KIT | KIT-Bibliothek | Impressum | Datenschutz

Simulation-based estimation of the number of cameras required for 3D reconstruction in a narrow-baseline multi-camera setup

Wachter, Andreas ORCID iD icon; Kost, Jan; Nahm, Werner


Graphical visualization systems are a common clinical tool for displaying digital images and three-dimensional volumetric data. These systems provide a broad spectrum of information to support physicians in their clinical routine. For example, the field of radiology enjoys unrestricted options for interaction with the data, since information is pre-recorded and available entirely in digital form. However, some fields, such as microsurgery, do not benefit from this yet. Microscopes, endoscopes, and laparoscopes show the surgical site as it is. To allow free data manipulation and information fusion, 3D digitization of surgical sites is required. We aimed to find the number of cameras needed to add this functionality to surgical microscopes. For this, we performed in silico simulations of the 3D reconstruction of representative models of microsurgical sites with different numbers of cameras in narrow-baseline setups. Our results show that eight independent camera views are preferable, while at least four are necessary for a digital surgical site. In most cases, eight cameras allow the reconstruction of over 99% of the visible part. With four cameras, still over 95% can be achieved. ... mehr

Verlagsausgabe §
DOI: 10.5445/IR/1000133993
Veröffentlicht am 20.09.2021
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Biomedizinische Technik (IBT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2021
Sprache Englisch
Identifikator ISSN: 2313-433X
KITopen-ID: 1000133993
Erschienen in Journal of Imaging
Verlag MDPI
Band 7
Heft 5
Seiten 87
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Schlagwörter surgical; microscope; surgical microscope; digital visualization; visualization system; common main objective; multi-camera setup; in silico; narrow baseline; 3D reconstruction; digital twin; simulation; surgical site model; MATLAB
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page