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Abstract—Lava domes form when a highly viscous magma erupts on the surface. Several types of lava dome
morphology can be distinguished depending on the flow rate and the rheology of magma: obelisks, lava lobes,
and endogenic structures. The viscosity of magma nonlinearly depends on the volume fraction of crystals and
temperature. Here we present an approach to magma viscosity estimation based on a comparison of observed
and simulated morphological forms of lava domes. We consider a two-dimensional axisymmetric model of
magma extrusion on the surface and lava dome evolution, and assume that the lava viscosity depends only on
the volume fraction of crystals. The crystallization is associated with a growth of the liquidus temperature due
to the volatile loss from the magma, and it is determined by the characteristic time of crystal content growth
(CCGT) and the discharge rate. Lava domes are modeled using a finite-volume method implemented in
Ansys Fluent software for various CCGTs and volcanic vent sizes. For a selected eruption duration a set of
morphological shapes of domes (shapes of the interface between lava dome and air) is obtained. Lava dome
shapes modeled this way are compared with the observed shape of the lava dome (synthesized in the study by
a random modification of one of the calculated shapes). To estimate magma viscosity, the deviation between
the observed dome shape and the simulated dome shapes is assessed by three functionals: the symmetric dif-
ference, the peak signal-to-noise ratio, and the structural similarity index measure. These functionals are
often used in the computer vision and in image processing. Although each functional allows to determine the
best fit between the modeled and observed shapes of lava dome, the functional based on the structural simi-
larity index measure performs it better. The viscosity of the observed dome can be then approximated by the
viscosity of the modeled dome, which shape fits best the shape of the observed dome. This approach can be
extended to three-dimensional case studies to restore the conditions of natural lava dome growth.
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INTRODUCTION

Lava domes form as a result of the extrusion of
highly viscous magma. It develops a solid surface layer
(carapace) remaining mobile and undergoing defor-
mations for days or even months. Several types of lava
dome morphology are distinguished. In the endoge-
nous regime, magma intrudes inside the dome with-
out extrusion of fresh magma on the surface. In the
exogenous regime, a fresh lava pours out over the sur-
face forming various forms of domes, such as obelisks,
lobes, pancake-shaped structures, and some others
(Fig. 1). Lava dome collapse can cause explosive erup-

tions, pyroclastic flows, and lahars, and hence studies
of the conditions of lava dome growth is important for
hazard assessment and risk reduction.

Detailed monitoring of lava domes has been con-
ducted at several volcanoes, such as the Mount
St. Helens in the United States (Swanson et al., 1987),
Mount Pinatubo in the Philippines (Daag et al.,
1996), Mount Unzen in Japan (Nakada et al., 1999),
Santiaguito (Santa Maria) in Guatemala (Harris et al.,
2003), Merapi and Sinabung in Indonesia (Voight
et al., 2000; Nakada et al., 2019), Soufriere Hills on
Montserrat (Watts et al., 2002; Wadge et al., 2014),
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Fig. 1. Morphological structures of the lava domes at the Soufriere Hills Volcano, Montserrat (photos by Watts et al., 2002). Pan-
els (a) lava obelisk (about 40 m high and 35 m wide); (b) lava whaleback structure; and (c) lobe structure (about 20 m thick)

located on rock debris.

and Volcan de Colima in Mexico (Zobin et al., 2015).
Monitoring allows mapping the spatial and temporal
development of lava domes, and determining the mor-
phological changes during the dome growth as well as
the changes in the lava volume over time (to assess the
discharge rate).

The morphology of lava domes is influenced by the
rheology of magma and lava discharge rate (DR).
Magma viscosity depends on temperature and volume
fraction of crystals, which in its turn is determined by
crystallization kinetics (the characteristic time of crys-
tal content growth, CCGT (Tsepelev et al., 2020)). At
small CCGT values, i.e. fast lava crystallization, obe-
lisk-type structures develop at lower DR and pancake-
like structures at higher DR; at high CCGT values, the
domes form either lava lobes or pancake-like struc-
tures. It was shown that cooling does not play a signif-
icant role in the development of the lava dome. If the
crystals content is controlled only by the cooling, then
the lava viscosity increases in the near-surface layer of
the dome, and the thickness of the temperature
boundary layer remains small compared to the dome
height (Tsepelev et al., 2020). In the dome body, a sig-
nificant increase in the viscosity occurs due to crystal-
lization caused by a loss of volatiles. Thus, the evolu-
tion of the lava dome can be modeled using the rheol-
ogy depending on CCGT and DR. Meanwhile, the
following inverse problem is of an interest to volcanol-
ogists: to determine the lava dome viscosity (e.g., the
rheological properties of the lava within the dome) by
the observed shape of the lava dome for known dis-
charge rate.

Here we propose an approach to solving this
inverse problem based on minimizing the deviation
between the observed and simulated lava dome
shapes. We consider a two-dimensional axisymmetric
model of lava dome evolution assuming that the lava
viscosity depends only on the volume fraction of crys-
tals, and this fraction, in its turn, depends on the
CCGT. Lava domes are modeled numerically at dif-
ferent values of CCGT, DR and the conduit diameter.
Using numerical experiments we develop a database of
morphological shapes of modeled domes for specified

JOURNAL OF VOLCANOLOGY AND SEISMOLOGY  Vol. 15

extrusion durations. The results of the experiments
(the elements of the database) and an observed dome
(in the work, a synthetic dome is constructed to repre-
sent the observed dome) are analyzed in the form of
two-dimensional images. To estimate the viscosity of
the observed lava dome, we minimize the difference
between the observed and simulated dome shapes
using three different functionals used in computer
vision and image processing theory. The viscosity of
the observed lava dome is then assessed based on the
rheological properties of the modeled lava dome,
which shape fits best the shape of the observed dome.

PROBLEM STATEMENT AND THE METHOD
OF NUMERICAL MODELING
OF LAVA DOMES

We consider a two-dimensional axisymmetric
model of two-phase immiscible incompressible fluid
approximating the lava (one phase) and the air
(another phase). The two phases are separated by
a moving interface—the lava dome surface. The influ-
ence of the air phase on the lava dome growth is insig-
nificant due to a large ratio between densities/viscosities
of the air and the lava. In the model domain € (Fig. 2),
the lava motion is described by the following set of
equations supplemented by the initial and boundary
conditions (Ismail-Zadeh and Tackley, 2010; Tsepelev
etal., 2019, 2020).

We use the Navier-Stokes equations with the initial
condition u(# = 0, x) = 0 and the continuity equation
to describe the lava dynamics

% + (u,V) (pu)-V - (T] (Vu+VuT)) =-Vp-pg(l)

V-u=0, 2)

where x = (x, x,) € Q are the Cartesian coordinates;
e [0,1] is the time; ¥ is the final time (the duration of
the model experiments); u = (i,(¢,Xx), u,(¢,x)) is the
velocity; p is the density; 1 is the viscosity; p = p(x) is
the pressure; g = (0, g), g—is the acceleration due to
gravity; V, T, and («+) denote the gradient vector, the
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transposed matrix, and the scalar product of vectors,
respectively. We neglect the temperature dependence
of the physical parameters of the model, and the sur-
face tension forces. Model density and viscosity are
represented as p =p,o,x)+p,(—-0o(r,x)) and
n =N, x) +n,(1 — oz, x)), respectively. Here p , is
the air density; p, is the lava density; 1, is the air vis-
cosity; and |, is the lava viscosity. The function oz, x)
equals 1 for the lava and 0 for the air at each point x
and at time #, and this function is transported with the
velocity u according to the advection equation

a—OC+V-(06u):0 3)
ot
with the initial condition oz = 0,x) = 0, which means
that the entire model domain is filled with the air at
the initial time.
We assume that the lava viscosity (measured in Pa s)

depends on the volume fraction of crystals (Costa et al.,
2009) as

N.(@) =107 (1+¢°)

o \/E . j:|—3¢* (@))
X [l (1-E&)erf (2(1 5 o1+ ¢") s

where ¢ = 0 / 0, , ¢ is the volume fraction of crystals; ¢
is the specific volume fraction of crystals; Bis the Ein-
stein coefficient’s theoretical value determined from
the Einstein equation as B = (M(¢) —1)/¢ (Mardles,

1940) (it was experimentally determined that the Ein-
stein coefficient varies from 1.5 to 5 (Jeffrey and Acri-

vos, 1976)); 8 =7.24, y=5.76, and § = 4.63x107*
(Lejeune and Richet, 1995; Costa et al., 2009); erf(})
is the error function. The volume fraction of crystals is
determined from the following evolutionary equation
describing the simplified kinetics of crystal growth
during crystallization due to magma degassing

a—¢+V-(ocq)u):—oc%, 5)
ot T

with the initial condition ¢( = 0,x) = 0. Here ¢,, is
the volume fraction of crystals at the equilibrium,
which depends on the amount of water dissolved in the
magma and on the temperature; T is the CCGT. The
smaller CCGT, the faster the crystallization process
converges to its equilibrium state. CCGT is referred to
as the relaxation time required to decrease the differ-
ence between actual (¢) and equilibrium (¢,,) values
of the volume fraction of crystals by a factor of e
(~2.72) relative to the initial difference (¢, —0d,,),

where ¢,, is the initial volume fraction of crystals in the
magma. For oo =1 and u =0, the CCGT can be found
. -1
analytically as T = —(In[(d,, — 0)/(®,, — ;,)]) - The
relaxation time T can vary from a few hours to several
months depending on the temperature and water satu-
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Fig. 2. Sketch of the model domain. The curved arrow
points to the symmetry condition along the x,=0 axis. ",
(r=1,2,3,4, 5, 6) represents a part of the model boundary
(see the text for the boundary conditions). The large black
arrow shows the part of the boundary, through which
magma enters the model domain. The interface between
the lava and the air is indicated by a dotted line. The solid
dashed line indicates the border of binary images stored in
the database.

ration of the magma, the number of pre-existing crys-
tals in the magma and its composition (Tsepelev et al.,
2020). Note that although the viscosity depends on the
petrological (chemical) composition of the lava and
the volatile content of the lava (its water saturation),
these viscosity dependencies are not considered in this
paper.

The following conditions are set on the boundary
r=nur,ur,ur,ursUry of the model
domain (see Fig. 2). At the boundary I';, the symmetry
conditions are set, i.e., the impermeability condition
(un)=0 and the free slip condition

(Vu + VuT)n - <(Vu + Vur)n, n>n = 0. It is assumed

that the lava of density p, and viscosity n; enters the
model domain through the boundary I', at the given
DR Q. At the boundaries I';, I', and I'5, no-slip con-
dition u = 0 is assumed. The air is removed from the
model domain through the boundary I'; according to
the given DR. It is assumed that the volume fraction of
crystals is equal ¢ = ¢,, at the boundary I'; and ¢ =0
at I';. The values of model parameters used in numer-
ical simulations are presented in Table 1.

The finite volume method implemented in Ansys
Fluent software is employed to solve numerically the
problem (1)-(5). To determine the position of the lava
dome interface with the air, the volume of fluid (VOF)
method is used (Hirt and Nichols, 1981). An implicit
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Table 1. Model notations, parameters, and their values

Notation Parameter, unit Value
H Height of the model domain, m 100
g Acceleration due to gravity, m s—2 9.81
N4 Air viscosity, Pa's 10~
P4 Air density, kg m—3 1
pL Lava density, kg m—> 2500
0, Initial volume fraction of crystals 0.4
Oeq Volume fraction of crystals at equilibrium| 0.8
O Specific volume fraction of crystals 0.591
B T.heoretical value of the Einstein coeffi- 25
cient

integration scheme is used to solve equations (1)—(5)
with the appropriate boundary and initial conditions.
The pressure is discretized by the second-order
PRESTO! scheme (Peyret, 1996). We use a numerical
scheme of the second-order accuracy to approximate
the Laplace operator, and monotone schemes to dis-
cretize the convective terms in the equations (Ismail-
Zadeh and Tackley, 2010). The SIMPLE method
(Patankar and Spalding, 1972) is used to solve equa-
tions (1)—(2), where the relaxation parameters are
chosen to be 0.01 and 0.3 for velocity and pressure,
respectively. The relaxation parameter is chosen to be
0.5 for the function o0 and the volume fraction of crys-
tals. Given the large jump between the lava and air vis-
cosities, the choice of the relaxation parameters is crit-
ical. The time step is chosen in the range from 0.1to 1 s

Table 2. Parameters of modeled lava domes

to optimize the speed and to ensure the convergence of
the solution to the system of linear algebraic equations
(SLAE) obtained after the discretization of Eq. (1).
The accuracy in solving the SLAE for the function o
and the volume fraction of crystal is 107°.

DATABASE OF THE MORPHOLOGICAL
SHAPES OF MODELED LAVA DOMES.
CONSTRUCTION OF A SYNTHETIC
DOME SHAPE

We develop a database of morphological shapes of
lava domes using the following model of lava dome
evolution. The model domain (see Fig. 2) is discret-
ized by about 70000 hexagonal cells. We assign the fol-
lowing values for the CCGT 1 = 5X 10t s, DRQO=0.7
m3s~!, and the radius of the volcanic eruption vent » =
15 m. Using the parameters specified in Table 1, we
numerically solve the problem (1)—(5) within the time
intervals specified in Table 2 using the Ansys Fluent
software.

We consider a rectangular domain Q ,z-, € Q
with vertices 4 = (0,30), B = (100,30), C = (100,100),
and D = (0,100), and denote L = L(1,0,r,t) € Q 5cp
as the sub-domain containing the lava dome and
L' =Q  zc-p\L as the sub-domain containing the air.
We refer to the boundary F = F(1,Q,r,f) =
{(x1,x,) € 0L\OQ 45¢p} as the boundary (or the mor-
phological shape) of the lava dome.

Using the results of the numerical experiments, we
obtain the morphological shape F, = F(1,0,r,t = t,)
for the time 7, and place it in the database. To conduct

Dome number & 1,8 r,m 4%,S

1-22 1.8%10* 15 3x10* + £ x10°} ke = 0,1,...,21
23—44 5% 10* 15 {3><104 +k ><103},k =0,1,...,21
45-92 S5 10* 5 {4x10° + £ x10°} ke = 0,1,...,47
93—114 55 10° 15 3x10* + £ x10°} ke = 0,1,...,21
115—136 6% 10* 15 {3><104 +k ><103},k =0,1,...,21
137—181 6x10°* 5 {4x10° + £ x10°} & = 0,1,...,44
182—190 710 15 3x10* + & x10°},k = 0,1,....8
191-238 7% 10* 5 {4><103 + k% 103},k =0,1,...,47
239-260 810 15 3x10* + £ x10°} k = 0,1,...,21
261-308 3% 10* 5 {4x10° + & x10°} ke = 0,1,...,47
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Fig. 3. Morphological shapes of several modeled lava domes.

the test study, we computed the morphological shapes
for the following values of

T={1.8x10% 6x10%, 7x10%, 8x10%, 5%10°} s and
r=5m (see Table 2). The database can be replenished
with modeled dome shapes for different parameters of
CCGT, DR, and the vent’s radius. Figure 3 shows sev-
eral morphological shapes of the domes obtained in
numerical simulations for different parameters of the
problem. Note that the area L (of each lava dome pre-
sented in Fig. 3) is approximately the same.

As the main goal of the study is to find a dome
shape in the database that approximates a natural
(observed) lava dome in the best way and to determine
then its viscosity, we construct a synthetic dome as an
example of a natural lava dome. To construct the syn-
thetic dome, we choose a dome from the database, for
instance, the dome with the morphological shape

Fys=F(t=6x10"s, 0=07m’s",

r=5x10" s) (Fig. 4a) and introduce a random noise

along the boundary of this dome to develop a synthetic
dome shape F* (see Fig. 4b).

r=15m,

The random noise is generated in the following

way. Consider some point a = (g,,a,) € F on the lava
dome boundary. This point is randomly displaced as
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a+90=(a +9,a, +0,), where 4, and 4, are normally
distributed random variables with zero mathematical
expectation and standard deviation equal to 1 (Went-

zel, 1969). We consider the circle C,,;(le]) with the

center at the point a + & and radius |¢| for each dis-
placed point, where € is a uniformly distributed ran-

dom variable taking values on the interval [-m, ®], ® is

a constant and equal to 1 in this case. Then we con-
struct the following sub-domain:

) LU Cun ). £20]

acF

I\ | Cuso (i) e<0J |

acF

Thus, the synthetic dome with boundary F* is
obtained by combining the dome with boundary F
with a set of random circles in the case of non-negative
¢ and by truncating the synthetic dome with a set of
random circles in the case of negative €. The artificial
distortion (noise) of the dome boundary allows for
simulating real distortions caused by the growth of a
natural lava dome and its partial collapse and/or by
errors in measurements of the morphological shape of
a lava dome.
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Fig. 4. Morphological shapes of the modeled dome F'= F|35 (a) and the synthetic dome (b).

PATTERN RECOGNITION METHODS

We compare the shape of the synthetic dome F*
with the shapes of lava domes F} from the database by
the methods used in the theory of image processing
and pattern recognition (e.g., Salomon, 2007). Here
we represent lava domes by binary images and intro-
duce a uniform rectangular partitioning of the area
Q pcp into cells I xJ as Q; (QABCD = U:Ol:; Qu)
A rectangular matrix P(F) = { p,-j},-lz_olj:_& of size I X J is
assigned to each shape of the dome F, where the
matrix element p; equals to 0, if the corresponding cell
€2, contains more than 50 percent of the air, and equals
to 1 in all other cases. We evaluate then the closeness
of the synthetic dome shape F* and the arbitrary dome
shape F, from the morphological shape database by
means of the following quality functions.

1. The functional based on the symmetric difference:
JI(F*, F) = kS((L* v D\(L* N 1)),

where S(-) (m?) is the area of the region and k, (m™2) is
the scaling multiplier.

2. The functional based on peak signal-to-noise ratio
(PSNR) measure (Salomon, 2007):

JH(F*,F) =

I1-1,J-1 2
= k, (/@ + 101og10{ > (p,-p;) /(IJ)D,

i=0,,=0

where k, is the scaling factor, and k5 is a positive con-
stant. In numerical implementations, if P(F) and P(F")
match completely, the user receives a message con-
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taining the number of the modeled dome, where the
condition of the complete match between the two
matrices is reached.

3. The functional based on the SSIM (structure simi-
larity index measure) (Wang et al., 2004):

J(F*, F) = ky (0(P(P¥) + ¢;)
x (o(P, P*)+c,) /[ (W(P)+1(P¥))
X ((52(1’)+62(P*)+02 )J,

where ((P), W(P*) is the mathematical expectation,
O(P,P*) is the covariance, 6%(P), 62(P*) is the disper-
sion, k, is the scaling multiplier, ¢; = 0.01, and ¢; =
0.03. Here we consider a probabilistic model of image
representation, namely, the image is considered as a
field of random variables, and the value at each point
of this field is a realization of a random variable.

The values of the functionals are calculated for
each element of the database, and the obtained set of
values is ordered in the descending order. In this case,
the fact that one or another functional gives a more
accurate estimate is based on the information about
the synthetic dome. For example, Figure 5 showing
the values of the three functionals on the elements pre-
sented in Fig. 3 illustrates that all three functionals
reach a minimum at modeled dome #135. Note that
functionals J, J,, and J; estimate the quantitative
deviation of the modeled and synthetic domes, while
the functional J; also estimates the structural features
of the morphological shapes of the domes, although it
leads to complex and resource-consuming computa-
tions.
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113 267 197 143 51
Dome number k

259 21 43 135

Fig. 5. The values of functionals J;, J,, and J5 related to the
modeled domes (see Fig. 3) and presented in descending
order.

RESULTS: DETERMINATION
OF THE LAVA DOME VISCOSITY
FROM THE KNOWN DOME SHAPE

Using the functionals described above, we compare
the synthetic dome F* with all domes F) from the data-
base of morphological forms. The following scaling
multipliers are prescribed to get the values of all func-
tionals on the database’s elements within the interval
[0, 1]: k&, = 1/30, k, = 1/25, k; = 33, and k, = 1/14.
Figures 6 and 7 present the values of the functionals
J(F*, F), m =1, 2, and 3 versus the kK numbers of the
domes from the database. The set of elements, on
which the smallest values of the considered function-
als are achieved, are almost identical: the modeled
domes Fy,, Fi33, Fi34, and Fiz5 are the closest to the syn-
thetic dome F* (see Fig. 7). Figure 8 shows the syn-
thetic dome and four closest modeled domes from the
database. The time of a lava dome formation, the dis-
charge rate, and the vent’s size can help with a practi-
cal selection of the closest modeled dome.

From the available information about the synthetic
dome F* (obtained by the introduction of a noise on
the morphological shape of the modeled dome Fj;5)
one can deduce that the SSIM-based functional pro-
vides a more accurate closeness estimate. Note that
the functionals J; and J, give qualitatively similar
results for the binary images, and hence only one of
them can be considered. To consider qualitative and
quantitative closeness of the synthetic and modeled
domes simultaneously, a linear combination of the
described functionals can be used, and in this case
optimal qualitative and quantitative estimates can be
achieved by a suitable choice of weighting coefficients.
For example, considering the functional J(F*, F) =
O.S[JI(F*,F) + J3(F*,F)], we see that the minimum
of the functional is achieved for dome #135 (Fig. 9).
Although the linear combination of the functionals
can be used to choose the modeled dome that will
optimally fit the natural dome, it should be noted that
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Fig. 6. The values of the functionals presented in descending
order: J{(F*, F) (a), Jo(F*, Fy) (b), and J3(F*, F;) (c).

the choice of the weighting coefficients may be diffi-
cult in practice when the natural (and not synthetic)
dome is to be assessed.

DISCUSSION AND CONCLUSION

Lava dome morphological diversity can be
explained by changes in the magma viscosity caused by
degassing and crystallization during the magma ascent
through the volcanic conduit from the magma cham-
ber (Melnik and Sparks, 1999, 2005). The rapid ascent
of magma reduces the time available for magma crys-
tallization, so magma behaves as a relatively low-vis-
cosity fluid and, after extrusion to the surface, spreads
out to form pancake-like morphological structures.
With decreasing DR or at small CCGT, the crystalline
magma undergoes a transition from a fluid to a quasi-
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0.30 - @) solid state forming lava lobes and obelisks on the sur-
face (Tsepelev et al., 2020).

The magma viscosity and the history of a lava dome
"""""" ) growth can be determined from observations on the
J3 morphological shapes of the dome by solving inverse
problems. This paper presents an approach to estimat-

ing the magma viscosity, based on the comparison of

observed and modeled morphological shapes of lava
. domes, by three functionals used in the computer
0 . . . : : — vision and image processing theory. Although each
functional allows for determining the minimal differ-

1843 13240 42 136 41 133 135 134 ence between the modeled and observed morphologi-
0.30 - (b) cal shapes of lava domes, the SSIM-based functional
evaluates not only the quantitative deviation of the

0.15 -

I, (F*, F)

) — i modeled and observed domes, but also their structural
2| e, J features, and thus performs a better assessment. The
O _ Jy rheological parameters of the modeled dome, which
& 0.15F morphological shape fits that of the observed lava
:s dome, can be then estimated and adopted for the vis-

cosity of the observed dome.

B, An observed lava dome was synthesized from a ran-
0 X : n - T — dom modification of one of the modeled lava domes,
18 43 132 40 42 136 41 133 135 134 and the functional estimates were based on the knowl-
edge of the morphological shape of this synthetic
dome. In the case of a natural lava dome, we would

© J recommend considering the element of the database,
—_— 1 . . ..
"""""""""""""" at which the values of the functionals are minimal,
Q‘* ................................. /2 along with a few other elements close to it. The
<ok J3 obtained sample of the elements is to be subjected to
~ i an expert evaluation.
~ The inverse problem under consideration is a
rather complicated object of research from both theo-
retical and computational points of view (Samarskii
0 ! ! ! I TH—— 1 . and Vabishchevich, 2004; Kabanikhin, 2009). As a
8§ 43 132 40 42 136 133 41 134 135 rule, an inverse problem is ill-posed, that is, its solu-
Dome number k tion is unstable and/or non-unique. The considered
Fig. 7. Fragment of Fig. 6 for small values of the function- INVerse prObl.em 18 l.ll—'posed, namely it 18 unstable (as
als J(F*, ) (a), Jo(F*, F) (b), and J5(F*, F;) (c). small errors in the initial data or rounding errors can
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Fig. 8. Comparison of synthetic dome F* with modeled domes F\35, F|34, F33 and Fy;. Colors indicate the modeled lava viscosity
distribution.
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lead to significant errors in the solution of the prob-
lem), and also it has a non-unique solution (for exam-
ple, different DR and different CCGT can result in a
similar shape of the lava dome). However, the dis-
charge rate can be practically determined by the dome
volume, and therefore DR can be considered as a
known characteristic of the process. Classical methods
are not suitable for solving inverse problems, and var-
ious approaches are used to transform ill-posed prob-
lems into well-posed (when the solution is stable and
unique) (Tikhonov and Arsenin, 1977). Many of these
approaches may be satisfactory in the theoretical stud-
ies of the inverse problem, but unsatisfactory in its
numerical solution. Other approaches involve various
simplifications of inverse problems.

In this work, the inverse problem is related to a
search for the lava dome viscosity distribution, which
is presented as a certain function with a small number
of model parameters. Actually, this search is reduced
to determining CCGT, on which the viscosity
depends, and this has been performed by minimizing
the differences between the morphological shapes of
the observed (synthetic, in this case) and modeled lava
domes.

Prediction of a dome shape and stress distribution
within the dome structure may help in assessments of
its stability and possible collapse with the formation of
pyroclastic flows or explosive eruptions. Ideally, a cus-
tomized volcano-specific program should be used for
short- and long-term forecasts by volcano observatory
staff. A similar practice is used by oil companies to
forecast oil production in the fields. A regular adjust-
ment of the model by reproducing the history of oil
production permits for reliable forecasts in this case
and for determining optimal production strategies.

‘When applying this method to a real eruption, it is
possible to consider deviations of the calculated dome
shape from the measured one not only at a certain
point in time, but also over the entire observation
period, setting limitations on the crater shape, the
conduit feeding the dome, and the magma petrology.
Natural lava domes are three-dimensional objects.
Although the approach presented in the paper is two-
dimensional, it can be extended to the three-dimen-
sional case and used to reconstruct the growth condi-
tions of natural lava domes.

ACKNOWLEDGMENTS

We are grateful to two anonymous reviewers for their
constructive comments. Numerical experiments were car-
ried out on the Uran computing cluster (Institute of Math-
ematics and Mechanics, Ural Branch of the Russian Acad-
emy of Sciences, Yekaterinburg).

FUNDING

The work was supported by the Russian Science Foun-
dation (project no. 19-17-00027)

JOURNAL OF VOLCANOLOGY AND SEISMOLOGY  Vol. 15

167

0.10 -

40 42 136 41 133 134 135
Dome number &

0 1 1
18 43 132

Fig. 9. The values of functional J(F*, F) presented in
descending order.

OPEN ACCESS

This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, shar-
ing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article
are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecom-
mons.org/licenses/by/4.0/.

REFERENCES

Costa, A., Caricchi, L., and Bagdassarov, N., A model for
the rheology of particle-bearing suspensions and par-
tially molten tocks, Geochem. Geophys. Geosys., 2009,
vol. 10, no. 3, pp. Q03010.

Daag, A.S., Dolan, M.T., Laguerta, E., et al., Growth of a
postclimactic lava dome at Pinatubo Volcano, Ju-
ly—October 1992, in Fire and Mud. Eruptions and La-
hars of Mount Pinatubo, Philippines, Newhall, C. and
Punongbayan, R., Eds., Seattle: University of Wash-
ington Press, 1996. P. 647—664.

Harris, A.J., Rose, W.I., and Flynn, L.P., Temporal trends
in lava dome extrusion at Santiaguito 1922—2000, Bull.
Volcanol., 2003, vol. 65, pp. 77—89.

Hirt, C.W. and Nichols, B.D., Volume of fluid (VOF)
method for the dynamics of free boundaries, J. Comput.
Phys., 1981, vol. 39, no. 1, pp. 201—-225.

Ismail-Zadeh, A. and Tackley, P., Computational Methods
Jfor Geodynamics, Cambridge: Cambridge University
Press, 2010.

Jeffrey, D. and Acrivos, A., The rheological properties of
suspensions of rigid particles, AIChE J., 1976, vol. 22,
pp. 417—432.

No.3 2021



168 STARODUBTSEVA et al.

Kabanikhin, S.1., Obratnye i nekorrektnye zadachi (Reverse
and Ill-Posed Problems), Novosibirsk: Sibirskoe
Nauchnoe Izdatelstvo, 2009.

Lejeune, A. and Richet, P., Rheology of crystal-bearing sil-
icate melts: An experimental study at high viscosity, J.
Geophys. Res., 1995, vol. 100, pp. 4215—4229.

Mardles, E., Viscosity of suspensions and the Einstein
equation, Nature, 1940, vol. 145, pp. 970.

Melnik, O. and Sparks, R.S.J., Nonlinear dynamics of lava
dome extrusion, Nature, 1999, vol. 402, pp. 37—41.

Melnik, O. and Sparks, R.S.J., Controls on conduit magma
flow dynamics during lava dome building eruptions, J.
Geophys. Res., 2005, vol. 110, no. B2, p. B02209.

Nakada, S., Shimizu, H., and Ohta, K., Overview of the
1990—1995 eruption at Unzen Volcano, J. Volcanol.
Geotherm. Res., 1999, vol. 89, pp. 1-22.

Nakada, S., Zaennudin, A., Yoshimoto, M., et al., Growth
process of the lava dome/flow complex at Sinabung
Volcano during 2013—2016, J. Volcanol. Geotherm. Res.,
2019, vol. 382, pp. 120—136.

Patankar, S.V. and Spalding, D.B., A calculation procedure
for heat and mass transfer in three—dimensional para-
bolic flows, Int. J. Heat Mass Transfer, 1972, vol. 15,
pp. 1787—1806.

Peyret, R., Handbook of Computational Fluid Mechanics,
Academic Press Limited, USA, 1996.

Salomon, D., Data Compression: The Complete Reference,
London: Springer, 2007.

Samarsky, A.A. and Vabishchevich, P.N., Chislennye meto-
dy resheniya obratnykh zadach matematicheskoi fiziki
(Numerical Methods for Inverse Problems in Mathe-
matical Physics), Moscow: Editorial URSS, 2004.

Swanson, D.A., Dzurisin, D., Holcomb, R.T., et al.,
Growth of the lava dome at Mount St Helens, Washing-
ton, (USA) 1981—1983, in The Emplacement of Silicic
Domes and Lava Flows, Fink, 1.Y., Ed., Geol. Soc. Amer.,
Boulder, Special Paper 212, 1987, pp. 1—16.

JOURNAL OF VOLCANOLOGY AND SEISMOLOGY  Vol. 15

The Eruption of Soufriere Hills Volcano, Montserrat, from
2000 to 2010, Wadge, G., Robertson, R.E.A., and Voi-
ght, B., Eds., Geol. Soc. London Mem., 2014, vol. 39,
https://doi.org/10.1144/M 39

Tikhonov, A.N. and Arsenin, V.Ya., Metody resheniya ne-
korrektnykh zadach (Methods for Inverse Problems),
2nd ed., Moscow: Nauka, 1979.

Tsepelev, 1., Ismail-Zadeh, A., and Melnik, O., Lava dome
morphology inferred from numerical modelling, Geo-
phys. J. Inter., 2020. ggaa395.
https://doi.org/10.1093/gji/ggaa395

Tsepelev, 1., Ismail-Zadeh, A., Starodubtseva, Y., et al.,
Crust development inferred from numerical models of
lava flow and its surface thermal measurements, Ann.
Geophys., 2019, vol. 61, no. 2, pp. VO226.
https://doi.org/10.4401/ag-7745

Ventsel, E.S., Teoriya veroyatnostei (Probability Theory),
4th ed., Moscow: Nauka, 1969.

Voight, B., Constantine, E.K., Siswowidjoyo, S., and Tor-
ley, R., Historical eruptions of Merapi volcano, Central
Java, Indonesia, 1768—1998, J. Volcanol. Geotherm.
Res., 2000, vol. 100, pp. 69—138.11

Wang, Z., Bovik, A.C., Sheikh, H. R., and Simoncelli, E.P.,
Image quality assessment: From error visibility to struc-
tural similarity, /EEE Transactions on Image Processing,
2004, vol. 13, no. 4, pp. 600—612.

Watts, R.B., Herd, R.A., Sparks, R.S. J., and Young, S.R.,
Growth patterns and emplacement of the andesitic lava
dome at Soufriere Hills Volcano, Montserrat, in The
Eruption of Soufriére Hills Volcano, Montserrat, from
1995 to 1999, Druitt, T.H. and Kokelaar, B.P., Eds.,
Geol. Soc. London Mem., 2002, vol. 21, pp. 115—152.

Zobin, V.M., Arambula, R., Bretén, M., et al., Dynamics of
the January 2013—June 2014 explosive-effusive episode
in the eruption of Volcdn de Colima, México: insights
from seismic and video monitoring, Bull. Volcanol.,
2015, vol. 77, pp. 31.
https://doi.org/10.1007 /s00445-015-0917-z

No.3 2021



	INTRODUCTION
	PROBLEM STATEMENT AND THE METHOD OF NUMERICAL MODELING OF LAVA DOMES
	DATABASE OF THE MORPHOLOGICAL SHAPES OF MODELED LAVA DOMES. CONSTRUCTION OF A SYNTHETIC DOME SHAPE
	PATTERN RECOGNITION METHODS
	RESULTS: DETERMINATION OF THE LAVA DOME VISCOSITY FROM THE KNOWN DOME SHAPE
	DISCUSSION AND CONCLUSION
	REFERENCES

		2021-06-07T22:10:31+0300
	Preflight Ticket Signature




