vertices − 1 do
19 triangle = (reference_vertex, hull_vertices[𝑛], hull_vertices[𝑛 + 1]);
20 area += area(triangle);
21 n += 1;

22 return area

134

A.9 Von Mises Distribution

can be computed by the sum of pairwise vertex cross products iterated in counter-
clockwise direction and projected onto the xy-plane. A visual explanation on
two examples is depicted in Fig. A.6.

R

1

23

R

1

2
3

4

5

6

Figure A.6: Intersection area computation on two examples. First, we determine the hull vertices
that either lie inside the boxes or on their boundaries. Second, the area of the resulting
convex polygon is determined by summing over the triangle areas. The reference vertex
is marked by R, the triangles over which is summed are numbered.

A.9 Von Mises Distribution

−𝜋 − 𝜋
2 0 𝜋

2
𝜋

0

0.5

1
𝜅 = 0
𝜅 = 1
𝜅 = 5
𝜅 = 10

Figure A.7: Centered von Mises distribution for different concentration parameters 𝜅 .

The von Mises distribution is a continuous probability distribution on the circle.
Its PDF

p(𝑥 |𝜇, 𝜅) = e𝜅 cos(𝑥−𝜇)

2𝜋I0 (𝜅)
, (A.39)

135

A Appendix

is centered around the mean 𝜇 and parameterized by the concentration 𝜅. Here,
the modified Bessel function

I0 (𝜅) =
∞∑︁

𝑚=0

1
(𝑚!)2

(𝜅
2

)2𝑚
=

∞∑︁
𝑚=0

[
1
𝑚!

(𝜅
2

)𝑚]2
(A.40)

= 1 + 𝜅2

4
+ 𝜅4

64
+ 𝜅6

2304
+ 𝜅8

147456
+ . . . (A.41)

≈ cosh(𝑥)(
1 + 0.25𝑥2)0.25

1 + 0.24273𝑥2

1 + 0.43023𝑥2 (A.42)

may be approximated by a linear combination of polynomials or a rational
function combined with a hyperbolic function [OMV18].

A.10 nuScenes Data Set & Object Detection
Benchmark

The nuScenes data set [Cae+20] contains 1000 sequences of 20 s length recorded
by moving sensor platforms in Boston and Singapore traffic. As depicted in
Fig. A.8, the sensor platforms carry six cameras, one LiDAR, five RADARs, a
GPS and an IMU unit.

The 32 beam spinning LiDAR operates at 20 Hz, and has a vertical field of view
(FOV) from −30° to 10°. It has a range of 70 m with an accuracy of ±2 cm and
captures 1.39 × 106 points per second, provided as point sets.

At a frequency of 2 Hz, 23 object classes are annotated by 3D bounding
boxes. Extrinsic sensor transformations are provided for every sequence. The
labeled object categories and their absolute and relative frequencies are listed
in Table A.3.

A.10.1 Object Detection Benchmark

Classes The object categories considered in the nuScenes object detection
benchmark are summarized in Table A.4 with their absolute and relative

136

A.10 nuScenes Data Set & Object Detection Benchmark

Figure A.8: A sensor platform used to record the nuScenes data set [Cae+20]. The spinning LiDAR
is mounted on the vehicle top at a height of around 1.8 m.

frequencies. Aside from traffic participants such as cars, pedestrians or cyclists,
also static elements are considered (barriers and traffic cones).

Evaluation Metrics The mean average precision (mAP) is determined by
matching detections (bounding boxes and class scores) to the closest ground
truth object within a defined distance defined by the object center positions.
Here, different matching thresholds of 0.5 m, 1 m, 2 m and 4 m are used. For
each matching threshold and a minimum accepted class score threshold, the
number of true positives 𝑁TP, false positives 𝑁FP and false negatives 𝑁FN is
determined. Based on these values, the precision-recall curve is computed by
varying the class score threshold and computing the average precision (AP) as
the area under the curve of precisions

P =
𝑁TP

𝑁TP + 𝑁FP
(A.43)

for recalls
R =

𝑁TP

𝑁TP + 𝑁FN
≥ 0.1. (A.44)

Finally, to obtain the mAP, the AP is averaged over all matching thresholds and
classes.

137

A Appendix

Category Class Abs. frequency Rel. frequency
in %

Animal 787 0.068

Pedestrian

Adult 208 240 17.857
Child 2066 0.177

Construction worker 9161 0.786
Stroller 1072 0.092

Police officer 727 0.062
Wheelchair 503 0.043

Personal mobility 395 0.034

Movable object

Barrier 152 087 13.041
Traffic cone 97 959 8.400

Pushable / pullable 24 605 2.110
Debris 3016 0.259

Vehicle

Car 493 322 42.302
Truck 88 519 7.591
Trailer 24 860 2.132

Construction 14 671 1.258
Bus (rigid) 14 501 1.244
Motorcycle 12 617 1.082

Bicycle 11 859 1.017
Bus (bendy) 1820 0.156

Police 638 0.055
Ambulance 49 0.004

Static object Bicycle rack 2713 0.233

Total 1 166 187 100.000

Table A.3: Class distribution in the nuScenes data set.

Based on all true positives, the average orientation error (AOE), average scale
error (ASE) and average translation error (ATE) are computed for each class.
The ATE denotes the distance between the predicted and labeled object centers
in m. The AOE denotes the smallest orientation angle difference in ° between
predicted and labeled orientation within 360° except for barriers where it is
evaluated within 180° and traffic cones where no AOE is computed. The ASE
is computed by 1 − IoU after compensating translation and orientation errors.
Additionally, the average velocity error is computed by averaging the velocity
error

VE =
‖Δ �̂� − Δ𝒕‖

𝜏
(A.45)

138

A.11 Point Registration using Weighted Least-Squares

Category Classes Abs. frequency Rel. frequency
in %

Car 493 322 43.562

Pedestrian
Adult, child, construc-
tion worker, police of-
ficer

220 194 19.444

Barrier 152 087 13.430
Traffic cone 97 959 8.650

Truck 88 519 7.817
Trailer 24 860 2.195
Bus Bendy, rigid 16 321 1.441

Construction vehicle 14 671 1.296
Motorcycle 12 617 1.114

Bicycle 11 859 1.047

Total 1 132 463 100.000

Table A.4: Class construction and distribution in the nuScenes object detection benchmark.

across all class instances, where Δ𝒕 denotes the translation difference and 𝜏

the time difference between two frames. Based on these metrics, the mean
average translation error (mATE), mean average scale error (mASE), mean
average orientation error (mAOE) and mean average velocity error (mAVE) are
calculated by averaging across all classes.

A.11 Point Registration using Weighted
Least-Squares

We introduce a WLS solution to the point registration problem as an extension
of the Least-Squares (LS) approaches e.g. as proposed in [AHB87].

Given a set
(
𝒑𝑛, 𝒒𝑛, 𝑤𝑛

)
∈ C of N weighted point correspondences, we aim to

find a translation vector and rotation matrix

𝑹∗, 𝒕∗ = arg min
𝑹,𝒕

𝑁∑︁
𝑛=1

𝑤𝑛‖𝑹 𝒑𝑛 + 𝒕 − 𝒒𝑛‖2 = arg min
𝑹∈SO𝑑 ,𝒕

𝐿 (𝑹, 𝒕) (A.46)

139

A Appendix

that minimize the sum of weighted squared distances between the corresponding
points after applying a rigid-body transformation to 𝒑𝑛.

Determining the roots of the derivative d𝐿
d𝒕 yields

𝒕∗ = �̂� − 𝑹 �̂� (A.47)

with the weighted centroids

�̂� =

∑𝑁
𝑛=1 𝑤𝑛 𝒑𝑛∑𝑁
𝑛=1 𝑤𝑛

, �̂� =

∑𝑁
𝑛=1 𝑤𝑛𝒒𝑛∑𝑁
𝑛=1 𝑤𝑛

. (A.48)

Substituting 𝒕 in Eq. (A.46) by 𝒕∗ (Eq. (A.47)) and defining the centered points
�̃�𝑛 = 𝒑𝑛 − �̂�, �̃�𝑛 = 𝒒𝑛 − �̂� yields the optimal rotation

𝑹∗ = arg min
𝑹∈SO𝑑

𝑁∑︁
𝑛=1

𝑤𝑛‖𝑹 �̃�𝑛 − �̃�𝑛‖2 = arg max
𝑹∈SO𝑑

𝑁∑︁
𝑛=1

𝑤𝑛〈�̃�𝑛, 𝑹 �̃�𝑛〉

= arg max
𝑹∈SO𝑑

tr
(
𝑾�̃�

ᵀ
𝑹�̃�

)
= arg max

𝑹∈SO𝑑

tr
(
𝑹�̃�𝑾�̃�

ᵀ) (A.49)

which maximizes the trace of the diagonal weight matrix 𝑾 including the
weights 𝑤1, . . . , 𝑤𝑛, and the matrices �̃� and �̃� containing the points in column-
wise order. The matrix

𝑺 B �̃�𝑾�̃�
ᵀ (SVD)

= 𝑼𝚺𝑽ᵀ (A.50)

can be decomposed into its singular values 𝚺 (sorted from the largest to the
smallest) and the orthonormal matrices 𝑼 and 𝑽 which yields the optimal
rotation matrix

𝑹∗ = arg max
𝑹∈SO𝑑

tr(𝚺𝑽ᵀ𝑹𝑼) = arg max
𝑹∈SO𝑑

tr(𝚺𝑰) = 𝑽𝑼ᵀ . (A.51)

Finally, to exclude the special case of a perfect reflection if det(𝑽𝑼ᵀ) = −1,
the second best rotation

𝑹∗ = 𝑽

1

1
. . .

det(𝑽𝑼ᵀ)

𝑼ᵀ (A.52)

140

A.12 Publications by the Author

is obtained by flipping the component corresponding to the smallest singular
value.

To summarize, the optimal transformation parameters

𝑹∗, 𝒕∗ = arg min
𝑹,𝒕

𝑁∑︁
𝑛=1

𝑤𝑛‖𝑹 𝒑𝑛 + 𝒕 − 𝒒𝑛‖2 (A.53)

can be estimated by the following steps:

1. Compute the weighted centroids �̂� =

∑𝑁
𝑛=1 𝑤𝑛𝒑𝑛∑𝑁
𝑛=1 𝑤𝑛

, �̂� =

∑𝑁
𝑛=1 𝑤𝑛𝒒𝑛∑𝑁
𝑛=1 𝑤𝑛

and the
centered points �̃�𝑛 = 𝒑𝑛 − �̂�, �̃�𝑛 = 𝒒𝑛 − �̂�.

2. Determine the covariance 𝑺 = �̃�𝑾�̃�
ᵀ and its SVD 𝑺 = 𝑼𝚺𝑽ᵀ.

3. Compute the optimal rotation 𝑹∗ = 𝑽

1

1
. . .

det(𝑽𝑼ᵀ)

𝑼ᵀ.
4. Determine the optimal translation 𝒕∗ = �̂� − 𝑹 �̂�.

A.12 Publications by the Author

S. A. Baur, F. Moosmann, S. Wirges, and C. B. Rist. “Real-time 3D LiDAR Flow
for Autonomous Vehicles”. In: 2019 IEEE Intelligent Vehicles Symposium
(IV). Paris, France, 2019, pp. 1288–1295. doi: 10 . 1109/ IVS . 2019 .
8814094.

F. Bieder, S. Wirges, J. Janosovits, S. Richter, Z. Wang, and C. Stiller. “Exploit-
ing Multi-Layer Grid Maps for Surround-View Semantic Segmentation of
Sparse LiDAR Data”. In: 2020 IEEE Intelligent Vehicles Symposium (IV).
Las Vegas, NV, USA, 2020. doi: 10.1109/IV47402.2020.9304848.

J. Fei, W. Chen, P. Heidenreich, S. Wirges, and C. Stiller. “SemanticVoxels:
Sequential Fusion for 3d Pedestrian Detection Using LiDAR Point Cloud
and Semantic Segmentation”. In: 2020 IEEE International Conference on
Multisensor Fusion and Integration for Intelligent Systems (MFI). Karlsruhe,
Germany, 2020, pp. 185–190. doi: 10.1109/MFI49285.2020.9235240.

141

https://doi.org/10.1109/IVS.2019.8814094
https://doi.org/10.1109/IVS.2019.8814094
https://doi.org/10.1109/IV47402.2020.9304848
https://doi.org/10.1109/MFI49285.2020.9235240

A Appendix

M. Harr, J. Janosovits, S. Wirges, and C. Stiller. “Fast and Robust Vehicle Pose
Estimation by Optimizing Multiple Pose Graphs”. In: 2018 21st Interna-
tional Conference on Information Fusion (FUSION). Cambridge, UK, 2018,
pp. 1707–1714. doi: 10.23919/ICIF.2018.8455309.

A. Hellmund, S. Wirges, Ö. Ş. Taş, C. Bandera, and N. O. Salscheider. “Robot
Operating System: A Modular Software Framework for Automated Driving”.
In: 2016 IEEE 19th International Conference on Intelligent Transportation
Systems (ITSC). Rio de Janeiro, Brazil, 2016, pp. 1564–1570. doi: 10.1109/
ITSC.2016.7795766.

H. Hu, J. Zhu, S. Wirges, and M. Lauer. “Localization in Aerial Imagery
with Grid Maps Using LocGAN”. In: 2019 IEEE Intelligent Transportation
Systems Conference (ITSC). Auckland, New Zealand, 2019, pp. 2860–2865.
doi: 10.1109/ITSC.2019.8917236.

T. Kühner, S. Wirges, and M. Lauer. “Automatic Generation of Training
Data for Image Classification of Road Scenes”. In: 2019 IEEE Intelligent
Transportation Systems Conference (ITSC). Auckland, New Zealand, 2019,
pp. 1097–1103. doi: 10.1109/ITSC.2019.8917089.

J. Quehl, H. Hu, S. Wirges, and M. Lauer. “An Approach to Vehicle Trajectory
Prediction Using Automatically Generated Traffic Maps”. In: 2018 IEEE
Intelligent Vehicles Symposium (IV). Changshu, China, 2018, pp. 544–549.
doi: 10.1109/IVS.2018.8500535.

J. Quehl, S. Yan, S. Wirges, J.-H. Pauls, and M. Lauer. “Estimating Object Shape
and Movement Using Local Occupancy Grid Maps”. In: IFAC-PapersOnLine
52.8 (2019), pp. 87–92. doi: 10.1016/j.ifacol.2019.08.053.

S. Richter, S. Wirges, H. Königshof, and C. Stiller. “Fusion of Range Mea-
surements and Semantic Estimates in an Evidential Framework”. In: tm -
Technisches Messen 86.s1 (2019), pp. 102–106. doi: 10.1515/teme-2019-
0052.

S. Richter, J. Beck, S. Wirges, and C. Stiller. “Semantic Evidential Grid
Mapping Based on Stereo Vision”. In: 2020 IEEE International Conference on
Multisensor Fusion and Integration for Intelligent Systems (MFI). Karlsruhe,
Germany, 2020, pp. 179–184. doi: 10.1109/MFI49285.2020.9235217.

142

https://doi.org/10.23919/ICIF.2018.8455309
https://doi.org/10.1109/ITSC.2016.7795766
https://doi.org/10.1109/ITSC.2016.7795766
https://doi.org/10.1109/ITSC.2019.8917236
https://doi.org/10.1109/ITSC.2019.8917089
https://doi.org/10.1109/IVS.2018.8500535
https://doi.org/10.1016/j.ifacol.2019.08.053
https://doi.org/10.1515/teme-2019-0052
https://doi.org/10.1515/teme-2019-0052
https://doi.org/10.1109/MFI49285.2020.9235217

A.12 Publications by the Author

Ö. Ş. Taş, N. O. Salscheider, F. Poggenhans, S. Wirges, C. Bandera, M. R. Zofka,
T. Strauss, J. M. Zöllner, and C. Stiller. “Making Bertha Cooperate–Team
AnnieWAY’s Entry to the 2016 Grand Cooperative Driving Challenge”.
In: IEEE Transactions on Intelligent Transportation Systems 19.4 (2018),
pp. 1262–1276. doi: 10.1109/TITS.2017.2749974.

S. Wirges, S. Ding, and C. Stiller. “Single-Stage Object Detection from Top-
View Grid Maps on Custom Sensor Setups”. In: 2020 IEEE Intelligent
Vehicles Symposium (IV). Las Vegas, NV, USA, 2020. doi: 10.1109/
IV47402.2020.9304759.

S. Wirges, F. Hartenbach, and C. Stiller. “Evidential Occupancy Grid Map
Augmentation Using Deep Learning”. In: 2018 IEEE Intelligent Vehicles
Symposium (IV). Changshu, China, 2018, pp. 668–673. doi: 10.1109/IVS.
2018.8500635.

S. Wirges, B. Roxin, E. Rehder, T. Kühner, and M. Lauer. “Guided Depth
Upsampling for Precise Mapping of Urban Environments”. In: 2017 IEEE
Intelligent Vehicles Symposium (IV). Redondo Beach, CA, USA, 2017,
pp. 1140–1145. doi: 10.1109/IVS.2017.7995866.

S. Wirges, T. Fischer, C. Stiller, and J. B. Frias. “Object Detection and
Classification in Occupancy Grid Maps Using Deep Convolutional Networks”.
In: 2018 21st International Conference on Intelligent Transportation Systems
(ITSC). Maui, HI, USA, 2018, pp. 3530–3535. doi: 10.1109/ITSC.2018.
8569433.

S. Wirges, J. Gräter, Q. Zhang, and C. Stiller. “Self-Supervised Flow Estimation
Using Geometric Regularization with Applications to Camera Image and
Grid Map Sequences”. In: 2019 IEEE Intelligent Transportation Systems
Conference (ITSC). Auckland, New Zealand, 2019, pp. 1782–1787. doi:
10.1109/ITSC.2019.8916989.

S. Wirges, M. Reith-Braun, M. Lauer, and C. Stiller. “Capturing Object
Detection Uncertainty in Multi-Layer Grid Maps”. In: 2019 IEEE Intelligent
Vehicles Symposium (IV). Paris, France, 2019, pp. 1520–1526. doi: 10.
1109/IVS.2019.8814073.

S. Wirges, Y. Yang, H. Hu, and C. Stiller. “Learned Enrichment of Top-
View Grid Maps Improves Object Detection”. In: 2020 IEEE Intelligent
Transportation Systems Conference (ITSC). Rhodes, Greece, 2020. doi:
10.1109/ITSC45102.2020.9294330.

143

https://doi.org/10.1109/TITS.2017.2749974
https://doi.org/10.1109/IV47402.2020.9304759
https://doi.org/10.1109/IV47402.2020.9304759
https://doi.org/10.1109/IVS.2018.8500635
https://doi.org/10.1109/IVS.2018.8500635
https://doi.org/10.1109/IVS.2017.7995866
https://doi.org/10.1109/ITSC.2018.8569433
https://doi.org/10.1109/ITSC.2018.8569433
https://doi.org/10.1109/ITSC.2019.8916989
https://doi.org/10.1109/IVS.2019.8814073
https://doi.org/10.1109/IVS.2019.8814073
https://doi.org/10.1109/ITSC45102.2020.9294330

A Appendix

A.13 Supervised Theses

I. Andrussow. “Unsupervised Domain Adaptation for Object Classification On
Grid Maps”. Master thesis. Karlsruhe, Germany: Institute of Measurement
and Control Systems, Karlsruhe Institute of Technology, 2020.

S. Baur. “Learning Scene Flow in Consecutive LiDAR Point Clouds using Fully
Convolutional Neural Networks”. Master thesis. Karlsruhe, Germany: Insti-
tute of Measurement and Control Systems, Karlsruhe Institute of Technology,
2018.

S. Becker. “Erweiterung eines auf Rasterkarten basierenden Trackingverfahrens
durch Geschwindigkeitsschätzung von Lidardaten”. Master thesis. Karlsruhe,
Germany: Institute of Measurement and Control Systems, Karlsruhe Institute
of Technology, 2016.

S. Ding. “Evaluierung von Verfahren zur Registrierung von Punktwolken”.
Bachelor thesis. Karlsruhe, Germany: Institute of Measurement and Control
Systems, Karlsruhe Institute of Technology, 2015.

S. Ding. “Development of Single Stage Detectors on Multi-Layer Grid Maps”.
Master thesis. Karlsruhe, Germany: Institute of Measurement and Control
Systems, Karlsruhe Institute of Technology, 2019.

E. Divrikli. “Entwicklung und Evaluierung von Objektsegmentierungsalgorithmen”.
Bachelor thesis. Karlsruhe, Germany: Institute of Measurement and Control
Systems, Karlsruhe Institute of Technology, 2015.

E. Divrikli. “Low-Level Fusion von Kamera und LiDAR Daten zur Gener-
ierung einer hochaufgelösten dreidimensionalen Umgebungsrepräsentation
mittels Deep Learning”. Master thesis. Karlsruhe, Germany: Institute of
Measurement and Control Systems, Karlsruhe Institute of Technology, 2019.

M. Engelhorn. “Fusion von Tiefen- und Kamerabildern zur 3D Objektdetektion
mittels Deep Learning”. Master thesis. Karlsruhe, Germany: Institute of
Measurement and Control Systems, Karlsruhe Institute of Technology, 2018.

T. Fischer. “Evaluierung von globalen Registrierungsverfahren in Punktwolken”.
Bachelor thesis. Karlsruhe, Germany: Institute of Measurement and Control
Systems, Karlsruhe Institute of Technology, 2017.

144

A.13 Supervised Theses

T. Fischer. “Multi-Task Learning for Object Detection and Scene Flow Esti-
mation using Multi-Layer Grid Maps”. Master thesis. Karlsruhe, Germany:
Institute of Measurement and Control Systems, Karlsruhe Institute of Tech-
nology, 2020.

F. Hartenbach. “Erweiterung von Information in Rasterkarten mithilfe lern-
basierter Ansätze”. Bachelor thesis. Karlsruhe, Germany: Institute of Mea-
surement and Control Systems, Karlsruhe Institute of Technology, 2017.

D. Keck. “Improving Orientation Estimation in Sparse LiDAR Grid Maps”.
Master thesis. Karlsruhe, Germany: Institute of Measurement and Control
Systems, Karlsruhe Institute of Technology, 2020.

F. Klein. “Schätzung des Szenenflusses auf Belegtheitsrasterkarten und Tiefen-
bildern mittels Deep Learning”. Master thesis. Karlsruhe, Germany: Institute
of Measurement and Control Systems, Karlsruhe Institute of Technology,
2018.

N. Kuhn. “Sequence Learning on Point Cloud Features for 3D Object De-
tection in an Autonomous Driving Scenario”. Master thesis. Karlsruhe,
Germany: Institute of Measurement and Control Systems, Karlsruhe Institute
of Technology, 2019.

K. Li. “Intrinsische Kalibrierung von Laserscannern anhand von Ebenenmod-
ellen”. Bachelor thesis. Karlsruhe, Germany: Institute of Measurement and
Control Systems, Karlsruhe Institute of Technology, 2015.

M. Mayr. “Guided Depth Upsampling with Extrinsic Calibration of Camera
and Range Sensor Setups”. Master thesis. Karlsruhe, Germany: Institute of
Measurement and Control Systems, Karlsruhe Institute of Technology, 2018.

J. Petasch. “Untersuchung zur Schätzung von Unsicherheiten bei der semantis-
chen Segmentierung von LiDAR- und Kameramessungen”. Master thesis.
Karlsruhe, Germany: Institute of Measurement and Control Systems, Karls-
ruhe Institute of Technology, 2019.

M. Reith-Braun. “Modellierung von Unsicherheiten in künstlichen neuronalen
Netzen zur Objekterkennung”. Master thesis. Karlsruhe, Germany: Institute
of Measurement and Control Systems, Karlsruhe Institute of Technology,
2018.

B. Roxin. “Generating Dense Surface Representations based on Lidar and
Camera Data”. Master thesis. Karlsruhe, Germany: Institute of Measurement
and Control Systems, Karlsruhe Institute of Technology, 2017.

145

A Appendix

P. Schnattinger. “Entwicklung eines Multi-Sensor SLAM Frontends unter
Zuhilfenahme von Freiraumschätzung”. Master thesis. Karlsruhe, Germany:
Institute of Measurement and Control Systems, Karlsruhe Institute of Tech-
nology, 2017.

S. Trick. “Dynamic Objects Detection and Filtering in LiDAR Measurements”.
Bachelor thesis. Karlsruhe, Germany: Institute of Measurement and Control
Systems, Karlsruhe Institute of Technology, 2016.

C. Wecht. “Batch-Optimierung von Lidarmessungen zur kombinierten Schätzung
von Umfeldmodell und Kalibrierung”. Master thesis. Karlsruhe, Germany:
Institute of Measurement and Control Systems, Karlsruhe Institute of Tech-
nology, 2018.

Y. Yang. “Improving Object Detection in Grid Maps with Augmentation
Networks”. Master thesis. Karlsruhe, Germany: Institute of Measurement
and Control Systems, Karlsruhe Institute of Technology, 2019.

W. Zahoransky. “Charakterisierung von Fahrbahnoberflächen auf Basis von
LiDAR-Daten”. Bachelor thesis. Karlsruhe, Germany: Institute of Measure-
ment and Control Systems, Karlsruhe Institute of Technology, 2016.

Q. Zhang. “Scene Flow Estimation in Occupancy Grid Maps using Self-
Supervised Learning”. Master thesis. Karlsruhe, Germany: Institute of
Measurement and Control Systems, Karlsruhe Institute of Technology, 2019.

146

	Kurzfassung
	Abstract
	Abbreviations and Notations
	Introduction
	Environment Models
	Range Images & Point Sets
	Volume Grids
	Surfaces

	Goals & Outline of this Work

	Fundamentals
	Evidence Theory
	Comparison to Bayesian Theory

	Continuous Parameter Optimization
	Least-Squares Optimization
	Gradient Descent Methods
	Robust Estimation

	Uniform B-Splines
	Machine & Deep Learning
	Artificial Neural Networks
	Regularization
	Classification

	Ground Surface Estimation
	Related Work
	Problem Formulation
	Parameter Estimation
	Experiments
	Comparison of Different Ground Surface Models
	Comparison of Robustifiers
	Asymmetric Cost
	Control Point Distance vs. Smoothness Weight
	Validation on Experimental Vehicle

	Evidential Occupancy & Elevation Grid Mapping
	Related Work
	Occupancy Grid Mapping
	Elevation Grid Mapping
	Range Measurement Models

	Range Sensor Noise
	Range Sensor Mapping
	Occupancy Mapping
	Elevation Mapping
	Occupancy Belief

	Observability & Drivability
	Static Environment Mapping with Known Poses

	Object Detection Considering Uncertainties
	Related Work
	(Range) Image Segmentation
	Convolutional Object Detectors
	Object Detection in Top-View Grid Maps

	Fast Segmentation Method
	Convolutional Object Detector
	Overview
	Prior Boxes & Box Matching
	Box Representation & Regression
	Classification
	Uncertainty Estimation
	Optimization Objective
	Post-Processing

	Experiments
	Quantitative Evaluation
	Qualitative Results

	Self-Supervised Scene Flow Estimation
	Related Work
	Optical Flow Estimation
	Odometry Estimation
	State Estimation in Occupancy Grid Maps

	Optical Flow Estimation in Grid Maps
	Model Structure
	Objectives
	Receptive Field

	Odometry Estimation
	Experiments
	Quantitative Evaluation
	Qualitative Results

	Joint Object Detection, Scene Flow Estimation & Tracking
	Related Work
	Multi-Task Learning
	Feature Aggregation

	System Overview
	Association Embedding
	Feature Aggregation
	Loss Function
	Post-Processing

	Experiments
	Quantitative Evaluation

	Conclusion & Future Directions
	References
	Appendix
	Evidence Theory Example: A Crime Case
	Generalized Charbonnier Loss
	Robust Estimation with Graduated Non-Convexity
	Graduated Non-Convexity
	Black-Rangarajan Duality
	The Algorithm
	Derivation of Weight Penalties

	Non-linear Activation Functions
	SemanticKITTI Data Set
	Experimental Vehicle
	Mixture Distributions
	Intersection over Union of Rotated Rectangles
	Von Mises Distribution
	nuScenes Data Set & Object Detection Benchmark
	Object Detection Benchmark

	Point Registration using Weighted Least-Squares
	Publications by the Author
	Supervised Theses

