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Complexation of Cm(lll) with blood serum
proteins: recombinant human serum albumin

(rHSA)

Abstract: The complexation of Cm(III) with
the recombi-nant human serum albumin (rHSA)
(characterized by single deletion of residue Asp-1), is
studied in dependence of pH and rHSA concentration
using time-resolved laser fluorescence spectroscopy
(TRLFS). A Cm(III) rHSA species is formed between pH 6.4
and 10.0 with the con-ditional stability constant
being logK = 6.47 at pH = 7.4. Competition titration
experiments with Cu(II) and Zn(II) confirm complexation
at the N-terminal binding site (NTS) of rHSA and exclude
the involvement of the Multi-Metal Binding Site (MBS).
Comparison with a previous study on Cm(III) interaction
with native albumin, HSA, points out, that residue Asp-1
is involved in Cm(III) binding to HSA but is not crucial for
Cm(III) complexation at the NTS. The results are of major
importance for a better understanding of fundamental
actinide-protein interaction mechanisms which are highly
required for the identification and characterization of
relevant  distribution pathways of incorporated
radionuclides.
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1 Introduction

Accidentally released radionuclides, in particular actinides,
can cause a serious health risk upon incorporation [1].
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A detailed understanding of the relevant biochemical
reactions of incorporated actinides is strongly required for
the development of potential decontamination strategies [2].
One potential reaction is the complexation with human
serum albumin (HSA), the most abundant protein in human
blood. HSA possesses at least four metal ion binding sites:
The amino terminal Cu and Ni binding site (N-terminal site
[NTS]) iscomposed of the first three amino acids Asp-Ala-His
of the albumin sequence [3-7]. The Multi-Metal Binding Site
(MBS) is the main binding site for Zn(II) [5, 8-11]. Further
binding sites, the site around Cys-34 and the so far not
located Site B, are less characterized yet [3, 5, 12].

The complexation of HSA with a wide range of metal
ions is reported in the literature. Regarding actinides, only
the interaction of Th(IV), U(VI) and Cm(III) with HSA has
been investigated so far. U(VI) and Th(IV) interact with
carbonyl and amide groups of HSA [13]. Two binding sites
for U(VI) were identified, with the NTS being the stronger
site [14, 15]. In a previous study we identified and charac-
terized Cm(III) HSA complexation in dependence of pH,
HSA concentration and temperature [16]. Competition
titration experiments showed the repression of Cm(III) HSA
complexation with increasing Cu(Il) concentration
whereas an addition of Zn(II) to Cm(III) HSA has no effect
indicating the complexation of Cm(III) at the primary Cu(II)
binding site, the NTS. However, since Cu(II) can coordinate
to the MBS as well additional experiments are highly
required to identify the HSA binding site for Cm(III) and
give further insight into the structure of the complex. In the
present work we investigated the interaction of Cm(III) with
recombinant human serum albumin (rHSA) expressed in
Pichia pastoris [17, 18]. The variant (Albagen™) is charac-
terized by a single deletion of Asp-1 from the NTS which
allows to determine the relevance of residue Asp-1
regarding Cm(II) HSA complexation.

The complexation of Cm(III) with rHSA was studied in
dependence of pH and protein concentration as well as in
presence of increasing amounts of Cu(Il) and Zn(II) using
time-resolved laser fluorescence spectroscopy (TRLFS)
(setup and measurements described in [16, 19, 20]). This is a
very sensitive method for determination of the speciation of
lanthanides and actinides, especially Eu(IIl) and Cm(II) in



submicromolar concentration ranges. Protein purification
and sample preparation were performed according to the
protocols described in [16, 21, 22]. The fluorescence spectra
of Cm(III) with rHSA in the pH range from 3.5 to 11.0 and the
corresponding speciation diagram obtained by peak
deconvolution are shown in Figure 1. In dependence of the
pH four Cm(III) species are identified: The Cm(III) aquo ion
(Amax = 593.8 nm) [23-25], a TRIS-H,O—OH" species resulting
from Cm(III) interaction with the solvent (Ay.x = 598.3 nm)
[16], the Cm(III) rHSA species (Anax = 601.8 nm) and ternary
Cm(TII)-OH-rHSA [16] species in the alkaline pH region. In
general, the spectra are similar to those of Cm(III) HSA
presented in our previous study [16]. However, the emission
band of the Cm(IIT) rHSA complex shows a hypsochromic
shift of about 1 nm relative to the emission band of the
Cm(IIT) HSA species (Anax = 602.6 nm). Furthermore, the
Cm(III) rHSA species dominates the speciation over a
significantly broader pH range (pH 6.4-10.0) and its
maximum ratio (100% at pH 8.0) is higher compared to the
Cm(III) HSA species (about 60% at pH 8.0) [16]. This
discrepancy can be explained by the formation of different
Cm(1II) complexes with HSA and rHSA. However, the similar
shape and shift of the Cm(III) HSA and Cm(III) rHSA emis-
sion bands indicate only slight variations in the ligand field
introduced by the lack of Asp-1in rHSA. The results clearly
show that the lack of Asp-1 does not prevent Cm(III) binding
at the NTS although the coordination environment is slightly
different for the Cm(III) HSA and rHSA species.

The fluorescence lifetime of the Cm(III) rHSA species
was determined to be 7 = 145 + 10 ps. This is in excellent
agreement with the value of 7 = 152 + 10 ps obtained for
Cm(III) HSA indicating a similar coordination environment
[16]. Both values correspond to 3-4 H,0 molecules [19, 26]
and 5-6 coordinating ligands (amino acid residues and/or
additional anions like OH™ or CO;Z’) in the first coordina-
tion sphere of Cm(III) [27, 28]. These results also confirm
that Asp-1 is involved in Cm(III) binding at the NTS but is
not crucial for the complexation.

The complexation of Cm(III) with rHSA was studied in
dependence of the protein concentration at pH = 7.4
(Figure 2). With increasing rHSA concentration the ratio of
the Cm(III) rHSA species increases, resulting in a continuous
bathochromic shift of the emission band up to
Amax = 601.4 nm. The conditional stability constant at pH 7.4
was determined to be logK = 6.47. This value is compared
with that of the Cm(III) HSA species at pH 8.0 (logK = 6.16)
[16]. Since both are conditional stability constants obtained
at a certain pH a direct comparison is not possible. But
taking into account the different pH values and the errors a
slightly higher value for Cm(III) rHSA is observed although it
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Figure 1: Top: Fluorescence spectra of Cm(lll) with rHSA in the pH
range between 3.5 and 11.0; Bottom: Speciation of Cm(lIl) with rHSA
as a function of pH; ¢(Cm) = 1.0:10 7 M, c(rHSA) = 5.0-10 ® M, TRIS
10 mM, NaCl 150 mM, T = 296 K.

was obtained at lower pH. This is also reflected in the
speciation diagram with Cm(III) rHSA showing significantly
higher ratios in the pH range from 6 to 10 compared to
Cm(III) HSA. Consequently, the lack of Asp-1 does not
destabilize the Cm(III) complex. On the contrary, the slightly
different Cm(III) rHSA complex seems to be more stable than
the Cm(III) HSA complex.

For further verification of the Cm(III) HSA binding site
competition titration experiments of Cm(III) rHSA with
Cu(Il) and Zn(I) were performed at pH 8.0. The Cm(III)
rHSA complexation is not significantly influenced by
increasing the Cu(II) concentration (Figure 3, top). Only a
slight broadening and a small hypsochromic shift of the
emission band is observed which might be attributed to
Cu(II) complexation at other rHSA binding sites. This might
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Figure 2: Fluorescence spectra of Cm(lll) with increasing rHSA
concentration at pH 7.4; ¢c(Cm) =1.0-10 ” M, c(rHSA) = 0-2.4-10 > M,
TRIS 10 mM, NaCl 150 mM, T =296 K.

introduce slight changes in the three-dimensional protein
structure and influence the coordination environment of
the Cm(III) at the NTS. A similar effect was observed for
Cm(II1) transferrin before [29]. At high pH deprotonation of
amino acid residues not directly involved in Cm(III) bind-
ing introduce slight changes in the structure of the protein
leading to a small hypsochromic shift of the emission band.
Cu(II) cannot replace Cm(III) in the rHSA complex which is
in contrast to Cm(III) complexation with native HSA. With
increasing Cu(II) concentration the Cm(III) HSA complex-
ation is repressed and a hypsochromic shift of the emission
band is observed until the Cm(III) solvents spectrum is
obtained [16]. These results clearly demonstrate that the
lack of Asp-1 prevents Cu(Il) from replacing Cm(III) in the
rHSA complex.

Additionally to the preferred binding site NTS Cu(II)
can also bind to the MBS. To exclude additional complex-
ation of Cm(III) at the MBS a competition titration with
Zn(II) was performed (Figure 3, bottom). The results are
comparable with those of the Cu(ll) experiment: Only a
slight broadening of the emission band is observed due to
the binding of Zn(Il) to other binding sites changing the
three-dimensional protein structure. These results are in
excellent agreement with those obtained for Cm(III) HSA
[16]. For both proteins, Zn(II) does not replace Cm(III) in the
protein complex which proves, that Cm(III) does not bind
at the MBS neither in presence nor in absence of Asp-1.

In the present study the role of residue Asp-1 for Cm(III)
binding to HSA was elucidated. The results confirm that the
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Figure 3: Fluorescence spectra of Cm(lll) with rHSA at pH 8.0 in
dependence of the Cu(ll) concentration (top) and Zn(ll)
concentration (bottom); c(Cm) = 1.0-10 7 M, c(HSA) = 5.0-10 ¢ M,
¢(Cu) = 0-5.4-10 > M, c(Zn) = 0-9.4-10 > M, NaCl 150 mM, T = 296 K.

NTS is the main binding site for Cm(III), although coordi-
nation at binding sites with lower affinity cannot be
excluded. Residue Asp-1is involved in Cm(III) complexation
with native HSA but is not a crucial ligand for the coordi-
nation. Thus, the results contribute to a better understand-
ing of fundamental actinide-protein interaction and the
formed complexes which are important for the identification
and characterization of relevant distribution pathways of
incorporated radionuclides. However, the results obtained
so far do not give insight into the composition of the
coordination environment. Further experiments including
UV/Vis and CD (circular dichroism) spectroscopy, mass



spectrometry and quantum chemical calculations will help
to investigate the structure of the Cm(III) rHSA complex.
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