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ABSTRACT: We consider the short-distance expansion of the product of two gluon field
strength tensors connected by a straight-line-ordered Wilson line. The vacuum expectation
value of this nonlocal operator is a common object in studies of the QCD vacuum structure,
whereas its nucleon expectation value is known as the gluon quasi-parton distribution and
is receiving a lot of attention as a tool to extract gluon distribution functions from lattice
calculations. Extending our previous study [1], we calculate the three-loop coefficient
functions of the scalar operators in the operator product expansion up to dimension four.
As a by-product, the three-loop anomalous dimension of the nonlocal two-gluon operator
is obtained as well.
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1 Introduction

In this work, we construct the operator product expansion (OPE) of the non-local two-
gluon operator

Guap(2) = 62 Fuu(20) [20,0] Fap(0) (L1)

where ¢ is the gauge coupling, F),,(z) is the gluon field strength tensor, v* is an auxiliary
four-vector, with v2 # 0, and z is a real number. In addition, [zv,0] is a straight-line-
ordered Wilson line connecting the two field strength tensors,

[zv,0] = Pexp {ig /Ozdz’ v“Au(z’v)] , (1.2)

with A, (x) being the gluon field in the adjoint representation of the color gauge group.
The motivation for this study is twofold. On the one hand, the vacuum expectation
value (VEV) of the non-local operator in eq. (1.1), the so-called non-local gluon condensate,
describes the correlation of gluon fields in QCD vacuum as a function of their distance and
is the basic quantity, e.g., in the stochastic model of the QCD vacuum [2, 3]. It also governs
the effect of gluon condensation on the mass spectra of heavy quarkonia and the short-
distance expansion of the heavy-quark potential [4-7]. Specifically, it is a central object
in nonrelativistic QCD (NRQCD), notably in potential NRQCD (pNRQCD), where its
chromo-electric and chromo-magnetic components enter the definitions of the heavy-quark
potential from the QCD static energy of a heavy quark-antiquark pair and the gluelump
masses, the theoretical treatment of quarkonium hybrids [8], and the determinations of the
ultrasoft contribution to the QCD static energy [9] and of long-distrance matrix elements



of heavy-quarkonium production [10] and decay [11]. Lattice QCD studies of the non-
local gluon condensate exist aiming at extracting the gluon correlation length [12-14], the
strong-coupling constant oy = g2/(47) via the QCD static energy [15], and also its behavior
at the deconfinement phase transition at high temperatures (see, e.g., ref. [16]). A similar
two-gluon correlator, albeit with a different Wilson line contour, appears in the definition
of the rapidity anomalous dimension (AD), alias Collins-Soper kernel [17].

On the other hand, the nucleon matrix elements of the same non-local operator, usually
referred to as gluon quasi parton distribution functions (qPDFs), are attracting increasing
interest (see ref. [18] for a review). They can be calculated on the lattice for spacelike
separations [19] and matched to the usual collinear gluon parton distribution functions
(PDFs) using continuum perturbation theory [20-22]. This technique is attractive, as it
allows one to probe the gluon PDF more directly than with other approaches, but it is
also challenging. In particular, the renormalization of the non-local gluon operator involves
subtleties [23, 24], and also lattice calculations are very challenging due to high statistical
noise and the necessity to inject a very large momentum in the nucleon, which requires the
use of very fine lattices. Using the ratio of the nucleon to vacuum matrix elements in such
calculations can be advantageous [25], as in this way all linear ultraviolet (UV) divergences
related to the Wilson line renormalization [26] get canceled.

In this paper, we consider the OPE of the non-local operator in eq. (1.1) to three-loop
accuracy, taking into account all scalar operators up to dimension four. As a by-product
of this calculation, the three-loop AD (matrix) of the non-local gluon operator is obtained.
From the technical point of view, this calculation is an extension of our work in ref. [1],
where the perturbative contribution to the OPE was calculated to three-loop accuracy and
the two-loop AD was derived. We will mostly adopt the conventions and the notation of
ref. [1], a short summary of which is given in section 2. The calculation is described in
section 3. The results for the relevant ADs and coefficient functions (CFs) are presented
in section 4. The renormalization group (RG) evolution equations for the computed CFs
as well as the RG improvement of the purely perturbative contributions are considered in
sections 5 and 6. Section 7 is reserved for a summary and conclusions.

2 Preliminaries

The vacuum expectation value (VEV) of the non-local gluon operator in eq. (1.1),

was(2) = (0|Guwap(2)]0), (2.1)

can be written in terms of two invariant functions, I1, | (2) and IIj | (), which correspond to
contributions with different Lorentz symmetry and do not mix under renormalization [1], as

1 1 1 1 1 1 1 1
Wvap(2) = (Gpadep — Goabius) 1L (2) + (ghatis — 9agis — g,'iggm + gﬂgg,m)H”L(Z)

= (guaguﬁ - guaguﬂ) HLL(Z)

1
+ 5 (000 = VUG8 = U030 + vVg0) (L () = TLus ()], (22)



where
v,V 1 v,V
” — n-v , g/l,l/ = guy — % . (2-3)

9w )

The renormalization of 11, (2) and II; (2) is determined by their respective ADs, v, |
and 7, which are currently known to two-loop accuracy [1, 23, 24]. Notice that the
renormalization factors are local, i.e., they do not depend on the distance between the fields.
They can be interpreted as the renormalization factors of local “heavy-light” operators in
an effective field theory (see refs. [1, 23, 24] for details).

In this work, we consider the OPE in the limit z — 0 of the invariant functions IT, | (2)
and IT) | (2) taking into account contributions of the scalar CP-even operators,

Oy = Z mihi(0)1;(0) O1 = F.5(0)F*%(0), (2.4)

where 1; stands for the i-th quark field with mass m;. We do not consider operators of
mass dimension higher than four.! To this accuracy, we have

M1 (z) = M7 (2 )<11)+Cz“(2)<0|02|0>+f;C%L(Z) (010110} ,

z—0

4

2
() = () (D) + O (2)(00:00) + £ 01 () (0101]0) (2.5)

z—>0

where II"" L( z) and I J_( z) stand for the purely perturbative contributions expanded in the
quark masses through order mg. They can be naturally represented as

i Cy C3(z)
LL( ) 24( )+ 222 Z Cm4 dl( )Zm? m4 nd Z’I?’L m
) 7 1#£j
[lL ||J-
m C z C 1L L
) = 2 S S Ll Dt 4 Cll G i, (20
1#£]

where C9 | (2) and C’h) | (2) correspond to massless, purely perturbative contributions, which
are known to two- and three-loop accuracy from refs. [28] and [1 ], respectively. The new
contribution of this work is the calculation of the CFs C’L C i di’ C’m4 nd? 02 C’lLJ-
C’” C” cl C’”L C{'L, and the ADs v, 1, 71 to three-loop accuracy.

4d1’ 4nd’

3 Calculation

We compute the bare CFs of the operators in eq. (2.4) at the three-loop level using essen-
tially the same techniques as in ref. [1] and the well-known method of projectors [29, 30].
The color factors are evaluated with the help of the FORM [31] package COLOR [32].

Let us briefly discuss the renormalization procedure. The renormalization matrix of
the operators in eq. (2.4) has been known for a long time [33-36]. Since the CFs C{-+ and

!We also do not consider contributions of tensor operators, e.g., Gae(0) G ; (0) (symmetrized over the
open indices and with the traces subtracted), which do not contribute to the VEV of the non-local operator,
but are relevant for hadron matrix elements. Notice that the corresponding OPE in the tree approximation
is known through operators of dimension eight [27].



C"lu‘ are non-zero already in the tree approximation, their proper renormalization requires
the knowledge of the Z factors, Z,, and Z), at three loops. Thus, the requirement of
finiteness of the CFs of the operator O; provides an alternative way for computing 2, | and
Z) 1. From our results for the bare CFs, (Ci++)p and (C"lu') B, we successfully construct
the three-loop Z factors, Z, | and Z);, as well as the corresponding ADs. We also find
full agreement with the corresponding two-loop results, first computed in ref. [1].

4 Results

In this and the next two sections, we present our results for the case of standard QCD with
the SU(3) gauge group and ny active quarks triplets. The results for the CFs are presented
for the case of a spacelike unit vector v, with v?2 = —1, and the variable L, = In (ue’?z/2)
set to zero. The missing terms proportional to powers (Lz)Z with ¢+ = 1,2, 3 can be easily
restored with the help of the corresponding evolution equations (see section 6). Full results
for a generic gauge group including the momentum /position dependence as well the case of
v? =1 are appended in the arxiv submission of this paper as ancillary files in a computer
readable format.
Expanding a generic AD v(a) in a = ¢g%/(167?) as

v=) (M,a", (4.1)

n>1
our results for the ADs v, | and | read:
(YL = -3,

13
(Yi1)o = —34+67° + 3

899 16 2
(y11)3 = - - 1072 + 187* — 108(3 + n g (76 + §7r2 —ort 4 40c3> + gnfc,
(V)1 =0,
(V)2 =677,
2 4 22 2 4
)3 =0om s — 7 =27 . .
(’}/” ) 8 + 187" + nf 3 2 (4 2)

Expanding the CFs C,2, Cpa gi; Cppa ng, Co, and C as

Coz = 3 (Con2) @, Copgi = (Coti) @ Crina = (Cratna) a”,

n n

n>2 n>2 n>3
Co=> g* (Ca),a", Cr=1+) (C1),a", (4.3)
n>1 n>1

we find the coefficients appearing in eq. (4.3) to be
(Cot), =128,
2
(CL%) 15872 256 2+% 4 1024
me/3

T68Cs — —
3 g 7t T TT08G - =gy,



I
(chz), =0,
m 128, 512
(sz , = 3840 + 7687 =y,
28
11
C’m‘l,dl 9 = _37
3650 176 16 4384 12 128
11 QYoY Y2 4 OO _
Cmiai)y= 97 ~ 9" 13" 9 BT ( 9 C3) ’
L B 20
C’m4,d1 9 ?’

11566 800 16 6880 68 128
CHJ— ) — D 4 e <_ —e© )
midi)s = o7 T g™ T 135" g @t -3 +356),

CnLv,‘lL,nd 3 %,
C?!j‘*,nd 9 0,
L 544
m4,nd 3 9 ’
(c34), =,
(CZJ_J_ 2_—%—%ﬂ2—2nf,
(cs+ = 7% n %H B %w‘* N 839% B %W% 140G
s (g t5m 7 6) i (g g %)
(Cgll>1 - g’
((Jé'l)3 = 172?” - 2325423147r2 32? 4 4 4620¢3 + %—Ow% — 3320
+ny <—%3358 +247% + §7T4 - 21976C3) +n} (323 32(3) 7
(CILL>1 - 2?7’
(cih), = 5:37 + 547% — 144¢5 — % ny,
(cit), = 752300 + 42295 w2 31126 4 16176¢; — 117672C3 + 18005
0y <_321106853 B %WQ B %W4 20446<3 —16m2¢s + 600 <5>
+nj <524112 - ?C:s) ;



21
().~

L 71321 2 _ﬂ
(Cl )2_—4 +61n” — 144G — 5y,

1 912 1242
(C{'i)3 _ 09761 | 9125 o 122 0 18168¢s — 196872C, + 6120¢5

3 3

820793 1240 , 928 , 21082 ) )
ny ( o1 St = o+ G — 162G + 600G,
15025
29080 2 44

t oz (4.4)

Numerically, for ny = 3, we obtain

(Ch#) =84’ [L+ a (13656 + 10.000L.)] ,

TLfZ
(le;) , = 105.496 a®
nfz
CHi . _ T2 1—3.429L, + 3.429 .2
m4.di np=3 12 a : z . z

+a (17.099 — 41.523L. + 13.000 L2 + 19.429 L?) ] ,

IIL _ 9 2 2 3
(Cm4,di)nf:3 = 5 [1-4.800 L2 + a (—14.837 + 89.515L. — 62.600 L2 — 41.600 L¢ )| ,
(c*#ml)nf:3 = 43 (0.056 — 2.000L) ,

|1 _ 3 _

(e, 7nd)nf:3 — 4 (—0.944 — 2.000L.) ,
2
(C4) =-2a[1-3.000L. + a (19549 — 26.875L. — 4.500 L2)
ny=3 9 z

+ a? (132.651 —104.864L, — 155.226 L2 — 13.500 L3)] ,
(02 )nf:3 = %a [1 +6.000L; + a (—40.586 1 70.250L, + 27.000 Lz)

+ a? (277555 + 95.216L. + 622.451 L2 + 121.500 L}) ] |

(Cit) =1+ a (3375 —3.000L.)+ a® (49.038 + 6.617L. — 2.250 L2)
nf—

+ a? (425.570 + 350.427L. 4 5.519 L? — 4.500 Li) ,

(CH ,=1+2625a+ a? (44.887 + 18.617L.)
ng=

+ a® (399.885 + 494.172L. + 83.776 L2) . (4.5)



5 RG improvements of II | and Hﬁ N

In general, a multiplicatively renormalizable structure function Il depends on both a renor-
malization prescription, or scheme, and a renormalization scale u. It is convenient to deal
with the scheme and scale invariant version of II, which we denote as II. Given the RG
equation for II,

d 0 0
e = (155 + Blaag ) M) = 5(a) M) (5.1)
a formal solution for IT reads
2 _ H(avlu) _ “ j ﬂ

@ =% f@=ew [T T (52)

Through the order of interest here, we have

fla) = (a)'_“{l + (72 — BeTh)a

+ % [(’72 — Ban1)? + 3 + B3 — B2 — /5_'3’71} a® + O(ag)}, (5.3)

where 3; = v;/B1, Bi = B:/B1 (i = 1,2,3), and the coefficients 3; of the beta function are
defined as

M):u—fMa—EZ& , (5.4)

with g1 = —11 + %nf, etc.
Our results for the scheme invariant functions fI(J)_ | and flﬁ | in position space are
given by

N 128
HS)_J_(Z > 07 U2 = _1) = ?a1+6/'81

ﬁi (Fii) a ]

n=1

2
0, (25 0, 02— —1) — - 128“[ 3 (), ] 5.5)

In phenomenological applications, one usually has ny = 0,2,3. The CFs in eq. (5.5) then
take the values

_ +10L,,
363 T 11 z
(F )ﬂfzo _ 265666457 , 808070 , | 798 , 10206
Lt = 263538 3993 © T 121" 11
(326492 1792
L. it
363 11
. \m=2 190177 152 , 22
2 - i
( “) 7569 | 29 © 3 7

(FLQW:O 9151 56 o

3

7r2) + 160 L2,




. np=2 102303720467 45401582 , 6042 ,
(FJ_ L) — Tt —

114579522 219501 " 841
16534820 12160 ,) | 880
o 2

( 99707 87 ”) 9

(FLL)nfzs 677 16 ,

1 27 3

=3 1216447 16982 , 68 , 2330
(Fra),” =

> T s T sl " ToT T3 ®

+ L, (58900+128 )+72L§,

N ny=0 28 56
(Bin)™ =S+ Zn2+22L.,

1 311
(= e« Tt
+L, (18;4 + 2247 ) 4484 L2,
(Alli)ffz2 - % 12592 i %Lz’
(), ™ =T+ a0 ™t e 5 G
L, (1423;18 + Gggw2> + 33964 L%,

~ ny=3 16 9
(Fiu)," " =10+ 37 +18L,

~ \m=3 2627 2185 , 68
<F||J_>2 =5 T T tyT — 886(3

- (4884 1927%) + 324 L2.

Numerically, the same results read

=1+ a (18.864 + 2.500L,) + a?
=1+ a (19.214+ 1.833L.) + a’
— 1+ a (19.428 + 1.500L,) + a>
=1+ a (14.895 + 5.500L.) + a

— 1+ a (15.377 + 4.833L.) + a?

2

/N 7 N 7N 7N N /N

+ a
=1+ a (15.659 + 4.500L,) + a

158.283 4+ 156.705L. + 10.000 L2)
164.958 + 131.729L, + 6.111 L?
169.120 4 119.235L, + 4.500 L2
33.950 4 176.591L, + 30.250 L?
48.713 4 158.228L, + 23.361 L?) |

56.719 4 148.935L, + 20.250L



6 RG improvements of the CFs

The O(1/z*) and O(1/22) terms in eq. (2.6),

J_J_Z
(o= G- Cut

Z z

satisfy a simple evolution equation of the form?
d

m2 m2
ﬂQdTﬂ I} (2) = voo(a) I (2), (6.2)
where g 5 5
2
7,2 — o m mi; — P 63
lLdM ﬁtau +B8(a) a5 +ym(a)m o, (6.3)
with v (a) = —4a+ (*L?f + j ng) a?+ - belng the quark mass anomalous dimension.

The evolution equations for the remaining CFs are more complicated due to mixing
between the operators O1, Oz and combinations quartic in quark masses [33, 36, 37]. The
mixing is described by

d 0
© 701—’711014-712024-4@8 Y%,

dpu?
1210, = —15 (6.4)
dp? ’ '
where 9 5
-, = 4q — 6.5
Y11 am-B,  m2=dag-Ym, (6.5)
and 7 is the anomalous dimension of the vacuum energy [37-39],
Yo(a,m) = ’Yo Zm +7 )mem?, (6.6)
1#]
with
. 3 16 626 32 20
di 2
=— 1+ —a+ [ — —=2¢3) - =
@) =~ |1+ g+ (o0 - 20 - By ) ]
6
70 (a) = —a*, (6.7)
The resulting evolution equations for the CFs Cq = %Cl, C2, Crpa g, and 4 g read:
d
2 11
Cy - Cit
W =(y1L —1) Gy,
2 d

a2 50y =711 Co —ma €1,
2 d 11 11 0 1L 11 dl
Cm di (fVJ_J_ _47m)0 midi 461% (D +4C

8 n n
S Cot nd = (V1L — 479m) qﬁfmd — <4a - %d> Cit +405-+ . (6.8)

We checked® that our results do satisfy eqs. (6.2) and (6.8).

o
2 d 1
d

2In this section, we only consider CFs corresponding to the invariant function II, ;. The corresponding
relations for ITj, emerge by replacing L1 with ||L.

3In addition to the ADs ~Y11,7L, and o, we have used the three-loop S function [40, 41] and the
two-loop quark mass anomalous dimension vy, [42, 43].



7 Conclusions

We considered the non-local operator consisting of two gluon field strength tensors con-
nected by a straight Wilson line and studied its VEV, which is determined by two nonper-
turbative Lorentz scalar functions. For each of the latter, we performed an OPE through
mass dimension four, which, besides a purely perturbative structure function, involves the
VEVs of three local operators, and calculated the AD of the structure function and the
CFs of the three local operators through three loops, order a3, in the modified minimal-
subtraction (MS) scheme. In our recent work [1], the structure functions were derived
through three loops and the ADs through two loops. Using the ADs, we also performed
a RG improvement of the structure functions and presented their renormalization scheme
invariant counterparts thus resulting, again through three loops. These results should be
of interest to the lattice QCD community in studies of the QCD vacuum structure and
serve as normalization factors in calculations of gluon PDFs within the qPDF approach,
eliminating the need for nonperturbative subtractions of linear divergences.
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