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W e present a new crossing number problem, which we refer to as the edge-constrained weighted two-layer crossing
number problem (ECW2CN). The ECW2CN arises in layout planning of hose coupling stations at BASF, where the

challenge is to find a crossing minimal assignment of tube-connected units to given positions on two opposing layers. This
allows the use of robots in an effort to reduce the probability of operational disruptions and to increase human safety. Physi-
cal limitations imply maximal length and maximal curvature conditions on the tubes as well as spatial constraints imposed
by the surrounding walls. This is the major difference of ECW2CN to all known variants of the crossing number problem.
Such as many variants of the crossing number problem, ECW2CN is NP-hard. Because the optimization model grows fast
with respect to the input data, we face out-of-memory errors for the monolithic model. Therefore, we develop two solution
methods. In the first method, we tailor Benders decomposition toward the problem. The Benders subproblems are solved
analytically and the Benders master problem is strengthened by additional cuts. Furthermore, we combine this Benders
decomposition with ideas borrowed from fix-and-relax heuristics to design the Dynamic Fix-and-Relax Pump (DFRP). Based
on an initial solution, DFRP improves successively feasible points by solving dynamically sampled smaller problems with
Benders decomposition. Because the optimization model is a surrogate model for its time-dependent formulation, we evalu-
ate the obtained solutions for different choices of the objective function via a simulation model. All algorithms are imple-
mented efficiently using advanced features of the GuRoBi-Python API, such as callback functions and lazy constraints. We
present a case study for BASF using real data and make the real-world data openly available.
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1. Introduction

BASF is the world’s leading chemical company (Tullo
2018). It has customers in over 170 countries and sup-
plies about 8.000 products to almost all industries.
BASF operates more than 350 sites worldwide, six of
them being major, so called “Verbund” sites. The lar-
gest site is in Ludwigshafen, Germany, where BASF
has its headquarters. The Verbund system is one of
the core competencies of BASF; it creates efficient
value chains that extend from basic chemicals to high-
value-added products such as coatings and crop

protection agents. In addition, the by-products of one
plant can be used as the starting materials of another.
As part of its Verbund system, BASF operates more

than 2.800 kilometers of pipelines in Ludwigshafen.
While most of the pipes are dedicated to a certain pro-
duct or utility, some of them are used for different
products alternatingly. To maximize flexibility, BASF
operates switching hubs, where dozens of pipes end
in the same location, and any two of them might be
connected on demand by flexible tubes. The work of
connecting and disconnecting pipes was a manual and
very unpopular task, due to the weight of the steel
pipes and the need for full body safety equipment in
the switching hub. However, necessary sub-tasks, such
as leaking test, flushing, and drying made it difficult
to obtain an automated solution. Currently, the engi-
neering department of BASF is designing a dual-arm
robotic system to accomplish that task. As the robot is
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mounted on the ceiling, with its two hands, it cannot
remove a pipe crossed by another one. For that, the
robot must either remove and rebuild all blocking con-
nections, or release the blocked pipe to the ground,
where it has to be removed manually later. Both possi-
bilities impede the efficiency of the system. Thus, the
Advanced Business Analytics department within
BASF was asked for a mathematical solution of this
problem, which translates into a crossing minimal
design where the number of blocking connections (so-
called FIFO crossings) is to be reduced to a minimum.
To that end, we are given a two-layer hose coupling

station where units are positioned on two opposing
sides surrounded by walls. These units are to be con-
nected by tubes. Figure 1 depicts such a hose coupling
station. The connecting tubes (edges) have to obey
three physical restrictions (constraints). First, tubes
must lie inside the box drawn by the units because
the units abut walls. A close distance to the surround-
ing walls is needed since the fluid flows through units
and the tubes emerge from taps integrated in the
walls. Due to security reasons, these taps have to be
close to the units without any disturbing elements in
between, that is, moving the units away from the wall
to gain more freedom for tube placement is not an
option. Second, the tubes’ length has an upper bound
which is imposed by the size of the tube storage.
Third, the tubes can only be bent up to a maximal cur-
vature; otherwise, they break. Moreover, the connec-
tions between the units change over time, that is, the
tubes have to be reconfigured. Possible failure during
the disconnection process may cause severe health
risks due to leaking chemicals. Therefore, BASF is tak-
ing very high safety precautions, like full body protec-
tion. In the future, this is supposed to be executed by
a dual-arm robot. As mentioned above, for the robot,
crossing tubes pose a challenge and may lead to addi-
tional efforts, as all tubes stacked above need to be
disconnected first. Therefore, a layout plan for the
units, which is crossing minimal with respect to the
connecting tubes, is highly valuable.
In the real-world problem at BASF, the locations of

75 units have to be determined. The connections
between the units change over time, and we recorded
historical connection data over a time span of more
than 3 years. Next, we performed a thorough data
cleansing in close cooperation with the operating
engineering department at BASF and dropped all his-
torical connections which did not generalize well for
future considerations. Eventually, we agreed on 375
representative connections whose weights were
determined by their historical connection frequency.
This leads to a graph with 75 nodes and 375 weighted
edges, having an edge-to-node ratio of 5.
The available data do not allow a meaningful prob-

abilistic evaluation of possible future connections,

because the number of observations is very low
compared to the huge number of possible pairings.
Consequently, the data are too sparse to extract
distributional information, let alone the fact that some
sets of pairings exclude each other, while other sets
are likely to co-exist. Therefore, we do not set up a
stochastic optimization model. Instead, we separate
the problem into a deterministic design optimization
problem, which serves as surrogate model, and a sim-
ulation problem, that is used for quality evaluation.
The deterministic design optimization problem

leads to what we call the edge-constrained weighted
two-layer crossing number problem (ECW2CN). We
formulate this problem as a mixed integer linear pro-
gram (MILP). The MILP finds an optimal assignment
using aggregated data, that is, time independent data,
considering both the number of connections between
each pair of units and the aggregated connection fre-
quencies. A natural objective function is the

Figure 1 An Illustration of a Possible Assignment of 9 Tube-connected
Units to 10 Positions. Due to the Maximal Curvature Condi-
tion, no Direct Neighbors may be Connected and a Maximal
Tube Length has to be Respected. This is Illustrated for the
Vertically Hatched Position (I) where all Reachable Positions
are Horizontally Hatched (B, C, E, G, H). The Thickness of
the Edges is Proportional to its Historical Connection Fre-
quency [Color figure can be viewed at wileyonlinelibrary.
com]
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minimization of the number of reconfigurations over
time which require the removal of FIFO connections.
Because our proposed MILP is static, such an objec-
tive function cannot be modeled directly. To over-
come this challenge, we set up multiple MILPs that
differ in their treatments of the weighted edges by
employing four different objective functions. Using
these four different objective functions, we generate a
series of feasible points for the MILP models. These
points are then evaluated in a simulation model. This
simulation model captures the complexity of the
design problem by taking time dynamics and histori-
cal connections into account. In a second simulation
model, only so-called FIFO crossings are counted, that
is, reconfigurations which require the removal of
blocking connections which cause operational disrup-
tions. The best performing point in the second simula-
tion model is then chosen as the optimal design.
Computing the FIFO crossings for all feasible points
is not possible since the second simulation model is
very time consuming.
The ECW2CN is a non-standard edge-weighted

crossing minimization problem (Schaefer 2020).
Because this problem has not been discussed in the lit-
erature before, we develop an optimization model
and tailor solution techniques to solve this real-world
problem.
Our unique contributions are:

• We introduce the edge-constrained weighted two-
layer crossing number problem (ECW2CN). This is
a new variant of the crossing number problem,
motivated by a real-world problem at BASF.

• We analyze the computational complexity of
ECW2CN and present MILP formulations, as
well as two tailored decomposition algorithms: a
Benders decomposition with direct cut calcula-
tion (BDC) and a Dynamic Fix-and-Relax Pump
(DFRP). The master problem of BDC is strength-
ened by incorporating some information from
relevant parts of the Benders subproblems. These
additional cuts are provably stronger than the
Benders optimality cuts. All cuts are computed
analytically yielding a very efficient algorithm.
The DFRP employs the BDC algorithm in a fix-
and-relax fashion where the problem sizes are
dynamically adjusted. This way, DFRP computes
high quality solutions while being able to theo-
retically provide an optimality certificate.

• We provide a case study using real data of
BASF. The real-world problem is solved by
state-of-the-art implementations of all algo-
rithms. Furthermore, final solutions of the real-
world problem for different choices of the
objective function are evaluated and compared
in a time-dependent simulation model.

The remainder is organized as follows. We place
the ECW2CN problem in the literature in section 2. In
section 3, we present a mathematical programming
model for the ECW2CN problem and show that
ECW2CN is NP-hard. This is followed by our two
solution algorithms in section 4. The case study of the
real-world problem is presented in section 5, and we
conclude with section 6.

2. Crossing Number Literature

The crossing number problem for a given graph G
consists of finding a drawing of G, such that this
drawing possesses the lowest number of edge cross-
ings (Schaefer et al. 2008, Székely 2004). Many vari-
ants of graph crossing number problems have been
studied during the last decades. The review paper by
Schaefer (2020) lists about 86 different variants. There-
fore, we focus our review on important aspects of
crossing number problems that are relevant in our
context.
The crossing number problem appeared in the

1940s in the context of railway crossing minimization
(Turán 1977) and in the 1960s in circuit design (Sinden
1966). However, it took until 2005 for the first exact
integer linear programming (ILP) formulations to
appear (Buchheim et al. 2005), although, for the
related maximum planar subgraph problem, ILP for-
mulations were published a decade before (Jünger
and Mutzel 1996a,b. For a general graph G(V, E), the
ILP formulation by Buchheim et al. (2005, 2008) mod-
els edge crossing via binary decision variables xe,f for
all edges e 2 E and f 2 E. The difficulty lies then in
ensuring that a graph exists for given values xe,f. This
is known as the realizability problem, which is itself
an NP-complete problem. Buchheim et al. (2005,
2008) ensure this realizability by a family of (poten-
tially exponential many) constraints. In 2008, Chimani
et al. (2008) presented an improved ILP formulation,
compared to the one presented in Buchheim et al.
(2005, 2008), requiring one order of magnitude fewer
binary variables by finding a compacter way to model
the graph realizability. The three mentioned ILP for-
mulations are solved by tailored branch-and-cut algo-
rithms, which combine advanced prepossessing
(Buchheim et al. 2008) with combinatorial column
generation (Chimani et al. 2008). To avoid the difficult
realizability problem, we exploit the special structure
of two-layer graphs present in ECW2CN (cf. section
3). This allows us to directly model the placement of
the “nodes” (that is, units u∈U on possible places
p∈P) via binary decision variable yu,p. The crossing is
then modeled by considering all quadruples
p; p0; p̂; p̂0∈P. This model allows us to consider vari-
ous different ways of counting the edge crossings and
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to model the edge constraints regarding maximal
length and maximal curvature explicitly.
In the literature, a variety of multi-layer and two-

layer crossing problems are presented. Carpano
(1980) discusses two types of hierarchical drawings
(also called level drawings): horizontal drawings
(nodes are placed on parallel lines) and radial draw-
ings (nodes are placed on concentric circles) in a
multi-layer context. All edges have to be drawn as
straight lines, in contrast to general drawing problems
where edges can contain bends. The level specifica-
tion of each node has to be respected. A semidefinite
programming approach for hierarchical drawing is
presented by Chimani et al. (2012). Hierarchical
drawings are extended to allow for intra-layer con-
nections by Bachmaier et al. (2010); the intra-layer
edges are allowed to bend. With that, Bachmaier et al.
(2010) comes close to the ECW2CN problem, when
restricting to two layers, which is illustrated in Fig-
ure 2. In the ECW2CN problem, we have also a two-
layer set-up with inter-layer connections, but the units

can be placed freely among the two sides in contrast
to Bachmaier et al. (2010). Another similarity of the
ECW2CN problem to Bachmaier et al. (2010) is that
all edges need to stay inside the rectangle spanned by
the location positions. Different to Bachmaier et al.
(2010), the ECW2CN problem has restrictions on the
inter- and intra-layer connections.
A special case of two-layer hierarchical drawings is

obtained for bipartite graphs; in the context of multi-
graphs, Garey and Johnson (1983) call this problem
the bipartite crossing number problem. Because only
straight lines are allowed for the edges, Jünger and
Mutzel (1996a, b) refer to this problem as the two-
layer straight line crossing problem. This is also the
usual setting for the k-layer case where only straight
lines are allowed. In the two-layer straight line cross-
ing problem, the bipartition of the node set has to be
respected (hence, there are no intra-layer edges). An
ordering of the nodes, for each of the two layers,
determines the graph and its crossings. This allows
for efficient permutation approaches (Kobayashi et al.

(a) (b) (c)

Figure 2 A Comparison of ECW2CN with Related Settings in the Literature, Yielding to Different Number of Minimal Crossings
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2014, Laguna and Marti 1999, Palubeckis et al. 2019).
As such, the bipartite crossing number problem is
highly related to the (quadratic) linear ordering prob-
lem (Buchheim et al. 2010, Shahrokhi et al. 2001).
Edge-weighted variants of the bipartite crossing num-
ber problem are presented by Çakiroglu et al. (2009)
and Kobayashi et al. (2014), where the weights are
handled in a multiplicative manner. The ECW2CN
problem also possess edge weights.
In sum, ECW2CN has the following key specifica-

tions:

• Maximal length and maximal curvature condi-
tions for the tube (that is, edges) have to be
met.

• Though we have a two-layer set-up, intra-layer
connections are allowed; like the formulation
in Bachmaier et al. (2010).

• All connections have to stay inside a rectangle
spanned by the position locations; similar to
the bipartite crossing number problem (Garey
and Johnson 1983).

• Each node (that is, unit u 2 U) can be placed
freely among the two layers; thus, this problem
differs from bipartite or two-layer crossing
minimization problems and yields some addi-
tional overlapping types, see Figure 3.

• The edges are weighted due to the historical
connection frequencies. However, in contrast to
the set up of Kobayashi et al. (2014), weights
can be handled in a very flexible framework. In
this work, we examine four different manners.

• The corresponding graph does not have to be
connected. Connectivity is a standard
assumption as the crossing number problems
decompose with their connected components.
This is not true for ECW2CN because of the
maximal length and maximal curvature con-
ditions.

• The number of units and places do not have to
be the same, that is, there might exist isolated
nodes in the corresponding graph. This is a
special case of a disconnected graph (see

previous point). The “placement” of the iso-
lated nodes is non-trivial due to the maximal
length and maximal curvature conditions.

• We are facing an edge-to-node ratio of 5. Most
instances found in the literature have a ratio
between 1 and 2.

3. ECW2CN, its Complexity and MILP
Formulations

Based on the definition of the ECW2CN in section 3.1,
we prove its NP-hardness (section 3.2) and present
our MILP models (section 3.3).

3.1. The Edge-Constrained Weighted two-Layer
Crossing Number Problem (ECW2CN)
We begin by defining the notation used in the defini-
tion of the ECW2CN as well as in the MILP.
Indices, sets and parameters

• u∈U : Units
• p∈P: Ordered set of positions; each position p

has an (Xp, Yp)-coordinate in the plane and all
positions are aligned on two layers, that is,
there are only two different values for Xp

• D >0: Maximal Euclidean distance between
two units due to a maximal tube length

• E >0: Minimal distance between two units on
the same layer due to maximal curvature

• ðp; p0; p̂; p̂0Þ∈C: Four tuples of positions, such
that connections of units on positions (p,p

0
) and

ðp̂; p̂0Þ respect the maximal tube length as well
as the maximal curvature condition parameter-
ized by D and E and induce one of the cross-
ing types illustrated in Figure 3.

• Fu;u0 ≥ 0: Aggregated historical connection fre-
quency of two units u; u0∈U

• PFu;u0 ;Fû; û0 ≥ 0: A penalty term that is used to
penalize crossings weighted by their frequen-
cies; therefore, PFu;u0 ;Fû;û0 ¼ 0 if and only if
Fu;u0 ¼ 0 and/or Fû; û0 ¼ 0

• ðu;u0; û; û0Þ∈Q: Four tuples of pairwise different
connected units, that is, Fu;u0>0 and Fû;û0>0

Figure 3 An Overview Over all Different Crossing Types in the ECW2CN
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• ðp;p0Þ∈N : Pairs (p, p
0
) that violate the maximal

length or maximal curvature condition

We are now ready to formally define the ECW2CN.

Definition 1. (Edge-constrained weighted two-layer
crossing number problem). Given is a set of units U ,
positions P on two layers with coordinates (Xp, Yp)
for each position p∈P, maximal Euclidean distance
D between two units, minimal Euclidean distance
E>0 between two units on the same layer, edge
weights Fu;u0 ≥ 0 for pairs of units u;u0∈U and a
function PFu;u0 ;Fû;û0 ≥ 0 of edge weights for
u;u0; û; û0∈U . Then, the edge-constrained weighted
two-layer crossing number problem (ECW2CN)
assigns each unit u∈U to at most one position p∈P,
such that the Euclidean distance of any pair of con-
nected units is not greater than D, at least E if both
units are on the same layer and all edges stay
within the rectangle spanned by the convex hull of
the position candidates, while minimizing the sum
over PFu;u0 ;Fû; û0 for all units u; u0; û; û0∈U whose place-
ment defines a crossing.

3.2. ECW2CN is NP-Hard
To show that ECW2CN is NP-hard, we first define a
decision version of ECW2CN, denoted by ECW2CN-
D.

Definition 2. (ECW2CN decision version).
Instance: A set of units U, positions P on two layers
with coordinates (Xp,Yp) for each position p∈P,
maximal Euclidean distance D between two units,
minimal Euclidean distance E>0 between two units
on the same layer, edge weights Fu;u0 ≥ 0 for pairs of
units u; u0∈U, a function PFu;u0 ;Fû; û0 ≥ 0 of edge
weights for u; u0; û; û0∈U and bound C<∞.
Question: Is there an assignment of each unit u∈U
to at most one position p∈P, such that the Euclidean
distance of any pair of connected units is not greater
than D, at least E if both units are on the same layer,
all edges stay within the rectangle drawn by the posi-
tion locations, and such that the sum over PFu;u0 ;Fû;û0
for all units u; u0; û; û0∈U whose placement defines a
crossing does not exceed C?Instance:

In our reduction, we use the decision version of the
bipartite crossing number (BCN) problem, denoted
by BCN-D.

Definition 3. (BCN decision version, (BCN decision
version, Garey and Johnson (1983)).
Instance: A connected bipartite multigraph G(V1,V2,
E) and an integer K<∞.
Question: Can G be embedded in a unit square so
that all vertices of V1 are on the northern boundary,

all vertices in V2 are on the southern boundary, all
edges are within the square and there are at most K
crossings?

We need the following complexity result.

LEMMA 1. (Garey and Johnson (1983)). The BCN-D
is NP-complete.

For their reduction, Garey and Johnson (1983) uti-
lize the Optimal Linear Arrangement problem which
has itself been reduced from the MAX-Cut problem in
(Garey et al. 1974). Therefore, BCN-D is NP-complete
in the strong sense.
This allows us to state and prove our main result.

THEOREM 1. The decision version ECW2CN is NP-
complete in the strong sense.

Proof . Observe that ECW2CN-D is in NP.

Given an instance of the BCN-D, that is, a connected
bipartite multigraph G(V1,V2,E), we construct an
instance of the ECW2CN-D as follows:

• U ¼V1∪V2

• P¼U with ðXi;YiÞ¼ 0; i�1
jV1j�1

� �
for i¼ 1; . . .; jV1j

and ðXi;YiÞ¼ 1; i�1
jV2j�1

� �
for i¼ 1; . . .; jV2j

• D = E = 2
• Fu;u0 ¼ 0 for all u;u0∈U; Fu;u0  þ1 for all
ðu;u0Þ∈E

• PFu;u0 ;Fû;û0 ¼ Fu;u0 �Fû;û0 for all Fu;u0 ;Fû;û0>0; o/w 0.

The idea is to use the restriction on the minimal dis-
tance between two units on the same layer to ensure
that only nodes from V1 (and V2) are assigned to the
same layer. This can be achieved by assigning any
number E > 1 (see below). The transformation is
shown in Figure 4.
The maximal distance is no restriction as long as

�D ≥
ffiffiffi
2
p

. This construction is (strongly) polynomial in
the size of G.
Next, we show that an instance for BCN-D with

bound K is a “YES” instance, if and only if the trans-
formed graph is a “YES” instance for ECW2CN-D
with bound C = K. For that, we observe that both
problems count the number of crossings. Thus, if the
solution of one problem maps to a solution of the
other, then the bounds are the same. It remains to
show the existence of such a mapping.
“⇒” Any feasible point for ECW2CN-D yields a

partition of U into two disjoint sets �V1 and �V2 where
�V1¼V1 or �V1¼V2. To see this, assume that v1∈V1

and v2∈V2 are both assigned to �V1. If ðv1;v2Þ∈E, then
v1 and v2 do not respect E. If (v1,v2) 62E, then there exits
a path from v1 to v2 in G, because G is connected.
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Choose any such path p. Then, there exists a node
v3∈V1 on p with (v2,v3) 62E. If v3∈ �V1, then v2 and v3 do
not respect E; otherwise, v3∈ �V2 and (v1,v3) 62E. Contin-
uing this argument along path p from v3 to v1 shows
the contradiction.
“⇐” Any feasible point for BCN-D respects D and

E. With that, it is a feasible point for ECW2CN-D.

3.3. The Mixed Integer Linear Programming
Models
We use the indices, sets, and parameters as intro-
duced in section 3.1. Furthermore, we require the fol-
lowing decision variables
• yu;p∈f0; 1g: Binary decision variable which is 1

if unit u is located at position p, 0 otherwise
• op;p0; p̂; p̂0 ≥ 0: Continuous decision variable that

represents the maximal crossing frequency of
arbitrary units located on the positions
ðp;p0; p̂; p̂0Þ.

The ECW2CN can be modeled as the following
MILP formulation, which we call the monolithic
model.

ðMÞ : z� :¼min
y;o

∑
ðp;p0; p̂; p̂0Þ∈C

op;p0;p̂;p̂0

s:t:ðyu;pþyu0;p0 þyû;p̂þyû0;p̂0 �3Þ �PFu;u0 ;Fû;û0 ≤ op;p0;p̂;p̂0
(1)

8ðp; p0; p̂; p̂0Þ∈C8ðu; u0; û; ûÞ∈Q (2)

∑
p∈P

yu;p¼ 1 8u∈U (3)

∑
u∈U

yu;p ≤ 1 8p∈P (4)

yu;pþ ∑
u0:Fu;u0 >0

yu0;p0 ≤ 1 8ðp;p0Þ∈N8u∈U (5)

yu;p∈f0;1g 8u∈U 8p∈P (6)

op;p0; p̂; p̂0 ≥ 0 8ðp;p0; p̂; p̂0Þ∈C (7)

The objective function (1) minimizes the weighted
number of crossings. This weighted crossing is mod-
eled through decision variables op;p0;p̂;p̂0 . Constraints
(2) together with the nonnegativity of op;p0;p̂;p̂0 ensures
that whenever a crossing is induced by locating two
pairs of connected units u; u0; û; û0 on positions
p; p0; p̂; p̂0, we have op;p0;p̂;p̂0 ¼ PFu;u0 ;Fû;û0 , that is, the cross-
ing is weighted with PFu;u0 ;Fû;û0 >0. Constraint blocks
(3)–(4) are assignment restrictions. Each unit u∈U has
to be put at exactly one place p∈P as ensured by con-
straints (3). That at most one unit u∈U is located at
each place p∈P is given by the SOS-1 constraints (4).
Constraints (5) ensure the maximal length and maxi-
mal curvature restrictions. We discuss these con-
straints now in detail.
Constraints (5) can be more naturally written as

yu;pþyu0;p0 ≤ 1 8ðp; p0Þ∈N8u;u0∈U : Fu;u0>0: (8)

These constraints (8) define a so-called conflict
graph, where yu,p and yu0;p0 cannot both equal 1.
Finding the maximal number of possible yu,p = 1
values leads to the so-called stable set problem
which is also known as the independent set prob-
lem. The stable set problem is related to the maxi-
mum clique problem through the inverse graphs.
Both problems are classical and well-studied combi-
natorial optimization problems (Bomze 1997, Bomze
et al. 1999, Rebennack et al. 2011). They are both
NP-hard (Garey and Johnson 1979). Constraints (8),
together with nonnegativity of yu,p, define the so-
called stable set polytope. Therefore, we can make
use of the knowledge about the stable set polytope
in our context. Specifically, constraints (8) are facet
defining for the stable set polytope, if and only if
the edge in the conflict graph defines as maximal
clique (Rebennack et al. 2012). This inspired con-
straints (5), which are a strengthened version of (8)
as can be observed by adding the corresponding
Fu¼ jfu0 : Fu;u0>0gj constraints to obtain

Fuyu;pþ ∑
u0:Fu;u0 >0

yu0;p0 ≤ Fu 8ðp;p0Þ∈N8u∈U:

Also note that there are jNj∑u∈UFu constraints with
two non-zeros each, while there are only jNjjUj
constraints (5) with Fu+1 non-zeros each. Therefore,
(5) yield to fewer non-zeros, to less constraints and
to stronger constraints compared to (8).
Nevertheless, constraints (5) are not facet defining

for polytope (3)-(5) as they are dominated by

(a) (b)

Figure 4 A Transformation of a “YES” Instance for K ≥ 5 of the BCN-
D to a “YES” Instance for C ≥ 5 of the ECW2CN-D Using the
Technique Described in the Proof of Theorem 1
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∑
u0∈U

yu0;pþ ∑
u0:Fu;u0 >0

yu0;p0 ≤ 1 8ðp; p0Þ∈N8u∈U: (9)

Because (9) are much denser than (5) and the maxi-
mal violation of constraints (9) is at most 1 for any
point of the LP relaxation of (3)-(5), we consider (5)
instead.
From the above discussions, we summarize

PROPOSITION 1. Formulation ðMÞ models ECW2CN
correctly.

We close this section with a few remarks.

REMARK 1. The subsequent theoretical develop-
ments do not the depend on a particular choice of
the crossing weights, that is, they hold true for all
PFu;u0 ;Fû; û0 : 

>0�>0!>0. However, for the prob-
lem at hand we consider the following four candi-
dates:

1. PFu;u0 ;Fû; û0 ¼ Fu;u0 þFû;û0 (“Sum”)
2. PFu;u0 ;Fû;û0 ¼ minðFu;u0 ; Fû; û0 Þ (“Minimum”)
3. PFu;u0 ;Fû;û0 ¼ Fu;u0 �Fû;û0 (“Product”)
4. PFu;u0 ;Fû;û0 ¼ 1 (“One”)

For illustrative purposes, suppose we have a cross-
ing induced by the positions of (u, u

0
) and ðû; û0Þ.

The durations of these connections are given by Fu;u0
and Fû; û0 . Then it is intuitive to see that the probabil-
ity of having an actual crossing at a point in time
increases for larger values of Fu;u0 and Fû; û0 . That
motivates the “Sum” and the “Product” objective
function for the time static MILP formulation. The
second choice “Minimum” provides an upper
bound on the expected number of frequencies since
a crossing cannot last longer than minðFu;u0 ; Fû; û0 Þ.

The last candidate counts the unweighted number
of crossings for benchmark purposes. These differ-
ent variations are illustrated in Figure 5 in Example
1. In section 5, we show that there is indeed a high
correlation between good feasible points with
respect to the objective functions above and actual
crossings which are computed by evaluating the
time-dependent simulation model.

Example 1. The graph depicted in Figure 1 pos-
sesses nine nodes and nine edges whose weights are
given by: (A, F): 10, (A, G): 8, (B, D): 6, (B, F): 2,
(C, E): 3, (C, F): 5, (D, H): 1, (E, I): 15, (H, I): 12.
Depending on the choice of the objective function,
we obtain the following optimal assignments as
illustrated in Figure 5.

REMARK 2. In order to break some symmetry, we
extend formulation ðMÞ by the constraint that the
unit with the most connections must be located in
the upper left half of the rectangle spanned by the
positions.

REMARK 3. Observe that it is possible to reformulate
the monolithic model ðMÞ as a minimax model of
the form

min
y

∑
ðp;p0 ; p̂; p̂0Þ∈C

max
ðu;u0; û; ûÞ∈Q

ðyu;pþyu0 ;p0 þyû;p̂þyû0 ;p̂0 �3Þ �PFu;u0 ;Fû;û0

s:t:ð3Þ�ð6Þ

which reveals the intrinsic piecewise linear structure
of its objective function.

REMARK 4. For our real-world application, we have
jCj ¼ 532;401 and jQj ¼ 129;922, that is, Equation (2)

(a) (b) (c) (d)

Figure 5 Optimal Configurations of the Graph in Figure 1 with Respect to Four Different Objective Functions
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translates into 69,170,602,722 constraints. Even to
build the mathematical model ðMÞ on a personal
computer with default settings is a challenge with-
out running into memory issues. Due to its size, it is
currently not possible to solve the monolithic model
ðMÞ directly using state-of-the-art MILP solvers.
Therefore, in section 4, we develop tailored solution
approaches to tackle this problem.

4. Solution Methods

The monolithic formulation ðMÞ is a MILP problem
of large scale, due to constraints (2) and variables
op;p0;p̂;p̂0 . We propose a tailored Benders decomposition
to exploit its special structure (section 4.1). This Ben-
ders decomposition is then used within a fix-and-
relax-inspired algorithm (section 4.2) in an effort to
compute good feasible points for the real-world prob-
lem at hand.

4.1. A Tailored Benders Decomposition with
Direct Cut Calculation (BDC)
4.1.1 Benders Decomposition. The idea of Ben-

ders (1962) was to separate a, what he called, mixed
variables problem into a master problem and a sub-
problem. The mixed variables in our case are the yu,p
and the op;p0;p̂;p̂0 variables. The master problem is a

relaxation of the original problem and does not con-
tain the so-called complicating constraints (in our
case, constraints (2)), which connect both types of
variables.
These constraints are passed onto the subproblem

which computes, for a given solution of the master
problem (in our case, trial values of variables yu,p), the
objective function value associated with an optimal
“response” to yu,p. Exploiting dual information, a

feasibility or optimality cut is generated and passed
on to the master problem. This way, the master prob-

lem is extended by information from the subproblem,
in terms of dual extreme directions or extreme points.
For a minimization problem, the master problem
yields a lower bound and the trial solution together

with the subproblem yields an upper bound. By itera-
tively solving master and subproblems until the
upper and lower bounds are sufficiently close to each
other, the original problem is solved. This so-called
Benders algorithm always terminates after finitely
many iterations because the dual subproblem
contains only a finite number of extreme direc-
tions and extreme points. For further details, we refer
to the literature (Rahmaniani et al. 2017, Rebennack
2016).
For a given trial solution ŷu;p of the master problem,

the subproblem ðSÞ is given by

z�SðŷÞ :¼min ∑
ðp;p0; p̂; p̂0Þ∈C

op;p0;p̂;p̂0

s:t:op;p0;p̂;p̂0 ≥ ðŷu;pþ ŷu0;p0 þ ŷû;p̂þ ŷû0; p̂0 �3Þ �PFu;u0 ;Fû;û0

(10)

8ðu;u0; û; û0Þ∈Q; ðp;p0; p̂; p̂0Þ∈C (11)

op;p0;p̂;p̂0 ≥ 08ðp;p0; p̂; p̂0Þ∈C (12)

Notice that ðSÞ is a linear programming (LP) prob-
lem which is feasible for any trial values ŷu;p∈ ½0; 1�.
Consequently, we do not need feasibility cuts.

REMARK 5. Observe that for given ŷ the unique
solution of ðSÞ is given by

which, in particular, implies its non-degeneracy.
This rules out the possibilities to add further cuts of
different strengths from degenerate solutions as
elaborated by Magnanti and Wong (1981), Papada-
kos (2008) and Sherali and Lunday (2013).

Let π�
p;p0; p̂; p̂0;u;u0; û; û0 be an optimal dual (basic) solu-

tion associated with constraints (11). Because of
strong duality, we obtain

For some (cut) index c, we define the (variable) cut
coefficient

and cut constant

πconc :¼�3 ∑
ðu;u0; û; û0Þ∈Q

∑
ðp;p0; p̂; p̂0Þ∈C

PFu;u0 ;Fû;û0π
�
p;p0;p̂;p̂0;u;u0;û;û0 :

πvaru;p;c :¼ ∑
u0; û; û0:ðu;u0; û; û0Þ∈Q

∑
p0; p̂; p̂0:ðp;p0; p̂; p̂0Þ∈C

π�p;p0;p̂;p̂0;u;u0;û;û0 8u∈U; p∈P (13)

o�p;p0; p̂; p̂0 ¼ max
ðu;u0; û; û0Þ∈Q

0;ðŷu;pþ ŷu0;p0 þ ŷû;p̂þ ŷû0;p̂0 �3Þ �PFu;u0 ;Fû;û0

n o
8ðp;p0; p̂; p̂0Þ∈C

z�SðŷÞ ¼ z�DðŷÞ :¼ ∑
ðu;u0; û; û0Þ∈Q

∑
ðp;p0; p̂; p̂0Þ∈C

ðŷu;pþ ŷu0;p0 þ ŷû;p̂þ ŷû0;p̂0 �3Þ �PFu;u0 ;Fû;û0

� �
π�p;p0;p̂;p̂0;u;u0;û;û0 :
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Because the dual subproblem is a maximization
problem, we obtain

z�SðyÞ≥ ∑
u∈U;p∈P

πvaru;p;cyu;pþπconc 8y∈f0;1gjUj�jPj:

This yields the optimality cut

η ≥ ∑
u∈U;p∈P

πvaru;p;cyu;pþπconc

for the master problem with free variable η.
The master problem ðMPÞ can then be summarized

as

z�M :¼min η (14)

s:t:ð3Þ�ð6Þ (15)

η≥ ∑
u∈U;p∈P

πvaru;p;cyu;pþπconc 8c∈O (16)

η ≥ 0 (17)

where set O is the cut set of Benders optimality cuts.
The master problem is a MILP.
For a given cut set O, the master problem yields a

lower bound on the optimal solution value, that is,
z�M ≤ z�. In our case, the subproblem yields an upper
bound for any trial ŷ, that is, z�SðŷÞ≥ z�. If

z�SðŷÞ� z�M ≤ ɛ;

then an ɛ-optimal solution to ðMÞ has been com-
puted; for some ɛ > 0. Otherwise, an optimality cut
is generated for trial ŷ and the master problem is re-
solved.

4.1.2 Direct Cut Calculation. The idea of Benders
decomposition is to exploit the special structure of the
original problem ðMÞ. Sometimes, the subproblem
also exhibits a special structure which may allow a
more efficient solution than solving it as an LP. For
example, the stochastic minimum s−t cut problem
features a maximum flow subproblem (Rebennack et
al. 2020). Similarly, the nonlinear (but convex) sub-
problem of the power system expansion problem in
Lohmann and Rebennack (2017) is a market clearing
mechanism which can be solved efficiently by a tai-
lored sorting algorithm. Another example arises in a
stochastic production-inventory planning problem
where the dual subproblems are solved using some
ordering property (Golari et al. 2017). An entire class

of Benders algorithms exploiting the special structure
of the subproblems is logic-based Benders decompo-
sition (Naderi et al. 2021). In our case, the subproblem
ðSÞ, and its dual, can also be solved very efficiently.
For subproblem ðSÞ, it suffices to obtain an optimal

dual (basic) solution π�
p;p0; p̂; p̂0;u;u0; û; û0 . With such a dual

point, we can calculate the cut coefficient πvaru;p;c, the cut

constant πconc and the optimal objective function value
z�SðŷÞ. Specifically, we do not require the solution of
the primal subproblem ðSÞ.
The dual subproblem is a continuous knapsack

problem of special form. For trial ŷ, observe that an
optimal dual (basic) solution is given by

for all ðu; u0; û; û0Þ∈Q and ðp; p0; p̂; p̂0Þ∈C. The maxi-
mum is positive, if and only if there is a tuple
ðu;u0; û; û0Þ∈Q of units which are placed on positions
ðp; p0; p̂; p̂0Þ∈C.
Assume that ŷ is binary. Because at most one unit u

can be placed at any position p, this tuple ðu; u0; û; û0Þ
must be unique, if it exists. Consequently, for binary
values of ŷ, argmax is unique (implying that the solu-
tion is basic) and can be computed by inspecting all

tuples ðu; u0; û; û0Þ. Thus, π�
p;p0;p̂;p̂0;u;u0;û;û0 ¼ 1 if and only

if units ðu; u0; û; û0Þ∈Q cause an overlap for positions

ðp; p0; p̂; p̂0Þ∈C. These overlaps can be computed effi-

ciently by inspecting whether the tuples ðu; u0; û; û0Þ
cause an overlap. This yields a runtime of OðjQjÞ to
identify the 1 entries for π�

p;p0; p̂;p̂0; �; �; �; �. The cut coeffi-

cients πvaru;p;c can also be calculated in OðjQjÞ through
(13). This is extremely efficient when observing that
subproblem ðSÞ contains jQj � jCj functional constraints.
In case ŷ is fractional, the argmax in (18) may con-

tain more than a single value > 0. Again, it suffices to
run through all tuples ðu; u0; û; û0Þ∈Q, retrieve the
corresponding position tuples ðp; p0; p̂; p̂0Þ, check if
they induce a crossing (that is, check if ðp; p0; p̂; p̂0Þ∈C)
and save them if necessary for later computation of

ðyu;pþyu0;p0 þyû;p̂þyû0;p̂0 �3Þ �PFu;u0 ;Fû;û0

and to choose the maximum value among them.

4.1.3 Benders Based Branch-and-Cut. Next to the
efficient calculation of the cut coefficients, the particu-
lar implementation of the Benders decomposition can
have a significant effect on the algorithm’s computa-
tional performance. We chose a state-of-the-art imple-
mentation based on lazy constraints using callback
functions. For that, observe that a valid Benders opti-
mality cut is associated with each trial ŷ, not

π�p;p0;p̂;p̂0;u;u0;û;û0 ¼
1; ifðu;u0; û; û0Þ ¼ argmaxðu;u0;û;û0Þ∈Q

ðŷu;pþ ŷu0;p0 þ ŷ
û;p̂
þ ŷ

û0;p̂0 �3Þ �PFu;u0;Fû;û0

n o
>0

0; o=w

(
(18)

Sudermann-Merx, Rebennack and Timpe: Crossing Minimal Edge-Constrained Layout Planning

10
Production and Operations Management 0(0), pp. 1–19, © 2021 The Authors. Production and Operations Management published by

Wiley Periodicals LLC on behalf of Production and Operations Management Society.

Please Cite this article in press as: Sudermann-Merx, N., et al. Crossing Minimal Edge-Constrained Layout Planning using Benders
Decomposition. Production and Operations Management (2021), https://doi.org/10.1111/poms.13441

https://doi.org/10.1111/poms.13441


necessarily being binary. This allows us to compute
and add Benders optimality cut(s) each time a trial
has been computed in the branch-and-bound tree.
The resulting algorithm is also known in the literature
as “Benders based branch-and-cut” (Naoum-Sawaya
and Elhedhli 2013).
We follow a strategy similar to Adulyasak et al.

(2015) and add Benders cuts in two cases: (1) at the
root node of the branch-and-bound tree, these are glo-
bal cuts, and (2) for feasible (incumbent) solutions,
these are local cuts. This strategy avoids computing an
excessively large number of Benders cuts. Specifically,
we add Benders optimality cuts in the root node until

z�SðŷÞ� z�M;LP ≤ ɛ

for ŷ of the master problem, where z�M;LP is the opti-
mal objective function value of the LP relaxation of
the master problem ðMPÞ. This ensures that

z�M;LP� z�LP ≤ ɛ; (19)

with optimal objective function value z�LP of the LP
relaxation of the monolith ðMÞ. Condition (19) certi-
fies that we have solved the LP relaxation of the mono-
lith with the Benders decomposition approach before
the branching starts. The solution of the LP relaxation
of ðMÞ via Benders decomposition is efficient because
the master problem works only with the yu,p variables,
avoiding the excessively large number of variables
and constraints in (2). Additional efficiency is gained
by using the direct cut calculation via (18) instead of
solving LPs in order to compute the optimality cuts.

4.1.4 Strengthening theMaster Problem. Inspired
by Rahmaniani et al. (2017), we strengthen the master
problem (MP) guided by the LP relaxation as fol-
lows. We first solve the LP relaxation of the monolith
with the Benders decomposition approach as
described in section 4.1.3 using only the Benders opti-
mality cuts (16) and the continuous yu,p and η vari-
ables. Once the LP relaxation has been solved to
optimality, we inspect all computed Benders cuts.
Specifically, we collect all occurring tuples

ðp; p0; p̂; p̂0; u; u0; û; û0Þ in a set T pu⊂C�Q, that is, we
collect those tuples with a positive dual variable
π�
p;p0;p̂;p̂0;u;u0;û;û0>0. Next, we project T pu onto the

“position-space,” that is, we define

T p :¼ fðp;p0; p̂; p̂0Þ∈Cj9ðu;u0; û; û0Þ∈Q :

ðp;p0; p̂; p̂0;u;u0; û; û0Þ∈T pug⊂C:

Note that for most instances, T p contains much
fewer elements than C.
This allows us to define the strengthened master

problem (MP★), where besides some initial Benders

optimality cuts (16), we have also integrated the addi-
tional cuts (22).

z�M� :¼min η (20)

s:t:ð15Þ�ð17Þ (21)

η ≥ ∑
ðp;p0; p̂; p̂0Þ∈T p

τp;p0;p̂;p̂0 (22)

τp;p0;p̂;p̂0 ≥ πvaru;p;cyu;pþπconc 8ðp; p0; p̂; p̂0; u; u0; û; û0Þ∈T pu; c∈O

(23)

τp;p0;p̂;p̂0 ≥ 0 8ðp;p0; p̂; p̂0Þ∈T p: (24)

REMARK 6. Note that the cuts in (22) are valid cuts
and, at the same time, stronger than the related Ben-
ders cuts. To see that, observe that a Benders cut is
constituted by the sum over all tuples of units and
positions that cause crossings. Cuts in (22) separate
these sums onto multiple cuts chosen by the tuple
of overlapping positions, implying that these cuts
are valid and stronger. This comes at the cost that
we have to introduce an additional variable for each
cut of type (22) whereas Benders cuts are not enlarg-
ing the space of decision variables.

While (MP★) might look similar to the monolithic
model (M), the key aspect in the formulation of
ðMP★Þ is that considerably fewer variables and con-
straints of type (2) are needed. Thus, ðMP★Þ is a
hybrid version that combines the strength of the
monolithic formulation with the nimbleness of its
Benders decomposition. This way, the Benders algo-
rithm resembles the delayed row generation approach
in the restricted set T p.
Starting from a feasible solution �y of ðMP★Þ we

suggest the following procedure:

1. Compute the tuples ðp; p0; p̂; p̂0; u; u0; û; û0Þ
induced by all crossings of �y and check
whether we have ðp; p0; p̂; p̂0Þ∈T p.

2. If ðp; p0; p̂; p̂0Þ∉ T p, add a Benders cut of type
(16) over all ðp;p0; p̂; p̂0;u;u0; û; û0Þ with
ðp;p0; p̂; p̂0Þ∉ T p.

3. If ðp; p0; p̂; p̂0Þ∈T p, add cuts of type (22) for all
ðp; p0; p̂; p̂0; u; u0; û; û0Þ with ðp; p0; p̂; p̂0Þ∈T p.

4.1.5 The Tailored Benders Based Branch-and-
Cut Algorithm. The resulting algorithm is summa-
rized in pseudo-code in Algorithm 1. The algorithm is
initialized in step 1. Because the master problem
ðMPÞ is unbounded for empty cut set O, we set an
artificial lower bound on η. This lower bound can be
any value ≤ 0 because 0 is a trivial lower bound of the
LP relaxation of ðMÞ.
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In the first “repeat” loop (steps 2–6), the LP relax-
ation of the monolith ðMÞ is solved through Ben-
ders decomposition (McDaniel and Devine 1977).
Every trial solution from the master problem (step
3) is evaluated to obtain its “true” objective function

value z�SðŷÞ (step 4). If this objective function value
matches the objective function value of the master
problem, then the LP relaxation has been solved
and the “repeat” loop is left (step 5). Otherwise, a
Benders cut for the fractional-valued trial ŷ is added
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(step 6). Step 7 checks integrality of the computed
incumbent ŷ; integrality implies that ŷ is an optimal
solution of the monolith ðMÞ. Step 8 prepares the
sets required for the strengthened Benders master
problem cuts (22).
In the second “repeat” loop (steps 9–20), the master

problem is solved to optimality by adding Benders
cuts until all integral trial solutions are evaluated with
the correct objective function value. Therefore, the
master problem is solved (step 10) either until opti-
mality (then the algorithm terminates in step 11) or
until an integral trial solution ŷ has been computed. If
the objective function value of this trial solution is
evaluated correctly in the master problem, then the
solution is checked for possible update (step 14) and
the corresponding node in the branch-and-bound tree
is fathomed (step 15). Otherwise, Benders optimality
cuts (16) or (22) are added (step 18 and 19,
respectively).

4.2. The Dynamic Fix-and-Relax Pump (DFRP)
To improve the best feasible point found by BDC,
we introduce the so-called Dynamic Fix-and-Relax

Pump (DFRP). DFRP is inspired by other numerical
methods in large-scale optimization such as block
coordinate descent (Hildreth 1957, Wright 2015) and
stochastic gradient descent (Bottou 2010, Robbins

and Monro 1951) where, due to the model size, not
all the information available is used in each itera-
tion. We also borrow ideas from the fix-and-relax
heuristic, which successively improves a feasible
solution by fixing parts of the variables and optimiz-
ing the resulting problem only in the free remaining
variables (Toledo et al. 2015). Because ECW2CN
does not exhibit a sequential decision-making pro-
cess which can be exploited algorithmically, the pro-
posed method differs from rolling horizon
approaches in that any decision variables can be
freed or fixed throughout the algorithm (Thevenin
et al. 2021).
Based on a feasible solution �y, we select randomly a

batch of units B⊆U. For these units, an optimal posi-
tioning is computed using BDC. The batch size of
units to be optimized is controlled in a dynamic way:
If we see the same optimal value for some iterations,
the batch size is increased. Once we reach a batch size,
such that the corresponding problem cannot be
solved to optimality within the time limit, we reset
the sample size to an initial value. DFRP is stated
explicitly in Algorithm 2.

4.2.1 Stopping Criteria and Deterministic
Variations of DFRP. We want to discuss some stop-
ping criteria and alternative versions of DFRP:
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• A maximal number of iterations, a time limit
or a maximal number of iterations without
changes in the objective value are classical
stopping criteria which, of course, may also be
used for DFRP.

• Note that DFRP computes a global optimal
point of ðMÞ, if we have zbest = 0 or if the
problem in step 4 of Algorithm 2 is solved to
optimality for jBj ¼ jUj.

• One deterministic variation of the DFRP is to
drop step 5 if Algorithm 2 and to increase the
batch sizes until jBj ¼ jUj. This variation can also
be seen as warm-started BDC, preceded by a
“trajectory” of feasible points generated by
DFRP.

5. Solution of the Real-World Problem
at BASF

5.1. Problem Specifications
In this use case, we have 75 units with 375 connec-
tions that have to be located on 76 positions. The max-
imal tube length permits connecting two units on the
same side with a distance of 20 positions and two
units on opposing sides whose distance does not
exceed 18 positions. The maximal curvature condition
translates into the constraint that connected units may
not be located on neighbored positions.

5.2. Implementation Details
All computations are run on an Intel Xeon Proces-
sor with 4 cores at 3.7 GHz and 128 GB RAM. The
code was implemented using Python 3.7 and GuR-
oBi 9.1 using the following GuRoBi methods/at-
tributes:
• GRB.Callback.MIPSOL: This attribute

indicates the occurrence of a new incumbent. If
a new feasible point was computed, we add a
new optimality cut with Model.cbLazy
().

• Model.cbLazy() which adds the cuts in
a lazy manner.

• The attribute GRB.Callback.MIPNODE
can be used to get an entry points for actions
that are triggered by the computation of new
feasible points of the continuous relaxation, for
example, for adding fractional cuts in the
strengthening step of the master problem.

• GRB.Callback.MIPNODE_NODCNT
and master.terminate() are used to
disrupt the solve routine after all fractional
cuts are collected in the root node.

For Algorithm 2, we set binit = 6, b+ = 1, ɛ = 10−8

and smax = 5 for all computations. The time limit for

each problem within DFRP is set to 2 hours and we
set the tolerable relative MIP gap to 1%.

5.3. DFRP Statistics
To strengthen the master problem as described in sec-
tion 4.1.4, we collect 47,265 fractional cuts while solv-
ing the root node, that is, we have jT pj ¼ 47;265. Based
on the same initial solution, we run DFRP for each of
the four objective functions for 48 hours. In each itera-
tion of DFRP, an ECW2CN instance is solved for par-
tially fixed units. The solution statistics are
summarized for the different objective functions in
Tables 1–4. The column “Sample Size” refers to the
number of non-fixed units whose position is to deter-
mine optimally. “#Entries” is the number of instances
for each row, for example, we have 25 iterations of
DFRP for the objective function “min” with sample
size 6. Column “Av. # Opt. Cuts” describes the aver-
age number of optimality cuts introduced for each
problem instance in that row, whereas its average rel-
ative optimality is given in column “Av. Gap.”

Table 1 Numerical Results for Objective Function “minimum”

Sample
Size # Entries

Av. #
Opt. Cuts Av. Gap

Av. CPU
Time [s]

Av. # BB
Nodes

6 25 428,843 0.0041 100.3 11.08
7 27 426,632 0.0034 61.6 13.37
8 29 515,654 0.0045 128.0 17.76
9 64 837,583 0.0061 138.6 44.59
10 41 1,974,287 0.0073 570.7 161.68
11 57 4,505,610 0.0079 873.3 439.19
12 30 6,621,153 0.0094 1820.4 815.70
13 8 11,584,127 0.0287 3955.1 2027.88

Table 2 Numerical Results for Objective Function “product”

Sample
Size # Entries

Av. #
Opt. Cuts Av. Gap

Av. CPU
Time [s]

Av. # BB
Nodes

6 24 306,481 0.0033 148.4 4.92
7 27 521,725 0.0038 307.1 24.67
8 29 600,600 0.0045 543.2 25.76
9 43 683,431 0.0035 525.7 34.35
10 16 2,086,097 0.0149 1572.5 184.62
11 10 2,577,913 0.0078 1724.9 226.30
12 38 3,032,248 0.0079 1825.7 313.95
13 4 3,582,362 0.0290 2542.0 781.50

Table 3 Numerical Results for Objective Function “one”

Sample
Size # Entries

Av. #
Opt. Cuts Av. Gap

Av. CPU
Time [s]

Av. # BB
Nodes

6 36 422,135 0.0034 361.1 15.00
7 24 835,595 0.0046 758.0 47.46
8 27 756,887 0.0047 877.9 37.63
9 43 1,290,207 0.0061 1396.5 77.67
10 22 1,837,311 0.0062 1603.9 131.55
11 9 3,165,046 0.0081 2572.3 252.33
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Finally, “Av. CPU Time [s]” and “Av. # BB Nodes”
describe the average CPU time in seconds and the
number of searched branch-and-bound nodes, respec-
tively.
In Tables 1–4 we observe that the sample sizes vary

between 6 and 13 for most objective functions and we
see that in general the number of optimality cuts
increases with the sample size. The optimality gaps

reported by GuRoBi are close to zero and exceed the
given threshold of 1% only if the model cannot be
solved within the time limit of 2 hours. As expected,
the average computing time as well as the number of
searched branch-and-bound nodes increases for lar-
ger sample sizes.
The “one” objective function seems to generate

rather hard problem instances since we always faced
a problem instance of sample size 11 that could not be
solved within the time limit of 2 hours before increas-
ing the sample size (cf. Table 3).

5.4. Results
Each objective functions leads between 60 and 83 fea-
sible points. These points are then evaluated by a sim-
ulation model that counts the total number of
crossings in a time dependent framework, based on
the historic connections. The result is depicted in Fig-
ure 6.
Each of the four graphs in Figure 6 is generated as

follows. For a specific objective function, all computed

Table 4 Numerical Results for Objective Function “sum”

Sample
Size # Entries

Av. #
Opt. Cuts Av. Gap

Av. CPU
Time [s]

Av. # BB
Nodes

6 45 373,946 0.0035 93.6 11.04
7 38 378,917 0.0022 91.1 10.97
8 48 452,494 0.0039 135.1 14.04
9 44 830,338 0.0047 221.3 44.32
10 75 1,442,428 0.0062 245.2 101.83
11 39 3,294,341 0.0081 990.6 324.33
12 35 2,753,871 0.0071 732.3 270.54
13 19 9,086,700 0.0183 3413.9 1453.05

(a) (b)

(c) (d)

Figure 6 For Each Feasible Point, the Objective Function Value on the Left Axis and the Number of Crossings as Output of the Simulation Model
are Shown. Each Graph Corresponds to a Different Objective Function and a Different Run of Algorithm Dynamic Fix-and-Relax Pump
[Color figure can be viewed at wileyonlinelibrary.com]
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feasible points by DRFP are sorted according to
decreasing objective function value. This is shown by
the blue dots. For each feasible point, the resulting
crossings, as evaluated by the simulation model, are
shown by the red dots. Therefore, in a perfect (that is,
dynamic) model, the red dots would lie on the blue
line. We observe that the two y-axis values live on dif-
ferent scales.
Next, we want to evaluate how good the obtained

solutions (“blue dots”) mimic the simulation results
(“red dots”); therefore, consider Table 5. This table lists
both the Pearson correlation and the Spearman’s rank
correlation of the objective function value to the simu-
lation result. Such as the correlation, the rank correla-
tion lies between −1 and +1 and a value close to +1
indicates strong dependence. While the correlation
measures linear dependence, the rank correlation cap-
tures monotonic relationships, that is, only the ranks of
the data points are compared and not their values.
Therefore, the rank correlation is a more relevant mea-
sure for our data than the correlation because we are
just interested which solutions perform best.
For the results in Figure 6, the “product” objective

function value performs very strong for both the corre-
lation and the rank correlation. The “sum” and “mini-
mum” objectives perform well with respect to the
correlation of objective values and simulation results
but show weaknesses with respect to rank correlation.
That can also be seen in Figure 6 since for both objec-
tives there exist points with very good objective values
but poor simulation performance. It is striking to see
that also the “one” objective performs very well for
both performance measures. However, while the
results for “sum,” “minimum,” and “product” have

been very similar in previous versions of the numerical
results, “one” did behave much worse in these runs.
So, the good performance of “one” might be a ”lucky
shot” caused by the stochastic nature of DFRP.
Finally, for each objective function, the best feasible

points with respect to their objective value and the
simulation result are evaluated with the second, much
more detailed simulation model. Because for the
“one” objective these points coincide, we computed
the number of FIFO crossings for seven feasible points
and ended up with the results in Table 6.
The best solution found without any FIFO crossings

is illustrated in Figure 7.
The final solution was presented to the engineering

department. Although we computed a fully feasible
layout in the sense that no FIFO crossings occurred on
historical connection data, we were aware of the fact
that that might not hold true for futures connections.
However, the best layout generated by our algorithm
reduces the expected number of such events to a few
per year, which was deemed to be acceptable by the
engineers.
As a side effect, our models provided valuable

insights for the engineers. In particular, the question
of how many pipes of the different lengths will be
needed was an important parameters for the dimen-
sioning of the tube handling system. Also, more gen-
eral questions, such as the effect of the width of the
switching hub (the distance between the two lines of
connectors) on other parameters, could be answered
easily.
Our results removed the last concerns toward the

applicability of the robotic invention, and a decision
was made to build it. The robotic system will auto-
matically prevent connections between wrong units,
decrease the risk of spillage and increase the safety
and satisfaction of the workforce.

6. Conclusions

In an effort to increase human safety, BASF is devel-
oping a dual-arm robotic system to reconnect pipes in
a switching hub. The robot can undertake almost all
reconnections, except such reconnections which
require the removal of multiple pipes at ones, which
is left to the humans. This raised the question on how
to design the layout of a new switching hub in order
to minimize the number of reconnections involving
humans. We have modeled this real-world problem
as a special minimal crossing number problem in con-
junction with two simulation models. The resulting
edge-constrained weighted two-layer crossing num-
ber problem (ECW2CN) leads to instances of gigantic
size (approximately 70 billion constraints), when tack-
led via MILP approaches. Therefore, we have devel-
oped a tailored Benders decomposition which is

Table 6 Computation of Critical FIFO Crossings for the Best Seven
Solutions Found by Dynamic Fix-and-Relax Pump (DFRP)
Evaluated on a Time Period of Three Years

Instance
Number of

FIFO crossings

Minimum - best_obj 17
Minimum - best_sim 8
Product - best_obj 10
Product - best_sim 0
One - best_obj and best_sim 26
Sum - best_obj 26
Sum - best_sim 18

Table 5 Comparison of Relationship between Objective Function Value
and Simulation Result

Objective function Correlation Rank Correlation

Minimum 0.91 0.67
Product 0.90 0.96
One 0.91 0.90
Sum 0.84 0.73
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employed in a dynamic fix-and-relax pump. For dif-
ferent objective functions, we have identified a total of
454 feasible layouts. These layouts are then evaluated
by two different simulation models. The obtained
solution not only increases human safety but also pro-
vides valuable feedback to engineers regarding the
design of the switching hub.
We see three possible directions for future aca-

demic research. The first direction is to increase the
computational efficiency of the tailored solution algo-
rithms or to propose better performing models and

methods. For Benders decomposition, there might be
possibilities to further strengthen the master problem
through tailored cuts. Another possibility might arise
when combining column generation (on the τ-
variables) with Benders decomposition. A second
direction is to enhance the model by dynamic and
stochastic aspects, capturing the entire complexity of
the real-world problem. This comes at the cost that:
(1) no real-world data are available, and (2) the model
becomes even more challenging to solve. A third
direction is to obtain better theoretic lower bounds

Figure 7 Best Solution with Regard to the Number of Critical FIFO Crossings Computed by Dynamic Fix-and-Relax Pump
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through specific crossing number lemmas, taking the
special structure of ECW2CN into account.
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