KIT | KIT-Bibliothek | Impressum | Datenschutz

On Foundations of Protecting Computations

Agrikola, Thomas

Abstract:

Information technology systems have become indispensable to uphold our
way of living, our economy and our safety. Failure of these systems can have
devastating effects. Consequently, securing these systems against malicious
intentions deserves our utmost attention.

Cryptography provides the necessary foundations for that purpose. In
particular, it provides a set of building blocks which allow to secure larger
information systems. Furthermore, cryptography develops concepts and tech-
niques towards realizing these building blocks. The protection of computations
is one invaluable concept for cryptography which paves the way towards
realizing a multitude of cryptographic tools. In this thesis, we contribute to
this concept of protecting computations in several ways.

Protecting computations of probabilistic programs. An indis-
tinguishability obfuscator (IO) compiles (deterministic) code such that it
becomes provably unintelligible. This can be viewed as the ultimate way
to protect (deterministic) computations. Due to very recent research, such
obfuscators enjoy plausible candidate constructions.
In certain settings, however, it is necessary to protect probabilistic com-
... mehr


Volltext §
DOI: 10.5445/IR/1000133798
Cover der Publikation
Zugehörige Institution(en) am KIT Kompetenzzentrum für angewandte Sicherheitstechnologie (KASTEL)
Publikationstyp Hochschulschrift
Publikationsdatum 17.06.2021
Sprache Englisch
Identifikator KITopen-ID: 1000133798
Verlag Karlsruher Institut für Technologie (KIT)
Umfang xviii, 281 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Informatik (INFORMATIK)
Institut Kompetenzzentrum für angewandte Sicherheitstechnologie (KASTEL)
Prüfungsdatum 07.05.2021
Schlagwörter Indistinguishability Obfuscation, Probabilistic Indistinguishability Obfuscation, Doubly-Probabilistic Indistinguishability Obfuscation, Extremely Lossy Functions, (Sub)Exponential Assumptions, Leveled-Homomorphic Encryption, Algebraic Wrapper, Algebraic Group Model, tight Schnorr-signed ElGamal, Pseudorandom Encodings, Invertible Sampling, Oblivious Sampling, (Fully) Adaptively Secure Multi-Party Computation
Referent/Betreuer Müller-Quade, J.
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page