
Information Systems 101 (2021) 101791

l
o
d
l
d
a
O
k

h
0

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Towardsmulti-purposemain-memory storage structures: Exploiting
sub-space distance equalities in totally ordered data sets for exact knn
queries
Martin Schäler a,∗, Christine Tex b,c, Veit Köppen d, David Broneske e,f, Gunter Saake f

a Salzburg University, Austria
b Karlsruhe Institute of Technology, Germany
c GridData GmbH, Germany
d Zentral- und Landesbibliothek Berlin, Germany
e German Centre for Higher Education Research and Science Studies, Germany
f University of Magdeburg, Germany

a r t i c l e i n f o

Article history:
Received 15 May 2020
Received in revised form 21 March 2021
Accepted 28 April 2021
Available online 12 May 2021
Recommended by Dennis Shasha

Keywords:
Data storage structures
k-nearest neighbor queries
Main memory

a b s t r a c t

Efficient knn computation for high-dimensional data is an important, yet challenging task. Today,
most information systems use a column-store back-end for relational data. For such systems, multi-
dimensional indexes accelerating selections are known. However, they cannot be used to accelerate
knn queries. Consequently, one relies on sequential scans, specialized knn indexes, or trades result
quality for speed. To avoid storing one specialized index per query type, we envision multipurpose
indexes allowing to efficiently compute multiple query types. In this paper, we focus on additionally
supporting knn queries as first step towards this goal. To this end, we study how to exploit total
orders for accelerating knn queries based on the sub-space distance equalities observation. It means
that non-equal points in the full space, which are projected to the same point in a sub space, have
the same distance to every other point in this sub space. In case one can easily find these equalities
and tune storage structures towards them, this offers two effects one can exploit to accelerate knn
queries. The first effect allows pruning of point groups based on a cascade of lower bounds. The
second allows to re-use previously computed sub-space distances between point groups. This results
in a worst-case execution bound, which is independent of the distance function. We present knn
algorithms exploiting both effects and show how to tune a storage structure already known to work
well for multi-dimensional selections. Our investigations reveal that the effects are robust to increasing,
e.g., the dimensionality, suggesting generally good knn performance. Comparing our knn algorithms
to well-known competitors reveals large performance improvements up to one order of magnitude.
Furthermore, the algorithms deliver at least comparable performance as the next fastest competitor
suggesting that the algorithms are only marginally affected by the curse of dimensionality.

© 2021 Published by Elsevier Ltd.
1. Introduction

In the last decade, main-memory database systems have revo-
utionized analytical query processing of relational data. The core
f such relational systems usually is a columnar main-memory
atabase system. Classically, analytical query processing in re-
ational databases is a synonym for OLAP. However, present-
ay data analytics involves knowledge extraction from emerging
pplications, like scientific databases or time series analytics.
ne prominent example query in this context is computing the
-nearest neighbors (knn) for a high-dimensional data set [1–3].

∗ Corresponding author.
E-mail address: martin.schaeler@sbg.ac.at (M. Schäler).
ttps://doi.org/10.1016/j.is.2021.101791
306-4379/© 2021 Published by Elsevier Ltd.
To efficiently execute knn queries, one currently has three
options. First, one can rely on main-memory optimized sequential
scans. Hence, one exploits advances in hardware reducing the
cost for vising all points by orders of magnitude compared to
hard-disk environments. This makes sequential scans a power-
ful competitor. Second, to avoid scanning all points in the data
set – complementing main memory storage – a wide range of
indexing techniques is known. State-of-the-art approaches, such
as iDistance [4], map each point in the data set to its nearest
pivot(s) to apply lower-bound-based pruning [5]. Comparative
studies [4,6] report large performance increases for various use
cases. However, due to the curse of dimensionality, distances be-
tween high-dimensional points tend to be very similar reducing
the efficiency of pruning [7]. Therefore, for realistic data dimen-
sionality as found, e.g., in the UCI archive [8], such approaches

https://doi.org/10.1016/j.is.2021.101791
http://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2021.101791&domain=pdf
mailto:martin.schaeler@sbg.ac.at
https://doi.org/10.1016/j.is.2021.101791

M. Schäler, C. Tex, V. Köppen et al. Information Systems 101 (2021) 101791

v
t
a
t
i
s
q
u

a
c
t
i

e
o
c
s
w
t
q

W
a
d
o
f
f
m

isit a large fraction of the data. Ultimately, they even deteriorate
o a sequential scan. Third, in case dimensionality is high, the only
pproach avoiding the deterioration problem is result approxima-
ion [9], i.e., trading result accuracy to improve response time. For
nstance, the group of Locality Sensitive Hashing (LSH) [10] yields
everal approaches that deliver good response times and result
uality. However, result approximation may not be valid for all
se cases.
Objective. To allow for a new option, we study whether novel

storage structure layouts, which are already known to work well
for multi-dimensional selections, can be exploited to efficiently
compute exact knn queries achieving comparable performance
as specialized approaches. In the long run, we aim at efficiently
computing arbitrary columnar analytical queries as well as knn
queries on the same underlying storage structure. That is, one
shall not require one additional index per query type storing the
data redundantly and increasing system complexity. We call such
storage structures multi-purpose storage structures.

A promising candidate for such a storage structure is the Elf
pproach [11,12]. It shows good performance for queries with
olumnar access pattern compared to state-of-the-art competi-
ors. In addition, the benefit remains observable when integrated
nto a full-fledged present-day system, such as MonetDB [13].

To efficiently support exact knn queries, we show how to
xploit and tune the sub-space distance equality concept naturally
ccurring when introducing a total order into a data set D. The
oncept is based on the observation that all points having the
ame prefix (combination of values), result in the same point
hen projected to this prefix. To this end, in the subspace of
he prefix, they have the same distance to (the projection of) any
uery point.
The concept implies two effects for accelerating knn queries.
e name the first effect group lower bound effect. We know

lready that using prefix distances can effectively bound the
istance of individual points [14]. Our core novelty is, relying
n Elf, we can easily identify all points having the same pre-
ix and tune Elf creation by selecting a good dimension order
or a specific data set. This way, the bound generally refers to
ultiple points resulting in the group lower bound effect. The sec-

ond effect is the re-use of sub-space distances. This effect holds
for iteratively computable distance functions (see Definition 2.3)
which include, e.g., the Minkowski metric family. There, we com-
pute the distance for each unique prefix only once and, thus,
bound the number of required distance function computations
independently of the used distance function.

Contributions. Our contributions are:

1. We develop knn algorithms exploiting sub-space distance
equalities for knn computation on Elf and present how to
tune Elf for a data set D.

2. We show that, for iteratively computable distance func-
tions, including all Minkowski metrics – for the first time
for exact approaches [15] – there is a worst-case bound for
the number of computed distances smaller than O(|D|). The
bound is independent of the distance function and it only
depends on the data set.

3. We examine the influence of dimensionality, cardinality,
and distance function on the expected number of dis-
tances revealing a predictable and robust behavior of the
developed knn algorithms primarily influenced by the di-
mensionality of the data set.

4. Examining the run time of our algorithms results in com-
petitive performance in any case considering highly potent
competitors, including iDistance [4]. We prove that the
reason is exploiting the group lower-bound pruning and re-
use of sub-space distances. Thus, even for high-dimensional
data sets, where lower bounding fails due to the curse of
dimensionality, we still can exploit the second effect.
2

Fig. 1. General data processing pipeline.

The structure of the paper is as follows: Section 2 contains
basic assumptions and introduces our notation. In Section 3, we
introduce the effects resulting from sub-space distance equalities.
In Section 4, we propose knn algorithms for Elf, show how to tune
Elf for exploiting the effects, and discuss the worst-case execution
bound. Section 5, evaluates our knn algorithms with a systematic
intrinsic evaluation as well as a comparison against well-known
competitors. Finally, to support repeatability, all data sets and
implementations are available open source.1

2. Preliminaries and scope

Generally, the way from initial acquisition of the raw data to
the desired data analysis results involves a complex processing
pipeline with various steps. To this end, we first state the scope of
this paper, which is how our solution is involved in this process.
Second, we define the knn problem, i.e., the analysis we focus on.

2.1. Scope and assumptions

In the following, we explain the assumptions for the experi-
ments in the remainder, which illustrates the scope of the paper.
All assumptions aim at supporting the general processing pipeline
of the knowledge discovery process (KDD) [16] depicted in Fig. 1.
Typically, the raw data collected, e.g., from some sensors, is not
directly used for the analysis. Instead, a pre-processing is recom-
mended [17]. The actual pre-processing is use-case dependent,
but typically includes: (i) dimensionality reduction, (ii) value
normalization, and (iii) cardinality reduction.

While generally, the knn algorithms presented in this pa-
per are applicable to raw data, we presume that the knn are
not computed for the raw data. Specifically, we assume that
some combination of dimensionality reduction technique, value
normalization, and cardinality reduction on the raw data has
been conducted. Giving credit to the vast number of possible
pre-processing approaches, we only describe the intended effect
on the data set and do not presume that a specific approach
is used. This helps to define, e.g., what data we consider for
evaluation purposes. Please mind that pre-processing may af-
fect the computing of subsequent standard relational operations
(e.g., selections and aggregations). This means that those opera-
tors need to be rewritten, such that they can be directly executed
on pre-processed data. This is a well-known technique, which
however does not exist for every possible combination of pre-
processing steps as one requires a bijective mapping from raw to
pre-processed data.

1 Source code and data available at www.elf.ovgu.de/KNN.html.

https://www.elf.ovgu.de/KNN.html

M. Schäler, C. Tex, V. Köppen et al. Information Systems 101 (2021) 101791

D

a
f
d

2

p
o
n

2

r

q

i
T
d
t
h
t

D
i
h

d

a
p
e
d
a
c
a

I
f
i
t
H
i
a
t
t
D
m
a
l

D

imensionality reduction. Frequently, one conducts some dimen-
sionality reduction. The reduction could be done, via Principal
Component Analysis (PCA) [18], Piecewise Aggregate Approxima-
tion (PAA) [17], Locality Sensitive Hashing (LSH) [10], or Neural
Networks (e.g., word embeddings [19]). The objective is to elim-
inate correlated dimensions or to reduce the data set size. In
context of this paper, the assumption that dimensionality re-
duction is performed helps selecting data sets with meaningful
dimensionality in the experiments.

Value normalization. There are various ways to normalize data to
fit a desired distribution. A well-known example is
Z-normalization to fit a Gaussian distribution. To this end, we
focus on data sets having a known distribution (e.g., Uniform), as
well as data sets where the distribution is not known. The latter
ones are summarized under the term real-world data sets.

Cardinality reduction. To reduce data volume and cope with
noise, one often conducts a cardinality reduction. That is, one
reduces the number of possible values of dimension i to ci pos-
sible integer values or class labels [10]. Here, ci is a user-defined
rbitrarily large granularity, which can also be used as weighting
actor. In this paper, we assume that ci is the same for all
imensions, a common assumption [10] imposing no restriction.

.2. The knn problem

In the remainder, we refer to approaches involving the knn
roblem. We subsequently define this problem and state classes
f distance functions, we focus on. We give an overview of our
otation in Table 1.

.2.1. Definition of the knn problem
Given a set of points in a d-dimensional space, a knn query

eturns the k closest points to a query point according to a
distance function.

Definition 2.1 (Knn Problem). For a query point q ∈ Nd, a distance
function dist(), a set of points D from Nd, and k ∈ N∗, the knn
uery knn(q, dist(),D, k) returns the smallest set S ⊆ D that

contains k points, and for which the following condition holds:

∀p ∈ S,∀p′ ∈ D \ S : dist(q, p) < dist(q, p′).

Notably, the definition above means that there are alternative
functions than dist() for computing the knn. There may be some
function dist ′() that is order preserving according to dist(), but
faster to compute. An example is using the squared Euclidean
distance instead of the Euclidean distance to avoid computing
square roots.

For lower bound pruning, one utilizes the maximum distance
of the points forming the current result set S to the query point.

Definition 2.2 (Maximum Distance to Query Point). For a query
point q ∈ Nd and a result set S ⊆ D of a knn query, the
maximum distance of any point s ∈ S to the query point q
is defined by max_dist(S, q) := maxp∈S dist(q, p) realized by
arg_max_dist(S, q) := argmaxp∈S dist(q, p).

2.2.2. Classes of distance functions in the focus
For computing the knn, relying on sub-space distance equal-

ities, one can generally use an arbitrary distance function dist().
However, to allow for efficient computation, one usually focuses
on a class of distance functions, such as metrics, or even on a
single distance function. The rational is that one can exploit their
features to speed up computation. In the remainder, we exploit
the two mentioned effects, and therefore focus on distance func-
tions allowing to exploit them. While the first effect holds for
3

Table 1
Overview of notation.
Notation Semantics

D A data set from Nd

d Dimensionality of the data set
q Query point q ∈ Nd

p A point p ∈ Nd

p[i] The ith value (i.e., dimension) of p
k Number of points to return
S Result set of a knn query
dist(p1, p2) Function returning the distance between

points p1 and p2 , abbreviated by dist()
fi(p[i], q[i]) Local distance function for dimension i
max_dist(S, q) Function returning maximum distance of

any point s ∈ S to query point q
arg_max_dist(S, q) Function returning the point having

largest distance in S to query point q
preu(p) Projection of p to its first u dimensions

all norms [20], the second one requires an iteratively computable
distance function. We introduce such distance functions next.
For explanatory reasons, we initially introduce the definition of
iterative distance functions. Then, we extend this definition to
iteratively computable ones.

Iterative distance function. A distance function dist() is iterative,
f it can be computed as sum of the dimension-wise distances.
his is formalized in Definition 2.3. It states that there is a local
istance function fi for every dimension i computing the respec-
ive dimension-wise distance. That way, we can consider data sets
aving numerical and categorical attributes. As usual, we assume
hat fi returns non-negative distances.

efinition 2.3 (Iterative Distance Function). A function dist() is
terative, iff there exists a set of functions fi such that ∀(p, q) ∈ Nd

olds that

ist(p, q) =
d∑

i=1

fi(p[i], q[i]).

For illustration, consider a data set having several numerical
nd one categorical dimension. The distance between two points
and q shall mimic the squared Euclidean distance. To this

nd, one sums up the dimension-wise distance in all numerical
imensions computed as fi(p[i], q[i]) = (p[i] − q[i])2. Then, one
dds the distance of the categorical dimension computed by the
orresponding local distance function fi. The simplest case of such
function is a matrix containing all pair-wise distances.

teratively computable distance functions. Some common distance
unctions, like the Euclidean distance, are not iterative. The reason
s that, after summing up the dimension-wise distances (i.e., af-
er iterating), one has to additionally compute the square root.
owever, as stated for the knn problem, to compute the knn it
s sufficient to have a function dist ′() that is order preserving
ccording to dist(). As a result, we say that a distance func-
ion is iteratively computable, if there is an iterative function
hat is order-preserving towards dist(), which is formalized in
efinition 2.4. The definition covers, for instance, all Minkowski
etrics, like Euclidean distance, including their weighted vari-
nts, Hamming distance, and, after normalizing vector (i.e., point)
ength, also for cosine distance.

efinition 2.4 (Iteratively Computable Distance Function). A func-
tion dist() is iteratively computable, iff there is an iterative dis-
tance function dist ′() that is order preserving towards dist().

M. Schäler, C. Tex, V. Köppen et al. Information Systems 101 (2021) 101791

3

d
e
a

3

a

A
n

t
a
s

W
p

(
p

Fig. 2. Running example data. The data is sorted.

. Knn computation with sub-space distance equalities

In this section, we firstly introduce the concept of sub-space
istance equalities and secondly explain two effects allowing to
xploit it for efficient knn computation. Moreover, we differenti-
te the concept from related ones.

.1. Sub-space distance equalities

To explain the concept of sub-space distance equality, consider
d-dimensional data set, with d > 2 and sort it to some

dimension order. For simplicity, assume we sort according to
dim1, . . . , dimd. As a result, all points having the same value
in the first dimension (dim1) are located next to each other.
Observably, that also holds for all points sharing the same prefix.

prefix preu refers to the first u dimensions, i.e., it projects the
-dimensional point to a u-dimensional one. Intuitively, all points

sharing the same prefix preu are represented by the same point in
he corresponding u-dimensional sub space. Consequently, they
lso have the same distance to any query point projected to that
ub space. This is what we call a sub-space distance equality.
For illustration, consider the (sorted) example data set in Fig. 2.
e observe that points with the TIDs T1, T5 and T4 have the same
refix until dimension dim2, namely, pre2 = (0, 1). Consequently,

in the two-dimensional sub space consisting only of the first two
dimensions, those points are projected to the same point p =
0, 1). To this end, they also have the same distance to any query
oint q: dist(pre2(p), pre2(q)) =

∑2
i=1 fi(p[i], q[i]).

3.2. Two effects for knn computation

Using sub-space distance equalities, we can exploit two effects
to accelerate knn computation. The effects are the group lower
bound effect and the re-use effect. Subsequently, we introduce
both effects giving an intuition how to exploit them and for what
distance functions they hold.

Effect 1: Group lower bound effect. Let preu be a projection of an
arbitrary d-dimensional point to its first u dimensions. Further,
let q be a d-dimensional query point. Then, p can only be a query
answer (i.e., p ∈ S) if dist(preu(p), preu(q)) ≤ max_dist(S, q) holds.
That is, the distance of preu to the corresponding projection of q
(sub-space distance) is a lower bound of the full-space distance
of p and q. This is the common lower bound effect. However, this
lower bound additionally holds for all points having the same pre-
fix as p. Recapitulate that after sorting, all points having the same
prefix are located next to each other. Thus, it is easy to prune
all points whose lower bound exceeds the full-space distance of
the currently found kth nearest neighbor. The effect holds for any
norm used as distance function due to orthogonality [20].

Effect 2: Re-use effect of sub-space distances. If we use an itera-
tively computable distance function, we can re-use the previously
computed sub-space distance in two ways. For explanation, as-
sume that we already computed the sub-space distance of p to
q having the same prefix prel−1. Firstly, for a different point p′
having the same prefix pre , we can also re-use this distance,
l−1

4

as it is the same. The second re-use opportunity is as follows.
Assume that we aim at computing the sub-space distance from
p to q and p′ to q in the (next larger) sub space defined by prel.
To compute the distance for p, we only need to add fl(p[l], q[l]) to
the already computed distance. Even in case the dimension values
of p and p′ are not the same in dimension l, we can still re-use
the sub-space distance from prel−1, by simply adding the result
of fl(p′[l], q[l]).

3.3. Related work to sub-space distance equalities

We now compare accelerating knn computation with sub-
space distance equalities to knn approaches from the literature.
Generally, there is a large variety of different knn approaches.
Therefore, we do not focus on specific approaches, but on under-
lying concepts. Nevertheless, for each concept, we name promi-
nent approaches. For each concept, we integrate at least one
approach into the evaluation.

Classic indexing approaches. Approaches like R-Tree [21] or kd-
Tree [22] have given way to various improvements including,
e.g., [23–25]. There are large surveys comparing them compre-
hensively, like [1–3]. All classical indexing approaches enclose
a set of points using a hierarchy of geometric forms, like mini-
mum bounding rectangles. Those forms allow to compute a lower
bound for points contained. To this end, they apply lower-bound-
based pruning of point groups. However, one cannot re-use pre-
viously computed distances. Moreover, the geometric forms are
defined on the full space tending to overlap each other even at
the leaf level. Therefore, they tend to degrade to a sequential scan
for high-dimensional data [26].

Optimized sequential scans. As a solution to the degradation prob-
lem of classical indexing techniques, optimized sequential scans
are proposed. An early variant is the VA-File [26]. Its core idea
is using a compressed representation of the data fitting into
main-memory allowing to compute a lower bound per point.
The data itself resides on hard disk being multiple orders of
magnitudes slower than main memory. However, with increased
main-memory capacities, usually the whole data set fits into main
memory. Nevertheless, for computationally expensive distance
functions, such as set similarity, dynamic time warping (DTW), or
string as well as tree-edit distance, optimized sequential scans are
state-of-the-art [27]. Corresponding approaches apply multiple
techniques to avoid computing the full-space distance of two
points. To illustrate, the UCR suite [8] – pioneering the combi-
nation of techniques – first applies a cascade of lower bounds
with increasing tightness (ordered by increasing computational
complexity). Second, upon distance computation, the UCR suite
abandons the distance computation if the prefix distance exceeds
max_dist(S, q), i.e., the prefix distance serves as lower bound.
Finally, in case the data needs to be normalized upon knn query
execution, the UCR suite re-orders the values to provoke large
prefix distances for short prefixes. In contrast to the concept
of sub-space distance equalities, the bounds refer to individual
points. Research in this area aims at grouping points based on
similar bounds [28,29]. Then, the (less tight) bounds refer to
multiple points. However, since the prefixes of points in a group
is not guaranteed to be the same, one cannot re-use previously
computed distances.

Metric indexing with pivots. The AESA approach introduced the
idea of pivot-based indexing [30] performing a lower-bound
pruning based on the triangle inequality. Generally, the idea is
to determine several pivot points. Then, one maps any point
in the data set to its nearest pivot(s). Due to these mappings,
the triangle in-equality between query point, pivot, and data

M. Schäler, C. Tex, V. Köppen et al. Information Systems 101 (2021) 101791

p
b
l
p
e
i
t

p
d
o
m
l
t
o
P
b
k
i

A
s
a
H
t
s
t
t
b
3
L
f
s
T
i

4

e
t
s
i
e
S
(
m
s
b
a

p

t
m
c
t
k
t
i
t
a
c
o
i
(
w

Fig. 3. Conceptual Elf for the running example data.

oint can be used for computing a lower bound of the distance
etween query point and data point using any metric [6,31]. Thus,
ower-bound computation is a simple addition and subtraction of
re-computed values. In contrast to exploiting sub-space distance
qualities, one cannot re-use previously computed distances,
teratively tighten the bound when dimensionality (i.e., length of
he prefix) increases.

Various approaches rely on metric indexing with pivots. A
articularly relevant approach is iDistance [4]. It assigns one-
imensional indexes to the pivot-point mappings. Based on the
ne-dimensional index, it can be used for data on hard disk or in
ain memory [32,33]. By concept, also revealed in comparisons

ike [5], for high-dimensional data one still faces the challenge
hat one tends to scan the entire data set, as the expected size
f lower bound becomes too large to prune points. To avoid this
tolemaic indexing [34] has been proposed. It features tighter
ounds than metric indexing and is applicable to various well-
nown distance functions. However, it is not as general as metric
ndexing and requires more computational effort.

pproximation. Metric indexing approaches increase the dimen-
ionality for that an indexing approach generally is faster than
sequential scan compared to classical indexing approaches.
owever, ultimately, if dimensionality is high enough, any of
hose approaches still converges towards scanning the entire data
et [7,15]. A common solution avoiding this problem is to embed
he data into a lower dimensional space approximately keeping
he point-wise distances, optionally satisfying some correctness
ound. Examples for approaches guaranteeing a bound are [17,
5]. Any of these approaches are applications of the Johnson–
indenstrauss lemma [36]. It states that one can embed points
rom a high-dimensional (Euclidean) space into a lower dimen-
ional one by approximately keeping the distances between them.
hus, in the end, they conduct a dimensionality reduction, which
s one of the suggested pre-processing steps.

. Knn computation with Elf

We use the Elf approach [11] for exploiting sub-space distance
qualities. Still, neither the concept of sub-space distance equali-
ies itself, nor the corresponding effects are specific to Elf. What is
pecific to Elf, being the reason why we use this approach, is that
t is particularly easy to find all points having sub-space distance
qualities. To this end, we first introduce the Elf approach in
ection 4.1 and then develop efficient knn algorithms for Elf
Section 4.2). Furthermore, we theoretically analyze the maxi-
um number of computed distances per knn query (Section 4.3)
howing that we can set up a distance-function independent
ound. Finally, we show how to tune a specific Elf by selecting
good dimension order.
5

4.1. Design of the Elf approach

Originally, trie-like Elf is proposed to accelerate OLAP queries
focusing on efficiently evaluating multi-column selection predi-
cates. We illustrate the design of Elf relying again on the four-
dimensional data set from Fig. 2. Conceptually, Elf incremen-
tally indexes existing dimension values in sub spaces. That is,
the first level in Elf refers only to the first dimension. The sec-
ond level refers to the first and the second dimension etc. Each
node of Elf, called DimensionList, contains entries of the form
(value, pointer) (i.e., dimension value and pointer to the next
deeper tree level) ordered according to value. This means, the
root level of the tree contains every unique value of the first
dimension — for instance, the values 0 and 1 of dim1 in the Elf
in Fig. 3. Each entry in the root is the start of one path.

There is an optimization, named MonoLists, to reduce storage
cost and improve data locality [11]. The idea is as follows: When-
ever one encounters a node containing only one point (i.e., the
path is unique), the build algorithm creates a MonoList. That is,
one stores all remaining dimension values (without the need for
additional pointers) next to each other, similar to a row store.

Optimized memory layout
It is possible to build Elf with a main-memory optimized

storage layout [12] to improve its cache sensitivity (i.e., exploit
data locality). To this end, one linearizes the conceptual Elf –
explained above – into an array using a preorder traversal. This
offers the possibility to investigate the effect of sub-space dis-
tance equalities on response time in isolation and in concert
with an optimized storage layout. This is important as row-wise
sequential scans highly take advantage of data locality.

4.2. Knn algorithms for Elf

We now introduce two knn algorithms exploiting sub-space
distance equalities within Elf. The algorithms are optimized for
different data distributions. The first algorithm targets at fast
convergence of max_dist(S, q), relevant, e.g., for highly clustered
data sets. By contrast, the second algorithm aims at data sets
that deteriorate towards scanning an entire Elf. Thus, it aims at
optimally exploiting the data layout. We now explain both algo-
rithms separately and relate them to knn algorithms of similar
approaches.

4.2.1. Knn algorithm optimizing pruning power
The first knn algorithm knnConverge (cf. Algorithm 1) aims

at greedily traversing Elf, such that max_dist(S, q) of the collected
oints in the intermediate result S converges fast against the

distance of the true kth nearest neighbors. To this end, Elf is
traversed in a greedy manner starting by invoking knnConverge
for the first dimension list (i.e., the root). In each DimList,
he algorithm searches for the entry (best match) having mini-
um distance to the query q. In case the corresponding sub tree
an contain at least one query solution (i.e., its sub-space dis-
ance is smaller than max_dist(S, q)), we first recursively invoke
nnConverge on the root of this sub tree. After having examined
he entire sub-tree, the algorithm examines the remaining entries
n the current dimension list iteratively. That is, in the first itera-
ion one entry to the left and to the right of best match element
re examined. Since the (val, pointer) elements are ordered ac-
ording to val starting from the best match searching inwards and
utwards, the sub-space distances, i.e., bounds, monotonically
ncrease. Thus, the algorithm safely stops searching a direction
e.g., to the right, see Line 20) after having found the first element
ith subspaceDist + f (val, q[dim]) ≥ max_dist(S, q).
dim

M. Schäler, C. Tex, V. Köppen et al. Information Systems 101 (2021) 101791

O

1

s
a
g
r
r

c
d
t
d
i
2

Algorithm 1 knnConverge(q, k, dim, DimList, subspaceDist, S)
Input q: query point, k ∈ N∗ , dim: start dimension of the monolist,

DimList: node in Elf containing (val, pointer) elements.
subspaceDist: distance of predim−1(ptid) to predim−1(q),
S: knn result set so far.

utput S: possibly adjusted knn result set

1: ▷ find element having minimum distance named best match
2: (val, pntr)← argmin{fdim(val, q[dim]) | (val, pntr) ∈ DimList}
3: dist ← subspaceDist + fdim(val, q[dim])
4: if dist ≥ max_dist(S, q) then
5: return S ▷ no solutions in this node at all
6: end if
7: ▷ First, search sub tree below best match
8: if isMonoList(pntr) then ▷ how to descend?
9: S ← knnElfMono(q, k, dim+ 1, pntr, dist, S)
10: else
11: S ← knnConverge(q, k, dim+ 1, pntr, dist, S)
12: end if
13: ▷ Second, search in- and outwards of best match
14: done_right ← false, done_left ← false
15: while not (done_right and done_left) do
16: if not done_right then
17: (val, pntr)← next element to the right
18: dist ← subspaceDist + fdim(val, q[dim])
9: if dist ≥ max_dist(S, q) then

20: done_right ← true ▷ stop searching to this direction
21: else
22: descend as for best match
23: end if
24: if reached last element then
25: done_right ← true
26: end if
27: end if
28: analogous treatment of the next element to the left
29: end while

As we can see, the algorithm stops in case there are no more
olutions to the left and right. Hence, the algorithms aims at
voiding to examine the whole node. This is similar to the knn al-
orithm of iDistance, but our bound (i.e., the sub-space distance)
esults in the true full-space distances (leaf level) and the bound
efers to multiple points.

The difference to other tree-based knn algorithms is that we
an exploit the re-use effect by adding the distance in the current
imension to the sub-space distance computed so far. By con-
rast, using e.g., an M-Tree, one needs to compute the full-space
istance of the query point to the closest point that might exist
n the corresponding sub-tree. Note, knnElfMono (cf. Algorithm
) computes the distance for the remaining dimensions of one

point to q. It stops computing the full distance in case the bound
(i.e., the sub-space distance) exceeds the max_dist(S, q). It is the
only algorithm modifying the knn result set S as in the final level
all nodes in Elf are MonoLists.

4.2.2. Knn algorithm optimizing data locality
The second knn algorithm (cf. Algorithm 3) is optimized for

data sets, where pruning, for instance due to the curse of dimen-
sionality, is difficult. To this end, the only difference to the first
algorithm is that it does not search for the best match in each
dimension list. Instead, it strictly follows the data layout of Elf by
executing a pre-order traversal of the tree. Since the linearization
of the tree uses the same traversal, one optimizes data locality.
As a result, this algorithm is more similar to a sequential scan
which benefits primarily from data locality. However, we still
benefit from re-using sub-space distance equalities reducing the
number of distance computations and we also check whether we
can prune sub trees referring to groups of points. The algorithm
ensures correctness, as we only skip sub trees whose sub-space
distance exceeds the full-space distance of max_dist(S, q) (Line 5).
6

Algorithm 2 knnElfMono(q, k, dim,monolist, subspaceDist, S)
Input & Output: Identical to Algo. 1 except
MonoList: array containing remaining d− dim values and tid.

1: tid← MonoList[d− dim+ 1]
2: dist ← subspaceDist
3: ▷ dist contains full-space distance dist(ptid, q) after entire loop
4: d′ ← dim
5: while d′ ≤ d do
6: dist+=fd′ (MonoList[d′ − dim], q[d′])
7: if dist ≥ max_dist(S, q) then
8: return S ▷ ptid is no result, keep S as it is
9: end if
10: d′ ← d′ + 1
11: end while
12: remove tuple (p, dist) referring to arg_max_dist(S, q) from S
13: add (ptid, dist) to S
14: ▷ implicitly adjusts max_dist(S, q) and arg_max_dist(S, q)
15: return S

4.3. Theoretic worst-case distance computation bound

Next, we examine the worst-case bound for the number of
distance computations. To this end, we first discuss bounds for
existing exact approaches, and why the bound is smaller for Elf.
Then, we define a measure quantifying the size of the bound,
which is independent of the distance function. Finally, we give
further intuitions on the semantics and size of the bound.

Algorithm 3 knnOptLayout(q, k, dim,DimList, subspaceDist, S)
Input & Output: see Algo. 1

1: while not end of DimList reached do
2: (val, pointer)← next element in DimList
3: dist ← subspaceDist + fdim(val, q[dim])
4: if dist ≥ max_dist(S, q) then
5: go to Line 1 ▷ no solutions in this sub tree
6: end if
7: if isMonoList(pointer) then
8: S ← knnElfMono(q, k, dim+ 1, pointer, dist, S)
9: else
10: S ← knnOptLayout(q, k, dim+ 1, pointer, dist, S)
11: end if
12: end while
13: return S

4.3.1. Bounding distance computations of exact approaches
The most relevant factor for the performance of knn ap-

proaches is the number of pairwise distances the respective knn
algorithm computes per query. Without making assumptions on
data distribution, which allows to compute the expected dis-
tance of the kth nearest neighbor, the only valid upper bound
for the number of computed distances for exact approaches is
O(|D|) [15]. This, in particular, holds for R-tree and all metric-
based approaches. Consequently, for these approaches, it is pos-
sible that the knn algorithm computes all distances and has the
additional overhead for traversing e.g., a tree. This explains why
for high-dimensional data sets a simple sequential scan usually
outperforms any exact approach [7,37].

This is different for Elf, because we compute the distances sub-
space wise (Effect 2) and not point-wise. This means, as long as
the first dimension is no primary key, Elf contains less values than
the original data set D, which has |D|×d values. Therefore, in this
case, traversing an entire tree (without pruning), results in less
distance computations than sequentially scanning the data set. In
case the first dimension is a key, Elf contains as many dimension
values as the data set, i.e., O(|D|) holds in any case. However,
as we can select Elf’s dimension order, this only occurs if every

dimension is a key.

M. Schäler, C. Tex, V. Köppen et al. Information Systems 101 (2021) 101791

c
t
E
b
i
o
t
f

4

F
c

D
d
c

E

E

U
c
c
T
(
a
t
a
u
v

Naturally, traversing an entire Elf bounds the number of invo-
ations of the local distance functions fi(). In other words, with
he exception of having a primary key in the first dimension,
lf compresses the data set. The compression forms an upper
ound for the number of invoked distance computations, which
s independent of the applied distance function only depending
n the data distribution. We define a measure directly related to
he upper bound of computed distances, named Elf compression
actor.

.3.2. Elf compression factor as bound
Given a fixed dimension order, we define the Elf Compression

actor such that it indicates the relative cost of a full-Elf scan
ompared to a full-table scan.

efinition 4.1 (Elf Compression Factor (ECFDe)). For some
-dimensional data set D with dimension order e and cardinality
, the Elf Compression Factor (ECFDe) is defined as

CFDe =
∑d

l=1 |supp(Dl)|
|D| × c

,

where Dl is the multiset of all points projected to the first l
dimensions in e, and supp(Dl) is the support of Dl.

According to the definition, we compute the compression fac-
tor by looping over all d tree levels computing the number of
values per level. It follows directly from the definition of Elf
that there are as many dimension values per level l as there are
unique prefixes prel. We compute the number of unique prefixes
by projecting the data set D to the first l dimensions resulting in
the multiset Dl (containing duplicates). Then, by determining the
support of Dl resulting in the set of all prefixes existing at least
once, we compute the respective cardinality. In case that D and
the dimension order is clear from the context, we abbreviate ECFDe
with ECF.

4.3.3. Intuitions on the semantics and size of the bound
Below, we first illustrate the semantics of the bound. Then,

we explain the size of the bound considering the worst-case
distribution.

Bound intuitions. To exemplify the semantics of the ECF, imagine
a d = 10 dimensional data set D consisting of 100,000 points.
Then, D contains 1,000,000 (= |D| × d) values. This means to
compute the knn with a sequential scan, one invokes the point-
wise distance function dist() 100,000, i.e, |D| times, which itself
calls d local distance functions fi(). Summarily, this results in
1,000,000 invocations of fi() – one for each value. Assuming that
the corresponding Elf e stores 900,000 values this results in an
CFDe of 0.9.

ncorrelated uniform data as worst case distribution. The worst-
ase data distribution regarding the ECF for a given cardinality
and dimensionality d is having Uniform uncorrelated data D.
he reason is that, in case the data follows a Uniform distribution
and is not correlated), the branch-out in the Elf tree is maximal
nd computing the number of values per tree level l simplifies
o min(|D|, c l). This means, for a given dimension order, there is
length u where all prefixes of this length (or longer) become
nique. We therefore observe no more compression and have one
alue per point and dimension. For Uniform data, this is the case,
7

when the size of the data space becomes larger than the number
of points to distribute, i.e., larger than argmin u s.t. cu ≥ |D|.

4.4. Tuning Elf indexes

In the following, we focus on how to tune Elf by selecting a
good dimension order affecting both effects exploited for efficient
knn computation. To this end, we initially specify the tuning
objective. Then, we define a measure allowing to identify good
dimension orders. Finally, we discuss how this indicator is fur-
thermore used to select the best Elf knn algorithm for a given
data set.

4.4.1. Intuitions on the tuning objective
The tuning idea is the same as for any tree-based approach:

one wants to maximize the pruning capability of the tree to
compute as less distances as possible. For Elf that means, we want
to provoke large sub-space distances for short prefixes, i.e., max-
imize the intrinsic dimensionality [38] in the first sub-spaces by
selecting a respective dimension order.

In this context, it is important to know that there are data sets,
for which the dimension order has no influence, and that there
are pre-processing steps that explicitly aim at producing such
data. For instance, as result of removing correlated dimensions
and value normalization, one can receive an uncorrelated data
set, where all dimensions follow (the same) Gaussian distribution.
Then, knowing the distribution, it is obvious that optimizing the
dimension order is meaningless.

Nevertheless, in the end one wants to know whether the
dimension order is relevant, and determine a good (i.e., fast)
dimension order for Elf. Finding a good dimension order is similar
to a related problem, which is finding the right sub-space to
locate hidden sub-space outliers [39] as follows, meaning that we
can rely on similar techniques to find the desired sub spaces.

As a direct result of the curse of dimensionality, finding
anomalies (i.e., outliers) in the full space is difficult as the dis-
tances tend to be the same and converge towards the length
of the space diagonal [7]. To this end, one searches for low
dimensional sub spaces where it is easier to locate outliers. In
opposition to our problem, the desired sub spaces have the prop-
erty that the average distance between points is small (i.e., highly
correlated), named low-contrast sub spaces. This ensures that
anomalies are easy to locate. By contrast, we search for sub
spaces in which the average distance, i.e., the contrast, is high.
Nevertheless, we can rely on sub-space contrast indicator as used,
e.g., in [39], by simply reversing the order.

4.4.2. Sub-space contrast indicator
To quantify the expected pruning capability of a specific di-

mension order, we use the sub space contrast indicator (SSC). It
is defined for a prefix p of length u. Definition 4.2 states that SSCp

u
is the average distance of all point pairs. For larger data sets, we
use a sample. Based on the definition of SSCp

u, its value is the same
for all dimension orders if u refers to the whole space (full-space
contrast).

Definition 4.2 (Sub-Space Contrast Indicator). The Sub-Space Con-
trast indicator (SSCp

u) denotes the average distance according to
fi() between two points in D for the first u-dimensional sub space
of a given dimension order p.

The best dimension order is the one having the highest SCC.
However, computing all SSCp

u for all possible dimension orders
is computationally expensive and practically impossible for large
number of dimensions. To this end, we propose to use an es-
timation. The algorithm local (cf. Algorithm 4) aims at fast

M. Schäler, C. Tex, V. Köppen et al. Information Systems 101 (2021) 101791

i
r
v
i
a
T

F
t
k
s
e
t
t
p
t
A
t
a
a

5

i
p
s

5

t
t
s

O
t
a
i
d
d
p
t

k
c
s
a
t
t

D
c
a
i
p
d
s
a
m
s
T
o
m

d

dentification of a fast dimension order, but does not take cor-
elated dimensions into account. It works on the computed SSCp

1
alues, i.e., the average distance per point for each value in
solation. Having the SSC value of each dimension, the dimensions
re sorted putting the one with the largest average distance first.
he resulting order directly forms the dimension order.

Algorithm 4 Algorithm local(D)
Input D data set Output dimension order as list of attributes
1: initialize List L as empty list
2: for each dimension d′ in D do
3: compute SSC ▷ contrast for this dimension only
4: insert (SSC, d′) into L
5: end for
6: sort L descending ▷ according to SSC values
7: return L ▷ containing the order

4.4.3. Elf knn algorithm selection
Selecting a good dimension order is relevant for building Elf.

urthermore, to execute a knn query, we need to select one of
he two introduced knn algorithms. To this end, one needs to
now whether optimizing the dimension order is expected to
ignificantly improve pruning capability. This means, in case the
xpected difference between points is large, greedily traversing
he tree with algorithm knnConverge, descending into the sub-
ree having the smallest distance to the query point, is more
romising. Otherwise, we use knn algorithm knnOptLayout To
his end, we rely on sorted SSC values per attribute produced by
lgorithm local The intuition is, in case the difference between
he best and the worst order is large, the tuning is meaningful
nd we apply the found dimension order in concert with knn
lgorithm knnConverge

. Evaluation

The evaluation comprises an intrinsic and extrinsic part. We
nitially give details on the experimental design relevant for both
arts. Then, we present the results of the single parts. Finally, we
ummarize and discuss the primary result of the evaluation.

.1. Experimental design

Below, we firstly state the objectives of the intrinsic and ex-
rinsic part of the evaluation. Secondly, we introduce and justify
he data sets used in each part. Finally, we explain how we ensure
oundness of our experiments.

bjectives of intrinsic and extrinsic part. The intrinsic part sys-
emically examines how exploiting sub-space distance equalities
ffects knn query performance. To this end, it consists of two
nvestigations. Firstly, we aim at getting an understanding how
ifferent parameters, like dimensionality and cardinality of the
ata set, as well as the used distance function, affect knn query
erformance. Secondly, we examine the strength of each of the
wo exploited effects to accelerate knn computation in isolation.

In the extrinsic part, we compare the Elf approach to well-
nown exact knn competitors. We do this for four different use
ases, each represented by a real-world data set and a corre-
ponding artificial counterpart as stated below. This experiment
nswers the question whether one can generally expect competi-
ive performance using the Elf approach. In addition, we compare
he Elf approach to approaches using approximation.
8

ata sets. Selecting data sets allowing general conclusions is a
hallenging issue. This is attributed to the variety of parameters
ffecting knn performance, as mentioned in the objective of the
ntrinsic part. Recapitulate that we presume that the data is
re-processed (cf. Section 2.1) affecting dimensionality d of the
ata set. This allows to give meaningful bounds for the data
ets, such that we cover a large fraction of the data sets, which
re commonly analyzed. Considering, e.g., the well-known UCI
achine learning repository [40], reveals that the majority of data
ets have dimensionality d ≤ 256. This motivates this selection.
he data sets in the UCI archive furthermore suggest that majority
f data set sizes reach from roughly 100,000 points to several
illions.
In the intrinsic part, we use systematically created artificial

ata sets for each combination of dimensionality d ∈ {16, 32, 64,
128, 256}, cardinality c ∈ {128, 256, 1024, 2048, 4096, 8192} and
multivariate data distribution P ∈ {Uniform, Gaussian, Zipf} all
having 1,000,000 points. This allows to quantify the influence of
either parameter on knn query performance. We use artificial
instead of real-world data, because Uniform data represents a
worse-case scenario for Elf. In addition, there are pre-processing
approaches that target explicitly at producing such data.

In the extrinsic part, we rely on four real-world data sets
corresponding to different use cases (cf. Table 2). We use three
data sets from [37], as well as one data set from the KDD machine
learning challenge (cf. Table 2). With, e.g., D51

r , we abbreviate
the 51-dimensional real-world data set. Altogether, the number
of dimensions ranges from 43 to 128 and the size ranges from
411,961 points to 11 million points. As common for real-world
data, we expect that their intrinsic dimensionality is smaller
than the dimensionality of the data set [38]. This means that
most approaches should work better than for a comparable data
set having the same size, cardinality, and dimensionality, but
follows e.g., a Gaussian or Uniform distribution. To illustrate this
in our experiments, for each real-world data set, there is an
artificial counterpart with same number of points, cardinality, and
dimensionality, but containing Gaussian data. With Dd

G, we refer
to the d-dimensional artificial counterpart following a Gaussian
distribution.

Statistical soundness. We ensure statistical soundness and re-
peatability, as follows. In each experiment, we execute batches
of 1000 randomly selected knn queries. Furthermore, the eval-
uation is performed on an Intel Core i5 with 2.6 GHz clock
frequency having 20 GB RAM ensuring that all data sets and
approaches are kept in main memory. We use Java 8 following
the benchmarking guidelines from [41]. Additionally, we tested
implementation variants for each competitor, selecting the fastest
one and repeated the experiments on different hardware all
resulting in the same findings. Concerning Elf, we apply knn
algorithm knnOptLayout for artificial data and knnConverge
for real-world data sets as discussed in Section 4.4.

5.2. Intrinsic evaluation

In the following, we aim at examining how exploiting sub-
space distance equalities affects knn performance in a systematic
way. To this end, we examine (1) the influence of different pa-
rameters including k and the used distance function on the Elf’s
knn query performance, and (2) the strength of the two effects in
isolation.

5.2.1. Parameter influence analysis
Investigations on parameter k. We first investigate the influence
of parameter k determining the number of neighbors to return. To
this end, we experimentally determine the number of invocation
of the local distance function (#f) per knn query for different

M. Schäler, C. Tex, V. Köppen et al. Information Systems 101 (2021) 101791

T
O

p
b
t
c
t
w
k
d
a

w
t
c
w
l
#
H

s
o
t
T
M

i
s
f
#
f

able 2
verview of real-world data sets used in extrinsic part.
id d |D| use case

D43
r 43 411,961 Spectral features [37]

D50
r 50 129,597 Particle experiment [37]

D51
r 51 3,446,019 Physical activity [37]

D128
r 128 11,164,811 SIFT image features [40]

Table 3
Influence of parameter k: #f n for k = 2 and k = 50 for Gaussian data.

values of k, specifically k ∈ {2, 5, 10, 20, 50}. For better inter-
retability, we normalize the respective number by dividing it
y the number of fi invocations of a sequential scan resulting in
he #f n measure. That is, we examine the fraction of distances
omputed by Elf compared to a sequential scan. A #f n value close
o 1.0 indicates that nearly all points are examined. In Table 3,
e depict the #f n values using Euclidean metric for k = 2 and
= 50, i.e., the smallest and largest tested value for the Gaussian
istributed artificial data sets. Similar results hold for Uniform
nd Zipf distributed data.
As expected, we observe that the #f n value slightly increases

hen the value of k increases. Examining the values in detail,
he results reveal that increasing the dimensionality has a signifi-
antly stronger effect than increasing the value for k. In particular,
e observe the largest #f n increase for the most densely popu-

ated data set (c = 128, d = 16). With #f n = 0.082 for k = 2 and
f n = 0.152 for k = 50 the difference is smaller than Factor 2.
owever, doubling the dimensionality (from d = 16 to d = 32),

we observe for k = 50 that the corresponding #f n already differs
by more than Factor 2. To this end, we argue that the influence
of parameter k is small. Thus, it is valid to display only the results
for k = 10 in the remaining experiments, as commonly done in
literature [4].

Influence of the distance function. Next, we examine on the in-
fluence of different distance functions. As distance functions, we
consider all distance functions used in large-scale surveys [2,3].
The functions are three Minkowski metrics, namely, Manhattan,
Euclidean, and Chebyshev (max norm), as well as Cosine distance.
In the evaluation, we again determine the average number of
computed distances per knn query of Elf relative to sequential
scan (#f n) for different cardinality c , dimensionality d, when using
these four different distance functions.

In Fig. 4.(a), we depict the resulting #f n values for Gaussian
data sets only, because the #f n values for Uniform and Zipf are
imilar. Comparing the #f n values of all distance functions, we
bserve that the result patterns are quite different. That means
hat the #f n value highly depends on the used distance function.
he most similar patterns are observed for the Euclidean and
anhattan metric being an inclined plane.
Comparing the results for the Euclidean and Manhattan metric

n detail reveals that the results for the Euclidean metric are con-
istently better than those for the Manhattan metric. For instance,
or the largest measured #f n at c = 8, 192 and d = 256, the
f n value using Euclidean distance is 0.732 and 0.831 respectively
or the Manhattan metric. We attribute the difference to the
9

way the Elf knn algorithms work. In detail, it is easier to find
points having a small distance to the query point q (i.e., good
neighbor candidates) with the greedy depth-first strategy and
then prune entire sub-trees within Elf. This is consistent to the
observations for the Chebyshev metric where the largest differ-
ence between the dimension values defines the distance between
two points. For those three metrics, we furthermore observe that
the #f n value significantly differs from the ECF value depicted
in Fig. 4.(b). This means that the pruning capability of Elf is the
decisive performance factor and Elf scales well for all parameter
combinations. The results for Cosine distance significantly differs
from the observations of the prior three metrics. In any case, the
#f n is the same as the ECF value meaning that pruning is not
relevant here and the only performance benefit is achieved by
the re-use effect.

In summary, the different result patterns per distance func-
tion suggest to include all Minkowski metrics when compar-
ing the performance of exploiting sub-space distance equalities
to well-known competitors. We do not include Cosine distance
as its knn performance is dominated only by the re-use ef-
fects and thus, yields no further insights; also the Cosine dis-
tance is not applicable to some competitors (e.g., metric indexing
approaches).

5.2.2. Investigations on the strength of the effects
With Elf, we can exploit two effects to accelerate knn compu-

tation. Below we aim at systematically examine the strength of
the effects in isolation.

Re-use sub-space distances. The strength of the re-use of sub-
space distances effect is equivalent to the compression factor
within Elf (ECF). Recapitulate, the ECF for a specific Elf refers
to the fraction of distances to compute traversing an entire Elf
and thus, represents an upper bound for #f n. As explained in
Section 4.3, the bound only depends on the data distribution.

To give an intuition on the size of the bound, we depict
the ECF values for all distributions, i.e., Uniform, Gaussian and
Zipf data. As we see for the Uniform (worst-case) distribution
and for Gaussian data, there is little compression for higher
dimensionality and cardinality. Nevertheless, the bound exists for
every iteratively computable distance and remains significant for,
e.g., Zipf-distributed data. This is a big advantage of exploiting
sub-space distance equalities.

Group lower bound. Next, we aim to understand the benefit of
the group lower bound effect compared to traditional prefix-sum
based pruning. To this end, we compare the #f n of Elf with the
ones achieved by a sequential scan that uses prefix-sum based
pruning. The sequential scan sums up the distances dimension-
wise checking after each dimension, whether the sub-space dis-
tance already exceeds the (full-space) distance max_dist(S, q). To
eliminate the re-use effect in Elf, as far as possible, we rely on
Uniformly distributed data where the strength of the first effect
for a given cardinality and dimensionality is minimal.

In Table 4, we depict the #f n value improvement when using
Elf compared to the prefix-sum sequential scan. To explain the
relevance of the difference, the #f n values of Elf are given in
Fig. 4.(a) in the top left most graph. The results in Table 4,
reveal that the benefit decreases if cardinality or dimensionality
increases, but still is observable for the largest data set. While the
general tendency is expected, we emphasize that the group lower
bound effect in isolation leads to observable improvements even
for the Uniformly distributed data representing the worst-case
distribution.

M. Schäler, C. Tex, V. Köppen et al. Information Systems 101 (2021) 101791

T
#
p

w
d
n
v
F

5

o

C
w
c
s
a
R
F
p
i
A
e
m
n
b
t

M

Fig. 4. Impact of the different distance functions and data distributions.
G

able 4
f n improvement exploiting the group lower bound effect compared to
refix-distance lower bound pruning for Gaussian data.

5.3. Extrinsic evaluation

We now compare Elf’s knn response time performance to
ell-known competitors using different data sets and different
istance functions. To this end, we first give additional prelimi-
aries. Then, we present the results w.r.t. the speedup, which we
alidate subsequently with the implementation independent #f n.
inally, we compare approaches using approximation.

.3.1. Additional preliminaries
To ensure soundness and reproducibility of our results, we

utline relevant additions to the study design below.

ompetitor selection. As baseline, we select the sequential scan,
hich is known to be a highly-potent competitor due to the
urse of dimensionality. Additionally, we use the kd-Tree as clas-
ical indexing approach and iDistance as state-of-the-art indexing
pproach for metric spaces relying on pivots. Next, we include
*-Tree, VA-File, and M-Tree all being competitors used in [27].
inally, to quantify the approach-specific influence of Elf com-
ared to the bare concept of sub-space distance equality, we
nclude an Elf without optimized memory layout named List Elf.
t implementation level, we tune all approaches to the same
xtent to ensure a fair comparison. To tune iDistance, we further-
ore rely on the method from [32]. For, M-Tree and R*-Tree one
eeds to specify the node split size, for the VA-File the number of
its per dimension. To this end, we conducted a grid search using
he best found parameter value in the evaluation.

easurements. We rely on two measurements computed for
each triple of approach, distance function, and data set. We select
speedup as implementation dependent measurement and #f n
as implementation independent measurement. To compute the
10
speedup, we measure the average response time for executing
1000 randomly selected knn queries and normalize by the av-
erage response time of the sequential scan. As usual, a speedup
value smaller than 1.0 indicates that the approach is slower than
the sequential scan.

5.3.2. Speedup results for all distance functions
In Fig. 5, we display the speedup for the three different dis-

tance functions concerning all use cases. We depict the results
for real-world data sets Dd

r (in blue) and corresponding artificial
aussian data sets Dd

G (in red). Since we observe significant per-
formance differences between real-world and associated artificial
data set, we discuss their results separately.

Real-world data sets. Considering the Elf approach, we observe
response time speedups for all real-world data sets and distance
functions. For D43

r , D50
r , and D51

r , the results indicate large per-
formance improvements ranging from several factors up to two
magnitudes — independent of the distance function. By contrast,
for D128

r , the observed improvement for Euclidean and Manhattan
distance is marginal, but existing. However, for this data set,
having the highest dimensionality, all other approaches barely
reach response time of the sequential scan, which is a known is-
sue [7]. Note, this also holds for the List Elf without main-memory
optimized data layout executing exactly the same number of
distance computation. This means the response time difference
can only be attributed to the optimized layout. This result is in
accordance with a line of related work adapting other tree-based
approaches, such as B-Trees [42,43], to optimally benefit from
modern-hardware environments. Altogether, even if we observe
for some combination of data set and distance function slightly
higher speedups using iDistance, the performance of Elf is at least
comparable.

Artificial data sets. The most obvious observation is that for all
combinations of approach, distance function, and data set, the
speedup of the artificial data sets is significantly worse than for
its real-world counterpart. This is expected, as with increasing di-
mensionality the distances between points become more similar
(ultimately even the same). Thus, every approach depending only
on lower bound based pruning must fail as it converges towards
scanning the entire data set and additionally needs to traverse,
e.g., a tree. This also affects the group lower bound effect of sub-
space distance equalities, i.e., Elf. Nevertheless, apart from lower
bound pruning, the knn algorithm of Elf also exploits the re-use
effect. This explains why Elf, in contrast to the competitors, is
able to match the speed of the sequential scan. Interestingly, also

M. Schäler, C. Tex, V. Köppen et al. Information Systems 101 (2021) 101791

t
t
c
d
d
m
v
c

l
s
c
K
a
e
e
v
i
t

o
w
s
r
t
o
i
t
r
e
n

5

t
E
s
q
P
m
p

Fig. 5. Speedups for all three distance functions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
the VA-File hardly reaches the speed of the sequential scan, in
contrast to what one observes in hard-disk environments or for
more complex CPU-bound distance functions. Next, we examine
the speedup results in more detail by inspecting the correlation
of the speedup and computed distances, i.e., whether the number
of computed distances explains the response times.

5.3.3. Validation of the speedup with #f n
In the following, we aim at validating the above response

ime results with an implementation independent measure. To
his end, we examine whether the #f n and speedup values are
orrelated, i.e., can be considered an explanation. In Fig. 6, we
epict a heat map of the #f n for all combinations of approach,
ata set, and distance function. Note, #f n values larger than 1.0
ay occur for R*-Tree and M-Tree, as descending the tree in-
olves distance computations. For them, worst case number of
omputed distances per query is: |D| + #inner nodes.
The primary result is that, with exception of the VA-File (re-

ying on a different concept), in all cases, the #f n values and
peedup are inversely correlated. This is backuped by common
orrelation measures, such as Pearson’s correlation of −0.76 or
endall’s tau of −0.77 for our Elf algorithm though correlation
ppears not to be entirely linear. This indicates that additional
ffects, like caching, observably influence the run time. Nev-
rtheless, for Elf, large speedups are explained with small #f n
alues and vice versa. To this end, we draw the conclusion that
ndeed the reduction of distance computations achieved by the
wo exploited effects explains the observed good run times of Elf.

The VA-File anomaly is that, firstly, there is no clear increase
f #f n with increasing dimensionality. This is in line with related
ork [27] and the intention for its development [26]. However,
econdly, despite #f n is small, we rarely observe speedups. To
ule out insufficient optimization, we compared the implemen-
ation to [27] revealing no difference. We hypothesize that we
bserve a counter-intuitive artifact known from selection pred-
cate evaluation via sequential scans [44]. There, the worst run
ime is observed for predicates with 50% selectivity, meaning that
un time improves in case more result tuples are returned. This
ffect is caused by branch miss prediction of the CPU and an
on-predictable memory access pattern.

.3.4. Comparison to nearest neighbor approximation
Depending on the use case, trading result quality for run-

ime might be an option. To this end, we examine how the
lf approach, returning the correct knn, performs in compari-
on to well-known approximation approaches. To measure result
uality, we rely on the (1 + ϵ)-nearest neighbor definition [9].
arameter ϵ is the factor scaling the allowed deviation from
ax_dist(S, q). For instance, setting ϵ = 1, one accepts any k
oints whose distance to q is at maximum twice as large as
11
Fig. 6. #f n values for all distance functions and approaches.

max_dist(S, q). There is no general rule for determining a good
use-case independent value of ϵ. As a result, it is not mean-
ingful to compare the relationship of speedup and ϵ. Instead,
we ask what is the result quality when bounding the fraction
of probed points (i.e., #f n measure). We contextualize this by
stating where Elf delivers the exact result. This allows a domain
expert to decide, whether accepting lesser result quality pays off.
The #f n measure additionally correlates with the speedup being
identical for all used approaches and combinations of data sets
and distance functions. At #f n = 0.125 the approaches are as fast
as a sequential scan (due to random access of points). Changes
in the #f n = 0.125 bound are directly reflected in the speedup
meaning, e.g., that halving the #f n doubles the speedup and vice
versa.

For comparison, we use LSH approaches giving statistical guar-
antees regarding ϵ. Specifically, we use p-stable LSH [45,46],
offering the guarantee for various distance functions. Further-
more, we rely on the random projection approach [47]. For each
approach, we use an LSH forest with ten hash functions and
verify the result pattern for different numbers of hash functions.
Finally, as interpretation of the approximation factor in high-
dimensional spaces is difficult, we include a baseline approach
named pseudo LSH. This approach iterates over the data set in
a random order returning the best k neighbors when having
reached the maximally allowed #f n bound.

The results in Table 5 show the results for the Euclidean dis-
tance. For the remaining distances the results pattern is similar.
In detail, the table contains the achieved ϵ for each data set and
a pre-defined #f n threshold, bounding the maximum number of
points an approach may probe. For instance in the upper table,

43
containing the results for all real-world-data sets, on data set Dr

M. Schäler, C. Tex, V. Köppen et al. Information Systems 101 (2021) 101791

q
s
l

f
w
p
a
a
d
T
t
o
t
t
a
o
a

d
m
t
t
b
a
n
c
h
m
n

5

r
s
d

Table 5
Achieved ϵ for Euclidean distance for increasing number of computed distances #f n . The highlighted cells A mark all #f n value
exceeding the #f n values Elf requires to deliver the exact result.

Approach #f n Bound Real-world data sets
0.001 0.002 0.004 0.008 0.016 0.032 0.064 0.125 0.25 0.5 0.6 0.7

Pseudo LSH >99 55.38 27.31 14.89 7.46 4.25 2.46 1.47 0.78 0.33 0.23 0.16
D43
r Rand. Proj. >99 >99 >99 >99 >99 >99 >99 >99 82.89 9.96 1.85 0.04

p-stable LSH 4.72 2.64 1.30 0.70 0.45 0.24 0.11 0.02 0.01 ≈0 ≈0 ≈0
Pseudo LSH 20.27 12.24 7.80 5.01 3.31 2.30 1.49 0.97 0.60 0.26 0.19 0.14

D50
r Rand. Proj. 22.59 13.62 8.79 6.75 4.24 3.10 2.31 1.71 0.42 0.14 0.08 0.03

p-stable LSH 5.65 3.25 2.11 1.25 0.75 0.52 0.30 0.13 0.02 ≈0 ≈0 ≈0
Pseudo LSH >99 >99 62.20 35.44 22.04 14.78 8.55 3.93 1.96 0.60 0.42 0.28

D51
r Rand. Proj. >99 >99 >99 >99 >99 14.00 2.84 1.23 0.13 0.01 ≈0 ≈0

p-stable 8.64 5.56 1.90 0.44 0.20 0.08 0.01 0.01 ≈0 ≈0 ≈0 ≈0
Pseudo LSH 1.39 1.16 0.93 0.73 0.58 0.46 0.35 0.25 0.16 0.08 0.06 0.04

D128
r Rand. Proj. 0.20 0.17 0.14 0.12 0.09 0.07 0.05 0.03 0.02 0.01 0.01 ≈0

p-stable 0.23 0.19 0.17 0.14 0.12 0.09 0.07 0.05 0.03 0.01 0.01 0.01

Approach #f n Bound Artificial data sets
0.001 0.002 0.004 0.008 0.016 0.032 0.064 0.125 0.25 0.5 0.6 0.7

Pseudo LSH 0.68 0.59 0.49 0.41 0.33 0.26 0.20 0.15 0.10 0.04 0.03 0.02
D43
G Rand. Proj. 0.50 0.41 0.33 0.26 0.19 0.14 0.09 0.05 0.02 0.01 0.01 ≈0

p-stable LSH 0.63 0.53 0.44 0.36 0.28 0.22 0.16 0.11 0.06 0.02 0.01 0.01
Pseudo LSH 0.66 0.57 0.47 0.39 0.32 0.25 0.19 0.14 0.09 0.04 0.03 0.02

D50
G Rand. Proj. 0.50 0.40 0.32 0.24 0.18 0.13 0.08 0.05 0.03 0.01 ≈0 ≈0

p-stable LSH 0.62 0.51 0.43 0.34 0.27 0.21 0.15 0.11 0.06 0.02 0.01 0.01
Pseudo LSH 0.51 0.44 0.37 0.32 0.26 0.21 0.16 0.12 0.08 0.04 0.02 0.02

D51
G Rand. Proj. 0.38 0.31 0.25 0.20 0.15 0.10 0.06 0.03 0.02 0.01 0.01 ≈0

p-stable 0.46 0.39 0.33 0.27 0.22 0.18 0.14 0.10 0.05 0.02 0.01 0.01
Pseudo LSH 0.24 0.21 0.18 0.15 0.13 0.10 0.08 0.06 0.04 0.02 0.01 0.01

D128
G Rand. Proj. 0.20 0.17 0.14 0.12 0.09 0.07 0.05 0.03 0.01 0.01 0.01 0.01

p-stable 0.22 0.19 0.17 0.14 0.12 0.01 0.07 0.05 0.03 0.01 0.01 0.01
p-stable LSH achieves for bound #f n = 0.001 rather low result
uality with ϵ = 4.72 returning highly accurate results after in-
pecting one eighth (0.125) of the data set with an approximation
evel of 0.02.

Overall, we make three major observations. Firstly, the per-
ormance of the LSH algorithms highly differs between the real-
orld data sets (in the upper table) and their artificial counter-
arts in the lower table. Every approach delivers better (i.e., more
ccurate) results for artificial data. This is the opposite behavior
s observed for the exact approaches. Secondly, with increasing
imensionality the performance of all LSH approaches improves.
hat is, they deliver more accurate results probing smaller frac-
ions of the data set. This is again the opposite behavior as
bserved for the exact approaches. Third, for artificial data sets,
he approximation level of all approaches has almost converged
owards the exact results before Elf – or any other tested exact
pproach – has computed the exact result. Similarly, the worst
bserved approximation level is 0.68 observed for the pseudo LSH
pproach at D43

G .
These observations are expected, as with increasing (intrinsic)

imensionality the average distances between points become
ore similar [7]. This explains why simple random sampling of

he artificial data sets delivers quite accurate results. Altogether,
hese results indicate that exact and approximate nearest neigh-
or determination, are related problems having however different
pplication scenarios. Abstractly, improvements in exact nearest-
eighbor research increase the dimensionality of data for that one
an efficiently determine the exact knn. Thus, if dimensionality is
igh and one can accept less result quality considering approxi-
ation is suggested. In turn, in case one does require the exact
eighbors, approximation is no option by concept.

.4. Evaluation summary

In our evaluation, we first studied the effect of different pa-
ameters affecting knn query performance when exploiting sub-
pace distance equalities. The results indicate that in contrast to
istance function and data distribution, parameter k has minor
12
influence. Moreover, the result pattern in any of the experi-
ments is good-natured indicating a robustness towards parameter
changes, i.e., one can generally expect similarly good results on
similar data sets.

Furthermore, in the second part of the evaluation, the results
suggest that Elf delivers a speedup or a comparable performance
as specialized approaches like iDistance. This particularly also
includes the artificial data sets, where one otherwise has to accept
lesser result quality using approximation to achieve a speedup.
Our results indicate that Elf, compared to the competitors, suf-
fers less performance losses. Specifically, it is the only approach
delivering, on average, a speedup compared to the baseline of
sequential scanning the entire data set suggesting that one can
generally expect good knn query performance.

To this end, our general conclusion regarding sub-space dis-
tance equalities and the Elf approach is that we found a candidate
for the envisioned multi-purpose main-memory storage struc-
tures. This holds at concept level, measured by the fraction of
computed distances #f n compared to a sequential scan, and at
implementation level (i.e., knn algorithms of Elf), measured by
the speedup (compared to a sequential scan).

6. Conclusions and future work

In this paper, towards using the same index for multiple query
types, we study the concept of sub-space distance equalities
yielding two effects for efficient knn computation, namely group
lower bound effect and re-use effect of sub-space distances. We
propose knn algorithms exploiting both effects for the Elf storage
structure.

Our investigations reveal that the effects are robust to increas-
ing dimensionality, data set size, and utilized k. Moreover, study-
ing the impact of data distribution and used distance function also
indicates robust and good natured results. Comparing our knn
algorithms to well-known exact and approximate competitors
reveals that they deliver at least comparable performance for
real-world data following a complex distribution. Furthermore,

M. Schäler, C. Tex, V. Köppen et al. Information Systems 101 (2021) 101791

f
r
u

t
m

F

4

D

c
t

R

or high-dimensional Gaussian or Uniform data, our knn algo-
ithms still deliver competitive performance due to the combined
sage of effects.
For future work, we investigate on efficiently supporting fur-

her fundamental building blocks of beyond-OLAP analytics like
atrix operations.

unding

This work was partially funded by the DFG (grant no.: SA
65/51-1 and SA 465/50-1).

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

eferences

[1] H. Samet, Foundations of Multidimensional and Metric Data Structures,
Morgan Kaufmann, 2006.

[2] C. Böhm, S. Berchtold, D. Keim, Searching in high-dimensional spaces:
Index structures for improving the performance of multimedia databases,
ACM Comput. Surv. 33 (3) (2001).

[3] V. Gaede, O. Günther, Multidimensional access methods, ACM Comput.
Surv. 30 (2) (1998).

[4] H. Jagadish, et al., iDistance: An adaptive B+-Tree based indexing method
for nearest neighbor search, ACM Trans. Database Syst. 30 (2) (2005).

[5] M. Hetland, The basic principles of metric indexing, in: Swarm Intelligence
for Multi-Objective Problems in Data Mining, Springer, 2009.

[6] L. Chen, et al., Pivot-based metric indexing, PVLDB 10 (10) (2017).
[7] K. Beyer, et al., When is ‘‘Nearest Neighbor’’ meaningful? in: Proc. Int’L

Conf. on Database Theory, ICDT, Springer, 1999.
[8] T. Rakthanmanon, et al., Searching and mining trillions of time series sub-

sequences under dynamic time warping, in: Proc. Int’L Conf. on Knowledge
Discovery and Data Mining, SIGKDD, ACM, 2012.

[9] S. Arya, D. Mount, Approximate nearest neighbor queries in fixed di-
mensions, in: Proc. An’L Symp. on Discrete Algorithms, SODA, ACM,
1993.

[10] A. Gionis, P. Indyk, R. Motwani, Similarity search in high dimensions via
hashing, in: Proc. Int’L Conf. on Very Large Data Bases, VLDB, Morgan
Kaufmann, 1999.

[11] D. Broneske, et al., Accelerating multi-column selection predicates in main-
memory - The Elf approach, in: Proc. IEEE Int’L Conf. on Data Engineering,
ICDE, IEEE, 2017.

[12] D. Broneske, et al., Efficient evaluation of multi-column selection predicates
in main-memory, IEEE Trans. Knowl. Data Eng. 31 (7) (2018).

[13] P. Blockhaus, et al., Combining two worlds: MonetDB with multi-
dimensional index structure support to efficiently query scientific data, in:
Proc. Int’L Conf. on Scientific and Statistical Database Management, SSDBM,
ACM, 2020.

[14] J. Wang, et al., Can we beat the prefix filtering? An adaptive framework
for similarity join and search, in: Proc. Int’L Conf. on Management of Data,
SIGMOD, ACM, 2012.

[15] E. Schubert, et al., DBSCAN revisited, revisited: Why and how you should
(still) use DBSCAN, ACM Trans. Database Syst. 42 (3) (2017).

[16] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, From data mining to knowledge
discovery in databases, AI Mag. 17 (3) (1996).

[17] E. Keogh, et al., Dimensionality reduction for fast similarity search in large
time series databases, Knowl. Inf. Syst. 3 (3) (2001).

[18] I. Jolliffe, Principal Component Analysis, Springer, 1986.
[19] T. Mikolov, et al., Distributed representations of words and phrases

and their compositionality, in: Proc. Int’L Conf. on Neural Information
Processing Systems, NIPS, Curran Associates Inc., 2013.
13
[20] G. Williams, Linear Algebra, with Applications, Narosa, 2009.
[21] A. Guttman, R-trees: A dynamic index structure for spatial searching,

SIGMOD Rec. 14 (2) (1984).
[22] J. Bentley, Multidimensional binary search trees used for associative

searching, Commun. ACM 18 (9) (1975).
[23] S. Berchtold, D. Keim, H.-P. Kriegel, The X-tree: An index structure for

high-dimensional data, in: Proc. Int’L Conf. on Very Large Data Bases, VLDB,
Morgan Kaufmann, 1996.

[24] P. Ciaccia, M. Patella, P. Zezula, M-tree: An efficient access method for
similarity search in metric spaces, in: Proc. Int’L Conf. on Very Large Data
Bases, VLDB, Morgan Kaufmann, 1997.

[25] S. Omohundro, Five Balltree Construction Algorithms, Tech. Rep.
TR-89-063, Int’L Computer Science Institute, Berkeley, 1989.

[26] R. Weber, H.-J. Schek, S. Blott, A quantitative analysis and performance
study for similarity-search methods in high-dimensional spaces, in: Proc.
Int’L Conf. on Very Large Data Bases, VLDB, Morgan Kaufmann, 1998.

[27] K. Echihabi, et al., The Lernaean Hydra of data series similarity search: An
experimental evaluation of the state of the art, PVLDB 12 (2) (2018).

[28] V. Niennattrakul, P. Ruengronghirunya, C. Ratanamahatana, Exact indexing
for massive time series databases under time warping distance, Data Min.
Knowl. Discov. (2010).

[29] J. Willkomm, et al., Efficient interval-focused similarity search under
dynamic time warping, in: Proc. Int’L Symp. on Spatial and Temporal
Databases, SSTD, ACM, 2019.

[30] M. Micó, J. Oncina, E. Vidal, A new version of the nearest-neighbour
approximating and eliminating search algorithm (AESA) with linear pre-
processing time and memory requirements, Pattern Recognit. Lett. 15 (1)
(1994).

[31] J. Uhlmann, Satisfying general proximity/similarity queries with metric
trees, Inform. Process. Lett. 40(4) (1991).

[32] M. Schuh, et al., A comprehensive study of iDistance partitioning strategies
for kNN queries and high-dimensional data indexing, in: Proc. British Nat’L
Conf. on Databases, BNCOD, Springer, 2013.

[33] C. Yu, High-Dimensional Indexing: transformational Approaches to
High-Dimensional Range and Similarity Searches, Springer, 2002.

[34] M. Hetland, T. Skopal, J. Loko, C. Beecks, Ptolemaic access methods:
Challenging the reign of the metric space model, Inf. Syst. 38 (7) (2013).

[35] S. Arya, et al., An optimal algorithm for approximate nearest neighbor
searching fixed dimensions, J. ACM 45 (6) (1998).

[36] W. Johnson, J. Lindenstrauss, Extensions of Lipschitz maps into a Hilbert
space, Contemp. Math. 26 (1984).

[37] M. Schäler, et al., QuEval: Beyond high-dimensional indexing à La Carte,
PVLDB 6 (14) (2013).

[38] K. Pettis, et al., An intrinsic dimensionality estimator from near-neighbor
information, IEEE Trans. Pattern Anal. Mach. Intell. 1 (1) (1979).

[39] F. Keller, E. Müller, K. Böhm, HiCS: High contrast subspaces for density-
based outlier ranking, in: Proc. IEEE Int’L Conf. on Data Engineering, ICDE,
2012.

[40] D. Dua, C. Graff, UCI machine learning repository, 2017, URL http://archive.
ics.uci.edu/ml.

[41] A. Georges, D. Buytaert, L. Eeckhout, Statistically rigorous Java performance
evaluation, in: Proc. Conf. on Object-Oriented Programming Systems and
Applications, OOPSLA, ACM, 2007.

[42] G. Graefe, P. Larson, B-tree indexes and CPU caches, in: Proc. IEEE Int’L
Conf. on Data Engineering, ICDE, IEEE, 2001.

[43] J. Rao, K. Ross, Making B+-Trees cache conscious in main memory, SIGMOD
Rec. 29 (2000).

[44] L. Schulz, D. Broneske, G. Saake, An eight-dimensional systematic evalu-
ation of optimized search algorithms on modern processors, Proc. VLDB
Endow. 11 (11) (2018).

[45] M. Datar, et al., Locality-sensitive hashing scheme based on P-stable
distributions, in: Proc. An’L Symp. on Computational Geometry, SCG, ACM,
2004.

[46] A. Dasgupta, R. Kumar, T. Sarlos, Fast locality-sensitive hashing, in: Proc.
Int’L Conf. on Knowledge Discovery and Data Mining, KDD, ACM, 2011.

[47] M. Charikar, Similarity estimation techniques from rounding algorithms,
in: Proc. An’L Symp. on Theory of Computing, STOC, ACM, 2002.

http://refhub.elsevier.com/S0306-4379(21)00045-4/sb1
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb1
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb1
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb2
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb2
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb2
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb2
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb2
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb3
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb3
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb3
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb4
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb4
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb4
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb5
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb5
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb5
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb6
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb7
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb7
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb7
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb8
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb8
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb8
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb8
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb8
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb9
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb9
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb9
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb9
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb9
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb10
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb10
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb10
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb10
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb10
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb11
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb11
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb11
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb11
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb11
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb12
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb12
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb12
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb13
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb13
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb13
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb13
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb13
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb13
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb13
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb14
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb14
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb14
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb14
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb14
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb15
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb15
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb15
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb16
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb16
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb16
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb17
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb17
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb17
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb18
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb19
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb19
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb19
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb19
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb19
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb20
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb21
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb21
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb21
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb22
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb22
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb22
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb23
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb23
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb23
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb23
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb23
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb24
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb24
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb24
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb24
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb24
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb25
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb25
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb25
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb26
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb26
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb26
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb26
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb26
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb27
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb27
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb27
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb28
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb28
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb28
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb28
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb28
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb29
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb29
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb29
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb29
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb29
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb30
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb30
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb30
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb30
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb30
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb30
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb30
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb31
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb31
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb31
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb32
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb32
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb32
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb32
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb32
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb33
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb33
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb33
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb34
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb34
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb34
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb35
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb35
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb35
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb36
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb36
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb36
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb37
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb37
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb37
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb38
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb38
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb38
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb41
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb41
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb41
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb41
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb41
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb42
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb42
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb42
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb43
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb43
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb43
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb44
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb44
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb44
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb44
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb44
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb45
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb45
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb45
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb45
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb45
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb46
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb46
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb46
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb47
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb47
http://refhub.elsevier.com/S0306-4379(21)00045-4/sb47

	Towards multi-purpose main-memory storage structures: Exploiting sub-space distance equalities in totally ordered data sets for exact knn queries
	Introduction
	Preliminaries and scope
	Scope and assumptions
	The knn problem
	Definition of the knn problem
	Classes of distance functions in the focus

	Knn computation with sub-space distance equalities
	Sub-space distance equalities
	Two effects for knn computation
	Related work to sub-space distance equalities

	Knn computation with Elf
	Design of the Elf approach
	Optimized memory layout

	Knn algorithms for Elf
	Knn algorithm optimizing pruning power
	Knn algorithm optimizing data locality

	Theoretic worst-case distance computation bound
	Bounding distance computations of exact approaches
	Elf compression factor as bound
	Intuitions on the semantics and size of the bound

	Tuning Elf indexes
	Intuitions on the tuning objective
	Sub-space contrast indicator
	Elf knn algorithm selection

	Evaluation
	Experimental design
	Intrinsic evaluation
	Parameter influence analysis
	Investigations on the strength of the effects

	Extrinsic evaluation
	Additional preliminaries
	Speedup results for all distance functions
	Validation of the speedup with fn
	Comparison to nearest neighbor approximation

	Evaluation summary

	Conclusions and future work
	Declaration of competing interest
	References

