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ABSTRACT Recent developments in mmWave technology allow the detection and classification of dynamic
arm gestures. However, achieving a high accuracy and generalization requires a lot of samples for the training
of amachine learningmodel. Furthermore, in order to capture variability in the gesture class, the participation
of many subjects and the conduct of many gestures with different arm speed are required. In case of macro-
gestures, the position of the subject must also vary inside the field of view of the device. This would require
a significant amount of time and effort, which needs to be repeated in case that the sensor hardware or
the modulation parameters are modified. In order to reduce the required manual effort, here we developed a
synthetic data generator that is capable of simulating seven arm gestures by utilizing Blender, an open-source
3D creation suite. We used it to generate 600 artificial samples with varying speed of execution and relative
position of the simulated subject, and used them to train a machine learningmodel.We tested themodel using
a real dataset recorded from ten subjects, using an experimental sensor. The test set yielded 84.2% accuracy,
indicating that synthetic data generation can significantly contribute in the pre-training of a model.

INDEX TERMS Gesture sensing, data creation system, mm-wave technology, machine learning, synthetic
data set.

I. INTRODUCTION
Hand gesture recognition has become available by using
miniaturized, low-power Radar sensors, and was first demon-
strated by the Soli project [1]. After that, many research
groups focused on reproducing and improving the results,
which required the collection of a significant amount of train-
ing samples. In [2], 2750 samples were recorded from 11 sub-
jects, each performing 10 gestures 25 times. Similarly, in [3]
the authors collected 7200 samples from 20 subjects which
performed 12 gestures 30 times. In both cases, the authors
recorded micro-gestures that were performed a few centime-
ters above the device. However, in our previous work [4],
the subjects conducted gestures at an approximate distance
of 2 m from the device, not only bore-sight but also in various
positions inside the field of view (FoV) of the sensor. In total,
we collected 1500 samples from 10 subjects that carried out
10 different gestures, including random movements which
were regarded as noise.
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Collecting this amount of data requires manual effort and is
time-consuming. Moreover, in case that the sensor hardware
(e.g., antenna configuration) or the modulation is modified,
the measurements have to be repeated. Therefore, the need
for a simulator that is able to generate artificial samples for
various experimental cases arises. It is important to point out
that in many other machine learning problems several dataset
generators have been proposed [5]–[8].

The contribution of such a generator for the mmWave case
could be threefold: it could first and foremost significantly
reduce the experimental time for the data recordings, it could
enable the testing of a broader spectrum of experimental
cases, and finally, it could explore various options for the
modulation and hardware parameters [9]. As such, it could
increase the variability of samples, especially in the case of
macro-gestures during which the subject could be placed in
different places.

Many approaches have been presented on simulating
human motion combined with mmWave sensing. In [10]
the authors used a kinematic model from [11] to gener-
ate synthetic micro-Doppler (mD) [12] spectrogram and to
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train a deep learning model. A similar application-specific
approach was developed in [13] for simulating the reflections
of cyclists. The authors manually created a model with point
targets that represented various parts of the bicycle and the
person riding it. In both approaches, only a specific kind of
motion could be generated, limiting the number of use-cases
that could be simulated. In [14] the authors surpassed this
problem by using Blender [15], and its ray tracing capability
for graphic simulation. Specifically, after designing a static
scene, they used the rendered images ‘‘z-pass’’ and ‘‘com-
bined pass’’, through which they calculated the range, angle
of arrival (AoA) and amplitude information of the object that
was in each pixel of the images. The number of point targets
was defined by the number of pixels of the rendered images,
which can be set by the user. It is worth pointing out that the
graphics in the scene were static and only the Radar sensor
was allowed to move. In [16], the authors overcame this prob-
lem by using another rendered image called ‘‘speed vector
pass’’, which contains information about pixels moving in
two dimensions (x and y). The authors were able to generate
spectrogram from a synthetically generated human figure that
was waving both hands. In [9], Blender was again used to
generate an arbitrary animation and created multiple variants
via a Python script. Then, they extracted the position of the
body joints, used them in a custom Frequency-modulated
continuous wave (FMCW) Radar simulator and generated a
dataset with 2000 samples per gesture. Finally yet impor-
tantly, in [17] another method was presented for generating
synthetic Radar data for gesture recognition. The authors
converted a Kinect dataset into Radar signatures using a
simulation framework, then they extracted several features
out of the spectrogram and used them to train amachine learn-
ing (ML)model with four gestures. However, they did not test
the accuracy of their model with a real Radar dataset; they
only compared Radar data with the output of their simulator
and found meaningful similarities.

In this work, we present a novel system that can generate
synthetic Radar data for seven arm gestures, which we then
used to produce a dataset with 600 samples with varying
speed of execution and position of the animation relative to
the Radar. Using the processing chain of our previous work
in [4] we generated three feature maps for each synthetic
sample, extracted empirical features and trained a machine
learning model. We tested the trained model using a real
dataset that we collected from ten subjects who repeated the
same gestures 15 times. Our model yielded 84.2% accuracy,
indicating a successful combination of our proposed simu-
lator and feature extractor. We used Python programming
language in combination with Numpy [18] for matrix manip-
ulation and Scipy [19] for scientific computing.

The remainder of this paper is structured as follows:
Section II introduces the platform that generates the syn-
thetic dataset, the generation of animations, the extraction of
point targets, and the simulation of Radar output. Section III
explains the signal processing chain and Section IV pro-
vides details on how the real dataset was recorded using

experimental hardware. Finally, section V presents the results
of the simulator and compares it against real data.

II. SYNTHETIC DATASET GENERATION
The pipeline for generating a synthetic sample consists of
four main parts, as illustrated in Fig. 1. First a human model
is selected and the animation is configured so that it moves
its arm according to a specified gesture. Then using Blender,
the animation is simulated and its point targets are extracted
and used in the third step which simulates a Radar sensor.

FIGURE 1. High level description of the sample generation process.

A. GENERATION OF HUMAN-BODY ANIMATIONS
The Blender platform was used for simulating human ani-
mations. It is an open source 3D creation suite, which sup-
ports the entirety of the 3D pipeline: modeling, rigging,
animation, simulation, rendering, compositing, and motion
tracking [15]. It offers a rich Application Programming Inter-
face (API) for Python scripting that can be employed to
customize the application and write specialized tools.

To create a Blender scene, it is necessary to first generate
3D models out of primitives (cubes, cylinders, spheres, etc.)
by joining them or modifying their mesh. Meshes consist of
vertices, edges and faces, and define the shape of a 3Dmodel.
Fig 2 shows an example of mesh structure, derived from the
documentation of Blender. It is also possible to import 3D
models from libraries; Fig. 3 shows the one that we used,
which we obtained from the TurboSquid library. Models,
as well as other Blender objects (e.g., camera, lights) can be
arranged in the scene by modifying their location, rotation or
scale.

In order to generate gestures, an armature has to be
assigned to a model. Armatures include bones, which can
be rotated to modify the shape of the mesh of a model
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FIGURE 2. Example of mesh structure.

FIGURE 3. Body model from TurboSquid.

or a 3D object. This way, the pose of a model can be
selected according to the use-case. For defining a gesture,
the user has to set key-points in the beginning and ending
part of the motion, then Blender will calculate the positions
of intermediate frames by solving the inverse kinematics
problem. In this work, we created synthetic data for the ges-
ture classes ‘‘push’’, ‘‘pull’’, ‘‘swipe-left’’, ‘‘swipe-right’’,
‘‘rotate’’, ‘‘wave’’, ‘‘push-pull’’, similar to the ones defined
in [4]. Fig. 4 shows the model together with the armature that
we created, performing a ‘‘swipe-left’’.

B. EXTRACT POINT TARGETS FROM ANIMATION
After simulating the animation that performs a gesture,
we need to extract point targets that will be given to the Radar
Simulator. These targets are actually the vertices of the body
model. We use the API of Blender to access their position
for all simulated frames, then we can easily calculate their
velocity. After that, we apply ray casting to find the points
visible by the Radar at each frame. If the vertex is not visible
at a particular frame, we set the Radar Cross Section (RCS)

value to zero, so that it is not taken into consideration during
the Radar simulation. With the above steps we managed to
extract a tensor with dimensions: number of vertices× num-
ber of frames. Each element of the tensor contains position,
velocity and RCS of the vertex. Fig. 5 shows an overview of
the extraction process.

C. RADAR SIMULATOR
The simulator utilizes a monostatic Radar, with multiple
receiving (Rx) and transmitting (Tx) antennas. It estimates
the range of k-th target using the travel time τk = tRxk − t

Tx
k of

the electromagnetic wave from the transmitting element to the
target and back to the receiver. In the simple case, the target
is static and its range could be estimated using Eq. 1.

rk =
c0τk
2

(1)

For a moving target, the range is a function of the initial
range r0k , the radial velocity sk relative to the sensor and time t
as shown in Eq. 2.

rk (t) = r0k + sk t (2)

Using thewell knownRadar equation [20], we can estimate
received power Pr on an antenna, depending on transmit-
ted power Pt , gain of transmitting and receiving antennas
Gt and Gr , Radar cross-section (RCS) σ , wavelength λ and
range of a target, according to the formulation given by Eq. 3.

Pr =
PtGtGrλ2σ

(4π )3r4k
(3)

Thus, the total attenuation ak from the transmitting antenna
to target k and back to the receiving antenna is calculated
using Eq. 4.

ak =
Pr
Pt
=
GtGrλ2σ

(4π )3r4k
(4)

Using the time-delay and attenuation defined above,
the voltage referred relationship between the received signal
uRxk and the transmitted signal uTxk is provided by Eq. 5

uRxk (t) =
√
akuTx(t − τk ) (5)

Various modulation schemes that provide range and speed
measurements have been developed; we decided to use
FMCW because it is well-studied in the literature and many
commercial sensors are already available [21], [22]. A system
that uses FMCWmodulation transmits a series of chirps (also
called ramps), which are reflected by the targets and when
received they are mixed with the transmit chirp. This results
in a frequency which is proportional to the distance, known
as beat frequency fb.

In detail, consider a linear frequency chirp f Tx(t) as in Eq. 6
with a slope kr .

f Tx(t) = f + kr t (6)
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FIGURE 4. Human model with armature performing ‘‘swipe-left’’ gesture.

FIGURE 5. Overview of the pipeline for extracting targets from a Blender
animation.

The modulated signal is calculated by integrating the fre-
quency into the phase [20], as in Eq. 7

uTx(t) = ej2π
∫
f Tx (t)dt

= ej(πkr t
2
+2π ft+θ0) (7)

θ0 being the phase of uTx(t) for t = 0. Using the above and
Eq. 4 yields the FMCW received signal as in Eq. 8

uRxk (t) =
√
akej(πkr (t−τk )2+2π f (t−τk )+θ0) (8)

By mixing transmit and received signal, the baseband sig-
nal uIFk is calculated.
We developed a simulation framework that generates the

output of a Radar sensor, given the location, velocity and RCS
of point targets that are provided as input. The first step is to
calculate the travel time of the wave from the transmitting

antenna, to the target and back to the receiving antenna. Then
we use Eq. 2 and 4 to calculate the attenuation of the wave.
In the next step, we use Eq. 7 and 8 to calculate time domain
transmitted and received signal for one chirp. By mixing the
signals we can calculate the baseband signal which is what
a Radar sensor would record using its analogue to digital
converters (ADC). We repeat this procedure for multiple
chirps in order to achieve the chirp sequence waveform like
in [22].

The user can configure the simulator in order to approxi-
mately mimic the hardware. For example, the user can pro-
vide values for the noise figure (NF) and gain of the low-noise
amplifiers (LNA). Moreover, an input matrix defines the
antenna gain for a discrete set of AoA. This way, the return
signals of the animation will depend on its aspect angle.
Last but not least, the simulator can also handle Multiple
Input Multiple Output (MIMO) schemes for improved AoA
estimation, with Time Domain Multiplexing (TDM) [23].
Fig. 6 shows a diagram with the basic blocks of the simulator
for a 2 Tx - 2 Rx configuration.

III. PROCESSING PIPELINE FOR GESTURE RECOGNITION
As already mentioned in the introduction, the signal process-
ing chain relies heavily in our previous work [4]. Briefly here
we explain the most important steps: For each measurement
frame, after the two dimensional Fast Fourier Transform (2D-
FFT) and noise thresholding using Constant False Alarm
Rate (CFAR) are applied, the mD vector is calculated by
selecting the maximum power bin for every fixed radial
velocity value along the range dimension. Then we apply
Digital Beamforming (DBF) [23] for the selected bins in
azimuth and elevation dimensions. The above procedure is
repeated for all measurement frames and the vectors are
concatenated to create images with mD and AoA, which will
be sparse due to the CFAR thresholding. After that, an event
detection algorithm decides if a significant motion took place
during the last frames, and only then will activate the machine
learning part.

The latter, will first extract three one-dimensional signals
out of the three feature maps. Then it will calculate the
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FIGURE 6. An example scenario for the Radar Simulator with two
transmitting, two receiving antennas and one point-target (depicted by
’T’). The signal source will be amplified and the antenna gain will be
calculated based on the target’s location. Similarly, in the receiving side,
the antenna gain will be calculated for each target, the returned signals
will be amplified and sent to the mixer for calculating the baseband
signal.

following nine features: (1) Number of zero-crossings in
radial velocity, (2, 3) arguments of maximum and minimum
radial velocity, (4, 5) maximum and minimum radial veloc-
ity, (6) difference between maximum and minimum angle
in azimuth, (7) difference between maximum and minimum
angle in elevation, (8) difference of angle in azimuth when
radial velocity reached its maximum and minimum value, (9)
difference of angle in elevation when radial velocity reached
its maximum and minimum value. Finally, for classification
we used a Multi-Layer Perceptron (MLP), with one hidden
layer consisted of 32 neurons.

IV. COLLECTION OF RADAR DATA USING EXPERIMENTAL
SENSOR
In our previous work [4], we collected real Radar data
using an experimental sensor with two transmitting and four
receiving antennas. Fig. 7 shows a simplified block dia-
gram consisting of the high frequency and the baseband
part. The former includes a two-channel transmitter and a
four-channel receiver, a signal source capable of fast linear
frequency ramps of up to 2 GHz bandwidth, as well as
transmit and receive antennas. The latter contains analog
interface electronics, ADC, digital logic, and power supply.
The digital logic itself consists of a Field-programmable gate
array (FPGA) part, that controls the real-time operation of
the Radar sensor, and an ARM micro-controller, that com-
municates with a host PC, which is connected over Ethernet.

FIGURE 7. Simplified block diagram of the radar sensor setup.

TABLE 1. System parameters.

Our setup also allows for MIMO scheme, operating the trans-
mitters in TDM. The system parameters of the Radar are
given in Table 1.

The subjects were placed at a distance of approximately
twometers in front of the Radar. They performed gestures not
only at bore-sight but also a few degrees to left and right side
in order to capture more corner cases. We collected data from
ten subjects, which performed 15 repetitions of the seven
gestures resulting in 1050 samples.

V. RESULTS
Through the synthetic data generation we wanted to create
samples that would capture many corner-cases of a real sce-
nario. That is why, we created 60 samples for each human
animation, using different configurations. The parameters
that we can modify are the position of the Radar and the
speed of execution. In addition, we found that some sub-
jects performed the ‘‘push’’, ‘‘pull’’ and ‘‘rotate’’ with high
variability, that is why we created two different animations
for each of the above three gestures. In total, we created
10 animations, through which we generated 600 samples.

Typical examples of the variability that we can create are
shown in Fig. 8. We modified the duration of motion from
13 to 16 frames and we also varied by 40% the speed of the
arm gesture.

A. FEATURE MAPS
In this subsection we present generated feature maps for
a few typical gestures. The first row contains the results
using real hardware and the second row using the simulator.
Columns correspond to the mD, AoA in azimuth and eleva-
tion respectively. As it can be seen, the magnitude of the mD
for the synthetically generated samples is significantly lower
in comparison to the real samples. It is important to stress out
that on purpose we did not want to fine-tune the simulator’s
parameters to match the power of the real gestures (e.g., RCS,
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FIGURE 8. Examples of synthetically generated ‘‘push’’ gesture with
different motion characteristics. In the first row, the motion has a
duration of 13 frames, whereas in the second 16. The columns contain
samples with varying maximum velocity.

FIGURE 9. Feature maps of a ‘‘push’’ gesture as captured by Radar sensor
in the first row and generated by simulator in the second.

FIGURE 10. Feature maps of a ‘‘swipe-left’’ gesture as captured by Radar
sensor in the first row and generated by simulator in the second.

transmitted power, noise figure), in order to show that the
ML pipeline can extract meaningful features without taking
into consideration the absolute power value. In other words,
the gesture recognition pipeline that we use remains invariant
to the absolute power value, and as such can generalize across
different levels or Radar noise and RCS.

In Fig. 9 the feature maps correspond to the ‘‘push’’
gesture.

Fig. 10 depicts the mDmaps of a ‘‘swipe-left’’, that is why
in the Azimuth Feature Map, the AoA slowly decreases.

Similarly, Fig. 11 depicts a ‘‘swipe-right’’. Therefore,
the AoA in the Azimuth Feature Map increases.

The next scenario in Fig. 12 shows the effect of the sub-
ject’s position relative to the Radar. The mD map looks simi-
lar to a ‘‘push’’ gesture, since in this case the hand of the user
always has negative radial velocity. However, the Azimuth

FIGURE 11. Feature maps of a ‘‘swipe-right’’ gesture as captured by Radar
sensor in the first row and generated by simulator in the second.

FIGURE 12. Feature maps of a ‘‘swipe-left’’ gesture as captured by Radar
sensor in the first row and generated by simulator in the second. Subject
was positioned on the right side of the Radar, which had a significant
effect on the mD map.

FIGURE 13. Confusion matrix of test set.

Feature Map captures the variation and that information is
propagated to the ML model.

B. SUPERVISED LEARNING
We used the synthetically generated dataset and the signal
processing pipeline to train a classifier and we tested it on the
real dataset that we collected. The average accuracy in the test
set was 84.2%, Fig 13 depicts the confusion matrix of the test
set. Also Table 2 provides details of the classification results
for each class. This indicates that the synthetic dataset gen-
erator can be used for pre-training a ML model and could be
very helpful for capturing certain known corner cases. Then
the model can be further fine-tuned with a dataset collected
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FIGURE 14. Scatter plot with three classes. The left subplot contains results from measurements and right subplot from simulation.

TABLE 2. Detailed results of each gesture from supervised learning.

TABLE 3. Attributes of the datasets and result of supervised learning.

using the Radar sensor. Table 3 summarizes the proportion of
the synthetic and real samples as well as the overall accuracy.

C. EMPIRICAL FEATURE EXTRACTION
As a final step for comparing the synthetic and real dataset,
we compared the features that are generated by the processing
pipeline in both cases. First, we created three dimensional
scatter plots, where the left subplot shows real, and the right
shows synthetic data. In Fig. 14, we show samples from
gestures ‘‘swipe-left’’, ‘‘swipe-right’’ and ‘‘rotate’’ using the
features 2, 3, and 8. Likewise, in Fig. 15, we show sam-
ples from gestures ‘‘pull’’, ‘‘push’’, ‘‘push-pull’’ and ‘‘wave’’
using features 1, 4, and 5.

In addition, we performed the Kruskal-Wallis H-test [24],
to test the null hypothesis that the population median of the
synthetic and real data are equal for each feature. When the
p-value is below the significance level 0.05, then the test
rejects the null-hypothesis. In other words, there is not enough
evidence to suggest that the samples come from the same

TABLE 4. Result of the Wilcoxon test for the medians of the distribution
of each feature. The test accepts the hypothesis that the two feature sets
come from the same distribution.

distribution, therefore it is concluded that they come from
different ones. The reason why we selected a Kruskal-Wallis
test instead of Analysis of Variance (ANOVA) test is that
the former is a non-parametric test that does not assume
normality (a Shapiro [25] test on our data indicated that our
features do not come from a normal distribution). Fig. 16
shows the result of the Kruskal-Wallis test for all combina-
tions of gestures and features. In this intra-feature level we
see that the majority of features appear to come from different
distributions for the real and synthetic case.

Nevertheless, since our classifier uses non-linear combi-
nations of the features, it is not the absolute value of each
feature that defines the result, rather the offset among their
distributions. To visualize that, we show Fig. 17, where it is
obvious that the pairs (real - first row, synthetic- bottom row)
of distributions of each feature are very close, relative to the
others. To also test this beyond the apparent visual inspection,
we performed a Wilcoxon non-parametric paired test [26] for
the medians of the distribution of each feature, for the two
cases. We did so for each of the seven gestures. The test
accepted the Null hypothesis that the two (synthetic medians
and real medians) come from the same distribution in all the
gestures (p-value > 0.3), as it can be seen in Table 4, which
supports what we also could see in the box-plot figure.

Finally, as a sanity check, we further wanted to evalu-
ate whether this difference in the intra-feature distribution
of the real and synthetic data that was pointed out by the
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FIGURE 15. Scatter plot with four classes. The left subplot contains results from measurements and right subplot from simulation.

FIGURE 16. Result of Kruskal-Wallis H-test. Green color indicates p-values
< 0.05 (i.e. real and synthetic data come from different distributions),
and red indicates p-values > 0.05. The Y-axis shows the different gesture
types and the X-axis shows the seven features used in the classifier.

Kruskall-Wallis test plays a significant role in the supervised
learning. To do so, we calculated the average accuracy of the
classifier after we excluded the two features (7 and 8) that
had no significant p-value (i.e. whose real and synthetic
distribution was completely different) for all gesture types.
The classifier yielded 74% compared to the original 84.2%.
This again indicates that the classifier uses non linear combi-
nations of the input features, and as such it remains invariant
to absolute variations of the median of each single feature.

D. DISTINCTION FROM RELATED WORK
Previous work managed to simulate human motion and com-
bine it with a Radar simulator, but did not test a classifier
trained with synthetic samples on real data. As a result,
a quantitative comparison with a known benchmark is not
possible.

We tried to use methods suggested in literature for
exporting point-targets from animations but without suc-
cess. The authors of [14] published source code, which is
only suitable for static scenes. Furthermore, we managed to

FIGURE 17. Box-plot for each feature of the ‘‘pull’’ gesture. The first row
contains samples collected from the Radar and the second row from the
simulator.

reproduce the method explained in [16] for exporting moving
point-targets from Blender using ‘‘speed vector pass’’. How-
ever, the point-target information was accurate enough only
for 2D movements but not for complex 3D motions.

VI. CONCLUSION
In this work, we presented a method to generate synthetic
datasets for arm movements, and we used it for training a
MLmodel for gesture recognition with mmWave technology.
The performance of the model was evaluated on real data,
which we collected using an experimental sensor, yielding
an average accuracy of 84.2%. Therefore, in this work we
demonstrated how a novel data-generator like the one we
presented here, can contribute in the pre-training phase of a
model, as well as for capturing corner cases related to the
speed of execution and the position of the subject, that are
difficult to reproduce during data collection. To the best of
our knowledge, this is the first time that a model trained with
synthetic Radar data is tested on real Radar data and achieves
such high accuracy.
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