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Lower limits for the homogenization of periodic metamaterials made from electric dipolar scatterers

Ramakrishna Venkitakrishnan ,1,* Timon Höß ,1 Taavi Repän,2 Fatima Z. Goffi,3 Michael Plum,3 and Carsten Rockstuhl1,2

1Institute of Theoretical Solid State Physics, Wolfgang-Gaede-Straße 1, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
2Institute of Nanotechnology, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany

3Institute for Analysis, Karlsruhe Institute of Technology, Englerstraße 2, 76131 Karlsruhe, Germany

(Received 22 February 2021; revised 19 April 2021; accepted 21 April 2021; published 20 May 2021)

Nonlocal constitutive relations promise to homogenize metamaterials even though the ratio of period over
operational wavelength is not much smaller than unity. However, this ability has not yet been verified, as
frequently only discrete structures were considered. This denies a systematic variation of the relevant ratio. Here,
we explore, using the example of an electric dipolar lattice, the superiority of the nonlocal over local constitutive
relation to homogenize metamaterials when the period tends to be comparable to the wavelength. Moreover, we
observe a breakdown of the ability to homogenize the metamaterial at shorter lattice constants. This surprising
failure occurs when energy is transported across the lattice thanks to a well-pronounced near-field interaction
among the particles forming the lattice. Contrary to common wisdom, this suggests that the period should not
just be much smaller than the operational wavelength to homogenize a metamaterial, but, for a given size of the
inclusion, there is an optimal period.
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Optical metamaterials are artificial media made from sub-
wavelength unit cells that can control the propagation of light
in a way inaccessible with natural materials [1,2]. The exis-
tence of inductive and capacitive elements within the unit cell
results in strong resonances. Numerous applications such as
a “perfect lens” to achieve imaging with subwavelength res-
olution [3], the reduction of the total scattering cross section
for transparency and cloaking [4–6], the enhancement of the
magnetic flux density at a desired location for wireless power
transfer [7–9], and many more [10,11] have been suggested
and realized based on metamaterials.

The two-dimensional (2D) equivalent of metamaterials,
called metasurfaces, are composed of periodically arranged
electrically small scatters on a 2D lattice [12–15]. Meta-
surfaces are capable to alter the amplitude, phase, and
polarization of the incoming electromagnetic wave in a
disruptive sense. In comparison with its three-dimensional
counterpart, metasurfaces provide reduced loss and ease of
fabrication, thus being a promising candidate for planar op-
tical devices [16–19].

In discussing the optical action of metamaterials and to
consider them in the design of applications, it is more con-
venient to consider them as a homogeneous medium rather
than a granular material made from discrete scatterers [20].
The establishment of a link between these two representations
of the same material is called homogenization and is at the
heart of a theoretical description of metamaterials [21,22].

For natural materials made from a discrete arrangement of
atoms or molecules separated by a characteristic length a, sup-
posed to be much smaller than the relevant wavelength λ0 (i.e.,
ak0 = a 2π

λ0
≪1), the electromagnetic response at the effective
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level is obtained from the average of the local electromagnetic
fields across a mesoscopic volume [23]. This volume has to be
large to contain many constituents, but it has to be sufficiently
small with respect to the wavelength as well.

Such averaging leads to local constitutive relations. There,
the induced response at some specific point in space, e.g.,
expressed in terms of an electric displacement or a magnetic
field, depends only on the electric field or the magnetic induc-
tion at the very same spatial location.

This description has been carried over to artificial pho-
tonic materials [24]. It is noteworthy that field averaging is
a fundamental technique and henceforth has facilitated in
deriving further advanced and accurate numerical retrieval
models [25–28]. However, these techniques usually assume
that the critical length scale continues to be small compared to
the relevant wavelength. But the constituents in such artificial
photonic materials are already more mesoscopic in size and
typically characterized by a spatial extent that is smaller, but
not much smaller any longer, than the relevant wavelength
(ak0 < 1).

But this mesoscopic nature made it possible to observe a
strong magnetic response in these artificial photonic materials.
In essence, as all materials from which metamaterials are
made are intrinsically nonmagnetic, it requires a finite spatial
extent of the unit cells so that a variation of the electric field
across the unit cells can induce ring-type currents [29,30].
This gives rise to an artificial, i.e., an induced, magnetic re-
sponse at the effective level. The appearance of the magnetic
response is called weak spatial dispersion (WSD) because the
gradient of the electric field matters in this description. After a
suitable gauge transformation, the response can be expressed
with local constitutive relations where the electric response is
expressed via a permittivity and the magnetic response via a
permeability [31]. However, when considering metamaterials
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with a characteristic length a comparable to the wavelength
λ0, it can be shown that local constitutive relations fail to
predict the electromagnetic properties [2,32]. To make that
point clear: we expect a single set of material parameters to
explain reflection and transmission from a thin film of the
material independent of the angle of incidence. If we would
have to consider a different material property at each angle,
the introduction of effective properties would be meaningless.
Unfortunately, for many mesoscopic metamaterials, this is
exactly the case and it turns out that local constitutive relations
are insufficient [31].

To overcome this limitation, alternative first-principles and
self-consistent homogenization theories have been proposed
[33,34], introducing a dispersive behavior for the material
response with respect to the spatial coordinates [35–39]. Here,
we rely on the approach described in [40,41], where nonlocal
constitutive relations have been suggested that capture effects
due to a strong spatial dispersion (SSD). These constitutive
relations express the response in terms of the local electric
fields, its first- and second-order derivatives, and a larger num-
ber of higher-order gradients [42]. In the systematic derivation
of such constitutive relations, the point of departure is the
nonlocal response function R̂(r − r′, k0) at the effective level.
The nonlocal response function is supposed to describe the
metamaterial in the most accurate sense. In spatial Fourier
space, such constitutive relation reads

D(k, k0) = ˆ̃R(k, k0)E(k, k0), (1)

where k0 is the free space wave number corresponding to the
frequency, k is the wave vector of the plane wave solution,
and D(k, k0) and E(k, k0) are the electric displacement and
the electric field, respectively.

To have a practically usable form for the constitutive rela-
tion, we require that the spatial dispersion must vanish at long
wavelengths, |k| → 0, and approximate the kernel by a Taylor
polynomial,

Di(k, k0) = (δi j + ai j )Ej + bi jkkkE j + ci jkl kkklE j

+ di jklmkkklkmEj + ei jklmnkkklkmknEj . (2)

In a real space description, after inverse Fourier transform,
the terms where some wave vector components are multiplied
with the electric field convert to gradients of the electric field.
To exploit this ansatz, not all of these terms in the expansion
shall be considered. The number of terms after which the
series is truncated offers a handle to establish the constitutive
relations of increasing complexity. In our contribution, we
investigate two constitutive relations to homogenize a material
made from isotropic electric dipole scatterers on a square
lattice with lattice constant a. This geometry has inversion
symmetry. It does not support magnetoelectric coupling ef-
fects. Thereby, only even-order terms survive in the Taylor
series expansion of this constitutive relation. A truncation of
the series after the second order and after the fourth order,
and by requiring specific forms for the Taylor coefficients in
terms of curl operators [40,43], leads to the following two
constitutive relations that we consider:

D(k, k0) = ε(k0)E(k, k0) − k × (α(k0)k×)E(k, k0) (3)

and

D(k, k0) = ε(k0)E(k, k0) − k × (α(k0)k×)E(k, k0)

+ k × k × (γ (k0)k×)k × E(k, k0). (4)

Equation (3) is referred to as the weak spatial dispersion
(WSD). The two material parameters characterizing the model
are the electric permittivity ε(k0) and the second-order term
α(k0). Equation (4) is referred to as the strong spatial
dispersion model (SSD) or the nonlocal model, which addi-
tionally includes the nonlocal parameter γ (k0) as an effective
parameter.

Upon considering the nonuniqueness nature of the dis-
placement field D(k, k0), a suitable gauge field can translate
the second-order material parameter α(k0) into an effective
magnetic permeability μ(k0) as α = (k2

0μ)−1(μ − 1). This
translates the second-order response of the homogeneous
material to an artificial local magnetic response. There-
fore, this second-order term and an artificial magnetism are
synonymous.

While the superiority of the nonlocal constitutive relation
has already been proven, so far only selected examples have
been considered [43,44]. A systematic quantification of the
improvement depending on the typical length scale relative
to the wavelength has not been possible. With exact structures
such as the fishnet metamaterial or even simpler metamaterials
such as spheres on a cubical lattice, such analysis is not that
easy because a change in the geometry usually changes the
entire optical response of the unit cell. It is important to
mention that the homogeneous models considered here can be
applied to any mesoscopic centrosymmetric slab structures,
irrespective of the shape of the scatterer [45–47].

Therefore, it is the purpose of our contribution to resort
to the potentially most simple metamaterial and to investi-
gate the possibility to homogenize it with local and nonlocal
constitutive relations. This simplest structure is a square ar-
ray of electric dipoles that is driven into resonance at some
characteristic frequency [48,49]. The typical length scale is
the periodicity a. It will be shown that for larger periods a
description with SSD is systematically superior and can also
cope very well with scenarios where the size of the period
tends to be comparable to the wavelength.

As an extension, we also report an unexpected finding.
While common wisdom suggests that the smaller the period,
the better the structure can be homogenized, we show that
this does not hold. Indeed, for very small periods, both con-
stitutive relations tend to capture the effective response less
accurately, even though the SSD model is always better. This
surprising finding can be explained by the spread of excitation
across the array for tightly packed arrangements thanks to a
heavily pronounced near-field coupling among the particles.
Such breakdown of a homogenization at very small periods
is unexpected and points towards the existence of a range
of mesoscopic periods most optimal for an effective descrip-
tion. On a technical level, we employ the T-matrix method
[50] that is based on Mie theory [51,52] to simulate from
the actual structure for reference reflection and transmission.
This method is particularly suitable as we can consider a
generic representation of an electric dipolar scatterer with
exact moments giving high-quality numerical approximations
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FIG. 1. Amplitude of the reflection coefficient, |ρREF(k0, kx =
0)|, for a range of lattice constants generated using the general Mie
method.

[53]. We always assume the electric dipolar particles to have
a resonance at k0iso = 6.3 μm−1. Its Lorentzian dispersion is
characterized by an Ohmic loss of 0.1k0iso c0 and an oscillator
strength of 6

√
2πc0, which results in a full width at half

maximum of about 50 nm. Here, c0 represents the speed of
light in vacuum.

In the homogenization, we then need to identify the ho-
mogeneous material characterized by its respective material
parameters that can explain these numerically simulated opti-
cal coefficients in an optimal sense [54–57]. For that purpose,
we first solve for the dispersion relation and the eigenmodes
sustained in a medium characterized by the constitutive re-
lation given in Eqs. (3) and (4) with a plane wave ansatz.
The medium made from the periodically arranged electric
dipolar scatterers is considered as a slab with a finite thickness
that corresponds to the considered periodicity. That leaves us
with a high-symmetry unit cell where the effective properties
are isotropic. We consider a linearly polarized plane wave as
the illumination and, upon enforcing the interface conditions
[58], we can analytically calculate the complex reflection
and transmission coefficients for the homogeneous medium
[40]. Afterwards, we perform a dedicated fitting procedure to
identify the material parameters that fit the optical coefficients
obtained from the homogeneous slab in an optimal sense
to the optical coefficients obtained in the full wave optical
simulations.

As a selected example for the outcome of the full wave
simulations, Fig. 1 shows the absolute value of ρREF as a
function of the frequency (k0) at normal incidence (kx = 0)
for a range of lattice constants a. It can be clearly seen that
for large lattice constants, the reflection spectra follow the
polarizability of the particle. A reflection peak can be seen
at the resonance frequency assumed for the particles (dashed
line) at k0iso = 6.3 μm-1. The resonance width follows the line
width. Decreasing the lattice periods in lowest-order approxi-
mation only increases the amplitude of the reflection thanks
to the higher filling fraction. On decreasing a further, the
resonance redshifts relative to the isolated particle resonance.
The ability of the considered homogenization models to cap-

ture this feature is a way to qualitatively judge the considered
models.

The retrieval of the effective properties is done at each
frequency independently. It exploits the angular-dependent
optical coefficients from a slab in some selected po-
larization. First, these optical coefficients, i.e., reflection
ρmodel(k0, kx; ε, μ, γ ) and transmission τmodel(k0, kx; ε, μ, γ ),
are computed for a given set of material parameters. In the
case of WSD, only ε and μ are considered, while in the case
of SSD, ε, μ, and γ are considered. The deviation of the
reference values and those obtained from the homogenous
model are expressed as

f ρ = ρREF(k0, kx ) − ρmodel(k0, kx; ε, μ, γ ),

f τ = τREF(k0, kx ) − τmodel(k0, kx; ε, μ, γ ),

with model = {WSD,SSD}. The goodness of the fit at
each frequency is judged using an objective function δ(k0)
defined as

δ(k0 ) = min
ε,μ,γ

∑k0
kx=0 ω(k0, kx )(| f ρ |2 + (| f τ |2)∑k0

kx=0 ω(k0, kx )
, (5)

where ω(k0, kx ) represents a weight function which is intro-
duced to ensure a good fit at least in the paraxial regime and
to stretch the trend towards higher angles of incidence. We
have chosen ω(k0, kx ) to be the Fermi-Dirac function,

ω(k0, kx ) =
[

1 + exp

(
kx
k0

− u

v

)]−1

, (6)

where u and v are the auxiliary variables to adjust the position
and smoothness of ω, chosen to be 0.66 and 0.05, respectively.
In the actual fitting procedure, the material parameters at a
given frequency are adjusted until a minimum for δ(k0 ) has
been found.

We exploit in the retrieval the Transverse Magnetic (TM)-
kx illumination with the principle propagation direction kz.
The transverse wave vector is calculated as kx = k0sin(θ ). As
incident angles, we considered θ : [0◦, 90◦) divided into 100
values. The calculations are done for 240 frequencies in the
range k0 = [3, 8.4] μm−1. The considered lattice constant lies
in the space a = [100, 400] nm. For the longest period and the
highest frequency considered, we are in a regime where the
period is approximately half the free space wavelength. With
this parameter range, the homogenization models are brought
close to the regime where the system is clearly mesoscopic. A
first diffraction order continues to be absent, but the system is
expected to support strong spatial dispersion effects [31].

To appreciate the improvement offered by the SSD model,
we begin by investigating the considered array using the WSD
model. After having retrieved the effective properties, Fig. 2
shows the recalculated |ρ| with these material parameters as
a function of k0 and a at normal incidence. This figure shows
the ability of the local model to capture the resonant features
as seen in the reference Fig. 1. Figure 3 shows the effective
material parameter for the pertinent sample homogenized with
the WSD model.

Notice in Fig. 3 that the permeability μ(k0) acquires a sec-
ondary resonance at frequencies larger than k0iso . On reducing
the lattice constants, this secondary resonance further exhibits
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FIG. 2. Amplitude value of the reflection coefficient |ρ| retrieved
using the WSD model for comparison with the data.

a blueshift. The physical origin of this secondary resonance
is the excitation of an antisymmetric mode in the lattice,
where the dipole moments in adjacent particles oscillate π

out of phase. To reveal this more clearly, Fig. 4 shows |ρREF|
at three different incidence angles: θ = 0◦, 30◦, and 60◦.
Figure 4(a) shows the redshift in the resonant frequency from
k0iso at normal incidence. This can be attributed to the in-phase
oscillation of the adjacent dipoles corresponding to the sym-
metric mode of the coupled oscillator. The apparent redshift is
expected from ordinary hybridization theory [59,60]. On the
other hand, Figs. 4(b) and 4(c) show a developing secondary
resonance corresponding to the out-of-phase oscillation of
the adjacent dipoles as in the antisymmetric mode. Such an
antisymmetric mode corresponds to a fraction of a ring cur-
rent. Therefore, it is no surprise that it emerges in the effective
permeability.

This collective oscillation of electric dipoles in the array at
lower lattice constants can be understood as a characteristic
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FIG. 3. Effective material parameter, permittivity ε(k0) and per-
meability μ(k0 ), retrieved with the WSD model.
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FIG. 4. Amplitude of the reflection coefficient |ρREF| as calcu-
lated with the general Mie method at different angles of incidence.
(a) The value at normal incidence of light; here, only the symmetric
oscillation of the dipole is visible. (b),(c) The value at angles 30◦

and 60◦, respectively, showing the growth of secondary resonance on
increasing the angle of incidence.

feature of the strong spatial dispersion. A local constitutive
relation is not able to capture it, but it is expected to be
accounted for by the nonlocal parameter. This constitutes the
motivation to investigate the SSD model at the considered
parameter range.

The fitting procedures for the nonlocal constitutive rela-
tion, given by Eq. (4), are carried out as a 6D optimization
problem using the aforementioned objective function and the
same weight function.

The fitting procedure shall ensure that the material param-
eters are a continuous function of k0. While no special care
was required for the WSD case, this continuity is not trivial
for the SSD model. The practical problem is the appearance
of two branches of solutions that are distinguished by the sign
of Imγ (k0). A clear distinction of the two branches is pos-
sible by performing the retrieval with a restricted parameter
space to either Imγ < 0 or Imγ > 0. The global optimum
corresponds to one of these branches in different frequency
regions, as can be seen from Fig. 5. The figure shows δ(k0)
for the two possible branches. A notable difference appears for
frequencies above k0 ≈ 5.1 μm−1. One of the branches seems
to be preferred in spectral proximity to the resonance, while
the other branch seems to be preferred at short wavelengths.
To judge the necessary sign, we investigated the energy flux
in such media that has to point away from the source. Based
on that consideration, which is discussed in the Appendix, it
can be concluded that the solution with Imγ > 0 is the right
solution. It will be considered from now on.

To discuss the improvement in our ability to describe the
pertinent material at the homogenous level, Fig. 6 shows the
objective function δ(k0) in a logarithmic scale as a function
of the lattice constant for both models. Across the consid-
ered frequency space, the SSD model provides a better fit
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FIG. 5. Branching solution of the objective function δ(k0) for
the electric dipole array with a fixed lattice constant a = 250 nm.
The curve splits into two different branches at k0 = 5.1 μm−1

with the blue curve for Imγ (k0 ) < 0 and the yellow curve for
Imγ (k0 ) > 0.

with the reference data when describing the medium at the
effective level. The improvement of the fit is significant by at
least one order of magnitude, especially near the resonance
k0iso . Further, towards the antisymmetric resonance frequency,
using the nonlocal constitutive relation gives an appreciable
improvement up to one order of magnitude. This suggests that
the considered nonlocal material properties from Eq. (4) can
be used to reliably predict the optical response from the slab in
a situation that deviates from those that have been considered
in the general (local) properties of the materials.

To lift the comparison and the assessment of the two meth-
ods to a higher level, we plot in Fig. 7 the sum of the objective
function over the frequency space,

∑
k0

δ(k0), as a function of
lattice constants. Many things can be seen from that figure.

First, the SSD model is always superior when compared to
the WSD model to describe the material at an effective level.
The objective function is always lower by at least a factor
of two; and, in some frequency regions, the improvement
corresponds to an order of magnitude. This improvement is
attributed to the nonlocal parameter γ (k0) that accounts for
the corrections in the local parameters. This clearly underpins
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FIG. 6. The objective function δ(k0 ) in logarithmic scale as a
function of frequency in the considered range of lattice constants.
(a) The WSD model. (b) The SSD model. In comparison, the SSD
model has a better fit compared to the WSD model.
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FIG. 7. Sum of objective function over the considered frequency
range plotted against the respective lattice constant. The red squares
denote the WSD model and the yellow squares denote the SSD
model.

the necessity of the fourth-order term in the effective descrip-
tion of the electric dipole array.

Second, the improvement is particularly convincing for
large periods, i.e., when effects due to spatial dispersion are
expected to be most pronounced. Here, the SSD model is
able to homogenize the material in good approximation, even
independent of the period.

Third, when decreasing the period, the improvement is less
pronounced and both models tend to explain the response
better. This makes perfect sense because the homogenization
is expected to be more reliable when the period tends to be
(much) smaller compared to the operational wavelength.

However, there is a fourth aspect that is somewhat surpris-
ing. This plot suggests a critical value for the lattice constant,
acritical = 200 nm, below which the ability to homogenize
the material deteriorates. While the SSD model continues to
be more reliable, the frequency averaged deviation increases
with smaller lattice constants. These values of a fall within the
parametric range where the antisymmetric modes are excited,
and so the secondary resonance is not fully accounted by
the effective parameters in the SSD model. The inability to
describe such materials with local constitutive relations can be
explained by the spread of an excitation across the material by
means of a near-field interaction. The individually polarized
particle can transport its energy across larger distances within
the material by coupling to its nearest neighbors. Indeed, such
coupling mechanism was considered to be responsible as a
wave guiding mechanism [61,62] and it is such mechanism
that prohibits the homogenization of the material with a local
constitutive relation, i.e., the WSD model. But, also, a next-
higher-order nonlocal material model, i.e., the SSD model,
has problems in capturing these effects. This limits the ap-
plicability of the considered models to give the effective full
description of the slab for lower lattice constants, and thus
acritical can be considered as the lower limit for the homoge-
nization for the electric dipole slab. The observation of such a
lower limit in the particle spacing for the homogenization of
materials is notable.
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As a short conclusion, we have been studying the ability
to homogenize an array of electric dipoles using a local and a
nonlocal constitutive relation. It was shown that the nonlocal
constitutive relation can capture the effects of a strong spatial
dispersion that are expected to appear for large periods much
better. In essence, we have not observed a notable degradation
in the ability of the model to homogenize the metamaterial
in this regime. For the largest period, the nonlocal constitu-
tive relation was roughly better by one order of magnitude.
When the period got smaller, the superiority of the nonlocal
constitutive relation became less pronounced, as expected, but
continued to be better by at least a factor of two. Besides
these somewhat expected results, we also observed, somewhat
surprisingly, that for very small periods, both constitutive rela-
tions tend to capture the optical response less optimally. These
phenomena occur because for a very dense packaging of scat-
terers, an excitation can also spread across the lattice, thanks
to a pronounced near-field interaction among adjacent parti-
cles. This spread of excitation can be quite far reaching, which
denies, in essence, any homogenization. Therefore, this hints
towards an optimal period at which a homogenization of the
lattice is possible. This insight can be safely expected to shape
our understanding of how to homogenize metamaterials.
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APPENDIX

In this Appendix, we shall summarize the more standard-
ized Poynting vector approach towards judging the right sign
for the imaginary component of the parameter γ . Poynting
vector 〈S〉 corresponding to the energy flux in the homoge-
neous medium is derived for the SSD model. For each case,
the sign associated with 〈S〉 is studied.

Considering the relevant constitutive relation D(k, k0) =
ˆ̃R(k, k0)E(k, k0) with TM polarization, the Ampere’s law
reads⎛
⎝ 0 −kz ky

kz 0 −kx

−ky kx 0

⎞
⎠H(k, k0) + k0R̂(k, k0)E(k, k0) = 0,

(A1)

FIG. 8. Poynting vector 〈Sz〉 for the electric dipole array with
a fixed lattice constant a = 250 nm. Here, the blue curve refers to
Imγ (k0 ) < 0 and the yellow curve refers to Imγ (k0 ) > 0. The curve
denoting Imγ (k0 ) > 0 shows the energy flux to be in the direction
away from the source [(〈Sz〉) > 0], which is the right solution.

and its Hy solution can be written as

Hy(k, k0) = Ex(k, k0)

[
k2

0μy p0 + (
k2

x εx + k2
z εz

)
(μy − 1)

]
kzk0μyεz

,

(A2)

where

p0 = k4
x γzεx + k4

z γxεz + k2
x k2

z (γxεx + γzεz ) + εxεz.

So the time average energy flux for the considered SSD model
is

〈Sz〉 = Re(Sz) = E2
x

[
k2

0μy p0 + (
k2

x εx + k2
z εz

)
(μy − 1)

]
kzk0μyεz

.

(A3)

To discuss the derived quantity numerically, an electric
dipole array with a fixed lattice a = 250 nm is chosen.
Equation (A3) is employed to calculate the energy flux for
both choices of Imγ > 0. Figure 8 shows the time averaged
energy flux corresponding to the relevant eigenmode (the kz

value corresponding to the new mode from the SSD). It can
be concluded that the flux associated with Imγ > 0 flow away
from the source and hence is the right solution.
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