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Abstract

Present article showcases a systematic and generalized phase-field modeling ap-

proach for addressing the phenomenon of faceted crystal dissolution in different crys-

talline solids, in two and three dimensions. A thermodynamically consistent phase-field

model was adapted to account for anisotropies in the surface energy and kinetic mobil-

ity associated with the crystal surface that evolves during dissolution. Two significant

and novel aspects of this work are: (I) the proposed general prescription of anisotropy

parameters and (II) quantitative process simulation, within the phase-field modeling

framework. The prescription allows to simulate dissolution in different crystal-liquid

systems, where the crystal may exhibit arbitrary growth and dissolution facets. More-

over, the order of precedence and relative velocities of facets can be precisely controlled.

To demonstrate the procedure of quantitative modeling, we considered the system of α-
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quartz in silica-undersaturated solution at the physical conditions from previous experi-

ments, and determined other input model parameters from existing literature. Further,

the missing anisotropy parameters were retrieved based on simulations of dissolving

single crystals. Following the proposed prescription and the procedure of parameter-set

generation, dissolution processes in other crystal-liquid systems at different physical

conditions can be modeled. The general applicability, capabilities and performance of

this model in capturing diverse system-specific dissolution behavior is demonstrated

through representative numerical examples.

Keywords

faceted crystal dissolution, quantitative phase-field modeling, quartz dissolution

1 Introduction

Crystals have always fascinated the mankind, owing to their clarity, long-range order and

near perfect symmetry. The processes that lead to their formation and alteration have been

the topics of deep scientific interest. In our day-to-day lives, the phenomenon of crystal

growth can be encountered in the form of ice in a refrigerator, or sugar crystals appearing

in a jar of honey. The reverse process, i.e. crystal dissolution, is as common as growth,

and can be observed in activities as simple as stirring a spoon of salt crystals in a glass of

water. In nature, these processes may occur at much longer time scales, for instance, the

formation of crystalline minerals such as quartz, granite and calcite, among several others.

In geological systems where rocks (e.g. sandstones) are exposed to aqueous undersaturated

fluids, provided the physical conditions (i.e. pressure, temperature, fluid composition, etc.)

are suitable, dissolution of minerals (e.g. quartz) occurs.1 Dissolution alters the physical

properties of rocks such as porosity,2 permeability,3 mechanical strength,4 among others.

Thus, a deep understanding of this phenomenon is imperative for geoscientists and petro-
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physicists. Other than this, a wide range of engineering applications of dissolution can also

be found in diverse scientific and commercial fields such as geochemistry (e.g. nuclear waste

management,5 geothermal heat recovery6), industrial manufacturing (e.g. etching of semi-

conductors7), pharmaceutical8,9 and food industries,10 among several others.

At atomistic scale, during dissolution the atoms lying on the crystal surface are released

into the solution, due to breakage of atomic bonds. At higher length scales (i.e. microscopic

to macroscopic), this leads to reduction in crystal size, accompanied by shape evolution ac-

cording to the crystal habit. Although the morphologies of the dissolving crystals are known

to have no steady-state, it has been shown that a dissolving crystal can attain a steady-

state shape under certain conditions.11 Lacmann et al. 12 theoretically suggested that faces

in the dissolution shape are derived by cutting off the corners of the equilibrium form. For

mineralogical crystals, Moore 13 stated that faces in the growth shape transform to vertices

in the dissolution shape, and vertices in growth become faces in dissolution. In contrast

to the crystal growth, where the steady-state faceted morphology, or so-called growth form

(terminology adopted from Heimann 14), is determined by the slowly moving faces;15,16 dur-

ing the reverse process, the steady-state shape, or so-called dissolution form (terminology

from Heimann 14) is dominated by the faster moving facets.17 Similar inferences were also

derived in the early experiments of Heimann,14 who investigated the dissolution of β-quartz,

and deduced that the dissolution forms were bounded by faces with the fastest shift velocities.

In general, crystals can show varying growth and dissolution rates in different crystallo-

graphic directions. The occurrence and relative velocities of different facets can be described

on the basis of the Periodic bond chain (PBC) theory.18–20 According to this theory, crystal

faces can be categorized into three different classes based on the number of so-called PBC

vectors which are coplanar with the faces. These vectors are measures of the effective zone

direction of the periodic patterns in a crystal, and give clues to the understanding of their

4



morphological development.18 The three classes of crystal faces are: F (or flat faces) con-

taining two or more PBC vectors, S (or stepped faces) with one, and K (or kinked faces)

with no PBC vector. For a representative cubic portion of a crystal lattice bounded by six

F -faces, there are twelve S-faces at the cube edges (i.e. intersection of two F -faces), while

eight K-faces occur at the corners (i.e. intersection of three F -faces). As the number of PBC

vectors increases, the difficulty in removing an atom from the crystal surface also increases.

Therefore, the velocities of F -faces are lower than those of S-faces, and K-faces are the

fastest moving surfaces.18 This order of rates is also consistent with the work of Hurst,21

who constructed a hierarchy of surface characteristics (e.g. different index faces, face edges

and corners) for quartz grains, in the ascending order of their dissolution velocities (see Table

1 in the above citation).

In different crystalline materials including organic and inorganic crystals, distinct faces

may appear and dissolve at unequal rates, depending upon various process parameters such

as chemical composition of the fluid (e.g. different melts,14 pH,22 dissolved metal ions23),

dominant mechanisms (e.g. surface disintegration, bulk diffusion) and their dependencies

on physical conditions (e.g. temperature, fluid-flow rate).24 For instance, the experimental

results of dissolution of β-succinic acid (an organic crystalline compound used in pharma-

ceutical and food industry) report that it dissolves such that S-faces appear at the edges

of its growth form.25 Whereas, for β-quartz (a crystalline silica polymorph which is stable

above 573 oC26), dissolution experiments of single crystal spheres in various acid alkali flu-

oride melts indicate that both S- and K-faces may appear depending upon the melt (see

Fig. 9 in Heimann 14). Similarly, there exists a wide variety of growth and dissolution

forms for α-quartz (silica polymorph, stable below 573 oC).27 Owing to the thermodynamic

stability under ambient conditions, α-quartz is one of the most common minerals in the

upper crust and surface of earth.28,29 Therefore, dissolution of α-quartz has been a topic of

intensive experimental research for a long time.21,30–46 The preceding works studied the influ-
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ence of different factors on the kinetics of silica dissolution e.g. temperature,30,37 saturation

state,39,44,45 molal concentration and presence of cations/salt effect,34,36,40–42,45 pH,41 parti-

cle size43 and crystal defects.33 While most of these works studied the overall kinetics, the

facet-specific dissolution rates for α-quartz were also analysed by few of them.21,31,32,36,39,40,46

It has been found that the basal plane (or so-called c-face) of α-quartz has the fastest shift

velocities during dissolution.32,46 Moreover, over a wide range of experimental conditions,

the velocity of the rhombohedral faces has been observed to be higher than the prismatic

ones.36,39 This order of facet velocities is also consistent with those measured by Ostapenko

and Mitsyuk 46 in their hydrothermal experiments.

It is evident that experiments have played an important role in understanding the dis-

solution tendencies of different crystalline materials. However, many a times, they can be

arduous to perform or economically less feasible, especially when a series of tests is required

for understanding the impact of different process controls. As a viable alternative, compu-

tational approaches are powerful tools to derive valuable insights which are otherwise not

readily available. Various numerical approaches have been utilized to study the dissolution

processes in different minerals, for instance, Metadynamics simulations in barite47 or Monte

Carlo method for quartz48 and feldspar.49 The above two approaches are applicable and

limited to atomistic length scales owing to the restrictions of computational costs. Other

numerical techniques that are well-suited at microscopic and higher length scales include

e.g. the Level-set method50 for simulating crystal precipitation and dissolution in porous

media,51,52 or ab initio mechanistic modeling of the dissolving succinic acid crystals.17,53

Another methodology known as the Dynamic mesh approach with surface relaxation has

also been used to model dissolution and investigate the process controls such as presence of

metal ions in calcite crystals.23 For a detailed comparative analysis of several other simu-

lation methods for mineral dissolution, also including the advective flow, interested readers

are referred to the recent review article of Molins et al..54
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In the last decade, a diffuse interface approach, known as phase-field method/model

(PFM), has emerged as a powerful computational tool for modeling mineral precipitation

processes in rocks.55–64 Long-established in the materials science community (see review ar-

ticles65–68), the PFM enables an efficient treatment of the interface motion due to complex

topological changes that occur during microstructural processes such as phase-transitions69,70

and other moving boundary problems like crack propagation,71 multiphase-flow,72 among

others. Moreover, the PFM has also been utilized to simulate mineral dissolution processes

in one (1-D)73 and two dimensions (2-D).74,75 However, none of these works accounted for

anisotropies in their modeling, which is indispensable for addressing the phenomenon of

faceted crystal dissolution. In this work, we present a generalized anisotropic PFM, well-

suited for simulating faceted crystal dissolution processes in arbitrary crystal systems. In

order to showcase the model’s general applicability as well as capabilities, in addition to

a case of 2-D crystal, several representative examples of dissolving crystals in 3-D are also

illustrated.

The present article is organized as follows. Section 2 elaborates the methods utilized for

this study. They include I) equations of the employed PFM, II) its adaptation for simulating

faceted crystal dissolution, and III) procedure to generate the complete parameter set for

a given crystal system at the considered physical conditions. In section 3, we present the

simulation results pertaining to dissolution of single crystals for different materials. This in-

cludes the representative model validation cases I) in 2-D for elucidating the novel anisotropy

adaptation, followed by II) 3-D examples of two different crystal-liquid systems. Further, we

demonstrate the approach to quantitatively model the dissolution process using the adapted

PFM by considering the system of α-quartz crystals dissolving in silica-undersaturated water

at the experimental conditions given in previous literature. Finally, we conclude the article

in section 4 by recapitulating the main inferences drawn from the present work and directions
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for future investigations.

2 Methods

In section 2.1, the equations of a generalized phase-field model for dissolution are discussed.

The model adaptation in the context of simulating faceted crystal dissolution is elucidated

in section 2.2. Section 2.3 elaborates the procedure utilized to determine the complete

phase-field parameter set at the given physical conditions (of pressure p, temperature T ,

and concentration c), required for the quantitative modeling of the process. Exemplarily,

we considered the dissolution of α-quartz in silica-undersaturated water, as all the required

process parameters were readily available from the literature. This procedure can be utilized

to determine the complete parameter set for other crystal-liquid systems at different physical

conditions. All the parameters along with their symbols are listed in table A9.

2.1 Phase-field model for dissolution

In a physical domain Ω containing a solid s and a liquid l phase, we consider a duplet

φφφ(xxx, t) = [φs(xxx, t), φl(xxx, t)] of phase-fields. Each phase-field φα : Ω × R+
0 → [0, 1] describes

the presence of phase α ∈ {s, l} at the spatial point xxx ∈ Ω and time t ∈ R+
0 . At each spatial

point, the summation constraint φs(xxx, t) + φl(xxx, t) = 1 is satisfied. The region completely

occupied by a single phase α is known as α-bulk, mathematically defined as Bα = {xxx ∈

Ω | φα(xxx, t) = 1}. The total bulk region is given by B = Bs∪Bl, as the union of solid-bulk Bs

and liquid-bulk Bl. The interface between the solid and liquid phases is described by a diffuse

region of a finite width, and is defined as Isl = {xxx ∈ Ω\B | φs(xxx, t) + φl(xxx, t) = 1}. The

Helmholtz free energy F of this system is formulated as the sum of bulk Fbulk and interface

Finterface free energy contributions

F(φφφ,∇∇∇φφφ) = Fbulk + Finterface =

∫
Ω

{fbulk(φφφ) + finterface(φφφ,∇∇∇φφφ)} dΩ, (1)
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where fbulk(φφφ) and finterface(φφφ,∇∇∇φφφ) are the bulk and interface free energy density, respectively.

The bulk free energy density is given by

fbulk(φφφ) = fsφs + flφl (2)

as a linear volumetric interpolation of the bulk-free energy densities fs and fl of the solid

and liquid phase, respectively. In the present work, the solid phase is assigned a free energy

density of fs = 0 and a non-zero free energy density fl 6= 0 is chosen for the liquid phase.

The driving force for the dissolution process arises from the difference of the solid and liquid

free energy densities ∆fDiss
sl = fl − fs. The interface free energy density is formulated as

finterface(φφφ) = εa(φφφ,∇∇∇φφφ) +
1

ε
ω(φφφ) (3)

as the sum of potential- and gradient energy density, ω(φφφ)/ε and εa(φφφ,∇∇∇φφφ), respectively.

The scalar length scale parameter ε controls the width of diffuse interface. A double-obstacle

potential energy density of the following form

1

ε
ω(φφφ) =


16
επ2γslφsφl if φφφ ∈ {φφφ | φs + φl = 1, and φs, φl ≥ 0}

∞ else,
(4)

is chosen, where γsl represents the surface energy of solid-liquid interface. The choice of

the double-obstacle potential results in a finite width of the diffuse interface. From the

computational point of view, the advantage of this choice lies in the fact that the phase-

field evolution equations (see eq. (6) and (7)) need to be solved and updated only in the

diffuse interface region and not in the complete simulation domain76. The gradient energy

density serves as an energetic penalty due to the presence of diffuse interface region, and is
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formulated as

εa(φφφ,∇∇∇φφφ) = εγsl{acapsl (nnnsl)}2|qqqsl|2, (5)

where qqqsl = φs∇∇∇φl − φl∇∇∇φs is the phase-field gradient vector oriented perpendicular to the

solid-liquid interface, and nnnsl = qqqsl/|qqqsl| is the unit vector pointing in the same direction.

The scalar-valued capillary function acapsl (nnnsl) accounts for anisotropy in the surface energy of

the solid-liquid interface. The form of the capillary anisotropy function and the prescription

of input parameters in the context of modeling faceted crystal dissolution are discussed in

section 2.2. The evolution of solid and liquid phase-fields is formulated as77

∂φs
∂t

= −µsl(n
nnsl)

2ε

{
δFinterface

δφs
− δFinterface

δφl
− 8
√
φsφl
π

(
δFbulk

δφl
− δFbulk

δφs

)}
, (6)

∂φl
∂t

= −µsl(n
nnsl)

2ε

{
δFinterface

δφl
− δFinterface

δφs
− 8
√
φsφl
π

(
δFbulk

δφs
− δFbulk

δφl

)}
, (7)

such that a monotonic decrease in the free energy of the system with time is ensured. The

term 8
√
φsφl/π ensures the correct interface kinetics with the utilized double-obstacle poten-

tial in eq. (4).77,78 The difference of the variational derivatives of the bulk free energy yields

the dissolution driving force, i.e. δFbulk/δφs − δFbulk/δφl = fl − fs = ∆fDiss
sl . The prefactor

µsl(nnnsl) represents the kinetic mobility of the solid-liquid interface, formulated as

µsl(nnnsl) = µ0
sla

kin
sl (nnnsl), (8)

where µ0
sl denotes the kinetic mobility coefficient of the solid-liquid interface, and akinsl (nnnsl) is

a scalar valued anisotropy function accounting for the direction-dependent particle detach-

ment kinetics. In the context of faceted crystal dissolution, the chosen form of the kinetic

anisotropy function and the prescription of input parameters are discussed in section 2.2.

The model equations are implemented in a parallel multi-physics computational framework

known as Pace3D (v.2.5.1),79,80 in the C programming language. It is noteworthy that,
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in the present phase-field model, due to the incorporation of anisotropies, the derivation of

analytical sharp interface relations is not straight-forward and is an open problem in the

phase-field community.

2.2 Modeling faceted crystal dissolution within phase-field frame-

work

Based on the growth habit, a crystal develops its faceted growth form bounded by the

slowly moving facets.15,16 We refer to the facets present in the growth form as growth facets.

During dissolution, different faces may appear at the edges and/or corners of the growth

form depending upon the crystal habit, and dissolve at different velocities. We refer to

these faces as dissolution facets. The final dissolution form is bounded by the fast moving

dissolution facets17 (as also comprehensively discussed in section 1). In order to incorporate

these tendencies in the phase-field model, we chose a capillary anisotropy function of the

following form

acapsl (nnnsl) = maxk {nnnsl · ηηηcapk } , (k = 1, . . . , ncap), (9)

where the scalar function maxk returns the largest argument in the braces, the operator (·)

denotes the scalar (or dot) product of two vectors, and nnnsl represents the unit phase-field

gradient vector. ηηηcapk denotes kth element of the setNNN cap = {ηηηcap1 , . . . , ηηηcapncap
} of ncap geometric

vectors that should be appropriately chosen based on crystal system (please refer to sub-

section 2.2.1). The capillary anisotropy is responsible for the shape attained by a crystal

under vanishing driving forces due to surface energy minimization. It is noteworthy that for

any input set of vertex vectors corresponding to a convex faceted crystal, the chosen form

of capillary anisotropy function (eq. (9)) ensures that the surface stiffness never becomes

negative. Alternatively, the Frank plot (i.e. polar plot of 1/surface energy) is always non-

concave. Hence, a regularization of equations (6) and (7) to avoid an ill-posed evolution
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equation is not required, and is not included in the present model. Further, in order to

control the appearance and relative rates of different growth as well as dissolution facets

during the crystal dissolution process, we chose a kinetic anisotropy function of the following

form58

akinsl (nnnsl) =
[
1 + δ

(
maxk

{
nnnsl · ηηηkink

}
− maxk−1

{
nnnsl · ηηηkink

})]
· maxk

{
nnnsl · ηηηkink

}
, (k = 1, . . . , nkin),

(10)

where the function maxk−1 returns the second largest value in the braces, δ denotes the

anisotropy strength parameter and ηηηkink represents kth element of the setNNN kin = {ηηηkin1 , . . . , ηηηkinnkin
}

of nkin geometric vectors to be appropriately chosen based on the crystal system, as elabo-

rated in the forthcoming sub-section 2.2.1.

2.2.1 Prescription of anisotropy parameters

In the context of phase-field modeling of faceted crystal dissolution, we propose a generalized

procedure to prescribe the input set of geometric parameters for the capillary and kinetic

anisotropy functions. Here we remark that, although the forms of anisotropy functions have

been taken from previous literature, the general prescription of input anisotropy parameters

discussed in the following part of this section is novel and has never been used before. For

the purpose of illustration, we consider a hypothetical crystal system with hexagonal growth

and dissolution forms, as shown in figure 1a. The prescription of input parameters for the

two functions is as follows:

• For capillary anisotropy function: We chose NNN cap as the set of vertex vectors

of the dissolution form, see figure 1b. The resulting polar plot of the surface energy

for the considered hexagonal crystal system is schematically illustrated in the same

figure. Here, the directions of local minima correspond to those of the normal vectors

of different dissolution facets. As a result, these facets are ought to be energetically

favorable, and are expected to stay during late stages of dissolution. The corresponding
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Growth form Dissolution form Capillary anisotropy

Kinetic anisotropy

Local minima

Combined vector set

a) b)

c) d) Local maxima

Pairs of normal vectors
from growth form

Pairs of normal vectors
from dissolution form

Figure 1: Prescription of anisotropy parameters. a) An exemplary crystal with the given
hexagonal growth and dissolution forms. b) Schematics illustrating the set of input vectors
(i.e. vertex vectors of dissolution form in orange color) for the capillary anisotropy function
and the corresponding polar surface energy plot (in black) and Frank plot (in green). The
facet energies are given by values at the local minima in different directions. c) Schematics
illustrating the combined set of pairs of facet normal vectors of the growth and dissolution
forms as input for the kinetic anisotropy function, and d) the corresponding polar plot of
kinetic mobility. The dotted parts in the plot represent jumps in kinetic mobility. The color
of different parts of the polar mobility plot corresponds to the vector pairs controlling the
mobilities in the respective directions. The vector pairs of facets belonging to same family
are depicted in same color. The facet mobilities are given by values at the local maxima in
different directions.

Frank plot (for the case of unit surface energy for all six facets) is shown in green colored

lines in figure 1b. This plot is non-concave in nature, thereby implying a non-negative

surface stiffness.

• For kinetic anisotropy function: We chose NNN kin as the set of pairs of input vectors

parallel to the normal vectors (see figure 1a) of all the growth and dissolution facets,
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as schematically illustrated in figure 1c. In general, the vectors of each vector pair (in

the set NNN kin) corresponding to a facet f ∈ {1, . . . , F̂} and parallel to the facet normal

nnnf , differ in magnitude through the facet-specific anisotropy strength parameters Af ∈

[0, 1]. Thus, the set containing all the facet-specific anisotropy strength parameters is

represented as Â̂ÂA = {A1, . . . ,Af , . . . ,AF̂}, where F̂ denotes the total number of facets

appearing during the crystal dissolution process. After appropriately setting the value

of anisotropy strength parameter δ, each Af should be chosen to obtain the desired

kinetic mobility of the corresponding facet f , as schematically illustrated by the polar

plot of kinetic mobility in figure 1d for the considered hexagonal crystal system. The

kinetic mobilities of different facets are given by values at the local maxima present in

the directions corresponding to their normals. Increasing the difference of magnitude

between a vector pair (by decreasing Af ) increases the mobility in the direction pointed

by the pair. When multiple facets correspond to the same crystallographic facet family

and are assigned with the same anisotropy strength parameter Af (e.g. c, r, m-facets in

α-quartz), we define a new reduced set AAA which contains only the strength parameters

of different facet families. By appropriate calibration of the anisotropy parameters

(i.e. AAA and δ), the order of precedence and relative velocities of different facets can

be controlled. It is noteworthy that, during dissolution, if a crystal system exhibits

additional intermediate facets which are not present in the growth and dissolution

forms, these facets should be appropriately accounted in the sets NNN kin and AAA.

2.3 Physical parameters for α-quartz dissolution

In this section, we elaborate the method adopted to determine the physical parameters for α-

quartz dissolution. For the present work, the pressure p = 1 atm and temperature T = 166o

C, corresponding to one of the experimental conditions of Gratz and Bird,39 were chosen for

the following reasons: I) for the purpose of model validation, the quantitative information

about the facet velocities is available in their work, and II) it was possible to determine
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the complete set of phase-field parameters at their physical (p, c, T ) conditions from the

existing literature. The procedure to determine the complete parameter set is elucidated in

the following sub-sections. The set is also listed in column 4 of table 4. For the sake of

convenience, the phase-field model parameters associated with the binary interface of the

α-quartz–water system are represented with the subscript qw, q and w being α-quartz and

water, respectively. For other solid-liquid systems considered in this work, the subscript sl

is retained.

2.3.1 Surface energy of interface

We chose the surface energy of the quartz-water interface of γqw = 0.36 J/m2 given in

Parks.81

2.3.2 Driving force of dissolution

Quartz crystal growth and dissolution is governed by the silica-water chemical reaction,

which reads

SiO2(s) + 2H2O(l) 
 H4SiO4(aq), (11)

where (s), (l) and (aq) denote the solid, liquid and aqueous phases, respectively. The change

in molar Gibbs free energy ∆G of the reaction is given by

∆G = RT lnS, (12)

where R denotes the gas constant and S represents the saturation index of the fluid. For

dilute solutions (i.e. fulfilling the ideal solution assumptions), the saturation index is well-
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approximated as

S =
cH4SiO4

ceqH4SiO4

(13)

in terms of cH4SiO4 and ceqH4SiO4
, the actual and equilibrium concentration of orthosilicic acid

(H4SiO4), respectively. Deviation of actual concentration from the equilibrium value gener-

ates a driving force for precipitation (when S > 1) or dissolution (when S < 1). Following

the work of Wendler et al.,58 the driving force of dissolution (∆fDiss
qw ) for the quartz-water

system, that enters the phase-field model, can be mathematically expressed as

∆fDiss
qw = (ceqH4SiO4

− cH4SiO4)
∆F
V H2O
m

, (14)

where ∆F is the change in the Helmholtz free energy of the system, and V H2O
m is the molar

volume of water. Using the thermodynamic relation ∆F = ∆G− p∆V along with eqs. (12)

(13) and (14) yields

∆fDiss
qw = ceqH4SiO4

(1− S)(RT lnS − p∆V )

V H2O
m

, (15)

where ∆V is the difference between the molar volumes of quartz and water. In the exper-

iments of Gratz and Bird,39 the actual and equilibrium concentrations of orthosilicic acid

were cH4SiO4 = 193 ppm and ceqH4SiO4
= 385 ppm, thereby resulting in a saturation index of

S = 0.501. For the above (p, c, T ) conditions, a driving force of ∆fDiss
qw = −26881 J/m3 is

obtained.

2.3.3 Kinetic mobility of interface

The velocity vqw of quartz-water interface during dissolution is given by30

vqw = V qtz
m k+(1− S), (16)
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where V qtz
m and k+ denote the molar volume of quartz and the dissolution rate constant,

respectively. We chose a value of k+ = 2.09× 10−6 s−1 (or log k+ = −5.68) corresponding to

the temperature of 162◦C from Worley et al.,41 as it is the best available estimate close to

the temperature considered in the present work (i.e. 166◦C). For a flat interface, the kinetic

mobility is given by

µ0
qw =

vqw
∆fDiss

qw
=

V qtz
m V H2O

m k+

ceqH4SiO4
RT lnS

. (17)

which connects the dissolution rate coefficient k+ with the phase-field evolution equation (6)

and (7). With the known values of all the parameters on the right hand side of eq. (17), we

obtain an interface mobility of µ0
qw = 8.79× 10−16 m4/J-s.

2.3.4 Anisotropy parameters for α-quartz dissolution

We discuss the procedure to determine the anisotropy parameters of capillary and kinetic

anisotropy functions for the dissolution of α-quartz in silica-undersaturated water. For the

sake of clarity, we mention that the miller index notation used in this work is such that miller

indices with parentheses represent a specific plane and those with braces represent a family of

planes. Based on the dissolution experiments of single crystal spheres of β-quartz in different

melts, Heimann 14 proposed the dissolution forms for different growth forms. In particular,

the Type A growth form corresponds to the hexagonal dipyramid geometry, see figure 2a.

Such hexagonal growth habit is also exhibited by certain twinned α-quartz crystals, when

the growth rates of rhombohedral r (011̄1) and z (11̄01) facets do not differ, thereby leading

to indistinguishable rhombohedral facets.27,82 In the absence of precise dissolution form of

α-quartz in literature, for the present work, we chose the hexagonal-dipyramid growth form

with m {101̄0} and r {101̄1} & {101̄1̄} facets for α-quartz, and adopt the dissolution form

with c (0001), (0001̄) and {112̄2}, {112̄2̄} facets from Heimann 14 (Fig. 9, corresponding to

Type A β-quartz), as also shown in figure 2a. For the sake of convenience, we refer to the
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Figure 2: a) Chosen growth and dissolution forms for α-quartz (figure adapted from
Heimann 14). b) Set of vertex vectors of the 3-D dissolution form and the corresponding
polar plot of surface energy. c) Combined set of pairs of facet normal vectors of the 3-D
growth and dissolution forms, and the corresponding polar plot of the kinetic mobility.

facets with miller indices {112̄2} and {112̄2̄} as d-facets. Following the proposed generalized

prescription (discussed in section 2.2.1), we determine the anisotropy parameters for α-quartz

as follows:

• Input parameters for capillary anisotropy function: For the considered disso-

lution form of α-quartz (figure 2a), the input set of vertex vectors (illustrated in dark

blue color in figure 2b) were chosen such that the surface energy of c- and d-facets are

equal, as given in table 5. The resulting polar plot of the surface energy is depicted in

figure 2b.

• Input parameters for kinetic anisotropy function: The kinetic anisotropy ac-
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counts for the relative velocities of different facets. Thus, the parameters need to be

calibrated based on the dissolution tendencies of α-quartz. For the basal c-face, Liep-

mann 32 found the velocity of vc/vm ∼ 6 relative to the m-facet (also mentioned in

Gratz and Bird 40). For the rhombohedral r-facet, the relative rates vr/vm in the range

of 1.37 – 1.44 in different alkaline solutions have been reported at the experimental con-

ditions considered in the present work.39 The order of aforementioned facet velocities is

consistent with that reported by Ostapenko and Mitsyuk.46 For the d-facet, no values

of the velocity could be found in literature. Based on the dissolution experiments of

single crystals of α-quartz, Hurst 21 proposed that the junctions between edges (i.e.

d-facet in α-quartz) and corners (i.e. c-facet in α-quartz) dissolve faster than the low

index prism facets (i.e. m-facet in α-quartz). This order is also consistent with the

Periodic bond chain (PBC) theory,18–20 that suggest that stepped S (i.e. d-facet in

α-quartz) and kinked K (i.e. c-facet in α-quartz) faces dissolve at faster rates than flat

F faces (i.e. m- and r-facets in α-quartz). Moreover, K faces are expected to possess

higher velocity than the S faces, as no PBC vector is present along the plane for the

former. Thus, we chose the value of vd/vm ∼ 4 for the d-facet.

3 Results and discussions

Through representative model validation examples for different crystal systems using a non-

dimensional phase-field parameter set, section 3.1 demonstrates the general applicability and

performance of the proposed anisotropy prescription discussed in section 2.2.1. In section

3.2, we showcase a modeling application to quantitatively address the phenomenon of faceted

crystal dissolution at real experimental conditions, by exemplarily considering the system of

α-quartz in silica-undersaturated water and utilizing the physical parameters determined in

section 2.3.
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Table 1: Sets of non-dimensional phase-field parameters for the model validation examples

Model parameters Hexagonal Type B β-quartz β-succinic acid
Grid cell size (∆x) 1 1 1
Time step width (∆t) 0.001 0.0008 0.001
Solid-liquid interface energy (γsl) 4.0 4.0 4.0
Length scale parameter (ε) 4 4 4
Kinetic mobility of solid-liquid interface (µ0

sl) 1.0 1.0 1.0
Driving force for dissolution (∆fDiss

sl ) -0.15 -0.2999 -0.2999

3.1 Model validation

In section 3.1.1, we elucidate the influence of facet-specific anisotropy strength parameters

on the crystal shape evolution through the simulations of dissolution of a two-dimensional

(2-D) hexagonal-shaped crystal with the growth and dissolution forms illustrated in figure

1. Sections 3.1.2 and 3.1.3 showcase the model applications in 3-D to real crystal systems

of Type B β-quartz (see Heimann 14) and β-succinic acid (see Snyder et al. 25), respectively.

The set of phase-field parameters for the model validation examples are given in table 1.

3.1.1 Crystal system with hexagonal growth and dissolution forms

We consider a 2-D hexagonal solid crystal dispersed in liquid as depicted in figure 3a, such

that the crystal exhibits the growth and dissolution forms shown in figure 1a. In the diffuse

interface description (in figure 3b), the phase-field variable φs determines the presence of

crystal (where φs = 1), liquid (where φs = 0) and the interface (where 0 < φs < 1).

The input set of vertex vectors for the capillary anisotropy function from the dissolution

form are listed in table A1. Figure 3c depicts the variation of surface energy in different

directions. The set of pairs of normal vectors for the kinetic anisotropy function from growth

and dissolution forms are given in table A2, where the facet-specific anisotropy strength

parameter set AAA = {A1,A2,A3,A4} controls the mobilities of the growth and dissolution

facets. The parameters A1 - A4 correspond to the facet families with the normal vectors

nnn1 - nnn4, as depicted in figures 1a and 3d,e. Simulations were performed for the following
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Figure 3: a) Sharp and b) diffuse interface description of a crystal-liquid system, with the
crystal exhibiting hexagonal growth and dissolution forms. The phase-field variable φs varies
from 0 to 1 in the diffuse interface as shown in the zoomed inset picture. The interface is
resolved by a sufficient number of grid cells. c) Polar plot of the surface energy of the
interface for the chosen set of vertex vectors of the dissolution shape (in grey) as input
parameters for the capillary anisotropy function. Polar plot of kinetic mobility (left) and
the different representative stages of the simulated crystal dissolution (right) for the set of
facet-specific anisotropy strength parameters d) A1A1A1 = {1.0, 1.0, 0.999, 0.999} and e) A2A2A2 =
{0.99975, 1.0, 0.999, 0.9995}. The dotted parts of the polar plots indicate jumps in the kinetic
mobility. These representative stages of crystal dissolution (from light grey to black color)
correspond to the shapes attained after every 54,000 non-dimensional simulation time-steps.

two sets of the facet-specific anisotropy strength parameters: A1A1A1 = {1.0, 1.0, 0.999, 0.999}

and A2A2A2 = {0.99975, 1.0, 0.999, 0.9995}. The value of anisotropy strength parameter δ in

eq. (10) was set to 1000. Set A1A1A1 results in an equal kinetic mobility of the dissolution facets

(with normals nnn3 and nnn4), which is twice the corresponding value for the growth faces (with

normals nnn1 and nnn2), as depicted in the polar plot of the interface mobility in figure 3d (on the

left). Different representative stages of the simulated dissolution are shown (on the right)

in the same figure in different shades of grey. The initial shape is shown in the lightest

shade of grey, and the shapes with darker shades correspond to later times. As expected,

the dissolution facets appear at the corners of the intersections of the growth facets. Due to
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higher mobility of the dissolution facets, they move at faster rates than the growth facets.

Moreover, as the mobility of all the dissolution facets is equal, the subsequent dissolution

occurs such that the crystal maintains its shape. For the set A2A2A2, all the facet families have

different mobilities, as depicted in the plot in figure 3e. Thus, the facets with higher kinetic

mobility dissolve more rapidly and vice versa, as illustrated in figure 3e on the right.

3.1.2 Dissolution of β-quartz

Heimann 14 determined the growth and dissolution forms of different types of β-quartz by

analysing a series of experiments of spherical single crystals dissolving in different acid alkali

fluoride melts. As an example, we consider the Type B β-quartz (in Heimann 14) with the

growth and dissolution forms as shown in figure 4a. Based on our proposed prescription,

the input set of anisotropy vectors for the capillary and kinetic anisotropy functions were

b) c)a)
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Figure 4: a) Growth and dissolution forms of Type B β-quartz (figure adapted from
Heimann14). 3-D polar plots of b) surface energy and c) kinetic mobility of the interface.
d) Simulated dissolution of Type B β-quartz crystal from its growth form. The progression
is shown at representative stages. Different facets are shown in distinct colors for the sake
of visualization.

22



Table 2: Obtained surface energies and chosen facet-specific anisotropy strength parameters
of different facets for β-quartz.

Facets
c (0001),
(0001̄) m {112̄0}

d {101̄1},
{101̄1̄}

Surface energy γsl 0.866γsl γsl
Anisotropy parameters Ac = 0.991 Am = 0.995 Ad = 1

chosen, as listed in tables A3 and A4. The resulting polar plots of surface energy and

kinetic mobility are depicted in figure 4b,c. The surface energy of facets obtained from the

utilized vector set (in table A3) and the chosen anisotropy strength parameters (for the facet

normal vectors in table A4) are given in table 2. In a cubic computational domain with

an edge length of 110∆x, a β-quartz crystal (colored) in its growth form embedded in a

melt (transparent) was considered, see figure 4d (at the initial stage). Different stages of

the simulated dissolution, using the phase-field parameter set given in table 1, are shown in

the same figure. It is observed that the dissolution facets (0001), (0001̄) and {112̄0} appear

at the corners of the growth forms. As the mobility of the dissolution facets is higher than

the growth ones (i.e. d {101̄1}, {101̄1̄}), they dissolve at faster rates. Thus, at later stages,

the growth facets completely disappear. During the subsequent dissolution, the basal planes

(0001) and (0001̄) dissolve at faster rates than {112̄0}, due to higher kinetic mobilities of

the former.

3.1.3 Dissolution of β-succinic acid

Experiments of Snyder et al. 25 reported that β-succinic acid crystals dissolve such that new

faces appear at the edges of the growth form, see figure 5a,b. We refer to these dissolution

faces as S-facets (terminology based on the PBC theory18). The S-facets with the miller

indices {111} dissolve faster as compared to those appearing on the lateral edges (i.e. faces

with miller indices (031) and (110)). Thus, the final dissolution form (figure 5c) comprises

only of the faster moving {111} facets. Following our proposed prescription we chose the set

of vertex vectors of the dissolution form to be given as an input for the capillary anisotropy
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Figure 5: Faceted shape evolution of a β-succinic acid crystal during dissolution as reported
by Snyder and Doherty 17 based on their a) experiment and their own b) a priori mathematical
model (figure reprinted/adapted with permission from Snyder and Doherty.17 Copyright
2008 American Chemical Society). c) Considered growth and dissolution forms of β-succinic
acid. 3-D polar plots of d) surface energy and e) kinetic mobility. f) Different representative
stages of the simulated dissolution. For the sake of visualization, different facets are shown in
distinct colors, and the liquid phase as transparent in the rest of the computational domain.

function, as listed in table A5. The resulting polar plot of surface energy is shown in figure

5d, where the local minima represent the directions corresponding to {111} planes. For

the kinetic anisotropy function, we chose the set of pairs of facet normal vectors given in

table A6, accounting for the growth as well as different dissolution facets that appear during

the process, as reported by Snyder et al..25 In order to computationally imitate the order of

precedence of different faces during the crystal shape evolution, different facets were assigned
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Table 3: Obtained surface energies and chosen facet-specific anisotropy strength parameters
of different facets for β-succinic acid.

Facets {111}
(002),
(002̄)

(020),
(02̄0) {011}

(031),(03̄1),
(031̄),(03̄1̄)

Surface energy 0.5774γsl γsl γsl 0.7071γsl 0.9487γsl
Anisotropy parameters A111=0.991 A002=0.991 A020=0.995 A011=0.996 A031=0.991

different kinetic mobilities. The chosen set of facet-specific anisotropy strength parameters

and the derived surface energies are given in table 3. The polar plot of the kinetic mobility is

depicted in figure 5e. In a computational domain of size 110∆x × 95∆x × 50∆x filled with

liquid phase, we simulate the dissolution of a single β-succinic acid crystal from its growth

form, using the phase-field parameter set given in table 1. Figure 5f shows different stages

of the simulated dissolution of the crystal (in rgb colors) dispersed in liquid (in the rest of

the domain). As expected, different S-facets appear at the edges of the crystal, and dissolve

according to their kinetic mobilities. At intermediate stages, the lateral S-faces disappear

due to lower mobilities (for {011}) and higher surface energies (for {011} and (031) group)

than those with miller indices {111}. It is worthy to note that, although the mobility of

(002) facet is same as {111}; however, due to higher surface energy, the former also vanishes

during the later stages. Hence, the final crystal shape contains only the fast moving and

energetically most favorable {111} facets.

3.2 Quantitative modeling of dissolution of α-quartz

Using the physical conditions and the parameter set that was systematically determined in

section 2.3, we quantitatively model the dissolution of α-quartz in a silica-undersaturated

solution. The set of input model parameters along with the corresponding physical condi-

tions are summarized in table 4, where the parameters without non-dimensional values were

only utilized for calculating the dissolution driving force and interfacial kinetic coefficient

in the modeling. The input parameters for the anisotropy functions are listed in tables A7

and A8. The resulting surface energies of different facets are given in table 5. The set
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Table 4: Input model parameters for α-quartz dissolution

Model parameters Symbol Non-dim. value Dim. value
Grid cell size ∆x 1 1 µm
Time step width ∆t 0.001 12.6 s
Quartz-water interface energy γqw 4 0.36 J/m2

Length scale parameter ε 4 4 µm
Kinetic coefficient of quartz-water interface µ0

qw 1 8.79× 10−16 m4/J-s
Driving force for dissolution ∆fDiss

qw -0.299 -26881 J/m3

Temperature T 439 K
Pressure p 1 atm
Equilibrium concentration of H4SiO4 ceqH4SiO4

385 ppm
Actual concentration of H4SiO4 cH4SiO4 193 ppm
Dissolution rate constant for quartz k+ 2.09× 10−6 1/s
Molar volume of quartz V qtz

m 22.7× 10−6 m3

Molar volume of water V H2O
m 18× 10−6 m3

AAA = {Am,Ar,Ad,Ac,Aa} comprises of the facet-specific anisotropy strength parameters

of the faces present in the growth (i.e. r and m) and dissolution (i.e. d and c) forms of

α-quartz. Moreover, an additional parameter Aa was added to obviate the non-physical

curvatures (concave surfaces) at certain interfacial points, otherwise occurring due to high

mobility jumps. In order to precisely capture the anisotropic dissolution tendencies of α-

quartz (discussed in section 2.3.4), the setAAA was calibrated. We considered a computational

domain of size 540 µm × 340 µm × 290 µm with an α-quartz crystal in its growth form,

measuring 490 µm and 298 µm along the c- and a-axis, respectively (see figure 6a at the

initial stage). For this numerical setup, numerous simulations of single crystal dissolution

were performed by varying the parameters in the set AAA. For the values of the facet-specific

anisotropy parameters as listed in table 5, the experimentally observed dissolution behav-

Table 5: Obtained surface energy and chosen facet-specific anisotropy strength parameters
of different facets for α-quartz

Facets
c (0001),
(0001̄)

d {112̄2},
{112̄2̄}

r {101̄1},
{101̄1̄} m {101̄0} Additional

Surface energy γqw γqw 1.227γqw 1.561γqw 1.352γqw
Anisotropy parameters Ac = 0.99625 Ad = 0.9965 Ar = 0.9994272 Am = 1.0 Aa = 1.0
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Figure 6: a) Simulated dissolution of α-quartz crystal in silica-undersaturated solution from
its growth form. The progression is shown at representative stages. For the sake of visual-
ization, different facets are shown in distinct colors and liquid phase as transparent in the
rest of domain. Plots of b) absolute velocity and c) relative velocity (v/vm) with respect to
m-facet, as a function of time for different facets during dissolution.

ior of α-quartz (see section 2.3.4) was recovered. Figure 6a depicts different stages of the

simulated dissolution. As expected, the dissolution facets are observed to appear at appro-

priate sites of the growth form, see figure 6a after 6.1 hrs. As the dissolution progresses, the

growth facets begin to vanish due to their lower shift velocities and higher surface energies

than the dissolution faces. Therefore, at later stages (after 173.7 hrs in figure 6a), only

the faster moving and energetically favorable dissolution facets are sustained in the crystal

shape. Figure 6b,c depicts the plots of temporal evolution of absolute and relative velocities

(i.e. v/vm, with respect to m-facet) for different facets. The simulated velocities of m- and
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r-facets of vm = 0.132 µm/hr and vr = 0.179 µm/hr compare well with the estimated values

of vexpm = 0.11 & 0.122 µm/hr and vexpr = 0.151 & 0.176 µm/hr in different alkali solutions in

the dissolution experiments of Gratz and Bird,39 at the (p, c, T ) conditions considered in the

present modeling. Moreover, the simulated velocities of c- and d-facets of vc = 0.8 µm/hr

and vd = 0.534 µm/hr, and thereby the relative velocities of vc/vm ∼ 6 and vd/vm ∼ 4, are in

agreement with the previous literature,18,21,32 as comprehensively discussed in section 2.3.4.

We remark that in the present example, care has been taken in choosing the grid spacing

such that large interface width artefacts are avoided. It is noteworthy that the present

model exhibits dependencies on the initial size of crystal, i.e. the relative shift velocities of

different facets vary for simulations of different-sized crystals dissolving from their growth

form. Therefore, the anisotropy parameters determined in the present case correspond to

the particular numerical setup considered in this work. Moreover, the complete simulation

parameter set was determined based on an extensive review of different experimental works.

Thus, we remark that the presented modeling and calibration procedure serve as a tem-

plate for precisely capturing the dissolution behaviour of different crystalline solids in the

phase-field model, when accurate data from experiments is available.

3.2.1 Dissolution of a single crystal sphere of α-quartz

Using the physical parameters (table 4) and the calibrated anisotropy parameters for α-

quartz (tables 5, A7 and A8), we simulate the dissolution of a single crystal sphere (diameter:

200 µm) of α-quartz in a cubic computational domain of edge length 220 µm filled with

the silica-undersaturated fluid. Figure 7 depicts the crystal shape evolution at different

representative stages. As the incorporated anisotropy accounts for the facets present in

growth (i.e. r and m) as well as dissolution form (i.e. c and d), all these faces appear during

the intermediate stages (between 12.3 and 38.6 hours in figure 7). At later stages (i.e. after

63.2 hrs), the crystal shape exhibits the dissolution form with c and d-facets, due to higher

shift velocities and lower surface energies of these planes. Dissolution experiments of single
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Figure 7: Simulated dissolution of a spherical crystal of α-quartz in silica-undersaturated
solution. Progression is shown at representative stages. Different facets are shown in distinct
colors for the sake of visualization.

crystal spheres of β-quartz in the NaF-K2S2O7 melt reported three stages in the formation

of a dissolution form, namely sphere, edge and vertex stage (Fig. 2 in Heimann 14). In the

present modeling of α-quartz dissolution, as we adopted the dissolution and growth forms

corresponding to the above-mentioned experiments of β-quartz, our simulations are able to

recreate these crystal shapes at different stages, i.e. edge stage (after 12.3 hrs) and vertex

stage (after 38.6 hrs) starting from the initial sphere stage.

4 Conclusion and Outlook

In this work, we presented a thermodynamically consistent and generalized anisotropic phase-

field model of faceted crystal dissolution. For capturing the shape evolution in the model-

ing, we proposed a novel and general prescription of input parameters that controls the

anisotropies associated with the interface energy and kinetic mobility of the crystal surface.

With this prescription, the model is able to simulate the dissolution of crystalline solids ex-

hibiting distinct crystallographic facets in their growth and dissolution forms, as described

by the Periodic bond chain (PBC) theory.18 The prescription also allows to account for the

occurrence of additional intermediate facets, if demanded by the physics of a specific crystal-

liquid system. As a starting point, we validated the model by qualitatively simulating the

dissolution of single crystals of different materials belonging to distinct crystal systems, in
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two (2-D) as well as three-dimensions (3-D). From these validatory simulations, the following

inferences were derived:

1. Numerical results of the dissolving 2-D hexagonal crystals elucidated that facets with

lower interfacial energy and higher kinetic mobilities (and thereby higher shift veloc-

ities) are predominantly present in the crystal shape and are sustained at the later

stages of dissolution, consistent with the well-known hypothesis of steady state dis-

solution shapes discussed in Snyder and Doherty,17 and as also expected from the

anisotropy prescription.

2. The simulated dissolution of a mineralogical crystal of β-quartz aptly captured the

appearance of kinked faces and subsequent evolution into its dissolution form, in agree-

ment with the experimental findings of Heimann.14 These results also confirmed that

the proposed prescription is straightforwardly applicable in 3-D as well.

3. In the third example, we simulated the dissolution of an organic crystal of β-succinic

acid, illustrating the appearance of stepped facets at the edges of its growth form,

as found in the previous experiments.17 This example further demonstrated that by

carefully modulating the energetics and kinetics of the crystal surface, on the basis of

an appropriate selection of anisotropy parameters following the proposed prescription;

the order of precedence and relative shift velocities of different facets can be adequately

controlled in the present phase-field model.

Next, in order to elucidate the procedure to quantitatively simulate the faceted crystal

dissolution process with this model, we considered the dissolution of α-quartz in silica-

undersaturated solution at the experimental conditions of Gratz and Bird.39 Further, based

on an extensive literature review, the missing parameters were determined at the physical

conditions matching (or close to) these experiments. The anisotropy parameters for α-

quartz−water system were recovered by simulating the dissolution of single crystals from

their growth form, and adjusting the relative dissolution rates of different facets to match the
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values that were inferred after a comprehensive analysis of the previous literature.18,21,32,40

From the simulation results of α-quartz dissolution with the complete parameter set, the

following conclusions were drawn:

1. The shape evolution of an α-quartz crystal, initially in its growth form (with m and

r facets), occurs such that, along with the dissolution of existing growth facets (as

discussed in Ostapenko and Mitsyuk 46), additional c and d faces appear and dissolve

at different rates, as also expected from the determined input parameter set.

2. The numerically obtained absolute shift velocities of different facets match well with

the values reported in the reference experiments.40

It is noteworthy that, as the growth and dissolution forms chosen for α-quartz were adopted

from the shapes proposed by Heimann 14 for β-quartz; the different stages of formation of

dissolution form reported for a dissolving spherical crystal in their experiments, were also

recreated in our model predictions.

Present work serves as one of the very first phase-field investigations addressing the phe-

nomenon of faceted crystal dissolution as described by the PBC theory. With the proposed

novel prescription of anisotropy, a precise calibration of dissolution behavior was conveniently

achieved for various crystal-liquid systems, as demonstrated in the numerical examples. How-

ever, we remark that various other forms for anisotropy functions may exist for capturing

the dissolution tendencies in different systems. The scope of this work was restricted to

modeling applications focussing on single crystal dissolution processes in different materials.

However, we remark that the presented model can be readily applied to simulate dissolution

in polycrystalline materials and sedimentary rocks. In such multigrain systems, additional

complexities such as faster or slower dissolution along the grain boundaries, or presence of

different types of grains (e.g. quartz and feldspar in sandstones) with their unique and dis-

tinct dissolution tendencies, can be incorporated. The present modeling assumes a constant
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driving force of dissolution. This assumption is admissible when particle detachment is very

slow compared to diffusion and advection. In systems where the above assumption breaks

down, the model needs to be coupled with the equations of solute concentration as well as

fluid-flow. To account for the motion and deformation of detached crystals, a further cou-

pling with the equations of rigid body dynamics and solid mechanics could be considered.

Thus, the present work paves the way for more advanced phase-field models of dissolution

also accounting for the above-mentioned extensions.

5 Appendix

This section lists the input set of vectors for the capillary and kinetic anisotropy functions

for the simulations showcased in the present work. In all the simulations, the anisotropy

strength parameter of δ = 1000 was set. Further, a list of all the symbols is given in the last

part of this section.
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5.1 Anisotropy parameters for the hexagonal growth and dissolu-

tion forms

Dissolution form

Growth form

Figure A1: Hexagonal growth
and dissolution forms illustrat-
ing the input vectors for the
capillary and kinetic anisotropy
corresponding to the vertices
and facets of these forms.

x y

ηηηcap1,2 ±1.155 0

ηηηcap3..6 ±0.577 ±1

Table A1: Set of vertex vectors for capillary anisotropy
function corresponding to the 2-D hexagonal dissolution
form, as also schematically shown (in red color) in figure
A1.

From growth form From dissolution form

x y x y

ηηηkin
1,2 ±1 0 ηηηkin

13,14 0 ±1

ηηηkin
3,4 ±1*A1 0 ηηηkin

15,16 0 ±1*A3

ηηηkin
5..8 ±0.5 ±0.866 ηηηkin

17..20 ±0.866 ±0.5

ηηηkin
9..12 ±0.5*A2 ±0.866*A2 ηηηkin

21..24 ±0.866*A4 ±0.5*A4

Table A2: Facet normal vectors for kinetic anisotropy func-
tion for 2-D hexagonal growth and dissolution forms, as also
schematically shown (in black color) in figure A1.

5.2 Anisotropy parameters for Type B β-quartz

Dissolution form Growth form

Figure A2: Growth and dissolution forms of
β-quartz illustrating the input vectors for the
capillary and kinetic anisotropy correspond-
ing to the vertices and facets of these forms.

x y z

ηηηcap1,2 ±1 0 1

ηηηcap3..6 ±0.5 ±0.866 1

ηηηcap7,8 ±1 0 -1

ηηηcap9..12 ±0.5 ±0.866 -1

Table A3: Set of vertex vectors for capillary
anisotropy function corresponding to the β-
quartz dissolution form, as also schematically
shown (in black color) in figure A2.
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Table A4: Facet normal vectors for kinetic anisotropy function for β-quartz growth and
dissolution forms, as also schematically shown in figure A2.

From growth form From dissolution form

x y z x y z

ηηηkin1..2 ±0.7857 0 0.6186 ηηηkin25,26 0 0 ±1
ηηηkin3..6 ±0.3929 ±0.6805 0.6186 ηηηkin27,28 0 0 ±1*Ac
ηηηkin7..8 ±0.7857*Ad 0 0.6186*Ad ηηηkin29,30 ±1 0 0
ηηηkin9..12 ±0.3929*Ad ±0.6805*Ad 0.6186*Ad ηηηkin31,32 ±1*Am 0 0
ηηηkin13..14 ±0.7857 0 -0.6186 ηηηkin33..36 ±0.866 ±0.5 0
ηηηkin15..18 ±0.3929 ±0.6805 -0.6186 ηηηkin37..40 ±0.866*Am ±0.5*Am 0
ηηηkin19..20 ±0.7857*Ad 0 -0.6186*Ad
ηηηkin21..24 ±0.3929*Ad ±0.6805*Ad -0.6186*Ad

5.3 Anisotropy parameters for β-succinic acid

Dissolution formGrowth form Intermediate shape

(011)

(100)

(020)

(110)

(031)

(002)
(111)

Figure A3: Growth and dissolution forms of β-succinic acid
along with the intermediate shape with additional facets
appearing during dissolution.

x y z

ηηηcap1,2 ±1 0 0

ηηηcap3,4 0 ±1 0

ηηηcap5,6 0 0 ±1

Table A5: Set of vertex vectors
for capillary anisotropy func-
tion corresponding to the β-
succinic acid dissolution form.

Table A6: Facet normal vectors for kinetic anisotropy function for the growth and dissolution
forms along with intermediate shape for β-succinic acid, as shown in figure A3. The subscript
of each anisotropy strength parameter appearing in the components of a vector corresponds
to the facet it belongs to.

From growth form From dissolution form From intermediate shape

x y z x y z x y z

ηηηkin
1,2 ±1 0 0 ηηηkin

17..24 ±0.5774 ±0.5774 ±0.5774 ηηηkin
33..36 ±0.9487 ±0.3162 0

ηηηkin
3,4 ±1*A020 0 0 ηηηkin

25..32 ±0.5774*A111 ±0.5774*A111 ±0.5774*A111 ηηη
kin
37..40 ±0.9487*A031 ±0.3162*A031 0

ηηηkin
5,6 0 0 ±1 ηηηkin

41..44 ±0.7071 0 ±0.7071
ηηηkin
7,8 0 0 ±1*A100 ηηηkin

45..48 ±0.7071*A101 0 ±0.7071*A101

ηηηkin
9..12 ±0.7071 ±0.7071 0 ηηηkin

49..52 0 ±0.7071 ±0.7071
ηηηkin
13..16 ±0.7071*A011 ±0.7071*A011 0 ηηηkin

53..56 0 ±0.7071*A011 ±0.7071*A011

ηηηkin
57,58 0 ±1 0
ηηηkin
59,60 0 ±1*A002 0
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5.4 Anisotropy parameters for α-quartz

Growth formDissolution form

d

d
d

d

dd

c

m m

m

r
r

r r

rr

Figure A4: Growth and dissolution forms of α-quartz il-
lustrating the subscript-numbering of the input vectors for
the capillary and kinetic anisotropy corresponding to the
vertices and facets of these forms.

x y z

ηηηcap
1,2 ±0.5105 0 1

ηηηcap
3..6 ±0.2552 ±0.4421 1

ηηηcap
7,8 ±1.5612 0 0

ηηηcap
9..12 ±0.7806 ±1.352 0

ηηηcap
13,14 ±0.5105 0 -1

ηηηcap
15..18 ±0.2552 ±0.4421 -1

Table A7: Set of vertex vectors
for capillary anisotropy func-
tion corresponding to the α-
quartz dissolution form.

Table A8: Facet normal vectors for kinetic anisotropy function for the growth and dissolution
forms along with additional vectors (to avoid non-physical curvatures) for α-quartz, as also
schematically shown in figure A4.

From growth form From dissolution form Additional vectors

x y z x y z x y z

ηηηkin
1,2 ±1 0 0 ηηηkin

37,38 0 0 ±1 ηηηkin
65..68 0 ±1 ±0.22

ηηηkin
3,4 ±1*Am 0 0 ηηηkin

39,40 0 0 ±1*Ac ηηηkin
69..72 0 ±1*Aa ±0.22*Aa

ηηηkin
5..8 ±0.5 ±0.866 0 ηηηkin

41..44 0 ±0.74 ±0.6727 ηηηkin
73..80 ±0.866 ±0.5 ±0.22

ηηηkin
9..12 ±0.5*Am ±0.866*Am 0 ηηηkin

45..48 0 ±0.74*Ad ±0.6727*Ad ηηηkin
81..88 ±0.866*Aa ±0.5*Aa ±0.22*Aa

ηηηkin
13..16 ±0.7857 0 ±0.6186 ηηηkin

49..56 ±0.6408 ±0.37 ±0.6727
ηηηkin
17..20 ±0.7857*Ar 0 ±0.6186*Ar ηηηkin

57..64 ±0.6408*Ad ±0.37*Ad ±0.6727*Ad
ηηηkin
21..28 ±0.3929 ±0.6805 ±0.6186
ηηηkin
29..36 ±0.3929*Ar ±0.6805*Ar ±0.6186*Ar

5.5 List of Symbols

Complete list of symbols corresponding to all the physical and model parameters used in

this work is given in table A9.

6 Supplementary material

The attached animation videos were generated from the digital data sets of the simulated

dissolution in different crystalline solids that were reported in this work. These data sets
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Table A9: List of Symbols. (·) denotes the place-holder for one phase, (··) is the place-holder
for two phases and (∗) represents the place-holder for a facet.

Model parameters Symbol Subscript of phase (·) Symbol
Phase-field variable of phase (·) φ(·) solid s
Phase-field duplet φφφ liquid l
Physical domain Ω quartz q
Grid cell size ∆x water w

Time step width ∆t Subscript of two phases (··)

Bulk region of phase (·) B(·) solid-liquid sl
Diffuse interface region between phases (··) I(··) quartz-water qw

Helmholtz free energy F α-Quartz specific model parameters

Bulk free energy contribution Fbulk Temperature T
Interface free energy contribution Finterface Pressure p
Bulk free energy density fbulk Difference of molar volume ∆V
Interface free energy density finterface Change of Gibbs free energy ∆G
Free energy density of phase (·) f(·) Gas constant R
Potential energy density ω/ε Saturation index S
Gradient energy density εa Equilibrium concentration of H4SiO4 ceqH4SiO4

Length scale parameter ε Actual concentration of H4SiO4 cH4SiO4

Surface energy of (··) interface γ(··) Dissolution rate constant for quartz k+
Capillary anisotropy function acap

(··) Molar volume of quartz V qtz
m

Phase-field gradient vector qqq(··) Molar volume of water V H2O
m

Unit phase-field gradient vector nnn(··) Velocity of qw interface vqw
Kinetic mobility of (··) interface µ(··) Velocity of m, r, d, c-facet v(∗)
Kinetic coefficient of (··) interface µ0

(··)
Kinetic anisotropy function of (··) interface akin

(··)
Capillary anisotropy vector set NNN cap

kth Capillary anisotropy vector ηηηcap
k

Kinetic anisotropy vector set NNN kin

kth Kinetic anisotropy vector ηηηkin
k

Full set of anisotropy strength parameters Â̂ÂA
Reduced set of anisotropy strength parameters AAA
Facet specific anisotropy strength parameter A(∗)
Driving force for dissolution ∆fDiss

(··)

can be accessed in the general-purpose open-access data repository at Prajapati et al..83

The data sets were generated using the multiphysics software framework Pace3D (version

2.5.1). The software license can be bought at Steinbeis Network (www.steinbeis.de) in the

management of Prof. Dr. rer. nat. Britta Nestler and Dr.-Ing. Michael Selzer under the

subject area “Material Simulation and Process Optimization".
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