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Abstract
In this article, we consider the asymptotic stability of the two-dimensional Boussinesq
equations with partial dissipation near a combination of Couette flow and temperature
profiles T (y). As a first main result, we show that if T ′ is of size at most ν1/3 in a
suitable norm, then the linearized Boussinesq equations with only vertical dissipation
of the velocity but not of the temperature are stable. Thus, mixing enhanced dissipation
can suppress Rayleigh–Bénard instability in this linearized case. We further show that
these results extend to the (forced) nonlinear equations with vertical dissipation in
both temperature and velocity.

Keywords Boussinesq equations · Partial dissipation · Hydrostatic imbalance ·
Enhanced dissipation · Shear flow

Mathematics Subject Classification 35Q79 · 35Q35 · 76D05 · 35B40

1 Introduction

The Boussinesq equations are a standard approximate model of heat transfer in (vis-
cous) fluids and are given by a coupled system of the Navier–Stokes equations and a
dissipative transport equation for the temperature density:

∂tv + v · ∇v + ∇ p = (νx∂
2
x + νy∂

2
y )v + θe2,

∂tθ + v · ∇θ = (μx∂
2
x + μy∂

2
y )θ,

∇ · v = 0.
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Here v ∈ R
2 denotes the velocity, p ∈ R is the pressure, θ ∈ R is the temperature

and we consider the domain T × R � (x, y). The θe2 term models buoyancy which
causes hotter fluid to rise and colder fluid to sink.

In Sects. 2 and 3 of this article, we consider the setting with only vertical dissipation
of the velocity,

νx = μx = μy = 0, νy =: ν > 0.

We refer to this setting as vertical dissipation. In Sect. 4, we assume vertical dissipation
in both velocity and temperature, which we refer to as full vertical dissipation.

One readily observes that at least formally any pair of functions of the form

v = (β y, 0), θ = T (y),

with β ∈ R and T smooth are automatically stationary solutions of the vertical dis-
sipation problem (choosing p = p(y) suitably). Here a particular focus in existing
results has been on the case when T is affine and increasing, that is, hotter fluid is on
top of colder fluid, which is known as hydrostatic balance. A main aim of this article
is to study more general profiles T (y), and in particular answer how much T may
oscillate if both shear and viscosity are available to counteract thermal instability.

More generally, the problem of partial dissipation has been an area of extensive
research, where we in particular mention the recent works (Elgindi and Widmayer
2015; Widmayer 2018; Doering et al. 2018; Yang and Lin 2018; Wu et al. 2019; Deng
et al. 2020; Wu et al. 2020; Dong et al. 2020). The question of global well-posedness
has been addressed in series of works by Chae et al. (1999), Chae (2006).

In this article, we will focus on questions of asymptotic stability close to specific
families of solutions and how the interaction of mixing and temperature stratification
may counteract instability.

In Yang and Lin (2018), Yang and Lin studied the stability of the linearized inviscid
problem around the case where T (y) = αy is affine and showed that for some stability
results it is necessary that α > 0, and thus, T is increasing. We recall these results in
Sect. 2 and emphasize that the threshold with respect to α depends on whether one
studies

• the vorticity ω, which is always unstable,
• the horizontal component of the velocity v1, which is stable if α > 0 and unstable
if α < 0, or

• the vertical component of the velocity v2, which is stable if α > −2 and unstable
if α < −2.

Thus, already in this case in a specific sense one may allow α to be negative if it is
sufficiently small.

Recently, Masmoudi et al. (2020) showed that the associated nonlinear problem
near T (y) = αy, α > 0 without thermal diffusion but with viscous diffusion is
asymptotically stable in Gevrey regularity. These results in particular show that this
partial dissipation problem behaves similarly to the Euler equations (Bedrossian and
Masmoudi 2015) instead of the Navier–Stokes equations (Bedrossian et al. 2018).
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If one instead considers full dissipation, in Zillinger (2020) we adapted the methods
of Bedrossian et al. (2018), Liss (2020) to establish nonlinear stability in Sobolev
regularity.

This article extends the results of Zillinger (2020) to the case of negative α and
partial dissipation. More precisely, we show for the linearized problem with vertical
dissipation that the evolution is asymptotically stable provided

α > − 1

100
3
√

ν.

Similar results hold for T (y) non-affine. Thus, mixing enhanced dissipation can sup-
press Rayleigh–Bénard instability with an enhanced dependence on ν. We remark that
beneficial interaction of shear and (in)stability in the context of reaction–diffusion and
turbulence has previously been observed in Spiegel and Zaleski (1984), Doering and
Horsthemke (1993), Castaing et al. (1989).

For the nonlinear problem, we further show that for affine T and full vertical
dissipation the same stability results hold. As shown in Masmoudi et al. (2020) in the
case of vertical dissipation only in the vorticity, a more careful analysis is required to
control resonances, reminiscent of echoes in the Euler equations (Deng andMasmoudi
2018; Deng and Zillinger 2019).

Ourmain results concerning the linearized problemare summarized in the following
theorem.

Theorem 1.1 Let T : R → R be a given temperature profile. Let N ∈ N and suppose
that T ′(y) ∈ L∞. We then consider the linearized Boussinesq equations with vertical
dissipation in the velocity onlyaroundv = (y, 0), θ = T (y) in coordinates (x+t y, y):

∂tω = ν(∂y − t∂x )
2ω + ∂xθ,

∂t∂xθ = −T ′(y)∂xv2,
(t, x, y) ∈ (0,∞) × T × R

Then, if the Fourier transform of T ′ satisfies the estimate

sup
ξ

∫
|F(T ′)(z − ξ)|

(
1+|z|
1+|ξ | + 1+|ξ |

1+|z|
)N

(1+min(ν− 2
3 , |z−ξ | 23 ))dz<

1

100
ν1/3,

(1)

the initial value problem is stable in HN ×HN in the sense that there exists a constant
C > 0 such that for any initial data (ωin, ∂xθin) ∈ HN × HN the solution satisfies

ν1/3‖ω(t)‖2HN + ‖∂xθ‖2HN ≤ C(1 + ν− 2
3 )2(ν1/3‖ωin‖2HN + ‖∂xθin‖2HN

+ν−2/3‖θin‖2HN ).

In particular, if T ′(y) = α, stability holds if α > − 1
100ν

1/3.
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The condition (1) is a sufficient condition to control commutators involving T ′(y) and
is probably not optimal in its dependence on N . In the case where T (y) = αy is affine,
it reduces to the condition |α| < CNν1/3 and thus allows for α to be negative. See
Theorem 3.2 for further discussion. We remark that in our proof of Theorem 1.1 we
consider a Fourier multiplier (20)

σ = F−1
√
k2 + min((ξ − kt)2, ν−2/3)F

applied to θ in place of ∂xθ . For simplicity of presentation, we estimate this multiplier
in terms of ∂xθ and ν−1/3θ in the statement of the theorem.

For the nonlinear problem with full vertical dissipation, we obtain similar results.

Theorem 1.2 Let T : R → R be a given temperature profile and consider the (forced)
nonlinear problem around v = (y, 0), θ = T (y)with vertical dissipation νy = μy =:
ν > 0 in coordinates (x + t y, y):

∂tω + v · ∇tω = ν(∂y − t∂x )
2ω + ∂xθ,

∂tθ + v · ∇tθ = ν(∂y − t∂x )
2θ − T ′(y)v2,

(t, x, y) ∈ (0,∞) × T × R,

where ∇t =
(

∂x
∂y − t∂x

)
denotes the gradient in these coordinates. Further suppose

that T ′ satisfies the assumptions of Theorem 1.1. Then, this problem is stable in Sobolev
regularity. More precisely, for any N ∈ N, N ≥ 5 there exists εN = cNν such that if
initially

‖ω‖2HN ≤ ε2 < ε2N ,

ν−1‖∂xθ‖2HN + ν−5/3‖θ‖2HN < ε2 < ε2N ,

then the solution remains bounded by 10ν−2/3ε2 for all times.

We also obtain time integrability results for v, (∂y − t∂x )ω and (∂y − t∂x )θ , which
are stated in Sects. 3 and 4 and omitted here for brevity.

• In the special case when T (y) = αy is affine, the assumption reduces to |α| ≤
1

100ν
1/3.

• Since we consider the small data regime with full vertical dissipation, the weights
of θ and ω use different powers of ν than in the viscous, vertical dissipation case.

• We stress that α here is allowed to be negative. As a related result in Lemma 2.2,
we remark that the inviscid results of Yang and Lin (2018) extend to 0 ≥ α > −2
when considering the vertical component of the velocity v2.

• If there is no shear, then partial dissipation is not sufficient to restore stability of
the vorticity for α < 0 (see Lemma 2.1).

• A combination of shear and vertical dissipation suffices to restore stability of the
vorticity.Moreover, in that casewe obtain an enhanced threshold in terms of−ν1/3.
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• These results further extend to the case of a non-affine, oscillating temperature
profile T (y). In particular, we do not rely on cancellations or conserved quantities
available in the hydrostatic balance case.

• In addition to the linearized Boussinesq equations, we obtain results for the non-
linear small data problem, however, only with full vertical dissipation (considering
T (y) non-affine as a solution of the forced problem). As recently shown in Mas-
moudi et al. (2020), this stronger assumption is probably necessary for stability in
Sobolev regularity, since otherwise resonance chains may yield norm inflation.

The remainder of the article is structured as follows:

• In Sect. 2 we recall some results for the inviscid problem, first obtained in Yang
and Lin (2018), to introduce instability mechanisms and to discuss in which sense
(partial) dissipation is necessary for stability results. With these motivations, we
formulate four main questions Q1–Q4, which we address throughout the article.

• In Sect. 3.1, we begin by studying the special case when T (y) is affine, where
arguments are more transparent. In particular, we show that here the slope of the
temperature profile can be allowed to be negative (colder fluid on top of hotter
fluid) and that the size of the threshold depends on ν with an enhanced rate.

• In Sect. 3.2, we extend these linear results to the case of a general temperature
profile T (y) satisfying suitable smallness conditions. In particular, T is allowed
to oscillate.

• Building on the linearized results, in Sect. 4 we study the nonlinear small data
problem. Due to possible resonance chains, we here instead consider full vertical
dissipation and consider T (y) as a solution of the forced problem. This extends
previous nonlinear results in Zillinger (2020) for the affine, increasing case to
possibly oscillating profiles.

1.1 Notation

Throughout this article,we consider solutions of theBoussinesq equationswith vertical
dissipation near the stationary solution

v =
(
y
0

)
, θ = T (y),

(t, x, y) ∈ (0,∞) × T × R.

In this setting, it is natural to work in coordinates moving with the flow

(x + t y, y)

and consider the equations satisfied by the perturbations in these coordinates.
If there is no possibility of confusion, these perturbations are again denoted as ω

and θ and the linearized problem studied in Sect. 3 is given by

∂tω = ν(∂y − t∂x )
2ω + ∂xθ,
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∂tθ = −T ′(y)v2,
v = ∇⊥

t �−1
t ω,

(t, x, y) ∈ (0,∞) × T × R.

where

∇t =
(

∂x
∂y − t∂x

)
,�t = ∂2x + (∂y − t∂x )

2

are the gradient and Laplacian in these coordinates.
In the nonlinear problem considered in Sect. 4, we additionally assume vertical

dissipation also in the temperature and interpret T (y) as a solution of the forced
problem. The system satisfied by the perturbation in coordinates moving with the
shear is then given by

∂tω = ν(∂y − t∂x )
2ω + ∂xθ − v · ∇tω,

∂tθ = ν(∂y − t∂x )
2θ + T ′(y)v2 − v · ∇tθ,

v = ∇⊥
t �−1

t ω,

(t, x, y) ∈ (0,∞) × T × R.

We denote the Fourier transform of a function u(x, y) ∈ L2(T × R) by ũ(k, ξ) ∈
L2(Z×R) orFu. Furthermore, we study several Fourier multipliers (see (18)), includ-
ing

A(t, k, ξ) = exp(−2
∫ t

0

1

1 + (
ξ
k − s)2

ds),

B(t, k, ξ) = exp(−2
∫ t

0

1√
1 + (

ξ
k − s)2

1I (s)dt),

with I being a prescribed time interval/Fourier region (see (9)):

I = {t ≥ 0 : |ξ
k

− t | ≤ C},

and C proportional to ν−1/3.
In Sect. 4, we study energy estimates on a given time interval (0, T ). Since T is

fixed throughout this section, we omit it from our notation and, for instance, write

‖u‖L pHN := ‖‖u(t, ·)‖HN ‖L p((0,T )).

We write a � b if there exists a universal constant C > 0 such that |a| ≤ C |b|.
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2 Model Cases of Instability

In order to introduce ideas and mechanisms, in this section we recall results available
in the literature for two special settings:

• The linearized viscous problem without shear around θ = αy, v = 0.
• The linearized inviscid problem with shear around θ = αy, v = (y, 0).

Here, for simplicity we consider viscous dissipation in both horizontal and vertical
directions, but no thermal dissipation. As a reference for the isolated mechanisms, the
interested reader is referred to the textbook by Frisch and Yaglom [Yaglom (2012),
Section 2.8.3]. We emphasize that the results of this section are not new, but serve to
motivate our questions Q1–Q4 stated at the end of this section, which we address in
this article. Furthermore, they show that under weaker assumptions instabilities may
form and that the conditions in Theorem 1.1 are in this sense optimal.

In the case without shear, explicit solutions are available and it is known that the
slope of θ yields a sharp dichotomy between stability and exponential instability. The
following basic lemma is reproduced from (Zillinger 2020, Proposition 2.6).

Lemma 2.1 Consider the linearized Boussinesq equations in vorticity formulation
around

v = (0, 0), θ = αy,

where α ∈ R:

∂tω = ν�ω + ∂xθ,

∂tθ + αv2 = μ�θ.
(2)

Here v2 denotes the vertical component of the velocity field. Further suppose that at
least one of ν or μ is zero. The evolution is stable if α > 0 in the sense that for every
N ∈ N the energy

α‖ω‖2HN + ‖∇θ‖2HN

is decreasing. In contrast, if α < 0, there exist solutions which grow exponentially in
time.

As we show in Lemma 2.2, when adding shear the instability for α < 0 is significantly
reduced and the evolution of v2 is even asymptotically stable if α is not too large.

Proof In the interest of accessibility, we reproduce the main steps of the proof from
Zillinger (2020).

We observe that system (2) is a constant coefficient PDE, and hence, we obtain a
decoupled system of ODEs for each Fourier mode with respect to x and y:

∂t

(
ω̃

θ̃

)
=

(
−ν(k2 + ξ2) ik

ikα
k2+ξ2

−μ(k2 + ξ2)

)(
ω̃

θ̃

)
, (3)
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where we use ω̃ to denote the Fourier transform of the vorticity and k ∈ Z, ξ ∈ R to
denote the Fourier variables. In particular,wemay study the problemat each frequency.

The case α >0 Let (k, ξ) and α > 0 be given. Then, we may reformulate the
problem as

∂t

( √
αω̃√

k2 + ξ2θ̃

)
=

⎛
⎝−ν(k2 + ξ2)

ik
√

α√
k2+ξ2

ik
√

α√
k2+ξ2

−μ(k2 + ξ2)

⎞
⎠

( √
αω̃√

k2 + ξ2θ̃

)
.

Note that the off-diagonal entries are equal and purely imaginary. Therefore, if we

denote the matrix by M , it holds that M + M
T
is a real-valued, negative semi-definite

diagonal matrix. Hence, it follows that

d

dt

∣∣∣∣
( √

αω̃√
k2 + ξ2θ̃

)∣∣∣∣
2

=
( √

αω̃√
k2 + ξ2θ̃

)
· (M + M

T
)

( √
αω̃√

k2 + ξ2θ̃

)
≤ 0.

Integrating this estimate with respect to ξ and k (possibly with respect to a weight
〈(k, ξ)〉N ), it follows that

α‖ω̃‖2L2 + ‖
√
k2 + ξ2θ̃‖2L2

is non-increasing. The claimed result thus follows by Plancherel’s theorem.
The case α < 0 Let (k, ξ) with k �= 0 and α < 0 be given. Then, the eigenvalues

of the matrix

(
−ν(k2 + ξ2) ik

ikα
k2+ξ2

−μ(k2 + ξ2)

)

are given by

λ1,2 = −ν + μ

2
(k2 + ξ2) ±

√
(
ν + μ

2
(k2 + ξ2))2 − νμ(k2 + ξ2)2 − α

k2

k2 + ξ2

= −ν + μ

2
(k2 + ξ2) ±

√(
ν − μ

2
(k2 + ξ2)

)2

− α
k2

k2 + ξ2
,

where we used the binomial formula (a + b)2 − 4ab = (a − b)2 in the last step.
We recall that by assumption (at least) one of ν, μ vanishes. Therefore, we define

C = max(ν, μ) and observe that

(μ + ν)2 = (μ − ν)2 =: C2
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and that

λ1 = −C(k2 + ξ2) +
√
C2(k2 + ξ2) + (−α)

k2

k2 + ξ2
,

is strictly positive, since (−α) k2

k2+ξ2
is positive. This matrix thus has a positive eigen-

value and there exist solutions of (3) which grow exponentially in time. Given these
exponentially growing solutions on single Fourier modes, we next construct exponen-
tially growing solutions in HN . We may pick a compact set in Fourier space, e.g.,
a ball, and construct initial data (ω0, θ0) ∈ HN × HN+1 by prescribing the Fourier
transform of the initial data to match these solutions (and vanish outside the ball). The
corresponding solution then also exhibits exponential growth in time. ��
We remark that in the inviscid case, ν = μ = 0, these eigenvalues further simplify to

±
√

−α
k2

k2 + ξ2
,

which are either purely imaginary if α > 0 or positive and negative if α < 0. Thus, if
α > 0 (hotter fluid is above), the evolution is not exponentially unstable. One speaks
of hydrostatic equilibrium. The stability of this solution in the inviscid setting has
recently been studied in Elgindi and Widmayer (2015), Widmayer (2018).

In contrast, if α < 0 (that is, the fluid is hotter below), then one eigenvalue is
positive and the solution is exponentially unstable. This phenomenon is known as
Rayleigh–Bénard instability. One main question in the following will then be whether
a shear flow can suppress this instability.

Having discussed the effects of dissipation without shear, we next consider the
effects of an affine shear in the inviscid problem, where again explicit solutions are
available. The following results have been previously obtained inYang and Lin (2018),
Zillinger (2020), Masmoudi et al. (2020) for α > 0. By minor modifications of the
proof, the results further extend to negative α and higher Sobolev norms.

Lemma 2.2 Consider the linearized inviscid Boussinesq equations in vorticity formu-
lation around

v = (y, 0), θ = αy

and coordinates (x + t y, y) moving with the shear. Furthermore, define c =
1
2�(

√
1 − 4α) ∈ [0,∞). Then, the velocity and temperature satisfy the following

estimates

‖θ‖HN � t−1/2+c(‖ω0‖HN+1 + ‖θ0‖HN+2),

‖v1 −
∫
T

v1dx‖HN � t−1/2+c(‖ω0‖HN+1 + ‖θ0‖HN+2),

‖v2‖HN � t−3/2+c(‖ω0‖HN+2 + ‖θ0‖HN+3).
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The evolution of the temperature is hence stable if c < 1
2 (α > 0) and unstable if c > 1

2
(α < 0), while the vertical component of the velocity is stable if c < 3

2 (α > −2).
The evolution of the vorticity in contrast is unstable for all α in the sense that there

exists non-trivial initial data such that

‖ω(t)‖HN ≥ Ct1/2+c(‖ω0‖HN + ‖∂xθ0‖HN )

as t → ∞.

We emphasize that for v2 we may allow 0 > α > −2 to be negative and that the
evolution of the vorticity ω is unstable for any α.

We remark that this combination of stability and instability is consistent with the
Orr mechanism. More precisely, by an integration by parts argument it holds that

‖v1 −
∫

v1dx‖L2 ≤ Ct−1‖ω(t)‖H1 .

Hence, if the velocity is asymptotically stable with a sharp decay rates of for instance
t−1/2, this implies that the vorticity is algebraically unstable in H1 with a growth rate
at least t−1/2+1 = t1/2.

Proof As in the proof of Lemma 2.1 we consider the Fourier formulation, now in
coordinates (k, ξ + kt) moving with the shear:

∂t

(
ω̃

θ̃

)
=

(
0 ik
ikα

k2+(ξ−kt)2
0

) (
ω̃

θ̃

)
.

Due to the vanishing diagonal structure, we may decouple this problem as

∂2t ω̃ = − αk2

k2 + (ξ − kt)2
ω̃,

∂t ω̃ = ikθ̃ .

After relabeling and shifting time by ξ
k , we observe that the first equation corresponds

to a Schrödinger equation with potential:

(
∂2t + α

1 + t2

)
u = 0.

As observed in Yang and Lin (2018), this problem can be solved explicitly in terms
of hypergeometric functions:

u(t) = c1 2F
1
(

−1

4
− 1

4

√
1 − 4α,−1

4
+ 1

4

√
1 − 4α,

1

2
,−t2

)

+ c2 t 2F
1
(
1

4
− 1

4

√
1 − 4α,

1

4
+ 1

4

√
1 − 4α,

3

2
,−t2

)
.

(4)
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As t → ∞, it holds that 2F1(a, b, c,−t2) ∼ Ct−2a (see [DLMF, 15.8(ii)]). The same
asymptotic behavior is exhibited by the approximate problem

(∂2t + α

t2
) f = 0,

which we use to simplify discussion in the following. Making the ansatz f = tβ , we
obtain that

f = c1t
β1 + c2t

β2 ,

β1,2 = 1

2
(1 ± √

1 − 4α),
(5)

which matches the asymptotic behavior of the hypergeometric functions in (4). In
particular, we observe that for any α, β1 has positive real part which results in an
algebraic instability of f and hence ω̃.When considering the velocity and temperature,
we recall that

ikθ = ∂tω ∼ ∂t f

and that the Biot–Savart law combined with the shear by (y, 0) provides a gain of t−1

for v1 − 〈v1〉 and by t−2 for v2 by the Orr mechanism. Hence, we deduce that

‖v1 − 〈v1〉‖HN + ‖θ‖HN ∼ tβ1−1,

‖v2‖HN ∼ tβ1−2

with β1 as in (5). In particular, we observe that

�(β1 − 1) = c − 1

2
< 0 if α > 0,

�(β1 − 1) = c − 1

2
> 0 if α < 0,

�(β1 − 2) = c − 3

2
< 0 if α > −2,

�(β1 − 2) = c − 3

2
> 0 if α < −2,

where we used that
√
1 − 4α = 1 ⇔ α = 0 and

√
1 − 4α = 3 ⇔ α = −2. ��

Given these (in)stability results, our main questions in this article are the following:

Q1 Howmuch dissipation (and in which directions) needs to be added to restore linear
stability?

Q2 Can we allow α to be negative and how does the threshold depend on the dissipa-
tion?
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Q3 When considering the problemwithout thermal dissipation, it is natural to consider
the more general problem around v = (y, 0), θ = T (y). Under which conditions
on T are such solutions linearly stable? For instance, can we allow T to oscillate?

Q4 Do these results extend to the nonlinear small data regime and if so how do stability
regions depend the dissipation coefficients (that is, what perturbations can be
considered “small”)?

In this paper, we focus on the case without thermal dissipation and v = (y, 0), θ =
T (y). The converse problem without viscous dissipation and v = (U (y), 0), θ = αy
or time-dependent shear and temperature profile could be of future interest.We address
questions Q1 and Q2 in Sect. 3.1 and Q3 in Sect. 3.2. The question Q4 of nonlinear
stability is addressed in Sect. 4.

3 Shear can Counteract Hydrostatic Imbalance

Building on the results of Lemma 2.2 for a combination of Couette flow and an
unstable affine temperature profile, in this section we consider the problemwith partial
dissipation.

More precisely, we consider the nonlinear Boussinesq equations with vertical dis-
sipation of the velocity and without thermal diffusion:

∂tv + v · ∇v + ∇ p = ν∂2yv +
(
0
θ

)
,

∂tθ + v · ∇θ = 0.

As remarked in introduction, in Sect. 4 we additionally impose vertical thermal diffu-
sion, but do not require it for the linear stability results of this section.

We observe that for any β ∈ R and any function T (y), the collection

v =
(

β y
0

)
,

θ = T (y),

p =
∫ y

T (s)ds,

is a stationary solution of these equations. As remarked in Sect. 2, it is natural to ask
about the stability of such solutions.

In Sect. 2, we studied some related special cases when T (y) is affine:

• In Lemma 2.1, we studied the problem with trivial shear, that is β = 0. In this
setting the flow turned out to be linearly stable if T is increasing and linearly
exponentially unstable if T is decreasing, even if the slope is very small.

• In Lemma2.2,we instead considered the casewith shear butwith trivial dissipation
and saw that while the exponential instability is reduced to an algebraic one, the
evolution of the vorticity is unstable.
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In this section, we study the linearized problem first for the case of T affine (answering
questions Q1, Q2) and then for general T in Sect. 3.2 (answering Q3). The nonlinear
problem with full vertical dissipation is discussed in Sect. 4, which answers Q4. The
author would like to thank Charlie Doering for raising the question of the stability of
pairs v = (U (y), 0), θ = T (y) in a discussion.

3.1 Affine Temperature

In order to introduce ideas and mechanisms, we first study the case

T (y) = αy,

where we allow α ∈ R to be negativewith a threshold depending on ν. More precisely,
it turns out that for this special linearized problem we may allow α to be arbitrarily
large, but for the nonlinear setting of Sect. 4 and the non-affine problem we require a
bound by ν1/3. Shear enhanced dissipation suppresses Rayleigh–Bénard instability in
this case, thus answering questions Q1 and Q2 of Sect. 2.

We remark that results for α positive have been previously established in Zillinger
(2020). As the main novelties of this article, we show that even if α is negative (but
small) stability holds and that we may further allow T to be non-affine (see Sect. 3.2).

Theorem 3.1 Consider the linearized Boussinesq equations around v = (y, 0), θ =
αy in coordinates

(t, x − t y, y)

moving with the shear flow:

∂tω = ν(∂y − t∂x )
2ω + ∂xθ,

∂tθ = −αv2,

on the domainT×R. Then, there exists α∗ = 1
100

3
√

ν such that the linearized evolution
is stable at the level of the vorticity for any α with |α| < α∗. More precisely, for any
N ∈ N there exists a constant 0 < C = C(ν, α) such that for all times t > 0 it holds
that

ν1/3‖ω(t)‖2HN + ‖∂xθ(t)‖2HN ≤ Cν1/3‖ω0‖HN + C‖∂xθ0‖2HN ,

where ω0, θ0 denote the initial data.

We stress that here we can allow α to be negative and that for 0 < ν < 1, the
threshold ν1/3 is improved compared to the dissipative scale.

In particular, for this special setting we may even consider α ∈ R arbitrary, but in
view of later results focus on the case of small negative α.
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Proof of Theorem 3.1 Similar to the proof of Lemma 2.1, we may equivalently express
the linearized Boussinesq equations around the affine temperature profile in Fourier
variables as:

∂t

(
ω̃

kθ̃

)
=

(−ν(ξ − kt)2 i
α i
1+(

ξ
k −t)2

0

) (
ω̃

kθ̃

)
, (6)

where we consider coordinates (k, ξ + kt) moving with Couette flow. Since the evo-
lution of the x-averages of ω and θ decouples, in the following we without loss of
generality only consider k �= 0.

We stress that the coefficients here are time dependent, and hence, this ODE system
cannot anymore be explicitly solved in terms of a matrix exponential. However, a
main advantage of the affine setting is that various estimates completely decouple,
restrictions become trivial and operators commute, which makes this problem much
simpler than the general profile case of Sect. 3.2 or the nonlinear problem of Sect. 4.

We note that the problem (6) decouples with respect to k and ξ , which we thus in
the following treat as arbitrary but fixed. We then claim that for any C > 1, ν > 0 and
any α ∈ R it holds that

|ω̃(t)|2 + k2|θ̃ (t)|2 ≤
(
1 + 1

|α|
)

(1 + C2) exp

( |α|
νC2

)
(|ω̃(0)|2

+ (k2 + ν−2/3)|θ̃ (0)|2) (7)

and thus the solution at time t is controlled in terms of the initial data. We observe
some special cases for the exponential:

• If we choose C = 1 we obtain a bound by

exp

( |α|
ν

)
.

This bound holds for all α, but suggests a threshold |α| < ν.
• If we choose C = ν−1/2, we obtain a bound by

exp(|α|),

where only the algebraic prefactors depends on ν.
• If we choose C = ν−1/3, we obtain a bound by

exp(|α|ν−1/3),

where the exponent becomes uniformly bounded if we assume that |α| < ν1/3.

The results of the theorem follow from the third case, where estimates in HN are
obtained by integrating the frequency-wise bound (7).

In order to introduce ideas and motivate the definition of C , we first discuss the
case α > 0.
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Step 1 (symmetrize) Let α > 0 be given. That is, suppose we are in the setting
of hydrostatic balance. Then, one commonly exploited feature in the setting without
shear is cancellation of the purely imaginary off-diagonal entries [compare Zillinger
(2020), Doering et al. (2018)].

Indeed, consider the rescaled problem

∂t

( √
αω̃√

k2 + (ξ − kt)2θ̃

)
=

⎛
⎜⎜⎝

−ν(ξ − kt)2 i
√

α√
1+(

ξ
k −t)2

i
√

α√
1+(

ξ
k −t)2

t− ξ
k

1+(
ξ
k −t)2

⎞
⎟⎟⎠

( √
αω̃√

k2 + (ξ − kt)2θ̃

)
.

We observe that the off-diagonal entries are then exactly equal and imaginary and thus

cancel under the matrix-valued map M �→ M + M
T
.

Therefore, if we denote the square of the Euclidean norm of the vector as

E(t) := α|ω̃|2 + (k2 + (ξ − kt)2)|θ̃ |2

it holds that

∂t E(t) = −ν(ξ − kt)2α|ω̃|2 + t − ξ
k

1 + (
ξ
k − t)2

(k2 + (ξ − kt)2)|θ̃ |2

≤ min(0, t − ξ
k )

1 + (
ξ
k − t)2

E(t).

Integrating in time and using that

∫ t

0

min(0, t − ξ
k )

1 + (
ξ
k − t)2

≤ ln(1 + t2)

it follows that

E(t) ≤ (1 + t2)E(0). (8)

Thus, irrespective of the size of α > 0 and of ν ≥ 0 we have shown that the evolution
in HN is at most algebraically unstable.

Step 2 (Using dissipation) Compared to our desired result, the estimate by (8) is
not yet sufficient, since it is not uniform in time.

In the following, we hence modify the definition of E to also make use of the
dissipation. More precisely, we introduce a cut-off

C > 1
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to be specified later and define the resonant time interval

I := {t ≥ 0 : |ξ
k

− t | ≤ C}. (9)

Then, it holds that

∂t

( √
αω̃√

k2 + min((ξ − kt)2,C2)θ̃

)

=
⎛
⎜⎝

−ν(ξ − kt)2 ik
√

α√
k2+min((ξ−kt)2,C2)

ik
√

α√
k2+min((ξ−kt)2,C2)

√
k2+min((ξ−kt)2,C2)√

k2+(ξ−kt)2
t− ξ

k

1+(
ξ
k −t)2

1I (t)

⎞
⎟⎠

( √
αω̃√

k2 + min((ξ − kt)2,C2)θ̃

)
,

(10)

where 1I (t) ∈ {0, 1} denotes the indicator function of I . We then define the modified
energy as

E(t) := α‖ω‖2HN + ‖∂xθ‖2HN + ‖min(ξ − kt,C)θ̃‖2HN . (11)

Step 2a (resonant region) If t ∈ I and α > 0, the problem and the definition of
E(t) are identical to the one considered in Step 1 and it follows that

∂t E(t) ≤ min(0, t − ξ
k )

1 + (
ξ
k − t)2

E(t). (12)

However, by definition of the interval I it holds that

∫
I

min(0, t − ξ
k )

1 + (
ξ
k − t)2

dt ≤ ln(1 + C2),

and thus, the growth of E during the resonant time is bounded by (1 + C2).
Step 2b (non-resonant region) Next suppose that t /∈ I and thus | ξ

k − t | is large. In
particular, (ξ − kt)2 ≤ k2 + (ξ − kt)2 ≤ 2(ξ − kt)2, and thus, vertical dissipation is
comparable to full dissipation.

Then, the off-diagonal entries in (10) can be estimated as

∣∣∣∣∣∣
i
√

α√
1 + min(( ξ

k − t)2,C2)

∣∣∣∣∣∣ =
√

α

C
,

∣∣∣∣∣∣
i
√

α√
1 + min(( ξ

k − t)2,C2)

√
k2 + min((ξ − kt)2,C2)√

k2 + (ξ − kt)2

∣∣∣∣∣∣ ≤
√

α

C
.
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Thus, using Young’s inequality with

√
ν
√
k2 + (ξ − kt)2√

ν
√
k2 + (ξ − kt)2

,

we deduce that

∂t E(t) ≤ −ν

2
(ξ − kt)2α|ω̃|2 + α

νC2

1

k2 + (ξ − kt)2
|
√
k2 + min((ξ − kt)2,C2)θ̃ |2

≤ α

νC2

1

k2 + (ξ − kt)2
E(t).

(13)

We note that the factor on the right-hand side is integrable in time.
Step 2c (Conclusion for α >0) Combining the resonant estimate (12) and the non-

resonant estimate (13), we deduce that

∂t E(t) ≤ (1I (t)
min(0, t − ξ

k )

1 + (
ξ
k − t)2

+ (1 − 1I (t))
α

νC2

1

k2 + (ξ − kt)2
)E(t)

⇒ E(t) ≤ (1 + C2) exp(
α

νC2 )E(0),

with E(t) defined in (11). The claimed estimate (7) for α > 0 then follows by compar-
ing E(t) with the squares of the HN norms. It remains to discuss the case of negative
α.

Step 3 (negative α ) Let now α < 0 be given and consider the problem rescaled by√|α| instead. Then, the evolution equation (10) reads

∂t

( √|α|ω̃√
k2 + min((ξ − kt)2,C2)θ̃

)

=

⎛
⎜⎜⎝

−ν(ξ − kt)2 i
√|α|√

1+min(( ξ
k −t)2,C2)

− i
√|α|√

1+min(( ξ
k −t)2,C2)

√
1+min(( ξ

k −t)2,C2)√
1+(

ξ
k −t)2

t− ξ
k

1+(
ξ
k −t)2

1I (t)

⎞
⎟⎟⎠

( √|α|ω̃√
k2 + min((ξ − kt)2,C2)θ̃

)
.

(14)

We thus define the energy as

E(t) = |α||ω̃|2 + (k2 + min((ξ − kt)2,C2))|θ̃ |2,

which agrees with the previous definition if α > 0.
Step 3a (non-resonant region) Suppose that t /∈ I . We observe that in Step 2b we

did not make use of the sign of α but only used Young’s inequality. Furthermore, in
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that region |ξ − kt | ≥ |k| and thus in this region vertical dissipation dominates full
dissipation.

Hence, by the same argument we may deduce that also for our extended definition
of E(t) it holds that

∂t E(t) ≤ α

νC2

1

k2 + (ξ − kt)2
E(t).

Step 3b (resonant region) Suppose that t ∈ I . Then, we observe that off-diagonal
terms in (14) are of the same size but have the opposite sign an hence do not cancel
anymore. However, we may use Young’s inequality to still bound

∂t E(t) ≤ −ν(ξ − kt)2|α||ω̃|2 + |α|√
12 + (

ξ
k − t)2

E(t) + t − ξ
k

1 + (
ξ
k − t)2

E(t)

≤ 1 + |α|√
12 + (

ξ
k − t)2

E(t),

which yields a bound on the total growth by

(1 + C2)1+|α|.

Combining the estimates in the resonant and non-resonant region, we deduce that

E(t) ≤ (1 + C2)1+|α| exp(π |α|
νC2 )E(0).

In particular, choosingC = ν−1/3 and supposing that |α| < min(ν1/3, 1), this estimate
reduces to

E(t) ≤ (1 + ν−2/3)2eπ E(0),

which implies the result.
We remark that in the proof for negative α we have not relied on cancellation but

only on smallness of
√|α| in combination with Young’s inequality. Hence, we may

consider a modification of the energy E(t) as

|α̂||ω̃|2 + (k2 + min((ξ − kt)2,C2))|θ̃ |2

with α̂ = max(|α|, ν1/3) and repeat the same proof, since |α|√
α̂

< ν1/6 and
√

α̂ < ν1/6

satisfy the desired inequalities. ��
We remark that in the proof of this affine case we can allow α to be arbitrarily

large and are also free to choose C arbitrarily. As we discuss in the following, if T ′ is
non-constant or if we study the nonlinear problem, smallness of α is required in the
proof. In view of resonances in the related linear inviscid damping problem (Deng and
Zillinger 2019), some form of smallness condition is probably necessary.
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3.2 Non-affine Temperature

Having discussed the setting of affine hydrostatic (im)balance, we next consider T (y)
non-affine and address the question Q3 of Sect. 2 under which conditions on T in
terms of ν such solutions are stable. Here the problem does not decouple in frequency
anymore and we thus employ a by now classical Cauchy–Kowalewskaya or ghost
energy approach [compare Mouhot and Villani (2011), Bedrossian and Masmoudi
(2015), Zillinger (2016)].

The linearized system around θ = T (y) in Lagrangian coordinates is given by:

∂tω = ν(∂y − t∂x )
2ω + ∂xθ,

∂t∂xθ = −T ′(y)∂2x�−1
t ω,

(15)

where we applied a derivative in x to the second equation. Since the evolution of the
x-averages decouples, we assume without loss of generality that

∫
ωdx = 0 =

∫
θdx

throughout this section.
Our main results are summarized in the following theorem.

Theorem 3.2 Let T (y) be a given temperature profile, N ∈ N and consider the lin-
earized Boussinesq equations (15) with vertical dissipation ν > 0. Further suppose
that the Fourier transform of T ′ satisfies

∫
(1 + |ξ |)N+5|F(T ′)(ξ)| ≤ 4−Nν1/3; (16)

then, for any initial data ω0, θ0 ∈ HN × HN+1 it holds that

ν1/3‖ω(t)‖2HN + ‖∂xθ(t)‖2HN

≤ C(1 + ν−2/3)2(ν1/3‖ω0‖2HN + ‖∂xθ0‖2HN + ν−2/3‖θ0‖2HN ).

Weremark that (16) here is a sufficient condition to control several commutators.We
expect that, in particular for large N , it is far from optimal and that it for instancewould
suffice to assume smallness for small N and only a finite norm for large N (compare
Zillinger (2019)). Furthermore, if T happens to be strictly increasing, stability is
expected also for large norms of T ′. The main focus of this theorem thus lies on
cases where T may be oscillating. In the case T (y) = αy, the (tempered) Fourier
transform is given by a Dirac measure and the condition (16) reduces to |α| < ν1/3,
as in Sect. 3.1.
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Proof In Sect. 3.1, we had seen that in the special case when T (y) = αy is affine, the
functions θ, ω satisfy the frequency-wise bound

∂t (|α||ω̃|2 + (k2 + min((ξ − kt)2, ν−2/3)|θ̃ |2)

≤
⎛
⎝ 1√

1+(
ξ
k −t)2

1I + 1

1+(
ξ
k −t)2

⎞
⎠ (|α||ω̃|2+(k2+min((ξ−kt)2, ν−2/3)|θ̃ |2).

(17)

Similar to the (linear) inviscid damping problem in the Euler equations, while this
frequency-wise bounds fail in the general setting, an integrated version can be shown
to hold more generally. More precisely, we define two Fourier weights

A(t, k, ξ) = exp

(
−2

∫ t

0

1

1 + (
ξ
k − s)2

ds

)
,

B(t, k, ξ) = exp

⎛
⎝−2

∫ t

0

1√
1 + (

ξ
k − s)2

1Ids

⎞
⎠ ,

(18)

where we included a factor 2 to have additional flexibility to absorb errors and the
resonant time interval I is given as in (9):

I = {t ≥ 0 : |ξ
k

− t | ≤ C}.

With slight abuse of notation, we identify these Fourier weights with their associated
multipliers and for instance write Au in place of F−1(AFu).

Then, in this affine case the estimate (17) implies that if we define the energy

E(t) = α‖ABω‖2HN + ‖ABF−1
√
k2 + min((ξ − kt)2, ν−2/3)Fθ‖2HN , (19)

where ω, θ is a solution for T (y) = αy, then E(t) satisfies the decay estimate

∂t E(t) ≤ −
∑ ∫ ⎛

⎝ 1√
1 + (

ξ
k − t)2

1I + 1

1 + (
ξ
k − t)2

⎞
⎠

(|α||ABω̃|2 + (k2 + min((ξ − kt)2, ν−2/3)|ABθ̃ |2).

In particular, E(t) is non-increasing and the inequality E(t) ≤ E(0) implies the result
of the theorem for the special case when T is affine.

Let now T (y) be given and for simplicity of notation define

σ = F−1
√
k2 + min((ξ − kt)2, ν−2/3)F . (20)
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and introduce the constant α in terms of operator norms:

α := ‖|∇t |−1BT ′B−1|∇t |‖HN �→HN + ‖(∂2x�−1
t )−3/2BT ′(y)B−1B(∂2x�

−1
t )3/2‖HN→HN .

As the last step of this proof, we will show that by (16) it follows that α ≤ ν1/3.
Similarly as in Theorem 3.1, we remark that in all the following estimates we may
replace α by α̂ = max(α, ν1/3) if α < ν1/3.

We now claim that if E(t) is defined by the same formula as in (19) but with ω, θ

being solutions of the linearized problem with temperature profile T , then E(t) is
non-increasing. This then implies the desired estimate by controlling B and α (or α̂)
in terms of ν.

We hence have to estimate

∂t E(t)/2 = −να‖(∂y − t∂x )ABω‖2HN + α〈ABω, AB∂xθ〉
+ 〈ABσθ, ABT ′(y)B−1B∂2x�

−1
t ω〉

+ α〈( ȦB + AḂ)ω, ABω〉
+ 〈( ȦB + AḂ)σθ, ABσθ〉
+ 〈ABσ̇ θ, ABσθ〉〉.

Here the dissipation term

−να‖(∂y − t∂x )ABω‖2HN

and the terms due to the weights

α〈( ȦB + AḂ)ω, ABω〉
+ 〈( ȦB + AḂ)σθ, ABσθ〉

are non-positive and thus beneficial. Moreover, Ḃ was defined in such a way to control

〈ABσ̇ θ, ABσθ〉.

More precisely, we note that inside the resonant interval I ,

∂tσ
2 = −2k(ξ − kt) = −2( ξ

k − t)

1 + (
ξ

k−t )
2
σ 2

can be controlled by Ḃ B.
It thus remains to estimate

Eω := α〈ABω, AB∂xθ〉
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and

Eθ := 〈ABσθ, ABT ′(y)B−1B∂2x�
−1
t ω〉 (21)

Estimating Eω Since the evolution equation for ω does not involve T ′(y), we may
argue as in the affine case and control Eω frequency-wise. More precisely, for any
given frequency (k, ξ) we need to control

∣∣∣α(AB)2(t, k, ξ)ω̃(t, k, ξ)ikθ̃ (t, k, ξ)

∣∣∣

Resonant region If t, k, ξ are such that | ξ
k − t | ≤ ν−1/3, we may bound this contri-

bution by

√
α√

1 + (
ξ
k − t)

(AB)2(t, k, ξ)

⎡
⎣α|ω̃|2 +

∣∣∣∣∣
√
1 + (

ξ

k
− t)2θ̃

∣∣∣∣∣
2
⎤
⎦ ,

which can be absorbed into

〈AḂω, ABω〉 + 〈AḂσθ, ABσθ〉

by construction of B.
Non-resonant region If instead t, k, ξ are such that | ξ

k −t | ≥ ν−1/3, then Ḃ vanishes
and we instead make use of the vertical dissipation. That is, we estimate

∣∣∣α(AB)2(t, k, ξ)ω̃(t, k, ξ)ikθ̃ (t, k, ξ)

∣∣∣
≤ (AB)2

√
α
√

ν
√
k2 + (ξ − kt)2|ω̃|

√
α√

ν
√
k2 + (ξ − kt)2

1√
1 + (

ξ
k − t)2

√
k2 + ν−2/3|θ̃ |

by the dissipation term

−α(AB)2(
√

ν
√

(ξ − kt)2|ω̃|)2

and

(AB)2

( √
α√

ν
√
k2 + (ξ − kt)2

)2
1

1 + (
ξ
k − t)2

(
√
k2 + ν−2/3|θ̃ |)2.

Here we used that in the non-resonant region (ξ − kt)2 controls the full dissipation.
The latter term can then be absorbed into

〈 ȦBσθ, ABσθ〉
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provided

√
α√

ν
√
k2 + (ξ − kt)2

(22)

is less than 1. Since we are in the non-resonant region, (22) can be bounded from
above by

√
αν−1/2+1/3 = (αν−1/3)1/2,

which is small since α < ν1/3 by assumption.
Estimating Eθ In order to estimate the contribution (21)

Eθ = 〈ABσθ, ABT ′(y)B−1B∂2x�
−1
t ω〉

we follow a similar argument as in the affine case. However, as T ′ is non-constant
we further have to control an interaction term between the resonant and non-resonant
regions.

More precisely, for any given time t we define the Fourier set

�(t) = {(k, ξ) : k �= 0, |ξ
k

− t | ≤ ν−1/3}.

That is, instead of time interval I associated with given frequencies, we consider
frequencies for a given time t . We then split

ω = 1�ω + (1 − 1�)ω =: ωin + ωout,

θ = 1�θ + (1 − 1�)θ =: θin + θout.

We then split the contributions as

〈ABσθ, ABT ′(y)B−1B∂2x�
−1
t ωout〉

〈ABσθin, ABT
′(y)B−1B∂2x�

−1
t ωin〉

〈ABσθout, ABT
′(y)B−1B∂2x�

−1
t ωin〉.

We remark that in the affine case the third term identically vanished due to the disjoint
Fourier support of ωin and θout, but that this orthogonality is lost in the general case.

Step2a(ωout ) We argue as in the affine case. Since ωout is supported in �c, it holds
that

‖∇t B∂2x�
−1
t ωout‖HN ≤ ν2/3‖(∂y − t∂x )Bω‖HN .

For θ , we do not need a further control of the support and may bound

‖|∇t |−1ABσθ‖HN
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by the time decay of A, provided

‖|∇t |BT ′(y)B−1|∇t |−1‖HN→HN ≤ √
αν1/6.

By our choice of α, the left-hand side is bounded by α and this estimate is therefore
satisfied provided α < ν1/3, as assumed.

Step2b(θin, ωin) Similarly as in the proof of Theorem 3.1, we use the time decay
of B to control this contribution. More precisely, we observe that

〈ABσθin, ABT
′(y)B−1B∂2x�

−1
t ωin〉

= 〈
√

∂2x�
−1
t ABσθin, A(

√
∂2x�

−1
t )−1BT ′(y)B−1

√
∂2x�

−1
t

√
∂2x�

−1
t Bωin〉.

We may bound this contribution in terms of

α〈ABωin, ∂
2
x�

−1
t ABωin〉

+〈ABσθin, ∂
2
x�

−1
t ABσθin〉,

provided

‖(
√

∂2x�
−1
t )−1BT ′(y)B−1

√
∂2x�

−1
t ‖HN→HN ≤ √

α.

We remark that
√

∂2x�
−1
t = |∂x ||∇t |−1 and that BT ′(y)B−1 does not depend on x .

Hence, this estimate is equivalent to the one of step 2a.
Step2c(θout , ωin) As T ′ is non-constant the contribution

〈ABσθout, ABT
′(y)B−1B∂2x�

−1
t ωin〉

generally does not vanish. However, since θout is supported away from the resonant
region, we may insert an identity operator (∂2x�

−1
t )3/2−3/2 and bound

‖AB(∂2x�
−1
t )3/2σθout‖HN ≤ ν2/3

√
−〈 ȦBσθout, ABσθout〉

and estimate

‖(∂2x�−1
t )−3/2ABT ′(y)B−1B∂2x�

−1
t ωin‖HN

by

‖(∂y − t∂x )ABω‖HN .

This contribution can thus be absorbed by the same argument as in Step 2a, provided

‖(∂2x�−1
t )−3/2BT ′(y)B−1B(∂2x�

−1
t )3/2‖HN→HN ≤ ν1/6

√
α,
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which by our definition of α reduces to α < ν1/3.
Step 3 (controlling α) It remains to be shown that the estimate (16) controls α. Here

we make use of Schur’s test, which controls the L2 operator norm of a map

u(x) �→
∫

K (x, y)u(y)dy

by the square root of

(
sup
x

∫
|K (x, y)|dy

) (
sup
y

∫
|K (x, y)|dy

)
.

More precisely, we may express the map u �→ |∇t |BT ′B−1|∇t |−1u as integration
against a kernel on the Fourier side:

ũ(k, ξ) �→
∫ √

k2 + (ξ − kt)2B(t, k, ξ)T̃ ′(ξ − ζ )B−1(t, k, ζ )

(
√
k2 + (ζ − kt)2)−1ũ(k, ζ )dζ.

Since we are further interested in a map on HN , we add an additional weight

1 + |ξ |N
1 + |ζ |N .

Then, Schur’s test asks us to control

sup
ξ

∫ √
k2 + (ξ − kt)2B(t, k, ξ)T̃ ′(ξ − ζ )B−1(t, k, ζ )

(
√
k2 + (ζ − kt)2)−1 1 + |ξ |N

1 + |ζ |N dζ ≤ C1

and

sup
ζ

∫ √
k2 + (ξ − kt)2B(t, k, ξ)|T̃ ′(ξ − ζ )|B−1(t, k, ζ )(

√
k2 + (ζ − kt)2)−1 1 + |ξ |N

1 + |ζ |N dξ ≤ C2,

which then bounds the L2 operator norm by
√
C1C2.

We claim that this kernel can be bounded by |T̃ ′(ξ − ζ )|(1+|ξ − ζ |)N+5, at which
point (16) implies that C1 = C2 = ν1/3, which concludes the proof.

Indeed, by construction of B, we can control

B(t, k, ξ)B−1(t, k, ζ ) ≤
√
1 + |ξ − ζ |2.
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Similarly, if |ξ | ≤ 3|ζ |, we may simply control

1 + |ξ |N
1 + |ζ |N ≤ 1 + 3N .

If instead |ξ | ≥ 3|ζ |, then

|ξ | ≤ |ξ − ζ | + 1

3
|ξ | ⇔ |ξ | ≤ 3

2
|ξ − ζ |.

and thus

1 + |ξ |N
1 + |ζ |N ≤ (

3

2
)N (1 + |ξ − ζ |N ).

Finally, we need to control

k2 + (ξ − kt)2

k2 + (ζ − kt)2
= 1 + (

ξ
k − t)2

1 + (
ζ
k − t)2

.

Here we may simply estimate

(
ξ

k
− t)2 ≤ 2(

ζ

k
− t)2 + 2(ξ − ζ )2.

The first term cancels with the numerator, while for the second we simply bound by
|ξ − ζ |.

Thus, in total it suffices to bound

sup
ζ

∫
|T̃ ′(ξ − ζ )|(1 + |ξ − ζ |)N+5dξ < C1 = C2,

which is the assumption of our theorem.
��

We remark that in the case when T ′ is increasing stronger results are possible, for
instance allowing α to bemuch larger, by using additional cancellations as in Sect. 3.1.
The main advantage of this theorem hence lies in the fact that we can allow T ′ to be
decreasing or oscillating.

4 The Nonlinear Equations with Vertical Dissipation

Given the results for the linearized problem, it is natural to ask whether they extend
to the nonlinear perturbed problem:

∂tω + y∂xω + v · ∇ω = ν∂2yω + ∂xθ,
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∂tθ + y∂xθ + T ′(y)v2 + v · ∇θ = 0,

(t, x, y) ∈ (0,∞) × T × R,

and, if so, how this depends on ν. As shown recently by Masmoudi et al. (2020),
this problem may exhibit an instability reminiscent of echo chains in the Vlasov-
Poisson equations (Bedrossian 2020; Zillinger 2021) and Euler equations (Deng and
Masmoudi 2018; Deng and Zillinger 2019). For this reason, we do not expect results in
Sobolev regularity to extend (without strong modification). Therefore, in this section
we instead consider the more viscous problem

∂tω + y∂xω + v · ∇ω = ν∂2yω + ∂xθ,

∂tθ + y∂xθ + T ′(y)v2 + v · ∇θ = ν∂2yθ,

(t, x, y) ∈ (0,∞) × T × R,

where we impose full vertical dissipation and view T (y) as a solution of the forced
problem. Similar to results for the case of hydrostatic balance with shear studied in
Zillinger (2020), our aim here is to extend the linear (asymptotic) stability results to
the nonlinear equations with small data and thus answer question Q4 of Sect. 2.

Theorem 4.1 Let N ≥ 5 and suppose that the temperature profile T (y) satisfies the
linear stability assumptions of Theorem 3.2. Then, there exists a constant cN > 0 such
that for any 0 < ε < cNν2 and any initial data with

‖ω0‖2HN ≤ ε2,

‖∂xθ0‖2HN + ν−2/3‖θ0‖2HN ≤ νε2,

the unique global solution with this initial data and in coordinates (x − t y, y) satisfies

‖ω‖2L∞HN + ν‖(∂y − t∂x )ω‖2L2HN + ‖v�=‖2L2HN ≤ 10ν−2/3ε2,

‖∂xθ‖2L∞HN ≤ 10ν1/3ε2,

where L pHN := L p((0,∞); HN ) and v�= = v − ∫
vdx denotes the non-shear

component of the velocity.

Remark 4.2 • The nonlinear problem with vertical dissipation but without shear has
been previously studied in Cao and Jiahong (2013), Li and Titi (2016), Adhikari
et al. (2010).

• The threshold ε < cNν2 here is imposed to control losses of powers ν1/3 in
enhanced dissipation estimates encoded in our Fourier multiplier B. The constant
cN can be obtained in terms of the constants of Sobolev embeddings and is such
that for u, v, w ∈ HN , it holds that ‖uvw‖HN ≤ 1

cN
‖u‖HN ‖v‖HN ‖w‖HN .

• The nonlinear problem without thermal dissipation has been recently studied in
Masmoudi et al. (2020). In particular, they require Gevrey regularity to control
resonances, which suggests that stability in Sobolev regularity may either fail or
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require non-trivial modification Deng and Zillinger (2019); Deng and Masmoudi
(2018).

• In a previous work Zillinger (2020), we studied the special case where T (y) is
affine (with positive slope) and with full dissipation. The present result allows for
possibly oscillating profiles and only requires vertical dissipation.

• We remark that we here estimate σθ instead of ∇tθ or ∂xθ . This is in view to the
results of Sect. 3.1, for which we do not expect control of ∇tθ .

• In view of the partial dissipation results of Sect. 3, we here omit questions of
enhanced dissipation.

• There has been extensive work on various partial dissipation regimes as well as on
the inviscid problem. We discuss some of this literature in introductory Sect. 1.

Proof We follow a classical bootstrap argument approach (Mouhot and Villani 2011;
Bedrossian et al. 2018; Liss 2020) in the spirit of Cauchy–Kowalewskaya. As in
Zillinger (2020) we here make use of multipliers constructed in Bedrossian et al.
(2018), Liss (2020) for the Navier-Stokes andMHD problems, respectively, and adapt
them to the problem at hand. In contrast with these works, we do not aim to derive
(enhanced) dissipation estimates. However, we show that vertical dissipation is suf-
ficient to employ these bootstrap methods (see also the discussion of echo chains
Masmoudi et al. (2020) in Sect. 1). We remark that in Sect. 3.2 we have derived esti-
mates for the associated linearized problem, which we use as a basis for our estimates
in the following. A main challenge in the control of various contributions here will be
that we can only control vertical dissipation and hence will have to separately consider
regimes where horizontal dissipation would be large.

In our bootstrap construction, we consider L pHN norms on a time interval (0, T ),
T > 0, which incorporate a time-dependent Fourier multiplier M with

ν1/3 ≤ M ≤ 1,

to be specified later (see equation (27)).
We then consider the maximal time T > 0 such that the following bootstrap

estimates are satisfied:

‖Mω�=‖2L∞
t H N + ν‖(∂y − t∂x )Mω �=‖2L2HN + ν1/3‖1|ξ−kt |≤|k|Mω�=‖2L2HN

+ ‖F−1 1√
1 + (

ξ
k − t)2

FMω�=‖2L2HN ≤ 16ε2, (23)

‖σMθ�=‖2L∞HN + ν‖(∂y − t∂x )σMθ �=‖2L2HN + ν1/3‖1|ξ−kt |≤|k|σMθ �=‖2L2HN

+ ‖F−1 1√
1 + (

ξ
k − t)2

FσMθ�=‖2L2HN ≤ 16νε2, (24)

‖ω=‖2L∞
t H N + ν‖∂yω=‖2L2HN ≤ 16ε2, (25)

‖σθ=‖2L∞HN + ν‖σ∂yω=‖2L2HN ≤ 16νε2, (26)
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where ω=, θ= denote the x-averages and ω�=, θ�= their orthogonal complement and we
recall that σ was defined in (20) as the Fourier multiplier

σ = F−1
√
k2 + min((ξ − kt)2, ν−2/3)F .

Here the multiplier

F−1 1√
1 + (

ξ
k − t)2

F

serves to control contributions by the velocity and

ν1|ξ−kt |≤|k|

is frequency localized in regions where vertical dissipation does not control full dis-
sipation.

By local well-posedness and the assumed existence of a solution, there exists some
positive time T > 0 such that (23)–(26) hold with L2(R+; ·) and L∞(R+; ·) replaced
by L2((0, T ); ·) and L∞((0, T ); ·). If themaximal time T with this property is infinity,
this yields the results of the theorem in view of the bounds on M .

In the following, we thus assume for the sake of contradiction that T < ∞ is
maximal. We will then show that at the time T none of the estimates (23)–(26) attain
equality. Therefore, by continuity the estimates are still satisfied for a slightly larger
time, which contradicts the maximality and thus implies the result.

In order to introduce ideas, let us first consider the x-averages.We remark that in the
linearized results of Sect. 3 their evolution decoupled and reduced to heat evolution.
Thus, in the following we have to control the effects of the nonlinearity, where the
lack of full dissipation requires us to introduce some additional splittings.

Estimating ω= Weobserve that ∂xθ , v�=·∇tω= and v=·∇tω�= all possess a vanishing
x-average and thus obtain the following evolution equation for ω=:

∂tω= + 0 + (v�= · ∇tω�=)= = ν∂2yω= + 0.

Testing this equation with ω= and integrating in time, we deduce that

‖ω=(T )‖2HN + 2ν
∫ T

0
‖∂yω=‖2HN = ‖ω=(0)‖2HN + 2

∫ T

0
〈ω=, v�= · ∇tω�=〉.

We recall that by assumption the initial data are of size much smaller than
√
8ε. Thus,

if we can show that the integral on the right-hand side is bounded by ε2, this implies
that equality in (25) is indeed not attained here.

As we assume only vertical dissipation, we first discuss the part involving y deriva-
tives of ω�=:

∫ T

0
〈ω=, v2�=(∂y − t∂x )ω�=〉

123



   64 Page 30 of 38 Journal of Nonlinear Science            (2021) 31:64 

≤ CN‖ω=‖L∞HN ‖v2�=‖L2HN ‖(∂y − t∂x )ω�=‖L2HN

≤
(25),(23),(24)

CN · 4ε · 4ν−1/3ε · ν−1/24ν−1/3ε

=
(
4ν−7/6CN ε

)
16ε2,

where v2�= denotes the vertical component of the velocity field, CN is the constant of

the algebra property of HN and the loss of factors ν−1/3 is due to the multiplier M .
Since by assumption 4ν−7/6ε is much smaller than 1, this term is too small to help
achieve equality.

For the term involving x-derivatives, we introduce a Fourier multiplier χ which
corresponds to the projection onto the set

{(k, ξ) : |ξ − kt | ≥ |k|}.

We note that this set is the complement of set considered in (23). Moreover, by con-
struction it holds that

‖χ∂xω�=‖L2HN ≤ ‖χ(∂y − t∂x )ω�=‖L2HN ≤ ‖(∂y − t∂x )ω�=‖L2HN ,

which thus allows for an estimate of the same form as for the part involving y deriva-
tives.

Finally, we estimate

∫ T

0
〈ω=, v1�=∂x (1 − χ)ω�=〉

= −
∫ T

0
〈ω=, (∂xv

1�=)(1 − χ)ω�=〉
≤ CN‖ω=‖L∞HN ‖∂xv1�=‖L2HN ‖(1 − χ)ω�=‖L2HN

≤
(25),(23),(23)

CN4ε · 4ν−1/3ε · 4ν−1/6−1/3ε

=
(
CNν−5/64ε

)
16ε.

Here the loss of powers ν−1/3 corresponds to the lower bound on M , and we observe
that 1 − χ = 1|ξ−kt |≤|k|. As this contribution is also much smaller than 16ε2, we
conclude that

‖ω=(T )‖2HN + ν

∫ T

0
‖∂yω=‖2HN < 8ε2

and thus equality in (23) is not attained.
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Estimating θ= Before discussing σθ=, we consider θ=, where we can argue anal-
ogously to the case of ω=. We may test the equation

∂tθ= + (v�= · ∇tθ�=)= = ν∂2yθ=

with θ= and integrate in time to again derive an integral estimate. We then estimate
the contribution

∫ T

0
〈θ=, v�= · ∇tθ�=〉

by a constant times

‖θ=‖L∞HN ‖v2�=‖L2HN ‖(∂y − t∂x )θ�=‖L2HN

+‖θ=‖L∞HN ‖v1�=‖L2HN ‖(∂y − t∂x )χθ�=‖L2HN

+‖θ=‖L∞HN ‖∂xv1�=‖L2HN ‖(1 − χ)θ�=‖L2HN .

By the bootstrap assumptions (23)–(26) this sum can be controlled in terms of ν−7/6ε3,
which is much smaller than ε2.

Estimating σθ= Wemay extend the definition of σ to purely y-dependent functions
as the Fourier multiplier σ = F−1 min(|ξ |, ν−1/3)F . We note that the operator norm
of σ is bounded by ν−1/3 and thus σθ= could be controlled in terms of θ=. However,
in this way we would pass from a bound by ε2 to one by ν−2/3ε2, which is insufficient
for our bootstrap approach. Instead, we aim to show that by a similar argument as
above ‖σθ=‖L∞HN can be controlled by ε2, where the loss of powers of ν only factors
into the smallness conditions on ε used to control nonlinear interaction terms.

We may control

‖σθ=(T )‖2HN + ν‖∂yσθ=‖2L2HN

= ‖σθ=(0)‖2HN +
∫ T

0
〈σθ=, σv�= · ∇tθ�=〉

≤ ‖σθ=(0)‖2HN + ‖σθ=‖L∞HN ν−1/3CN (‖v2�=‖L2HN ‖(∂y − t∂x )θ�=‖L2HN

+ ‖v1�=‖L2HN ‖(∂y − t∂x )χθ�=‖L2HN + ‖∂xv1�=‖L2HN ‖(1 − χ)θ�=‖L2HN )

≤ ‖σθ=(0)‖2HN + CN4ν
1/2εν−1/3(4ν−1/3ε · 4ν−1/2−1/3ν1/2ε

+ CN4ν
−1/3ε · ν−1/2/−1/3ν1/2ε + 4ν−1/3ε · 4ν−1/2−1/3ν1/2ε)

≤ νε2 + (16ν−3/2ε + 16ν−3/2ε + 16ν−3/2ε)CN · 16νε2

Thus, by assumption on ε and the initial data, equality in (26) is also not achieved for
σθ=.

Estimating ω�= and θ�= Having discussed the control of the x-averages, we now
turn to control ω�=, σθ�=. Here we will first focus on contributions due to T (y) and the
x-averages and finally discuss the control of the nonlinearity involving v�=.
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We recall that ω�= and θ�= satisfy the system

∂tω�= = ν(∂y − t∂x )
2ω�= + ∂xθ�= − v1=∂xω�= − v2�=∂yω= − (v�= · ∇tω�=) �=,

∂tθ�= = ν(∂y − t∂x )
2ω�= + T ′(y)v2�= − v1=∂xθ�= − v2�=∂yθ= − (v�= · ∇tθ�=) �=,

where we consider ω= and θ= as given functions.
In the linearized problem of Sect. 3.2, we could without loss of generality assume

that ω= = θ= = 0 and constructed a non-increasing energy functional. In the follow-
ing, we build on these estimates and integrate them in time to show that the controls
(23), (24) are stable under small nonlinear perturbations.

We recall the multipliers A, B defined in (18) in Sect. 3.2:

A(t, k, ξ) = exp

(
−2

∫ t

0

1

1 + (
ξ
k − s)2

ds

)
,

B(t, k, ξ) = exp

⎛
⎝−2

∫ t

0

1√
1 + (

ξ
k − s)2

1Ids

⎞
⎠ ,

and for simplicity of notation write

M := AB. (27)

Let us first study the time derivative of

‖Mω�=‖2HN .

Then, it holds that

‖Mω�=(T )‖2HN −
∫ T

0
〈Mω �=, Ṁω�=〉 + ν

∫ T

0
‖M(∂y − t∂x )ω�=‖2HN

= ‖Mω�=(0)‖2HN +
∫ T

0
〈Mω �=, M(v1=∂xω�=)〉

+
∫ T

0
〈Mω �=, M(v2�=∂yω=)〉

+
∫ T

0
〈Mω �=, M∂xθ�=〉

+
∫ T

0
〈Mω �=, M(v�= · ∇tω�=)〉

=: ‖Mω�=(0)‖2HN + Tv1= + Tω= + Tω�=,θ�= + Tv �= . (28)

By assumption, ‖Mω�=(0)‖2
HN is much smaller than ε2, so if we can show that various

terms T on the right-hand side can be controlled by the left-hand side and higher
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powers of ε, we can show that the left-hand side remains smaller than 4ε2 for all
times.

Estimating Tv1= In order to estimate Tv1= , we make use of cancellation in an inte-
gration by parts, following a similar argument as in Zillinger (2020) with additional
adjustments to account for partial dissipation. More precisely, given the multiplier M ,
we note that by Parseval’s identity

〈Mω�=, M(v1=∂xω�=)〉
= 〈Mω�=, M(v1=∂xω�=) − v1=∂x Mω�=〉
=

∑ ∫ ∫
M(t, k, ξ)ω�=(k, ξ)ω�=(k, ξ + ζ )ik(M(t, k, ξ) − M(t, k, ξ + ζ ))v=(ζ ).

This cancellation is required to control v=(ζ ) = 1
iζ ω=(ζ ) in terms ofω=. In particular,

if |ζ | ≥ 1 this control is trivial, while for |ζ | ≤ 1we observe thatM(t, k, z) is Lipschitz
with respect to z

k uniformly in t :

|M(t, k, ξ) − M(t, k, ξ + ζ )| ≤ C |ζ
k
|.

Hence, we can control Tv1= by

‖Mω�=‖L2HN ‖ω�=‖L2HN ‖ω=‖L∞HN .

The last factor is controlled by the preceding argument. For the first two factors, we
make the observation that

ν1/3 ≤ ν(k2 + (ξ − kt)2) + 1√
1 + (

ξ
k − t)2

1| ξ
k −t |≤ν−1/3

and hence ‖Mω�=‖2
HN (and ν2/3‖ω�=‖2

HN ) can be estimated in terms of the dissipation

and the decay due to Ṁ , at a loss of a factor ν1/3.
Estimating Tω= We next discuss

Tω= = 〈Mω�=, M(v2�=∂yω=)〉.

Here we may easily estimate by

ν−2/3‖Mω�=‖L∞HN ‖Mv2�=‖L2HN ‖∂yω=‖L2HN ,

where the factor of ν−2/3 corresponds to a rough bound of the operator norm of M .
All factors are controlled in terms of the bootstrap assumption, and thus, Tω= is much
smaller than ε2 provided ε3 is much smaller than ε2 in terms of powers of ν.
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Estimating Tω�=,θ�= As one of the main results of Sect. 3.2, we have shown that
M = AB is constructed in just such a way that

|〈ABω�=, AB∂xθ�=〉| ≤ −〈Mω�=, Ṁω�=〉 − α−1〈Mσθ�=, Ṁσθ�=〉

with α = max(‖T ′‖, ν1/3) (see Theorem 3.2 for the precise definition). Hence, we
can absorb this contribution into the left-hand side of (28), provided we can control
Ṁσθ�=, which will be the left-hand side of a later equation (32).

Estimating Tv �=,θ�= It remains to discuss the main nonlinearity, where a key chal-
lenge is given by the lack of horizontal dissipation.

If we had full dissipation at our disposal, this estimate would reduce to controlling
by

‖ω�=‖L∞HN ‖v�=‖L2HN ‖∇tω�=‖L2HN .

However, as we only require vertical dissipation, the last factor is not easily controlled
anymore. We thus have to invest additional effort to control this contribution.

As v�= is divergence-free, we observe that

〈Mω�=, M(v�= · ∇tω�=)〉 = 〈Mω�=, M(v�= · ∇tω�=) − v�= · ∇t Mω�=〉
=

∑∫∫∫
M(k, ξ)ω̃�=(k, ξ)(M(k, ξ) − M(k − l, ξ − ζ ))ṽ �=(l, ζ )

·
(

k − l
ξ + ζ − (k − l)t

)
ω̃�=(k − l, ξ − ζ ).

We observe that if

|k − l| ≤ ν−1|ξ + ζ − (k − l)t |

the last gradient can simply be controlled by the vertical dissipation, which yields an
estimate in terms of

‖ω�=‖L∞HN ‖v�=‖L2HN ‖(∂y − t∂x )ω�=‖L2HN

and can hence be controlled. Similarly, if

|k − l| ≤ ν−1|l|

we can control in terms of

‖ω�=‖L∞HN ‖∂xv�=‖L2HN ‖ω�=‖L2HN .
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It thus only remains to discuss the region where

|t − ξ + ζ

k − l
| ≤ ν,

|l| ≤ ν|k|.
(29)

Here, we make use of cancellations in M . More precisely, we note that M(k, ξ) does
not depend on k and ξ individually, but only on ξ

k and that uniformly in time

|M(k, ξ) − M(k − l, ξ − ζ )| ≤ C |ξ
k

− ξ − ζ

k − l
|

= C |ξ − kt

k
− ξ − ζ − (k − l)t

k − l
|

≤ C
1

1 + ν

1

|k − l| (|ξ − kt | + |ξ − ζ − (k − l)t |),

where we used (29). We thus can control Tv �=,θ�= in that region by

‖ω�=‖L∞HN ‖v�=‖L2HN ‖(∂y − t∂x )ω�=‖L2HN ,

which is controlled in terms of the bootstrap estimates.
It remains to discuss

‖F−1 1√
1 + (

ξ
k − t)2

FMω�=‖2L2HN (30)

and

ν1/3‖1|ξ−kt |≤|k|Mω�=‖2L2HN . (31)

The contribution by (30) here by construction can be absorbed into the decay of A.
In order to control (31), we use a combination of the decay of B and the vertical
dissipation. More precisely, recalling the definition of B it suffices to show that

ν1/31|ξ−kt |≤|k| ≤ ν(ξ − kt)2 + 2√
1 + (

ξ
k − t)2

1| ξ
k −t |≤ν−1/3 .

Indeed, if | ξ
k −t | ≥ ν−1/3, then ν(ξ−kt)2 ≥ ν·ν−2/3 ≥ ν1/3. If instead | ξ

k −t | ≥ ν−1/3,
then 2√

1+(
ξ
k −t)2

≥ ν1/3 and we can hence estimate by the latter term.

This concludes the improvement in (23).
Controlling σθ�= We next turn to controlling σθ�=, where we study the time deriva-

tive of

‖Mσθ�=‖2HN .
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Integrating in time, we have to control

‖Mσθ�=(T )‖2HN −
∫ T

0
〈Mσθ�=, Ṁσθ�=〉 + ν

∫ T

0
‖M(∂y − t∂x )σθ�=‖2HN

= ‖Mσθ�=(0)‖2HN +
∫ T

0
〈Mσθ�=, MσT ′(y)v2�=〉 +

∫ T

0
〈Mσθ�=, Mσv1=∂xθ�=〉

+
∫ T

0
〈Mσθ�=, Mσv2�=∂yθ=〉

+
∫ T

0
〈Mσθ�=, Mσv�= · ∇tθ�=〉

=: ‖Mσθ�=(0)‖2HN + TT + Tv1= + Tθ= + Tv �=,σθ�= .

(32)

Here the aim again is to show that all T contributions add up to something smaller
than ε2, and hence, equality is not attained.

Estimating TT As one of the main results of Sect. 3.2, we have shown that TT can
be controlled in terms of the decay of the multipliers M and the vertical dissipation
of ω only. Thus, this contribution can estimated in terms of the left-hand side of (32)
and (28).

Estimating Tv1= Here we may argue analogously as for ω�=, expect that M has
been replaced by σM . We thus obtain an estimate by

‖Mσθ �=‖L2HN ‖θ�=‖L2HN ‖ω=‖L∞HN .

Estimating Tθ= Here we may argue again analogously as for ω�= and control by

‖Mσθ�=‖L∞HN ‖v2�=‖L2HN ‖∂yθ=‖L2HN .

Estimating Tv �=,σθ�= We recall that in this theorem we assume vertical dissipation
also for the temperature (in contrast with Sect. 3.2 and the problem considered in
Masmoudi et al. (2020)). Therefore, in this estimate we argue largely analogously to
the estimate ofTv �=,ω�= . However, sinceσM also depends on k, we need some additional
control in the region where the horizontal dissipation is not easily controlled.

More precisely, by the preceding arguments for Tv �=,ω�= it suffices to consider

∑ ∫∫
(σθ�=)(k, ξ)

1

σ(k − l, ξ − ζ )
(σM(k, ξ) − σM(k − l, ξ − ζ ))ṽ�=(l, ζ )

·
(

k − l
ξ − ζ + (k − l)t

)
(σθ�=)(k − l, ξ − ζ )

in the regions where ξ − ζ is very close to resonant and l is much smaller than k.
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However, in that case we may split into differences in M and in σ and observe that

√
k2 + (ξ − kt)2 − √

(k − l)2 + (ξ + ζ − (k − l)t)2√
(k − l)2 + (ξ + ζ − (k − l)t)2

≈
√
k2 − √

(k − l)2√
(k − l)2

≈ l

|k − l| ,

where we could neglect ξ − kt and ξ + ζ − (k − l)t since these terms could otherwise
be controlled in terms of the vertical dissipation. Hence, over all we can control by

‖σθ�=‖L∞HN ‖∂xv�=‖L2HN ‖σθ�=‖L2HN ,

which concludes the proof (24). ��
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