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Abstract

The frequency of natural disasters is increasing all over the world, which can cause immense
damage to road infrastructure and its functionality. Therefore, it is crucial to consider the
functionality of critical road infrastructure before, during, and after a disaster. For that, global
road network data, which is usable for routing applications, is required. OpenStreetMap
(OSM) provides global, crowd-sourced road network data that is free and accessible for
everyone. However, the usability for routing applications is often an issue. Two main gaps
in related studies are identified: the intrinsic improvement of certain aspects of OSM road
data for navigational purposes, and missing approaches for the assessment of critical road
infrastructure in disaster cases that can handle limited global data availability. Therefore,
the aim of this thesis is to develop a generic, multi-scale concept to assess critical road
infrastructure in a disaster context using OSM data. For this main objective, two consecutive
research goals are identified: (i) improving the routability of OSM data intrinsically, and
(ii) assessing critical road infrastructure in a disaster context. Therefore, this thesis and the
developed concept are divided into two main parts, each addressing one research goal.

In the first part of this thesis, the OSM road network data is enhanced by improving its
routability. The quality of the OSM road network is analyzed in detail, which leads to
the identification of two major challenges for the applicability of OSM data in routing
applications: missing speed information and road classification errors. To address the first
challenge, a Fuzzy Framework for Speed Estimation (Fuzzy-FSE) is developed that employs
fuzzy control to estimate average speed based on the parameters road class, road slope, road
surface, and link length. The Fuzzy-FSE consists of two parts: a rule and knowledge base,
which decides on the output membership functions, and multiple Fuzzy Control Systems,
which calculate the output average speeds. Results demonstrate that even using only OSM
data, the Fuzzy-FSE performs better than existing methods such as fixed speed profiles. The
second challenge of road classification errors is addressed by developing a novel approach
to detect road classification errors in OSM by searching for disconnected parts and gaps
in different levels of a hierarchical road network. Different parameters are combined in a
rating system to obtain an error probability. The rating system can then suggest possible
misclassifications to a human user. The results indicate that more classification errors are
found at gaps than at disconnected parts. Furthermore, the gap search enables the user to
find classification errors quickly using the developed rating system that indicates an error
probability. An enhanced OSM road network dataset results from the first part of this thesis.
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In the second part of this thesis, the enhanced OSM data is applied to assess critical road
infrastructure in a disaster context. The second part of the generic, multi-scale concept is
developed, which consists of multiple, interconnected modules. One module implements
two accessibility indices, which highlight different aspects of road network accessibility. A
basic travel demand model is developed in another module, which estimates daily intercity
traffic solely based on OSM data. A third module uses the above-described modules to
estimate different natural disaster impacts on the road network. Finally, the vulnerability of
the road network towards further disruptions during long-term disasters is analyzed in a
fourth module. The generic concept with all modules is applied exemplarily in two different
case study regions for two wildfire scenarios. As a result, the concept provides a valuable,
flexible, and data-sparse decision aid tool for regional planners and disaster management
that can be applied globally and enables country- or region-specific adaptations.
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Zusammenfassung

Die Häufigkeit von Naturkatastrophen nimmt weltweit zu, was zu immensen Schäden an
kritischer Straßeninfrastruktur und deren Funktionalität führen kann. Daher ist es von
entscheidender Bedeutung, die Funktionalität kritischer Straßeninfrastruktur vor, während
und nach einer Katastrophe zu beurteilen. Dazu werden globale Straßendaten benötigt, die
für die Routenplanung nutzbar sind. OpenStreetMap (OSM) stellt globale Straßennetzdaten
zur Verfügung, die kostenlos und frei zugänglich sind. Allerdings ist die Verwendung der
OSM Straßendaten für Routenplanungsanwendungen oft eine Herausforderung. Das überge-
ordnete Ziel dieser Arbeit ist die Entwicklung eines generischen, mehrskaligen Konzepts zur
Analyse kritischer Straßeninfrastrukturen im Kontext von Naturgefahren unter Verwendung
von OSM Daten. Dafür werden zwei aufeinander folgende Forschungsziele aufgestellt: (i)
die Verbesserung der Routingfähigkeit von OSM Daten und (ii) die Bewertung kritischer
Straßeninfrastruktur im Kontext von Naturgefahren. Daraus resultiert die Gliederung dieser
Arbeit in zwei Hauptteile, die jeweils den Forschungszielen entsprechen.

Im ersten Teil dieser Arbeit wird die Nutzbarkeit von OSM Daten für Routing Anwendungen
verbessert. Zunächst wird dafür die Qualität des OSM Straßennetzwerks im Detail analysiert.
Dabei werden zwei große Herausforderungen im Bereich der Anwendbarkeit von OSM
Daten für die Routenplanung identifiziert: fehlende Geschwindigkeitsangaben und Fehler in
der Straßenklassifizierung. Um die erste Herausforderung zu bewältigen, wird ein Fuzzy-
Framework zur Geschwindigkeitsschätzung (Fuzzy-FSE) entwickelt, welches eine Fuzzy
Regelung zur Schätzung der Durchschnittsgeschwindigkeit einsetzt. Diese Fuzzy Regelung
basiert auf den Parametern Straßenklasse, Straßenneigung, Straßenoberfläche und Straßen-
länge einsetzt. Das Fuzzy-FSE besteht aus zwei Teilen: einer Regel- und Wissensbasis, die
über die Zugehörigkeitsfunktionen für den Ausgangsparameter Geschwindigkeit entscheidet,
und mehrere Fuzzy-Regelsysteme, welche die resultierende Durchschnittsgeschwindigkeit
berechnen. Die Ergebnisse zeigen, dass das Fuzzy-FSE auch bei ausschließlicher Verwendung
von OSM Daten eine bessere Leistung erbringt als bestehende Methoden. Die Herausforde-
rung der fehlerhaften Straßenklassifizierung wird durch die Entwicklung eines neuartigen
Ansatzes zur Erkennung von Klassifizierungfehlern in OSM angegangen. Dabei wird so-
wohl nach nicht verbundenen Netzwerkteilen als auch nach Lücken im Straßennetzwerk
gesucht. Verschiedene Parameter werden in einem Bewertungssystem kombiniert, um ei-
ne Fehlerwahrscheinlichkeit zu erhalten. Auf Basis der Fehlerwahrscheinlichkeit kann ein
menschlicher Nutzer diese Fehler überprüfen und korrigieren. Die Ergebnisse deuten einer-
seits darauf hin, dass an Lücken mehr Klassifizierungsfehler gefunden werden als an nicht
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verbundenen Netzwerkteilen. Andererseits zeigen sie, dass das entwickelte Bewertungssys-
tem bei einer benutzergesteuerten Suche nach Lücken zu einem schnellen Aufdecken von
Klassifizierungsfehlern verwendet werden kann. Aus dem ersten Teil dieser Arbeit ergibt
sich somit ein erweiterter OSM Datensatz mit verbesserter Routingfähigkeit.

Im zweiten Teil dieser Arbeit werden die erweiterten OSM Daten zur Bewertung der kriti-
schen Straßeninfrastruktur im Katastrophenkontext verwendet. Dazu wird der zweite Teil des
generischen, mehrskaligen Konzepts entwickelt, das aus mehreren, miteinander verbundenen
Modulen besteht. Ein Modul implementiert zwei Erreichbarkeitsindizes, welche verschiedene
Aspekte der Erreichbarkeit im Straßennetzwerk hervorheben. In einem weiteren Modul wird
ein grundlegendes Modell der Verkehrsnachfrage entwickelt, welches den täglichen inter-
städtischen Verkehr ausschließlich auf der Grundlage von OSM Daten schätzt. Ein drittes
Modul verwendet die oben beschriebenen Module zur Schätzung verschiedener Arten von
Auswirkungen von Naturkatastrophen auf das Straßennetzwerk. Schließlich wird in einem
vierten Modul die Vulnerabilität des Straßennetzes gegenüber weiteren Schäden bei Lang-
zeitkatastrophen analysiert. Das generische Konzept mit allen Modulen wird exemplarisch
in zwei verschiedenen Regionen für zwei Waldbrandszenarien angewendet. Die Ergebnisse
der Fallstudien zeigen, dass das Konzept ein wertvolles, flexibles und global anwendbares
Instrument für Regionalplaner und Katastrophenmanagement darstellt, das länder- bzw.
regionenspezifische Anpassungen ermöglicht und gleichzeitig wenig Daten benötigt.
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Introduction 1
„It wasn’t raining when Noah built the ark.

— Howard Ruff
(Author)

1.1 Motivation

The frequency of natural disasters worldwide has increased almost three-fold in the last
four decades from over 1300 events from the years 1975 to 1984, to over 3900 events from
the years 2005 to 2014 [1]. Climate-related disasters such as floods, storms, droughts,
and wildfires are on the rise, which is most probably caused by climate change [1, 2,
3]. Furthermore, the number of people affected by natural disasters is also continuously
rising and many studies find that the poor tend to suffer the worst from natural dis-
asters [4, 5]. Simultaneously, a trend can be observed with disasters featuring lower
mortality but much higher economic losses [3].

Natural disasters threaten not only people but also critical infrastructures. These infras-
tructures include networks functioning together to provide continuous services to network
users [6]. Critical infrastructures consist of technical and organizational multi-level struc-
tures that are essential for maintaining functions in their social environment [7]. Be-
cause of the crucial functions of critical infrastructures for all aspects of human life, a
failure can cause severe consequences for humans.

The road infrastructure, as one of the most fundamental parts of the transportation network,
is frequently damaged by natural disasters. A damaged road network affects people in many
different aspects. On the one hand, the accessibility of everyday needs or emergency facilities
is no longer guaranteed for people directly affected by the disaster. On the other hand,
emergency management is delayed, or worse, unable to reach disaster-affected regions.
Furthermore, a damaged road network may impact an entire country by delaying daily
traffic and interrupting transport flows. The road network might remain unserviceable for
a long time after an event. Therefore, it is crucial to consider the functionality of critical
road infrastructure before, during, and after natural disasters.
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In order to assess the functionality of critical road infrastructure, routable road network
data is necessary. Commercial and administrative road network datasets exist, but are
often only available for a specific region or are expensive or both. If a disaster happens,
disaster management first has to search for appropriate data on the respective geographic
scale. Furthermore, access limitations might have to be considered, and issues regarding
the combination of data from different sources have to be taken into account. These
difficulties have to be overcome to obtain road network data and the process can take a
lot of time and effort before an actual assessment can be performed. However, time is
crucial in disaster events because a response strategy must be developed immediately to
provide much-needed help in the right locations. Thus, disaster management can benefit
immensely from a worldwide, free and routable road network dataset.

OpenStreetMap (OSM) is such a free, crowdsourced map with global coverage. It contains,
among other things, road network data of the entire world that is composed by volunteers
and data donations of governments and agencies. The primary benefits of OSM for disaster
management are the free and quick accessibility of data and its global coverage. However,
as OSM is a crowdsourced dataset and collected by often untrained volunteers, the quality
of OSM road data varies a lot between regions [8, 9]. Especially the usability for routing
applications, also called routability, is often not directly given [10, 11, 12, 13], because in
the beginning of the project the primary purpose of OSM was to only display map data. Now,
with the continuously growing and improving road network, the application for navigational
purposes is evident. But still, missing attributes, errors in the road topology, and attribute
errors are the main reasons why routing applications struggle with OSM data. Therefore,
special techniques are required that improve the applicability of OSM for navigational
purposes and thus for the analysis of critical road infrastructure.

1.2 Main Objective and Research Goals

The development of techniques to improve the quality of OSM data has become an important
research field in the last few years because of the many applications using OSM data.
Regarding the routability of OSM road data, many approaches, considering different aspects
of routability, have been developed that aim at enhancing OSM data for routing applications.
However, many of them (a) require additional data besides the OSM road network [e.g.,
14, 15], (b) focus mainly on urban applications [e.g., 14, 16], or (c) consider routability
aspects that are not overly significant for the analysis of critical road infrastructure in
disaster cases [e.g., 17, 18]. As disasters often also strike in already vulnerable rural
regions, developing techniques to enhance the routability of OSM data in these regions is
of significant importance but mostly not considered in related studies. Additionally, for the
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analysis of critical road infrastructure in disaster cases, a gap in related studies is identified
as intrinsically improving the routability of the OSM road network.

The assessment of critical road infrastructure in disaster cases is a broad and interdisciplinary
research field with numerous different approaches including complex datasets [e.g., 19,
20], traffic models [e.g., 21, 22], and advanced simulations [e.g., 23, 24, 25]. Many of
these approaches focus on one particular case study [e.g., 26, 27, 28], often in a local,
urbanized setting [e.g., 29, 30], and are frequently untransferable. However, in reality,
complex datasets are rarely available directly after a disaster and thus advanced models
or simulations are not applicable. Additionally, the transferability of an approach and its
generic applicability, which begins with the essential aspect of global data availability, is
commonly overlooked in the scientific community. Hence, a generic concept, which can
handle the challenge of limited global data availability and is thus able to analyze disaster
impacts on critical road infrastructure directly after an event, is still missing.

To overcome these gaps, the main objective of this thesis is to develop a generic, multi-
scale concept to assess critical road infrastructure in a disaster context using OSM data.
The resulting concept is herein called GRIND (Generic concept for the assessment of
critical Road INfrastructure in a Disaster context). GRIND is constructed in a modular
way such that single modules can be switched on and off depending on disaster man-
agement’s requirements. Two consecutive research goals are identified on the basis of
the above-identified gaps to develop GRIND:

Goal 1: Improving the routability of OSM data with intrinsic methods.

Goal 2: Assessing critical road infrastructure in a disaster context.

The output of the first research goal is an enhanced OSM dataset, which is used to address
the second research goal. GRIND is, therefore, divided into two distinct parts, according
to the research goals, which are visualized in Figure 1.1.

GRIND is realized using only worldwide available, free data sources such that it can be
applied globally. It is highly automatized and implemented using a PostgreSQL [31] (version
11.5) database with PostGIS [32] (version 2.5) and pgRouting [33] (version 2.6) extensions.

1.3 Thesis Outline and Contributions

This thesis is organized in three parts. Part I addresses the first research goal of improving the
routability of OSM data with intrinsic methods. Following the second research goal, Part II
uses the enhanced OSM data generated in Part I to assess critical road infrastructure in
a disaster context. The last part, Part III, summarizes the entire thesis in one concluding
chapter. Appendix A lists all publications published within the scope of this thesis.

1.3 Thesis Outline and Contributions 3



Part I - Improving the Routability of OSM data is subdivided into three chapters: one
introductory chapter covering the fundamentals and two chapters developing independent
modules of GRIND. It first diagnoses the most relevant shortcomings of OSM road network
data for navigational purposes with a quality analysis. Based on the identified shortcomings,
methods are developed to improve OSM road network data for routing applications. An
enhanced OSM road network dataset results from Part I, which is used in Part II. The methods
developed in Part I, can be applied independently of Part II, to improve the routability of
OSM data for all kinds of applications. The major contributions of Part I toward the main
objective of this thesis can be summarized as follows:

• analyzing the quality of relevant OSM road data in combination with a summary
of related work on OSM road data quality (see Chapter 2), and identifying open
challenges in the field,

• developing the Fuzzy Framework for Speed Estimation (Fuzzy-FSE), which enables a
multi-parameter estimation of average speed in OSM road networks (see Chapter 3),

• designing the Error Search, a novel approach to detect, rate, and categorize road
classification errors in OSM (see Chapter 4), and, in summary,

• overcoming the challenge of intrinsically improving the applicability of OSM road data
for the assessment of critical infrastructure in a disaster context.

As a result of the first part of GRIND, an enhanced OSM road network dataset with
improved routability is obtained. The implementation of the Fuzzy-FSE and Error
Search is published freely on GitHub.

Enhanced 
OSM data

Part 1

Part 2
Assessment of Critical Road 

Infrastructure in a Disaster Context

Figure 1.1: Simplified representation of the generic concept for the assessment of critical road
infrastructure in a disaster context (GRIND).
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Part II - Assessment of Critical Road Infrastructure in a Disaster Context is subdivided
into four chapters. In Chapter 5, the fundamentals and the related work essential for
the second part of GRIND are described, and its prerequisites are lined out. Chapter 6
follows with a detailed description of the methodology used in the critical infrastructure
assessment. GRIND is applied exemplarily in Chapter 7 in two different case study regions
for two wildfire scenarios. Finally, the applicability of the different modules of GRIND
is discussed in Chapter 8, and its limitations are outlined. Part II advances the main
objective with the following five main contributions:

• implementing two accessibility indices which highlight different aspects of accessibility,

• generating a basic travel demand model solely based on OSM and population data,

• estimating different kinds of natural disaster impacts on the road network,

• analyzing the vulnerability of the road network towards further disruptions during
long-term disasters, and

• summarizing these contributions in a modular, multi-scale concept to overcome the
challenge of limited global data availability.

Part III - Synopsis finishes this thesis with a summary of both GRIND parts and con-
cludes the main objective. The conclusion is followed by an outlook presenting possible
optimizations and future directions of this work.

1.3 Thesis Outline and Contributions 5
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Part I - Improving the Routability of OSM data develops the first part of GRIND and
focuses on the quality of OSM road network data and how to improve it for routing appli-
cations. A schema of the first part of GRIND is visualized in Figure 1.2. Two independent
modules, the Fuzzy Framework for Speed Estimation (Fuzzy-FSE) and the Error Search, are
developed to obtain enhanced OSM datasets. The two resulting datasets are then combined
into one enhanced OSM dataset. The first part of GRIND can be applied independently
of the second part to enhance OSM for all kinds of routing applications.

Part I begins with Chapter 2 to introduce OSM and motivate the Fuzzy-FSE and Error
Search modules. Chapter 2 presents the OSM data model, performs a quality analysis
of relevant OSM data, and summarizes the related work on OSM quality to conclude
how the routability of OSM data can be improved. Chapter 3 follows this conclusion
and presents an approach to improve routability by estimating average speed in road
networks using Fuzzy Control. The Error Search, presented in Chapter 4, develops a
method to detect, characterize, and rate road classification errors in road networks. It
further enhances the usability of OSM data for routing applications.

OSM data

Enhanced 
OSM data

Fuzzy-FSE Error Search

Part 1

Part 2
Assessment of Critical Road 

Infrastructure in a Disaster Context

+

Figure 1.2: Part 1 of the generic concept for the assessment of critical road infrastructure in a
disaster context (GRIND).
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Introducing OpenStreetMap 2
In the past few years, the mapping and spatial data collection activities have radically
changed from primarily professional and government agencies to increased involvement of
the public [34]. Crowd-sourced Geographic Information can be used as an umbrella term to
describe both active (or conscious) and passive (or unconscious) georeferenced information
generated by non-experts [34, 35]. One type of Crowd-sourced Geographic Information
is Volunteered Geographic Information (VGI), which is spatial data that is contributed by
often untrained volunteers. Besides, Crowd-sourced Geographic Information also contains
information that may be collected unconsciously or even involuntarily, for example, by using
spatial data collected from mobile phones by Google or Facebook. Goodchild [36] shaped the
term VGI in the year 2007. Since then, the applications of VGI have increased rapidly: from
the development of mapping platforms such as Wikimapia, Google MyMaps, or OSM to text-
based georeferenced tweets in Twitter or image-based georeferenced pictures on Instagram.

OSM [37] is the most common and well known VGI mapping project [38]. It is an initiative
that started in the year 2004 to create and provide free geographic data to anyone. It is being
built by volunteers who collect data using manual surveys, Global Navigation Satellite System
(GNSS) devices, aerial photography, and other open sources [39]. Furthermore, agencies,
cooperations, and government institutions worldwide donate data to the OSM project. This
crowd-sourced data is then made available under the Open Database License [40]. This
license intends to allow users to freely share, modify, and use a database while maintaining
the same freedom for others. Three main reasons can explain the popularity of OSM:
(i) it is completely free and accessible for everyone, (ii) it features millions of registered
contributors, and (iii) it features a dynamic and flexible data model [38].

However, the application of OSM data often raises the question of quality. As non-experts
from all over the world collect data partly without complying with any quality standards, a
quality assessment must be part of every OSM-based application to understand if the infor-
mation is fit-for-use. Especially the quality of the road network, a primary product of OSM,
has become a particular object of interest for many applications. While the completeness
and positional accuracy of roads are often the first quality element analyzed, other aspects
like attribute completeness and accuracy might be essential for some applications.

This chapter introduces the OSM data model in Section 2.1. In Section 2.2, the OSM road
network as the primary focus of this thesis is presented. Furthermore, its attributes are
described, and their worldwide availability is analyzed in detail. Other OSM data besides

8



the road network, which are used in this thesis, are described in Section 2.3. Section 2.4
addresses the topic of the quality of OSM data. This chapter finishes with a synthesis on
the OSM road network and its applicability for routing applications (Section 2.5).

2.1 The OSM Data Model

Generally, in all Geographic Information Systems (GIS), a feature represents a real-world
object on a map [41]. Unlike other conventional GIS data models, the OSM data model
does not use the simple feature model with points, lines, polygons, and their attributes in
form of an attribute table. The OSM project has developed its unique data model, which
allows for many kinds of attributes for features. These attributes can also be added later
to an existing feature and can be unknown when the feature is created. Especially for a
crowd-sourced and dynamic project like OSM, this proves to be essential.

The basic components of the OSM data model are elements (Figure 2.1). Elements consist
of nodes, ways, relations and tags. A node represents a specific point on the Earth’s surface
defined by its latitude and longitude. Each node has at least an identification number
and a pair of coordinates. A node can define a standalone point or the shape of a way.
Ways are ordered lists of nodes that define a polyline. They are used to represent linear
features like roads and rivers. Areas are represented as closed ways, meaning ways that
have the same start and end node. Additionally, a tag indicating an area like area=yes
or building=yes has to be used to define a polygon. A relation is an ordered list of
nodes, ways, or other relations known as the relation’s members. Relations document a
relationship between two or more data elements, for example, a route relation that lists
the ways that form a major highway or a bus route [39].

Nodes, ways, and relations can have tags containing the attributes of an element. A tag
has two free format text fields: a key used to describe a topic, a category, or a type of
feature and a value containing details to the specific form of the key-specified feature.
Conventions are agreed on the meaning and use of tags, which are described in the OSM
Wiki [39]. An example of a key=value pair is highway=residential, which defines the
type of a road. A node, way, or relation can have an indefinite number of tags. An
element can not have two tags with the same key [39].

A significant advantage of this unique data model is that new features and attributes,
which may be unknown at the time the OSM database is created, can always be
added. However, this freedom of creating new tags and values renders general consis-
tency checks when entering new data unfeasible. Therefore, OSM data will always
be susceptible to errors made by contributors.

2.1 The OSM Data Model 9
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Figure 2.1: OSM data model with the elements node, way, relation and tag.

2.2 The OSM Road Network

The OSM road network is identified with the key highway. It includes a hierarchical classifi-
cation that is described in Table 2.1. In this thesis, hierarchy levels are defined, which are also
described in Table 2.1. These road classes and their respective link roads (motorway_link,
trunk_link, primary_link, secondary_link, tertiary_link) form the road network.
The definition of every class in the OSM road network is given in the OSM Wiki [39]. In gen-
eral, a country’s main road network is formed by a union of the levels L1 to L5 (see Table 2.1).

For this thesis, the OSM dataset of October 2019 is used. Figure 2.2 shows the distri-
bution of road classes in six different countries and globally. This selection of countries
will be analyzed throughout this section. The countries are chosen to represent each
continent and demonstrate the quality of OSM data in regions that differ in their devel-
opment state. For example, the OSM road network of Germany is considered to have
a very high-quality road network [9]. In contrast, many African countries like Namibia
feature a lower quality of the OSM road network [9].

Figure 2.2 illustrates that Germany has the second-longest road network of these six countries
and features the smallest land area, which results in an average of 5749 km road network
per km2. In contrast, the United States of America (USA) has only an average of 1274 km
road network per km2. Less developed countries like Chile (293 km/km2) and Namibia
(157 km/km2) feature a significantly shorter OSM road network especially in relation to
their size. The road network per the area of a country is sometimes considered as an
approximation for its completeness however, the population density of the respective country
has to be taken into account. In Australia, over 85 % of the population lives within 50 km of
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Table 2.1: Road classes and hierarchy level in the OSM road network. The levels range from L1 (top
level) to L7 (bottom level).

OSM key Description (cited from [39]) Level

motorway Restricted access, major divided highway. L1

trunk Most important roads in a country’s system that are not
motorway.

L1

primary Major highways, linking large towns. L2

secondary Highways, not part of a major route, form a link in the
national route network, often link towns.

L3

tertiary Connect smaller settlements and minor streets to more major
roads.

L4

unclassified Minor public roads, lowest level of the network, often link
villages and hamlets.

L5

residential Access roads to housing, without function of connecting
settlements.

L6

living_street Residential street, pedestrians have legal priority over cars. L6

service Access roads to or within an industrial estate, camp site,
business park etc.

L6

services Roads in service areas, rest areas. L6

road Road of unknown type, temporary. L7

track Mostly agricultural or forestry use. L7

the coast. There, the low value of 159 km/km2 reflects the low population density in vast
areas in the middle of the continent rather than an incomplete road network.

The distribution of road classes for each of the six countries and globally is also shown in Fig-
ure 2.2. Other road classes in Figure 2.2 include the OSM tags highway=living_street,
highway=service, highway=services, and highway=road. It is noticeable that the main
road network (gray and blue in Figure 2.2) builds up less than half of the total road network
in most countries and globally. This makes sense as, generally in road networks, the length
of roads per road class increases with decreasing importance of the road class. The global
statistic per road class reflects that phenomenon well. Especially in countries with long road
networks such as Germany and the USA, residential roads, tracks, and other roads (orange
in Figure 2.2) make up more than 70 % of the road network. This high percentage hints at a
very densely mapped road network. Barrington-Leigh and Millard-Ball [9] find that OSM
contributors map the most essential road classes first and the less important roads are filled in
later. This phenomenon can be observed in Namibia as primary, secondary, and tertiary
roads are of approximately equal length and not increasing with decreasing importance of
the road class. Also, contributors map very few residential roads in this country.

2.2 The OSM Road Network 11
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Figure 2.2: OSM key highway and its values for six countries worldwide and globally. For better
reference, the total road kilometers and the land area of each country or region is given. A country’s
main network is displayed in gray and blue, further road classes are illustrated in orange.

The OSM data model uses additional tags to add attributes to each road element. The
most common keys of the road network, which are also relevant for routing are surface,
oneway, maxspeed, lanes, maxwidth, maxheight, and maxweight. In the following, these
keys and their availability worldwide are described and analyzed. The description of the
tags is cited from the OSM Wiki [39] as of August 2020.

Surface Tag

OSM uses the key surface to provide additional information about the physical surface
of a road or footpath. The tags may contain general values like surface=paved for a
road covered, for example, with paving stones, concrete or bitumen or surface=unpaved
for a predominantly unsealed road. Ideally, values contain more precise informa-
tion such as asphalt, concrete, or paving_stones for paved roads and compacted,
gravel, or ground for unpaved roads. [39]

Globally, 24.9 % of all road kilometers have surface information (see Figure 2.3). The
most common values are unpaved, asphalt, paved, ground, and gravel. Paved roads
(illustrated in blue in Figure 2.3) build up 9.7 % of the global road network, unpaved roads
13.2 % (displayed in orange in Figure 2.3). 2.1 % of the global road network features
other values and consist of both paved and unpaved surfaces. In total, 3359 different
values for the key surface exist globally. These values include descriptions of various
additional surfaces like dirt, grass, sand or paving_stones. But also invalid surface
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Figure 2.3: OSM key surface and some of the values for six countries and globally. The total
percentage of all road kilometers with the surface=* tag per country is also given.

values are included like words in other languages than English (e.g. Holzsteg, pierre,
Calcestruzzo-Ghiaia-Asfalto), spelling errors (e.g. compcted, ssand, groumd) or words
without apparent sense (e.g. Blenheim Heights, cobbi2, not_very_good).

Figure 2.4 shows the distribution of the occurrence of the key surface worldwide. It can
be observed that only a few countries have more than 60 % of road kilometers with surface
information. However, both in Latin America and Africa, the percentage of roads with
surface information is relatively high, considering many less developed countries in that
region. In Europe and the USA, less than 40 % of all roads have surface information.
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Figure 2.4: Percentage of the total length of all roads with the OSM key surface per country for all
roads accessible by car. Adapted from [42].
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Considering the distribution of values in Figure 2.3, in all analyzed regions except the USA
and Germany, there are more unpaved than paved roads in OSM. In Thailand, Australia,
Chile, and Namibia, many unpaved roads exist where the surface is often not specified
in detail as unpaved is the most common surface value. These countries also have many
more unpaved roads in total than paved roads. This is especially notable for Namibia as
only 6.5 % of all road kilometers are paved and 38.1 % are unpaved. Both Germany and
Namibia also feature a significant amount of other values. In Germany, the most common
other values with over 10 000 km in the country’s road network are grass, compacted,
dirt, concrete, paving_stones, and fine_gravel. In Namibia, other common values
include, for example, sand, dirt, compacted, and tar.

Oneway Tag

oneway is attributed to roads to indicate if a road can only be used in one direction.
Access restrictions on motorway lanes as well as other one-way streets are indicated
by oneway. The key is generally used in combination with the values oneway=yes or
oneway=no. However, the tag oneway=no should only be used to avoid confusion, for
example, where one-way streets are common or to override defaults. Other supported
values are -1, reversible, and alternating. [39]

The key oneway is present for 9.0 % of all road kilometers worldwide (see Figure 2.5).
Globally, 5.8 % have oneway=yes, and 3.2 % feature oneway=no. Only 0.03 % of all road
kilometers have other values. Figure 2.6 illustrates the occurrence of the tag worldwide.
By definition, the tag does not apply to all roads, but only to one-way roads or special
cases. Therefore, the overall percentage of values is low. In most countries, less than 10 %
of all road kilometers have a oneway=* tag. Notably, South America, Northern Africa, and
Southern Europe seem to have more oneway=* tags than other countries. In contrast, Central
Africa features less than 2 % of road kilometers with one-way information.

Figure 2.5 display the values of the oneway=* tag for different countries and worldwide. More
oneway=yes than oneway=no exist in most countries, which is in line with the guidelines
in the OSM Wiki [39] as only explicit one-way streets should be tagged. Contributors
in Australia and Namibia may not follow these guidelines as there, oneway=no occurs
significantly more frequently than oneway=yes. Of all examined countries, Chile features the
highest percentage of one-way streets (oneway=yes), followed by the USA. In the analyzed
countries, other values occur even less frequently than in the global dataset.
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Figure 2.5: OSM key oneway and a breakdown of its values yes and no for six countries and globally.
The total percentage of all road kilometers with the oneway=* tag per country is also given.
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Figure 2.6: Percentage of the total length of all roads with the OSM key oneway per country for all
roads accessible by car.

Maximum Speed Tag

maxspeed defines the maximum legal speed limit for general traffic on a particular road.
By default, values are interpreted as kilometers per hour; different units can be added to
the end of the value, separated by a space. The most common values are numeric speed
limits such as maxspeed=60 or maxspeed=50 mph. Other values like maxspeed=variable
and maxspeed=none are used if there is a variable speed limit or no speed limit. When a
road does not feature an explicit speed limit, the corresponding implicit values can (and
should) be specified. Contributors can, for example, use maxspeed=50 in combination
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with the tag source:maxspeed=DE:urban. The key maxspeed:conditional can be used
to tag time of day or seasonal changes of speed limits. [39]

Globally, 7.8 % of all road kilometers have maximum speed information. This value is mostly
given in km/h (5.9 %) and less frequently in mph (1.8 %). The tag maxspeed=none is applied
to 0.03 % of the global road network, maxspeed=variable is only present for 9.6 km of the
global road network. 0.2 % of all road kilometers have other values like for example country
specific declarations (e.g. maxspeed=RO:urban, maxspeed=RU:living_street) or various
other values (e.g. maxspeed=signals, maxspeed=100; 80, maxspeed=practical:60).

Considering the global occurrence of the maxspeed key, it is apparent that very few countries
have more than 40 % of road kilometers with maximum speed information (see Figure 2.7).
Especially for most of Africa, the tag occurs in less than 2 % of all road kilometers. But
also in well-developed regions with a high-quality road network like Europe or the USA,
maximum speed information is available for less than 20 % of all roads. No country reaches
the ideal goal with near 100 % of roads with maximum speed information. The countries
with the highest percentage values of maximum speed information are Sri Lanka (64.1 %),
the Netherlands (51.3 %), Romania (48.5 %), and few city states or island states.

Figure 2.8 illustrates the different values of the maxspeed=* tag in the six chosen countries.
All countries except the USA provide the maximum speed information in km/h, which is
also the default value in OSM. Germany is the only country where the maxspeed=none
tag occurs (0.95 % of the German road kilometers), which is due to the German Autobahn
sometimes having no speed limit. Other values rarely occur with 0.11 % in Germany and
<0.01 % in the other analyzed countries in Figure 2.8.
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Figure 2.7: Percentage of the total length of all roads with the OSM key maxspeed per country for
all roads accessible by car.
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Figure 2.8: OSM key maxspeed and a breakdown of its most common values for six countries and
globally. The total percentage of all road kilometers with the maxspeed=* tag per country is also
given.

Lanes Tag

OSM uses the key lanes to count the number of traffic lanes on the road. The count excludes
cycle lanes and motorcycle lanes that do not permit a motor vehicle. lanes should only
be used in combination with a numerical value but can be specified with lane type like
lanes:forward=2 or lanes:bus=1. However, all cases where the key is not pure "lanes"
are treated as different keys and are not included in this analysis. [39]
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Figure 2.9: Percentage of the total length of all roads with the OSM key lanes per country for all
roads accessible by car.
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Figure 2.9 illustrates the occurrence of the lanes key in a global map. In the global
OSM road network, 9.26 % of all road kilometers have the tag lanes=*. South and North
America, as well as most of Europe and Asia, have more than 10 % of all road kilome-
ters with information about the number of lanes. Few countries exist with more than
20 % lanes information. The countries with most lanes=* tags, and the only ones over
40 %, are Canada (72.37 %) and Singapore (59.82 %).

The most common values for the lanes key are the numbers 1 to 6 with decreasing frequency,
the higher the number of lanes. The most common tag is lanes=2 (7.4 %) followed by
lanes=1 (1.08 %), lanes=3 (0.52 %) and lanes=4 (0.24 %). Other values are only present
for 5000 km in the global road network, which resembles only 0.01 %.

Maximum Width, Height, and Weight Tags

maxwidth specifies a legal restriction on the maximum permissible width of a vehicle to
use that road. Similarly, maxheight can be used to specify a height limit, and maxweight is
attributed to roads with a maximum weight. The values are interpreted as meters unless
explicitly stated otherwise (e.g. maxwidth=16’3”). These tags should only be attributed to
the section of a road it applies to. The value default can be combined with all these keys
and can be very useful for truck routing to imply no explicit restriction. [39]

Table 2.2: Occurence of the keys maxwidth, maxheight and maxweight in the OSM road network
for six exemplary countries and for the global road network. Both the total kilometers of roads with
the respective tag and the percentage of all road kilometers with the respective tag in respect to the
total road network in that country are listed.

maxwidth maxheight maxweight

km % km km % km km % km

Australia 63 0.01 429 0.04 810 0.07

Chile 5 a< 0.01 240 0.11 27 0.01

Germany 9 a< 0.01 4040 0.20 13 933 0.69

Namibia 0 - 3 a< 0.01 aa< 1 a< 0.01

USA 1234 0.01 2295 0.02 1347 0.01

Thailand 1 a< 0.01 91 0.01 105 0.01

Global 5742 0.01 44 165 0.08 63 064 0.11

Table 2.2 shows the total kilometers and the percentage of total kilometers with the keys
maxwidth, maxheight, and maxweight for the six chosen countries and globally. Of these
three keys, maxweight is the most common but still occurs rarely. All three keys are very rare
in the analyzed countries. Germany is the country with most height and weight restrictions,
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Namibia and Thailand have almost no information about restrictions. Generally, it has to
be considered that maxwidth, maxheight, and maxweight often only refer to small sections
of a road like a bridge or a tunnel, which might only be a few meters long. However,
the value default can be attributed to all roads without restrictions, which would benefit
truck routing. Currently, there are only 4693 km with maxheight=default, 0.087 km with
maxwidth=default, and none with maxweight=default in the global road network.

2.3 Further Relevant OSM Data

Besides the road network, OSM contains a variety of suitable data for all kinds of appli-
cations. Due to the project’s open and dynamic character, new map features with new
tags can easily be created. The OSM topics are diverse and feature, for example, transport
(air, land, and sea), amenities (like toilets, banks, and parking), boundaries, buildings,
settlements, shops, tourism, or land use. In this thesis and especially in Part II, three
other keys besides the road network are used.

Place

OSM uses the key place to provide details about settlements. Places can be mapped as both
points and areas. For this thesis, the tags place=city, place=town, and place=village
are used. The tag place=city is used to identify the largest settlement or settlements
within a territory and includes national, state, and provincial capitals as well as other
major conurbations [39]. The tag place=town is attributed to important urban cen-
ters, which usually have a good range of shops and facilities [39]. A town in OSM is
larger than a place=village but smaller than a place=city. A small distinct settlement
with few facilities available with people traveling to nearby towns to access facilities is
tagged place=village [39]. Their population varies by country but typically ranges
between 500 and 10 000 inhabitants. Tags for smaller settlements like place=hamlet or
place=isolated_dwelling are not used in this thesis.

Amenity

The key amenity can contain a variety of values and describes facilities used by visitors
and residents. In this thesis, it is used to locate the emergency facilities police, hospital,
and fire station. The tag amenity=hospital is used for hospitals, meaning institutions
for health care providing treatment by specialized staff and equipment, and typically pro-
viding nursing care for longer-term patient stays [39]. Other tags for healthcare like
amenity=clinic or amenity=doctors are not applied in this thesis. A fire station, a facility

2.3 Further Relevant OSM Data 19



from which a fire brigade operates to fight fires, is tagged amenity=fire_station [39].
Similarly, a police station is a facility where police officers patrol from and the first point
of contact for civilians. It is tagged amenity=police [39].

Boundary

Finally, the tag boundary=administrative indicates administrative boundaries. Contrib-
utors use it in combination with the key admin_level, which contains different values
corresponding to different admin levels. The admin-level codes vary by country (ex-
cept admin_level=2, which is always used for country borders) and can be found in the
OSM Wiki [39]. For example, the tag boundary=administrative in combination with
admin_level=4 is used for state or territory borders in Australia.

2.4 Quality of the OSM Road Network

The quality of the OSM road network worldwide is a broad and constantly-evolving research
field. Users of OSM data need to be aware of possible quality issues with OSM data before
using the data in their applications. Therefore, many studies on the quality of the OSM
road network exist which analyze different aspects of data quality.

In this section, data quality elements for geographic data are defined as described by the
International Organization for Standardization (ISO) in Section 2.4.1. Then, the related
work on the quality of the OSM road network is presented in Section 2.4.2.

2.4.1 Data Quality Elements for Geographic Data

The principles of the ISO can be applied to assess the quality of geographic data. The
ISO 19157:2013 [43] defines six data quality elements that each describe certain aspects
of geographic data quality. In the following, all six data quality elements mentioned in
ISO 19157:2013 are described generally and in the OSM context.

Completeness evaluates the presence or absence of features, their attributes, and relation-
ships. Both errors of omission (data that is missing from a dataset) and errors of commission
(excess data present in a dataset) are considered. In the context of OSM, completeness can
be evaluated for features, for example, Is a road element present in the OSM dataset?, and
for attributes, for instance, Does a road element have a tag maxspeed=*?.

Positional accuracy is the accuracy of the position of features within a spatial reference
system. It can be further divided into three categories: absolute or external accuracy (the
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closeness of true coordinate values), relative or internal accuracy (closeness of the rela-
tive positions of features in a dataset), and gridded data positional accuracy. Positional
accuracy in OSM refers to the accuracy of the coordinate values of nodes or ways, for
example, of roads. An example of low absolute accuracy but good relative accuracy is
if two roads that are supposed to be 100 m apart are at coordinates 1 km west of the
true coordinate values but still 100 m apart.

Thematic accuracy is defined as the accuracy of quantitative attributes and the correct-
ness of non-quantitative attributes. It consists of three sub-categories. First, classification
correctness, which asks the question if the feature is assigned to the right class(es). Then,
non-quantitative attribute correctness, a measure of whether a non-quantitative attribute is
correct or incorrect. Finally, the quantitative attribute accuracy, the closeness of a quantitative
attribute’s value to the true value. In OSM, this concerns the tags associated with a feature.
For example, this can be the accuracy of the road class of a road element (classification
correctness) or the accuracy of the maximum speed value (quantitative attribute accuracy).

Temporal quality refers to the quality of temporal attributes. It concerns the accuracy of a
time measurement, the temporal consistency as the correctness of the order of events, and
the temporal validity, also referred to as currency. In OSM, this is especially important in
regards to currency as the currency of VGI is expected to surpass authoritative data [44].

Logical consistency is defined as the degree of adherence to logical rules of data
structure, attribution, and relationships. These rules should ideally be described in a
data product specification. Logical consistency consists of four types: conceptual con-
sistency, domain consistency, format consistency, and topological consistency. In OSM,
logical consistency errors can occur in the form of, for example, roads in permanent
water bodies. One example of a topological inconsistencies are almost connections
of two roads where there should be a connection.

Usability, also referred to as fitness-for-use, is based on external user requirements.
All five data quality elements can be aggregated to describe the usability of a dataset
for a particular application. An example of the OSM datasets usability is the usabil-
ity for routing applications. Routing applications require different road data than,
for example, applications that display road maps.

2.4.2 Related Work on Quality of OSM

With the above-defined data quality elements, the quality of OSM road data can be as-
sessed. In the OSM road network, features are the road elements themselves with their
characteristic shape and geographic coordinates. Attributes are the corresponding tags
of the road elements. This section evaluates the related work on the quality of the OSM
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road network regarding the data quality elements feature completeness, attribute com-
pleteness, positional accuracy, thematic accuracy, temporal quality, logical consistency
and usability. Table 2.3 lists the most relevant studies on the quality of the OSM road
network and the analyzed data quality elements.

Table 2.3: Relevant studies on the quality of OSM data.

Authors Year Region Quality elements Methodology

Cipeluch et al. [8] 2010 Ireland Feature completeness,
positional accuracy,
thematic accuracy,
temporal accuracy

Comparison with
Google Maps and
Bing Maps

Girres and Touya
[45]

2010 France Feature completeness,
positional accuracy,
attribute accuracy,
temporal accuracy,
logical consistency,
usability

Comparison with
authoritative data

Haklay [46] 2010 England Feature completeness,
positional accuracy,
temporal accuracy

Comparison with
ordnance survey
data

Ludwig et al. [47] 2011 Germany Feature completeness,
logical consistency,
usability

Comparison with
TomTom commercial
data

Mondzech and
Sester [10]

2011 Germany Usability (pedestrian
navigation)

Comparison with
authoritative data

Neis et al. [48] 2011 Germany Feature completeness,
attribute completeness,
positional accuracy,
thematic accuracy,
logical consistency,
usability (navigation)

Comparison with
Navteq commercial
data

Wang et al. [49] 2013 China Feature completeness,
attribute completeness,
positional accuracy,
thematic accuracy

Comparison with
authoritative data

Zielstra et al. [50] 2013 USA Feature completeness,
temporal accuracy

Comparison with
TIGER/Line data
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Table 2.3: Related studies on the quality of OSM data – continued from previous page

Authors Year Region Quality elements Methodology

Barron et al. [51] 2014 Multiple Feature completeness,
positional accuracy

Several intrinsic
methods

Graser et al. [52] 2014 Austria Feature completeness,
attribute completeness,
positional accuracy,
usability (navigation)

Comparison with
authoritative data

Camboim et al.
[53]

2015 Brazil Feature completeness,
attribute completeness,
temporal accuracy

Comparison with
authoritative data

Sehra et al. [11] 2016 India Logical consistency,
usability (navigation)

Applying topology
rules

Davidovic et al.
[54]

2016 Global Thematic accuracy Statistical analysis

Demetriou [55] 2016 Greece Feature completeness,
positional accuracy,
thematic accuracy

Comparison with
authoritative data

Barrington-Leigh
and Millard-Ball
[9]

2017 Global Feature completeness Visual assessment
against satellite
imagery and intrinsic
method

Brovelli et al.
[56]

2017 Italy Feature completeness Comparison with
authoritative data

Mahabir et al.
[57]

2017 Kenya Feature completeness Comparison with
authoritative data

Sehra et al. [12] 2017 India Feature completeness,
attribute completeness,
thematic accuracy,
logical consistency

Intrinsic methods

Almendros-
Jiménez and
Becerra-Terón
[13]

2018 Spain Attribute completeness,
thematic accuracy,
logical consistency,
usability (navigation)

Statistical analyses
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Table 2.3: Related studies on the quality of OSM data – continued from previous page

Authors Year Region Quality elements Methodology

Zhang and
Malczewski [58]

2018 Canada Feature completeness,
positional accuracy,
thematic accuracy

Comparison with
commercial data

Jacobs and
Mitchell [59]

2020 Canada Feature completeness,
temporal accuracy

Unsupervised
machine learning

Goldblatt et al.
[60]

2020 Small
island
states

Feature completeness Comparison with
remote sensing data

Feature Completeness

Most studies on the quality of the OSM road network, especially in the early years, assess
feature completeness as the primary data quality element. Barrington-Leigh and Millard-Ball
[9] assess the global completeness of OSM road data in the year 2017. They reach two
major conclusions regarding completeness. On the one hand, OSM is circa 83 % complete,
globally, with over 40 % of countries having an almost complete street network. On the other
hand, well-governed countries with good internet access tend to be more complete, and
completeness has a U-shaped relationship with population density (sparsely populated and
dense urban areas are the most complete). It can generally be observed that completeness is
higher in densely populated areas and lower in rural areas. This observation is supported by
studies in Brazil [53], Canada [58], China [49], Ireland [8], England [46], Germany [47,
48], Ireland [8], Italy [56], Kenya [57], and USA [50, 51]. Feature completeness also varies
between road classes, with high-level roads such as motorway and primary (see Table 2.1)
having higher completeness than low-level roads like residential roads [47, 49, 51].

Following the related work on feature completeness from the year 2011 until now, the
quality is generally improving. In urban regions, it often surpasses authoritative datasets
in completeness, a phenomenon that can first be observed in countries with a very active
community like Germany [48], England [46] and Austria [52] and later also in less active
communities like in Brazil [53]. Barrington-Leigh and Millard-Ball [9] find that the Gross
Domestic Product (GDP) has no apparent impact on the completeness, except at the lowest
densities, and that small countries tend to be more complete.
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Attribute Completeness

As feature completeness is becoming adequate in most countries, attribute completeness
is gaining attention. Especially for navigation, additional attributes for road elements are
required. However, due to the open and voluntary tagging system, road elements often have
no tags besides the mandatory one (highway=*). Camboim et al. [53] find that in their
urban study region in Brazil in 2015, 30 % of roads have no additional tags. Generally, the
number of tags linearly increases with the number of contributors [45]. In the context of
attribute completeness, the keys name, oneway, and maxspeed are often considered.

The most commonly analyzed tag regarding attribute completeness is name=*, which contains
the road name and is essential for the display of maps and finding addresses. Ludwig et
al. [47] state that in the year 2011, in their study region in Germany, the percentage of
missing names increases from inhabited areas (5.6 %) to uninhabited ones (17.5 %) and
from important (4.7 %) to less important streets (13.8 %). Another study by Neis et al. [48]
in the same year and also in Germany finds that 16 % of all roads have neither a name
nor a route number. In an urban environment in 2014 in Vienna, 78 % of all roads have
names, and the name attribute completeness is relatively equal for all road categories [52].
In 2016, Demetriou [55] finds a road name completeness of around 100 % for high-level
roads and circa 40 % for low-level roads in Crete, Greece. In Spain in the year 2018, the
name tag is present in 73 % of urban roads [13], and in Canada, in the year 2017, circa
60 % of all roads (urban and rural) have names [58]. Wang et al. [49] find that only
36 % of roads in Wuhan, China have names. In conclusion, the name’s tag completeness
varies by region but is, on average, reasonably complete.

The second most frequently analyzed tag regarding attribute completeness is oneway=*.
In Germany, in the year 2011, the attribute oneway is more often missing in uninhab-
ited areas (48.8 %) than in inhabited ones (28.1 %) [47]. In Vienna (2014), 87.8 % of
the one-way streets in the reference dataset matched OSM oneway [52]. The complete-
ness of the oneway=* tag in cities in Spain (2018) (70.1 %) is similar to the complete-
ness of the name tag in the same study (73 %) [13]. The information about one-way
streets is crucial for routing algorithms in urban regions where travel times can vary
significantly when one-way streets are considered.

The completeness analyses for the key maxspeed show dramatic results. Ludwig et al. [47]
state that it is missing for 81 % of the objects in inhabited areas and 93 % of the objects in
uninhabited areas in 2011 in Germany. Later in 2014, Graser et al. [52] find that only 43 %
of roads in Vienna, a city with a very active OSM community, and only 30 % of roads in a low-
level road category contain a maxspeed value. In Spain in the year 2018, Almendros-Jiménez
and Becerra-Terón [13] find that an average of 73 % of roads in cities is missing maximum
speed information. In the same study, they compare Spanish cities with other European cities
and find that more than 90 % of roads have maximum speed information in Berlin, London,
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Rome, and Vienna. This high percentage indicates that since 2011 [47] and 2014 [52], the
attribute completeness for the tag maxspeed has increased considerably for cities with active
OSM communities. In contrast, Sehra et al. [12] finds that in Punjab, India, in the year
2017, only 5 % of features have maximum speed information. In conclusion, the maxspeed
attribute’s completeness varies a lot by region and by OSM contributor activity and is
generally higher in urban than in rural regions [47, 52, 13]. In general, it has to be improved
as the maximum speed is important information, especially for navigation [47, 13, 12].

Positional Accuracy

The positional accuracy of the OSM road network can generally be considered very high.
Studies find average positional accuracies of between 5 m to 10 m (France, 2010) [45],
6 m (England, 2010) [46], circa 6 m (Germany, 2011) [47], circa 15 m (Madrid - Spain,
2014) [51], circa 6 m (Cyprus - Greece, 2016) [55] and circa 7 m (Canada, 2017) [58].
Zhang and Malczewski [58] find that primary and secondary roads have relatively low
positional accuracy, whereas local roads are the most accurate ones. Haklay [46] also
observes this phenomenon and justifies it by local roads receiving more attention. More-
over, high-level roads are usually wider than local roads, so errors are more likely to
occur if the highways are traced by road lanes instead of center lines [58]. Wang et al.
[49] observe the opposite in Wuhan, China, in 2013, where the positional accuracy of
high-level roads is higher than of low-level roads.

Thematic Accuracy

The thematic accuracy of tags is often a challenge to estimate because of the frequently
low attribute completeness [58], incompatible classification schema, or classification am-
biguity [58, 49, 54]. As the road class (tag highway=*) is a mandatory tag for every road
element, it is often considered in thematic accuracy analyses.

Girres and Touya [45] find that in 2010 in France, the main roads motorway and primary
have a 100 % correct classification. However, only 49 % of secondary roads are correct
compared to the applied reference dataset. The road importance is mainly underestimated
as secondary roads are classified as residential or tertiary [45]. In Wuhan (China) in
2013, Wang et al. [49] find a classification accuracy of only 32.2 %. But, they also argue
that this is mainly due to incompatible classification schemas of OSM and their applied
reference data. The same can be said for the study of Zhang and Malczewski [58] in Canada
(2018) as they find that 40 % of all roads are misclassified. However, their research has a
design error as they count the OSM class unclassified as misclassified roads [58]. The
definition of the class in [39] states clearly that these are not unclassified roads but minor
public roads. The name unclassified is a historical artifact of the UK road system.
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The road name is a frequent tag of road elements. Davidovic et al. [54] find excellent
compliance for the name tag in residential roads and good compliance for primary roads in
their global analysis of cities in the year 2016. Similarly, the road name’s attribute accuracy is
100 % for motorway in Crete, Greece, in 2016 and exceeds 86 % for lower road classes [55].

Davidovic et al. [54] analyze the compliance or usage of suggested tags, and tag val-
ues from the OSM map features Wiki [39] and conclude that it is disappointingly low.
Often this results from confusion about how to apply tags correctly. One example is
highway=unclassified, which is intuitively used by contributors for roads, which are
not yet classified. Other examples exist like for the tag oneway=* where Davidovic et al.
[54] find poor compliance in all cities they analyzed. The suggestions of tag usage in the
OSM wiki are either not considered before mapping or may sometimes be confusing or
counter-intuitive. However, a change of guidelines is often thought impossible with such
an active global community that will adhere to the old guidelines [39].

Temporal quality

The temporal quality of OSM data often surpasses authoritative data, especially in regions
with many active contributors [44]. Girres and Touya [45] conclude that the more contrib-
utors there are in a region, the more recent the objects are. In Brazil, in 2015, Camboim
et al. [53] analyze the temporal quality of the OSM road network and find an average of
20 contributors per municipality and, on average, 120 days since the last edition in urban
regions. Considering that administrative data is often only updated yearly or less frequent,
OSM can be the more recent data source. Furthermore, as each OSM feature’s history is
preserved, it provides a timeline of changes that may be valuable for some applications.

Logical consistency

The logical consistency of the OSM road network is mostly analyzed by considering topologi-
cal errors. Girres and Touya [45] discover that in the year 2010 in France, the connectivity
of roads is ensured in about 95 % of cases. They state that the model’s structure is not
ideal as a good model should finish a line at each intersection, which is rarely the case
in OSM. Also, in Germany, it can be seen that in the year 2011, the number of almost
connections has decreased over the years and remains high only for cyclist or pedestrian
routes [48]. They also find that duplicate streets have decreased over the years. Sehra et al.
[11] analyze the road network of Punjab, India, in 2016 and identify 8492 logical errors
such as undershoot, overshoot, and mismatches within a tolerance of 3 m. Furthermore,
44 036 errors are found with other rules, most of them being almost connections [11].
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Usability

In the beginning, the objective of the OSM project was to collect geographical information
to display map data. The developers and contributors mostly have this initial purpose
in mind when creating new content. However, the data has become so good that it is
nowadays used in a variety of applications. Considering the road network, it is reasonable
to try to apply the data for navigational purposes. While Cipeluch et al. [8] state that in
2010 the OSM quality necessary for routing and navigation applications is not sufficient,
the improving quality over the years has caused others to evaluate the usability of OSM
data for navigation in more detail. Neis et al. [48] find in the year 2011 that the com-
mercial dataset TomTom has five times more turn restrictions available for Germany than
OSM. In 2014, already 60.6 % of the turn restrictions in a reference dataset in Vienna
matched the OSM turn restrictions. Despite the clear improvement of the OSM data for
routing applications over the years most studies conclude that OSM data requires thor-
ough preprocessing before being used for navigational purposes [10, 11, 12, 13]. Mostly
attribute completeness and accuracy needs to be improved [13].

2.5 Synthesis on the OSM Road Network Quality

In conclusion, the OSM road network can nowadays be considered relatively complete and
reasonably accurate as feature completeness and positional accuracy are relatively high in
most regions. The unique OSM data model and the growing number of OSM contributors
advance the dataset to develop further according to the needs of the users. The various tags
covering all kinds of topics allow for many applications. The dataset’s biggest advantage is its
worldwide free availability, which allows for global analyses and applications. The alternative
to search for data in every country worldwide is very time consuming and often not feasible
due to data incompatibility. Thus, OSM data is often the only option for generic approaches.

However, especially considering OSM data in routing applications, the attribute complete-
ness and accuracy are still lacking. This becomes apparent in Section 2.2 with the low
percentages of attribute occurrence in all regions and in the related studies presented
in Section 2.4. For routing applications and especially for the analysis of critical road
infrastructure, two major challenges are identified.

Challenges and Consequences for this Work

The first challenge is the often missing speed information. To calculate fastest paths in
a network, a routing application requires the travel time of a road segment as a cost
factor. As this is rarely given in OSM, routing applications have to consider alternative
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ways to obtain the travel time. For this reason, we develop the Fuzzy-FSE, which is
presented in the next chapter (Chapter 3).

The second challenge is the attribute accuracy, especially regarding the road classification. On
the one hand, the road class is often used as an approximation for the average speed where
speed information is missing. On the other hand, some road classes imply access limitations,
which hinders routing. Moreover, a correctly classified road network is usually connected on
each level. This connectedness enables the user to remove lower-level road classes while
still maintaining the road network’s functionality. In studies on post-disaster assessment
of critical road infrastructure this is a common practice as it drastically reduces computing
time. To address this challenge, an Error Search is developed that detects, characterizes,
and rates potential classification errors. This Error Search is presented in Chapter 4.
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Multi-Parameter Estimation of
Average Speed in Road
Networks Using Fuzzy Control

3

This chapter includes material from the journal article

Johanna Guth, Sven Wursthorn, and Sina Keller. “Multi-Parameter Estimation of
Average Speed in Road Networks Using Fuzzy Control”. In: ISPRS International
Journal of Geo-Information 9.1 (2020), pp. 1–18. It is cited as [42] and marked
with an orange line.

and from the conference paper which is a pre-study to the above-quoted study

Johanna Stötzer, Sven Wursthorn, and Sina Keller. “Fuzzy Estimation of Link
Travel Time from a Digital Elevation Model and Road Hierarchy Level:” in: Pro-
ceedings of the 5th International Conference on Geographical Information Systems
Theory, Applications and Management. Heraklion, Crete, Greece: SCITEPRESS -
Science and Technology Publications, 2019, pp. 15–25. It is cited as [61] and
marked with a red line.

3.1 Introduction

Applications like route planning, disaster risk management or transportation depend on
finding the fastest path in a road network. For the computation of the fastest path, average
speed values are assigned to every edge in the road network to calculate link travel times.
The link travel time is the average time a vehicle spends traveling along a network edge [14].
In studies on critical road infrastructure and accessibility, the link travel time often serves
as a cost factor for the road network [62, 63, 64, 65].

Many of these approaches use OSM data. However, as stated in Section 2.2, the maximum
speed is only present in 7.4 % of all road elements in the worldwide OSM dataset released
in October 2019 (see Figure 2.8). To compute link travel times and fastest paths, maximum
speed information for every edge in the road network is crucial.
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Influencing factors on average speed in urban and in rural areas differ for many reasons.
While traffic, turn restrictions, one way streets and traffic signals have a noticeable impact
on average speed in the city, other factors dominate in rural areas. For example the road
quality has a considerable impact on the average speed: asphalted roads e.g. allow for a
higher speed than unsealed gravel or mud roads. The road width and number of lanes
also have an impact on speed, as well as the topography [66]. The slope of a road limits
the driving speed, both by increasing sinuosity and by the slope itself.

Many studies and routing applications rely on fixed speed profiles for every road class
defined by various input parameters. To avoid jumps at these class borders, a Fuzzy Control
System (FCS) can be used. Such a FCS is able to fuzzify these input parameters and
provides a more continuous, nonlinear output. Furthermore, it is based on expert knowledge
and does not rely on reference data to learn its behavior.

In this chapter, we develop a Fuzzy Framework for Speed Estimation (Fuzzy-FSE) to estimate
the average speed on rural roads in the network. The speed is derived from multiple input
parameters: road hierarchy level, surface, slope and link length. The OSM road network
and Shuttle Radar Topography Mission (SRTM) data serve as input data for the Fuzzy-FSE.
Two different approaches are presented: the first approach relies solely on OSM data. It
uses the number of support points of the vector shape of a road as an approximation for the
slope (see Section 3.4.1). The second approach calculates road slope from a SRTM digital
elevation model. The Google Directions API (GD-API) is used as reference data and as input
for a baseline calculation. The Fuzzy-FSE contains multiple FCSs which are employed to
obtain a continuous speed output. The FCSs are set up with the Membership Function (MF)
for the input parameters slope and link length and different MFs for the output parameter
speed. Two exemplary case studies are performed: One in the BioBío and Maule (BM) region
in Chile and the other in North New South Wales (NNSW) in Australia.
The main contributions of this chapter are summarized as follows:

• development of a multi-parameter Fuzzy-FSE containing a combination of multiple
FCSs;

• a detailed analysis and discussion of the performance of the Fuzzy-FSE in comparison
to an existing method;

• usage of only open source and worldwide available data (OSM, SRTM);

• transferability of the presented method to other regions;

• possibility to use the Fuzzy-FSE only with OSM data as input;

• exemplary case studies in the BM region in Chile and in New South Wales (NSW) in
Australia;

• the datasets and the implementation of the Fuzzy-FSE are published on GitHub [67].
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In this chapter, we first provide an overview of the related work on average speed and link
travel time in OSM in Section 3.2 and introduce the concept of Fuzzy Control in Section 3.3.
The OSM, SRTM and GD-API datasets are described in Section 3.4. Then, the developed
Fuzzy-FSE with the FCSs is explained in Section 3.5. A description of both case studies
(Section 3.6), the results (Section 3.7) and a detailed discussion (Section 3.8) are presented.
Finally, a conclusion and an outlook are given in Section 3.9.

3.2 Related Work on Link Travel Time in OSM

Many routing applications exist that compute fastest paths, and consequently link travel
time, and base on OSM data. Popular examples are the OpenRouteService [68], the Open
Source Routing Machine (OSRM) [69], the OpenTripPlanner [70] and YOURS [71]. The
latter three are open source applications and use the maximum speed information in OSM
to calculate link travel time if available. If not, the OSM Wiki [39] contains default speed
limits for some countries (24 countries worldwide) which are processed and applied by
these routing applications. The applications also include other attributes like the road type
and the number of lanes (if available) to derive fixed speed profiles for every road class.
The algorithm for the OpenRouteService is not accessible by public. But it seems more
complex than the other routing applications as it provides additional information like the
slope and type of a route. However, like many commercial routing applications such as
Google Maps or Bing Maps the exact calculation is not transparent.

Few studies address the issue to derive link travel time from the OSM road network.
Stanojevic et al. [14] present a methodology to calculate link travel times based on
origin-destination and timestamp information generated by a taxi fleet and OSM data.
They estimate travel times in urban regions with 60 % lower errors than OSRM. A lot
of related work concentrates on urban regions and how to improve the estimation of
travel time in networks with a lot of traffic. Steiger et al. [15] include real-time traf-
fic data into the OpenRouteService application.

As mentioned in Section 3.1, the important factors for routing in urban and rural ar-
eas differ considerably. In the design standards of Asian highway routes, the assigned
maximum speed of a road in a rural region is directly dependent on the slope of the ter-
rain [72]. Brabyn and Skelly [73] model access to public hospitals and calculate shortest
and fastest paths. To estimate the link travel time, they consider if the road is inside
or outside an urban area, the number of lanes and the sinuosity of a road. The sinu-
osity of a road is calculated with a sinuosity index. They categorize the roads by these
factors and assign fixed velocities for every combination.
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This study aims at filling some of the existent gaps in the related work. Most routing
applications with OSM focus more on the city than the rural areas and only include
country wide speed limits in their travel time calculation. Few studies focus on the
calculation of link travel time. The ones that do, rely on self-collected or commercial
datasets. To our knowledge, a fuzzy control system has never been applied to estimate
link travel time with different parameters.

3.3 An Introduction into Fuzzy Control Systems

The idea of Fuzzy Control was first introduced by [74] for a steam engine and boiler
combination. FCSs work on linguistic terms and partial memberships which are able to
express fuzziness. A FCS takes crisp input values and fuzzifies them with the help of
membership functions. In a second step, a rule base provides the basis for the inference
mechanism. A defuzzification generates crisp and continuous output values.

The main advantages of Fuzzy Control are its flexibility and its simple construction. It
involves human reasoning and decision making such that it is useful in providing solu-
tions to complex problems in different kinds of applications. Furthermore, it is able to
include imprecise input information. Figure 3.1 shows an exemplary FCS. In the fol-
lowing, the different parts of a FCS are introduced.

Inference
mechanism

Fu
zz

y 
co

nt
ro

lle
r

Crisp Input

Crisp Output

Fuzzification
(Membership functions)

1

Rule
base

2 3

Defuzzification4

Figure 3.1: Schema of a Fuzzy Control System.

Fuzzy logic introduces the idea of partial membership. In classical or crisp sets, each
individual in the universal set is assigned a value of either 1 or 0, where 1 signifies that the
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individual is in the set and 0 means that it is not. This divides the individuals into members
and nonmembers of the crisp set. A fuzzy set however, contains elements that have varying
degrees of membership. It allows a member to belong to a set to some partial degree, the
boundaries between subsets become vague or smooth. The partial degree membership of a
fuzzy set can be mapped into a function, the so-called Membership Function (MF). [75]

MFs are defined of an interval of 0 (not a member) to 1 (full member) and convert crisp
input values into fuzzy sets (Figure 3.1, Step 1). The MFs are the central feature of a FCS as
they need to be representative of the input and output space of the system. Determining the
shape of the MFs of a FCS is an important task that directly affects the modeling accuracy
and system performance of the FCS. Usually designers choose MFs that are convenient to be
described mathematically and adopt regular shapes of known parameterized MFs. Piecewise
linear MFs are the simplest and most widely used MFs. They include triangular (Figure 3.2,
a) and trapezoidal (Figure 3.2, b) MFs and can be either symmetric or asymmetric. Their
popularity stems from their simple formulae and computational efficiency that renders them
valuable especially for real-time applications. When piecewise linear MFs are not suitable
for an application, nonlinear smooth MFs are often used. They include for example Gaussian
(Figure 3.2, c), bell-shaped (Figure 3.2, d), and sigmoidal functions (Figure 3.2, e). [75]
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Figure 3.2: Exemplary fuzzy membership functions defined on an interval of 0 to 10.

The fuzzification includes two processes; the design of the MFs for input and output vari-
ables and their representation with linguistic variables [75]. Each MF is assigned linguistic
terms that represent ranges of values. As an example the room temperature can be consid-
ered: Temperatures between 10 ◦C to 16 ◦C can be considered low, temperatures between
16 ◦C to 23 ◦C are described as medium and temperatures between 23 ◦C to 30 ◦C are
felt as high. The temperature value 20 ◦C, depending on the exact definition of the MF,
belongs to both low and medium to certain degrees.

After the MFs are defined, the rule base of the FCS has to be formed. The rules are derived
by human experts who apply rules of physical laws and experience [75]. A Mamdani fuzzy
inference system [74], which is commonly applied, features a rule base where every rule
has an antecedent (IF) part and a consequent (THEN) part (Figure 3.1, Step 2). Both
antecedents and consequents can be aggregated using an AND-operator. As an example, a
heating system can be considered with the input parameters room temperature and heater
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temperature (both low, medium or high) and the output parameter aperture of the valve for
hot water (small, medium, wide). Two exemplary rules for this FCS could be formulated as:

• IF room temperature is low AND heater temperature is low THEN aperture is wide.

• IF room temperature is high AND heater temperature is high THEN aperture is small.

The last step of a FCS is the defuzzification (Figure 3.1, Step 4) which converts the fuzzy
output generated by the Inference mechanism to crisp output. Different defuzzification
methods exist. The Mean of Maximum method, the Center of Gravity method and the Height
method are the most commonly used. The Mean of Maximum method takes the average of
all values where the fuzzy sets are maximal. A shortcoming of this method is that it does
not take into account the entire shape of the output function but only its maximum values.
The Center of Gravity method, which is the most popular method, calculates the centroid of
the fuzzy set to obtain a crisp output value. Finally, the Height method’s advantage is its
simplicity: it takes the maximum value of the height of the output function. [75]

Since the development of Fuzzy Control, it has been applied successfully in various
research areas: in the environmental research e.g. for flood simulation [76], in re-
mote sensing e.g. for classification of multispectral data [77], in GIS applications [78]
or in analytic chemistry [79]. Das and Winter [80] employ fuzzy logic to detect the
transport mode in an urban environment.

Fuzzy Control allows for many input and many output parameters. Such parameters can
be combined in an if-then rule [81]. The two greatest strengths of fuzzy control are the
ability to reason with uncertainty and its utilization in complex ill-defined processes without
much knowledge of their underlying dynamics [75].

3.4 Datasets

The two datasets OSM and SRTM serve as input for the Fuzzy-FSE. The OSM dataset
provides the parameters road class, road surface, link length and support points per kilo-
meter. The road slope is calculated from SRTM data. Data from the GD-API is applied
as reference data and is used as input for the speed profile. In this section, the differ-
ent datasets and parameters are described.

3.4.1 OSM Data

OpenStreetMap road data includes a hierarchic classification of the road network that is
described in Table 2.1. These road classes and their respective link roads (motorway_link,
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trunk_link, primary_link, secondary_link, tertiary_link) form the road network.
For the Fuzzy-FSE, only road classes with a hierarchy level lower or equal to five are used.

An analysis of the available attributes of roads in OSM is performed in Section 2.2. As
stated in Section 2.2, the road surface is the most prominent of all parameters, globally.
The distribution of the key surface per country is shown in Figure 2.4.

We include only the most frequent tag surface=* as an input parameter in our Fuzzy-FSE.
It contains different values: general information such as paved or unpaved, and detailed
description of the surface (e.g. asphalt, concrete, gravel). Most roads only feature
general information, few have exact surface descriptions. For this study the surface values
are classified according to the two main groups: paved and unpaved [39].

The link length serves as an additional input parameter for the Fuzzy-FSE. The road network
is represented as a graph with nodes and links. All links have a start node and an end node,
but no nodes in between. In this graph, every intersection and every change of parameter
in the road network represents a node. Thus, links in a sparse network are longer than
in a dense network with many intersections. If there are many intersections on a road
and therefore shorter links in the graph, average speed decreases.

The number of support points per kilometer is used as an approximation for slope as it
can be calculated from the shape of the road in OSM. The curvier a road is, the more
support points are needed to form the road and the more the average speed decreases. In
OSM, the distribution of support points per road segment is not uniform. Some mappers
create curves with more support points and other mappers model similar curves with
much less support points. In our study, to obtain a uniform number of support points,
the vector data of the road is simplified using the Douglas-Peucker algorithm [82] with
a tolerance of one meter. This algorithm is applied to simplify the number of support
points of the road network without an effect on the accuracy of the network in this study.
Note that the overall accuracy of the OSM road network is worse than one meter. Finally,
the number of support points per kilometer is calculated.

3.4.2 SRTM Data

The Shuttle Radar Topography Mission was a joint mission by National Imagery and Map-
ping Agency and the National Aeronautics and Space Administration (NASA) to collect an
open source global elevation dataset. We use the SRTM void-filled, 1 arc-second global
data [83] with a resolution of approximately 30 m.

Due to this resolution, it has to be taken into account that one pixel of the SRTM raster may
be the average of the road itself as well as possible hills beside that road. Therefore, we
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consider the slope of the surrounding terrain, which is, in most cases, higher than the actual
road slope. With this in mind we refer to the results as road slope in the following.

To calculate road slope, a slope percentage raster is created from the original Digital
Elevation Model (DEM) by applying the Horn algorithm [84]. Then, the OSM road network
is overlaid with the slope raster. Every road segment intersects multiple pixels of the slope
raster. The average of all intersecting pixels is assigned as road slope value to the road
segment. In [61] we introduced a second approach to calculate road slope. However,
the results in [61] show that the method described above better fits the problem which
is why we dismiss the other approach in this study.

3.4.3 Google Directions API Data

Google Directions API (GD-API) is a service that calculates routing directions and travel
times between locations. The GD-API data includes the distance in meter, the travel time in
seconds at a given time and the coordinates of the points on a road closest to the input point
coordinates. The speed values are calculated using the travel time and distance output.

The GD-API relies on Google Maps and its underlying road and traffic data. The quality
of Google Maps data is difficult to assess, especially in developing countries. During our
studies, both roads that exist in OSM and are non-existent in Google Maps and vice versa
have been detected. In [8] the accuracy of Bing Maps, OSM data and Google Maps data
in Ireland is compared and the results support our observations. The authors find that
although some areas are better served by one data source than by the others, no single data
source proves to have better overall coverage. As for the speed and traffic data, there is no
data available to evaluate the quality of Google Maps. We employ GD-API speed values as
reference data while keeping in mind that this might, in some cases, be untrue.

Therefore, obstacles arise when comparing the output of the Fuzzy-FSE to the GD-API
output. Both the Google data and the OSM data may contain errors. As the GD-API
always takes the shortest path, it may take a different path between the two input co-
ordinates than the road from which we want to compare the velocity. Also, the travel
time output of the GD-API is whole seconds. Therefore, the calculated speed of short
road segments with a travel time of only few seconds may be less accurate due to round-
ing. An exemplary output from the GD-API of 4 s for a 100 m road segment can signify
a speed of 81 km/h (for 4.4 s) or 102 km/h (for 3.5 s).

For this study, four types of possible errors or large inaccuracies are captured automat-
ically and are excluded of the comparison:

• the distance between either the start or the end points on the road in OSM and in
Google is larger than 50 m;
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• the lengths of the road in OSM and in Google differ in more than 20 %;

• the road is shorter than 200 m;

• the request to the GD-API returns an error or an empty result set.

To evaluate the performance of the Fuzzy-FSE, we compare it to a fixed speed profile.
The speed profile assigns different speed values for each road class. Within a road class
all roads obtain the same speed value. For this study, the speed profile is derived from
the average speed of the GD-API for every road class.

3.5 Methods

This section presents the architecture of the Fuzzy-FSE (see Figure 3.3). It consists of
two parts: The first part is the MF rule base with the knowledge base which form dif-
ferent MFs for speed. From this, multiple FCSs are built which calculate speed from
the input parameters road slope and link length. One FCS is built for every MF speed,
depending on the road class and surface.
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Figure 3.3: Schema of the Fuzzy-FSE with four input parameters: road class, road surface, road
slope and link length. Combined with the knowledge base, the MF rule base forms ten different MFs
for the output parameter speed. Adapted from [42].
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Road slope and link length serve as input parameters for the FCSs to calculate the average
speed. As mentioned in Section 3.4.1, the parameter road slope can either be calculated
from the SRTM data or can be approximated by using the number of support points per
kilometer of the road. In this study, both are implemented.

For our Fuzzy-FSE, we define triangular and trapezoidal MFs for slope and for link length
which are illustrated in Figure 3.4. The MFs are represented with linguistic variables.
Linguistic terms for slope include level, rolling, mountainous and steep. The linguistic
terms for link length range from very short to very long. The output parameter speed
varies between slow, medium and fast. In pre-studies, we have analyzed the impact of
different shapes of MFs on the results. Then, we combine that with expert knowledge
from literature [72, 85] to obtain the presented MFs. Each FCS uses the same MF for
link length and slope but different MFs for speed.

According to the MF rule base, different MFs speed are defined. Depending on the input
parameters road class and road surface, 10 different MF speed are designed:

• MF speed 1: Class = motorway

• MF speed 2: Class = trunk

• MF speed 3: Class = primary & Surface = paved

• MF speed 4: Class = primary & Surface = unpaved

• MF speed 5: Class = secondary & Surface = paved
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Figure 3.4: MFs of the parameters (1a) SRTM slope %, (1b) support points per kilometer, and (2)
link length. Adapted from [42].
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• MF speed 6: Class = secondary & Surface = unpaved

• MF speed 7: Class = tertiary & Surface = paved

• MF speed 8: Class = tertiary & Surface = unpaved

• MF speed 9: Class = unclassified & Surface = paved

• MF speed 10: Class = unclassified & Surface = unpaved

For the classes motorway and trunk a paved surface is assumed. In other regions even less MF
speed might be necessary as less unpaved roads exist. The ten MFs speed are designed using
region specific expert knowledge about the speed distribution per road class and surface.
For roads without surface information, the surface is assumed paved for the road classes
primary and secondary, and unpaved for the road classes tertiary and unclassified.
Specific MFs speed depending on the case study region are generated (see Section 5).

20 rules have been developed with two antecedents (slope and link length) and one
consequent (speed) each. Two exemplary rules are:

• IF slope is level AND link length is very long THEN speed is fast.

• IF slope is rolling AND link length is very short THEN velocity is medium AND slow.

We provide all applied rules in the form of a Python notebook via GitHub [67].

The last step of every FCS is the defuzzification (Figure 3.3, Step 4) which converts fuzzy
output to crisp output. In our study, we tested different defuzzification methods like
centroid, bisector and mean-, minimum- and maximum- of maximum. A centroid-based
defuzzification fits our estimation best, as it results in a continuous distribution.

Note, the MFs for length and slope as well as the MF rule base and the rule base of the FCSs
remain the same for every study region. Only the ten different MF speed per road class and
road surface have to be adapted with expert knowledge for different regions.

3.6 Case Study Regions

The Fuzzy-FSE is applied exemplary for the BM regions in central Chile and for a part of
northern NSW in Australia. In New South Wales, the study region consists of the statistical
divisions Mid-North Coast, Richmond-Tweed and Northern. The study regions in Chile and
in Australia are comparable in size but are at different stages of development.

In Chile, the road infrastructure is typical of a developing country. Even in populated regions,
many unpaved roads exist and paved roads are often not maintained so the average speed is
low compared to the same road classes in more developed countries. Australia is a developed
country with a well maintained road infrastructure. There are more high level roads in the
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more densely populated parts in NNSW than in comparable parts of the BM regions. This
also leads to higher average speeds in all road classes which can be seen in Figure 3.5. Also,
the OSM dataset for NNSW is more complete and contains more additional information
than the OSM dataset for the BM regions. The tag maxspeed is filled out for 22.5 % of all
road kilometers in NNSW but only for 7.2 % of all road kilometers in the BM regions.

The BM regions have a characteristic topography with the coastal mountain range in the
west and the Andes in the east. That leads to a wide range of road slopes in the Chile
dataset. Australia is less mountainous and has fewer roads with a high road slope. Both
study regions feature large rural areas which are not densely populated. Both study regions
feature more unpaved than paved roads (see Table 3.1) and many more low level roads
than high level roads. The combination of all mentioned characteristics makes both regions
ideal candidates to apply the developed Fuzzy-FSE. The transferability of the method to
different rural regions is demonstrated by applying the Fuzzy-FSE to these two regions
which differ in many aspects mentioned above.

Table 3.1 gives an overview of the OSM data for both study regions. The largest road class in
Chile is tertiary which makes up more than 50 % of the road network. In Australia, most
roads are in the class unclassified. Another notable difference is the road class trunk
which is almost nonexistent in Chile but is used a lot in Australia. In both countries most
roads have surface information. The surface information is classified into two main categories
paved and unpaved as more detailed surface information is rare. The tags paved, unpaved

Table 3.1: Overview of the OSM data in the BM regions in Chile and NNSW in Australia. Reprinted
from [42].

BM (Chile) NNSW (Australia)

km % km km % km

All roads 30 349.84 100 38 956.41 100

motorway 1 624.79 5.56 882.21 2.27

trunk 142.47 0.47 901.06 2.32

primary 4 246.53 13.99 1 998.80 5.13

secondary 3 281.87 10.82 4 372.52 11.23

tertiary 15 643.31 51.55 8 821.94 22.65

unclassified 5 410.94 17.83 21 979.86 56.42

Surface information 25 211.83 83.07 30 606.80 78.57

paved 7 945.20 26.18 12 406.64 31.84

unpaved 17 266.63 56.89 18 200.16 46.72

maxspeed 2 176.42 7.17 8 756.55 22.48
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Figure 3.5: Boxplots of the speed distribution per road class of the reference data (GD-API) for the
BM (Chile) and NNSW regions (Australia). Road classes: MW - motorway, TR - trunk, PR - primary,
SC - secondary, TE - tertiary, UC - unclassified. The blue diamonds in the boxes symbolize the
respective median, the blue lines the respective mean value. The lower limit of each box is the 25th

percentile (Q1), the upper limit the 75th percentile (Q3) so that the difference builds the Interquartile
Range (IQR). Whiskers extend to Q1 – 1.5 ∗ IQR and Q3 + 1.5 ∗ IQR. Any points beyond the whiskers
are outliers and are plotted as circles. Adapted from [42].
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Figure 3.6: Exemplary MFs speed for (a) the BM (Chile) regions and (b) NNSW (Australia) for class
= tertiary and surface = unpaved. Adapted from [42]. See all MFs speed in [67].

and asphalt make up 97.6 % (BM) and 82.1 % (NNSW) of the surface information. However
few roads in Australia and very few roads in Chile feature speed information which underlines
the need for a speed calculation. A spatial analysis shows that many roads that feature speed
information are either motorway or are located in urban regions in both study regions. In [61]
we demonstrate that it is valid to exclude roads shorter than 200 m from the validation.

Figure 3.5 shows the distribution of the GD-API speed data of both study regions and for the
different road classes. Average speeds per class are calculated from the GD-API to compare
against the estimations of the Fuzzy-FSE. In the GD-API dataset for the BM regions the
average speeds are: 94 km/h (motorway), 58 km/h (trunk), 61 km/h (primary), 45 km/h
(secondary), 34 km/h (tertiary) and 26 km/h (unclassified). In the NNSW dataset
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average speeds are: 99 km/h (motorway), 80 km/h (trunk), 76 km/h (primary), 68 km/h
(secondary), 56 km/h (tertiary) and 38 km/h (unclassified).

As described in Section 3.5, ten MFs for speed are defined for every study region. The MFs
speed are defined manually using expert knowledge about the regions road conditions and
speed distribution. In this case, the expert knowledge is taken from the distribution of the
GD-API speed data. Two exemplary MFs speed, one for the BM region and one for NNSW,
for the class tertiary and for an unpaved surface are shown in Figure 3.6. The definition
of all MFs speed for both study regions is provided via GitHub [67].

Of the 17809 (BM)/ 21977 (NNSW) roads considered for the evaluation, approximately
12 % (BM) / 4 % (NNSW) are excluded due to the errors described in Section 3.4.3. The
errors occur when the road distance between the OSM and the GD-API data differ in more
than 20 % (50 % (BM) / 28 % (NNSW) of the errors) and when the start or endpoints
differ in more than 50 m (46 % (BM) / 69 % (NNSW) of the errors). In 60 (BM) / 20
(NNSW) cases the GD-API respond with an error.

3.7 Results

We apply the Fuzzy-FSE on both study regions in two modes: Once with only OSM data,
using the support points per kilometer as an approximation for road slope. The other mode
calculates road slope percentages with SRTM data and uses OSM for the rest of the input
parameters. Both applications are tested once with all roads included and once with only
the roads having a surface information. As described in Section 3.5, when all roads are

Table 3.2: Comparison of the Coefficient of Determination (R2) and Root Mean Squared Error
(RMSE) of the BM regions (Chile) for all links over 200 m, 400 m and 600 m, respectively. Reprinted
from [42].

Google OSM OSM + SRTM

Baseline All roads Roads with All roads Roads with

surface surface

> 200 m R2 [%] 66.66 67.90 61.31 67.73 61.00

RMSE [km/h] 12.74 13.29 13.60 12.92 13.12

> 400 m R2 [%] 72.09 73.00 67.16 73.48 67.55

RMSE [km/h] 11.79 12.49 12.83 11.69 11.95

> 600 m R2 [%] 73.64 75.12 70.04 75.66 70.53

RMSE [km/h] 11.48 12.00 12.13 11.08 11.28
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Table 3.3: Comparison of the R2 and RMSE of NNSW (Australia) for all links over 200 m, 400 m
and 600 m, respectively. Reprinted from [42].

Google OSM OSM + SRTM

Baseline All roads Roads with All roads Roads with

surface surface

> 200 m R2 [%] 51.10 57.67 61.73 57.56 61.56

RMSE [km/h] 16.83 16.81 15.92 16.45 15.77

> 400 m R2 [%] 57.68 64.90 69.04 65.12 69.28

RMSE [km/h] 16.00 15.62 14.51 14.92 13.99

> 600 m R2 [%] 58.35 66.22 70.29 66.50 70.57

RMSE [km/h] 16.02 15.35 14.21 14.58 13.61

included the ones without surface information are assigned a default surface depending on
the road class. Additionally, the influence of link length on the results is analyzed by testing
the effect of including first all roads longer than 200 m, then all roads longer than 400 m
and finally all roads longer than 600 m. A fixed speed profile that consists of the average
speed for each class of the GD-API speed data is calculated as a baseline.
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Figure 3.7: Boxplots of the distribution of the difference between estimated speeds and the GD-API
reference speed data per road class. Both OSM and SRTM are used as input data. Negative values
signify lower estimated speed values than reference speed values. Road classes: MW - motorway, TR
- trunk, PR - primary, SC - secondary, TE - tertiary, UC - unclassified. The blue diamonds in
the boxes symbolize the respective median, the blue lines the respective mean value. The lower limit
of each box is the 25th percentile (Q1), the upper limit the 75th percentile (Q3) so that the difference
builds the Interquartile Range (IQR). Whiskers extend to Q1 – 1.5 ∗ IQR and Q3 + 1.5 ∗ IQR. Any
points beyond the whiskers are outliers and are plotted as circles. Adapted from [42].
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Figure 3.8: Map of the difference between calculated speeds and the GD-API reference speed in the
BM regions in Chile (above) and in NNSW in Australia (below). Negative values (red and orange)
signify lower estimated speed values than reference speed values. Reprinted from [42].
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Table 3.2 shows the results for the BM regions for all tested modes. Both applications
of the Fuzzy-FSE perform better than the baseline. The performance increases with the
length of the links. The results of the Fuzzy-FSE for the BM regions are much better
when all roads are included, instead of only the roads with surface information. The
performance of the Fuzzy-FSE with the input from both OSM and SRTM data is approxi-
mately equal to the Fuzzy-FSE using only OSM data. The best result for the BM regions
(R2: 75.66 %, RMSE: 11.08 km/h) is achieved by taking both OSM and SRTM data as
input and only considering all roads longer than 600 m.

The results for NNSW in Australia are presented in Table 3.3. The Fuzzy-FSE performs
significantly better than the baseline with an R2 which is between 6 % to 12 % higher than
the one of the baseline. Similar to the results of the BM regions, the performance of both
Fuzzy-FSE modes is approximately the same. Contrary to the BM regions, the results are
better if only the roads with surface information are considered. Using both OSM and SRTM
data as input and only evaluating the links with surface information and over 600 m length
leads to the best result with an R2 of 70.57 % and a RMSE of 13.61 km/h.

Figure 3.7 shows the distribution of the difference between the calculated speed and the
reference speed per road class for both study regions. The speed values include all links
longer than 200 m and are calculated with both OSM and SRTM as input data. In NNSW the
differences between the calculated and the reference speed is generally higher than in the
BM regions. In the BM regions the classes motorway, tertiary and unclassified perform
best. The classes motorway and unclassified feature the best results in NNSW.

A map of the speed deviation with all roads over 200 m and both OSM and SRTM data
as input is illustrated in Figure 3.8. Generally, the geographic distribution of the speed
deviation is consistent in both study regions. However in the west of the study region in
Australia, some roads exist, that are both significantly under- and overestimated. Within the
urban centers, the Fuzzy-FSE mostly calculates higher speed values than the GD-API.

3.8 Discussion

Our developed Fuzzy-FSE is applied for both study regions in various modes. This allows for
a detailed analysis of the different results. In this section we discuss and interpret the results
shown in Section 3.7. We concentrate on the performance of the Fuzzy-FSE rather than
detailed regional analyses. In the discussion we focus on the performance of: the Fuzzy-FSE
versus the baseline, including only OSM data versus adding also SRTM data, analyzing all
roads or only the ones with surface information and evaluating different link lengths.

The calculated baseline represents the current state of art. As explained in Section 3.2, most
routing applications use fixed speed values per road class to calculate the cost factor travel
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time. The baseline we calculate is most likely more adapted to the regions characteristics
than other speed profiles as it uses the average speed of the GD-API, which is an information
most routing engines lack. In comparison to the baseline, the developed Fuzzy-FSE performs
better for both study regions. For NNSW, the improvement is much more significant than for
the BM regions. This may be caused from the differences in the datasets. According to the
range of the GD-API speed data (see Figure 3.5), the speed range in NNSW is considerably
larger than in the BM regions. The smaller the range of the speed values, the better it
can be approximated by an average speed value. In NNSW, the large speed range can be
estimated significantly better with the Fuzzy-FSE than with the baseline as it is able to
provide a continuous range of speed values. On the other hand, the overall performance of
all estimations presented in this study is better in the BM regions. This is also caused by the
large speed range in NNSW as even the Fuzzy-FSE cannot cover the entire speed range.

We analyze two modes to calculate speed which differ in the input data for road slope.
The first mode uses only OSM data, while the second mode adds SRTM data. Although
the R2 are more or less equal for both modes, the RMSE is smaller when SRTM data are
included. The road slope approximated by calculating support points per kilometer is less
accurate as a curvier road does not always signify higher slopes. Also, the vector shapes
in OSM may often be more straight than the actual road as contributors map imprecisely.
Still, the results show that accurate speed estimations can be calculated by the Fuzzy-FSE
using only OSM data with no additional data source.

The effect of road surface information in OSM is also analyzed. We compare the perfor-
mance of the Fuzzy-FSE with all roads to the results which include only the roads which
feature surface information in OSM. The results in both study regions are contrary. The
initial expectation was that including only the roads with surface information should be
better than considering all roads. This expectation is confirmed in NNSW. However in
the BM regions, taking all roads and thus including the default surface values per road
class (see Section 3.5), results in significantly better performance of the Fuzzy-FSE. We
assume that this might stem from a possible bad quality of the road surface data in the
BM regions. Considering the study region NNSW, the Fuzzy-FSE performs worse without
surface information but still are at least 6 % better than the baseline.

Furthermore, we evaluate the effect of link length on the performance of the Fuzzy-FSE. The
resulting speed values are less accurate for shorter links than for longer links. A large part of
this is due to the insecurities of the GD-API speed data which are described in Section 3.4.3.
Additionally, a false speed value has a smaller effect for a shorter road than for a longer
one as it is later multiplied by the distance to obtain travel time. Therefor it is valid to
only consider longer roads for an evaluation of the Fuzzy-FSE.

The Fuzzy-FSE estimates some road classes better than others. Comparing the ranges of
the speed values per road class (Figure 3.5) with the difference between calculated speeds
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and reference speeds (Figure 3.7), a correlation can be seen. The larger the range of speed
values, the larger is the distribution of the speed difference. Considering the real world, a
motorway features a mostly homogeneous speed, generally at least two lanes and little slope
variation. primary roads however represent a very inhomogeneous class with some roads
having two lanes and others that may not even be asphalted. The unclassified roads are
again more homogeneous with mostly unpaved roads where faster speeds are not possible.

The presented Fuzzy-FSE is designed for rural application. In urban and suburban regions
traffic, number of turns or local speed limits play a much bigger role for the speed estimation
than surface, link length, slope and road class. Especially traffic is a very big factor in the ur-
ban environment that cannot be estimated from OSM data, only. Traffic estimations require
data on road capacity and volume of vehicles per day or hour. Furthermore, traffic is a factor
that is highly variable in time with peak hours in the morning and evening and almost no
traffic at nighttime. Thus, the inclusion of traffic in the Fuzzy-FSE is not possible with the
available data and therefore not the objective of this study. Also, speed limits in urban regions
are not considered in the definition of the MFs speed. The Fuzzy-FSE is not able to differen-
tiate between urban and rural regions, because the OSM dataset contains no information on
population density. Therefore, estimated speed values in urban centers should be treated
with caution. Furthermore, roads in urban regions often already feature speed information as
in the OSM datasets the tag maxspeed is filled out more often in urban centers than in rural
regions. This reduces the need to calculate average speeds for the urban road infrastructure.

In comparison to our previous study [61] we analyze the speed values instead of travel
times. As it turns out, the evaluation of travel time provides little information about the
quality of the estimation. There are very few high values which make up the upper three
quarters of the range. This leads to misleading high R2-values. The FCS developed in [61]
performs worse or equal to the baseline, both analyzing speed values and travel times.

The GD-API data is applied as reference data for the Fuzzy-FSE. As mentioned in Sec-
tion 3.4.3 some inconsistencies exist between the Google Maps data and the OSM data.
The error statistics in Section 3.6 emphasize this issue. Some errors cannot be caught and
are treated as reference data which falsifies the results. Thus, the GD-API data is only
suitable to some extend as valid reference data. However, other reference datasets that
are readily available and feature worldwide coverage do not exist.

Finally, if the developed Fuzzy-FSE is supposed to be applied to a different region, its
limitations have to be considered. The Fuzzy-FSE does not consider traffic or other temporal
factors like visibility or wildlife activity at certain times of the day. Therefore, the calculated
speed values have to be considered as rough estimates rather than exact values. However,
better estimates would need more input data than just OSM data. As discussed above it is
also not applicable to urban regions as on the one hand the factors in urban environments
are different and cannot be taken from OSM data. On the other hand, different MFs speed
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would be needed for each road class inside the cities as speed limits are much lower than
outside the cities. Thus, the Fuzzy-FSE is applicable to regions where the road network
mainly consists of rural streets or as part of a tool that has a different calculation method for
urban average speed values. One major limitation stems from the nature of fuzzy control
and is the dependence of the Fuzzy-FSE on the expert knowledge. It is very sensitive
towards false knowledge but that can be detected by comparing the results to adequate
ground truth data. Generally, the Fuzzy-FSE is able to include more parameters but a FCS
does not scale well as the number of required rules rises approximately as the product
of number of categories of the input parameters.

In a later study we apply Machine Learning models to perform the same task as the
Fuzzy-FSE with the same data in the same study regions [86]. The Machine Learning
models train on the GD-API data to learn the estimation of average speed in rural road
networks from the parameters road class, surface, support points per kilometer, start- and
end coordinates, slope calculated from the SRTM in two different ways, sinuosity, road
length, and region. All applied Machine Learning Models find that the road class is the
most important feature, most use the surface and the support points per kilometer as sec-
ond or third important feature. This is comparable to the Fuzzy-FSE, as it bases on the
same input parameters. Almost all Machine Learning models outperform the Fuzzy-FSE,
the best model (Extra Trees) reaches an R2 of 80.43 % for all roads longer than 600 m
with a combined dataset for both study regions. However, it has to be considered that
Machine Learning Models require reference data to train, which in this case is from the
GD-API. This reference data is often difficult and expensive to obtain. In contrast, the
Fuzzy-FSE is based on expert knowledge and requires no other input data than OSM. If
enough reference data is available, the machine learning approach should be used as it
provides a more accurate estimation. But, if reference data is unavailable, the Fuzzy-FSE
provides a valuable and data-sparse alternative with acceptable accuracy.

3.9 Conclusion and Outlook

We develop a Fuzzy-FSE that employs multiple FCSs to estimate average speed from the
parameters road class, road slope, road surface and link length. These parameters can all be
extracted or calculated from the open source and worldwide available dataset OSM. The
inclusion of SRTM data to estimate road slope is tested but improves the results only slightly.
The GD-API data serves as reference data and as foundation for the baseline calculation.
Exemplary applications on case studies in the BioBío and Maule regions in Chile and north
New South Wales in Australia demonstrate the applicability in two distinct regions which
differ in their state of development and in their quality of OSM data. Average speed values are
estimated better compared to existing methods and compared to our previous study in [61].
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The developed Fuzzy-FSE offers the advantages of Fuzzy Control. It includes fuzzy in-
put parameters and a reasoning process of a human operator. In contrast to machine
learning approaches, training data is not needed as it is based on expert knowledge. How-
ever, it has to be considered that the ability of a FCS to perform well, highly depends
on its design. Thus, the Fuzzy-FSE is much more susceptible to false assumptions than
for example a machine learning model would be.

A major advantage of the developed Fuzzy-FSE is the worldwide transferability for the
average speed estimation in rural regions. When applying the Fuzzy-FSE to a different
region it has to be considered, that the Fuzzy-FSE is not designed to estimate average speed
in urban regions. A region that contains both rural and urban regions would need a different
methodology for the urban part of the region in addition to the Fuzzy-FSE. To estimate
average speed values for a different region, only the MFs speed have to be adapted using
expert knowledge about the new study region. Furthermore, the Fuzzy-FSE is able to esti-
mate average speed only with OSM data itself. This enables a very quick application without
much preprocessing. Both the fixed speed limit baseline and the Fuzzy-FSE perform best in
regions where the speed distribution per road class is relatively uniform. However, another
advantage of the Fuzzy-FSE is that it is still able to obtain good results even if the range of
speed values per road class is large. This is where, in comparison, fixed speed limits fail.

The findings of this study can be used in many different applications. Most routing en-
gines could include the Fuzzy-FSE rather than using fixed speed profiles for every road
class. Many studies on critical road infrastructure rely on commercial travel time data
as a cost factor in the road network. They could benefit very much from estimated
average speed values in rural regions.

In future research we aim at combining the Fuzzy-FSE developed in this study with Machine
Learning methods applied in Keller et al. [86]. Also, a least squares optimization could
find the optimal membership functions as well as the rule set to best fit the FCS to the
ground truth. The performance of these methods can then be compared to the results of the
Fuzzy-FSE. The Fuzzy-FSE itself is extendable as data from additional data sources could
introduce parameters with a temporal variability like visibility or traffic. Other methods to
approximate road slope like using the relationship between the driving speed and the turning
radius can also be implemented. Furthermore, it could be investigated if it is possible to adapt
the Fuzzy-FSE to urban circumstances with different MFs speed and possibly different input
parameters. The result would then consist of two different Fuzzy-FSE: one for urban and
the other for rural environments. Also, more analyses could be performed including different
study regions with different qualities of OSM data. Especially, including more densely
populated countries like Germany could be interesting. The application in more and different
study regions would enable a detailed sensitivity analysis towards the input parameters.
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As a result of this chapter, the Fuzzy-FSE enhances the OSM road network data with average
speed, and therefore also travel time, for each road segment. With this information, the
routability of the OSM data is improved significantly, as routing applications are now able to
calculate fastest paths. However the second challenge, identified in Section 2.5, of road classi-
fication errors in the OSM data, still prevails. The following chapter addresses this challenge.
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Towards Detecting,
Characterizing, and Rating of
Road Class Errors in
Crowd-sourced Road Network
Databases

4

This chapter includes material from the journal article

Johanna Guth, Sina Keller, Stefan Hinz, and Stephan Winter. “Towards detecting,
characterizing, and rating of road classification errors in crowd-sourced road net-
work databases”. In: Journal of Spatial Information Science 22 (2020), pp. 1–30.
It is cited as [87] and marked with a green line.

4.1 Introduction

Road networks worldwide contain an inherent hierarchy of road classes that is linked to
the movement needs of vehicles. High-capacity roads such as freeways and highways
form the highest level in the road classification hierarchy and are designed to satisfy the
highest traffic needs. They are followed by distributor or arterial roads with medium
traffic, and then collectors and local access routes, which are lowest in the hierarchy
and generally feature a low traffic volume [88].

Therefore, the class of a road is crucial in determining its purpose for the road network.
Particularly routing applications often rely on the road class for information about the road
network like maximum speed, capacity, or access limitations. Thus, errors in the road
class can hinder routing applications and may lead to detours because of false assumptions
about travel time or access limitations. These errors may also become obstructive for
hierarchical route planning which uses the level of detail appropriate for the task to solve
the task with the least amount of effort [89]. Finer levels of detail are not considered [89].
Hierarchical routing algorithms can result in large detours when there is a classification
error in a high-level road. Furthermore, as high-level roads are generally more important
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and sparser than lower-ranked roads, class allocation errors for high-level roads have a
larger impact on route planning. The frequency of classification errors in a road network
is dependent on the quality of the underlying road data.

As established in Section 2.4, the OSM road network is susceptible to road classification
errors because of its crowd-sourced nature. These frequent road classification errors in OSM
are identified as a major challenge for routing applications, especially if only a high-level
road network is considered for routing (see Section 2.5).

This study aims at finding potential classification errors automatically. Human experts
can then check if the detected potential error is an error and, if necessary, correct it. The
presented methodology is based on an extension of the definition by Liu [90]. He states that
in a hierarchical road network, one can observe that major roads form a network themselves.
This subnetwork of major roads is more sparse than the complete network, and while it may
not form a connected network in a city, it may form a connected major road network in a
state or country [90]. We define a subnetwork as a union of all roads with a level equal or
higher to the subnetwork’s level. As a result, multiple subnetworks for one road network
are obtained with increasing level of detail, the more levels are included. We expand the
assumption of Liu [90] and suggest that each subnetwork should (a) be connected and (b)
have no gap of the sort that for any pair of origin and destination (OD) in a subnetwork, the
shortest route in the subnetwork is significantly longer than in the complete network.

Under these assumptions, we formulate our hypothesis: Both disconnected parts and gaps
of subnetworks in the OSM road network are indicators for road classification errors if the
disconnection or the gap can be resolved in the complete network. In order to test the
hypothesis, we formulate two main research questions:

1. Is an approach by searching for disconnected parts or gaps in subnetworks able to find
potential road classification errors? Is this approach able to provide information about
the likelihood that the result is an error?

2. Which parameters (such as lengths of detours on a subnetwork compared to the
complete network) or combination of parameters indicate gaps in road networks best?

To answer the first research questions, we develop a novel approach to detect road classifica-
tion errors in OSM by searching independently for (a) disconnected parts and (b) gaps in
subnetworks. It demonstrates – against expectations – that the Error Search at disconnected
parts leads to fewer results than at gaps. The Error Search at gaps in subnetworks identifies
different parameters that indicate gaps in road networks and combines them in a rating
system to obtain an error probability. An efficient implementation of the Error Search is
published on GitHub [91]. To answer the second research question, we provide a detailed
analysis of parameters and combination of parameters that indicate gaps and their influence
on the error probability. We test our Error Search with an exemplary case study on the
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OSM dataset of NSW in Australia. A reference dataset of identified OSM classification errors
compared to authoritative PSMA data is also published on GitHub [91].

We argue that, instead of finding all classification errors, the presented Error Search
only finds the most important classification errors for routing applications and aims to
improve the navigability. Identified errors have to be checked by a human expert because
our assumption of connected subnetworks without gaps is an ideal that is not met in
resource-strapped road infrastructures in all cases. Furthermore, this approach is not
able to identify which errors cannot be detected by this method. The errors that can be
found by the Error Search can cause routing applications to take large detours because
they might imply that some road classes cannot be passed with all vehicles. Furthermore,
classification errors at gaps and disconnected network components can lead to wrong travel
time calculations because of the assumed low road class.

In this chapter, we first provide a short overview of the related work on error detection
in OSM data in Section 4.2. In Section 4.3, we elaborate on the theoretical foundation
of the presented methodology and identify parameters that we suspect to indicate gaps.
The Error Search contains two main parts, which are described in Section 4.4. First, the
search for disconnected network components (Section 4.4.1) is presented, and then the
different steps of the implementation for the Error Search at gaps (Section 4.4.2) are
described. The collection of the reference data set is described in Section 4.4.3. The
results are presented in Section 4.5 and discussed in detail in Section 4.6. Finally, a
conclusion and an outlook are given in Section 4.7.

4.2 Related Work

In Section 2.4 the related work on the quality of the OSM road network is analyzed in
detail. As a result, the challenge of the often low attribute accuracy, especially regard-
ing the road classification, is identified. In this section the related work regarding error
detection in the OSM road network is presented (see Section 4.2.1). Then, the gaps
of existing approaches are summarized, and the novelty of the approach presented in
this study is highlighted (see Section 4.2.2).

4.2.1 Detection of Errors in the OSM Road Network

To reduce the number of errors in OSM, tools have been developed by the OSM community
that help the user while mapping OSM data to find the right tags. OSMRec [92] is an applica-
tion that recommends categories such as road or building for spatial entities in OSM based on
a Support Vector Machine classification. OSMantic is a similar tag recommender system that
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relies on relationships between tags based on semantic similarity [93]. Undocumented keys
can be considered errors because they are missing a definition. To reduce the number of un-
documented keys, Majic et al. [94] propose an unsupervised approach to identify equivalent
documented keys to the used undocumented keys. They evaluate semantic similarity of keys
based on the extensional definitions through their values, co-occurring keys, and geometries
of the features they annotate. In a further study, they concentrate on the discovery of bridges
by topological relations [95]. This approach enables detecting errors in the bridge tag, as a
bridge in OSM must be defined with the tag bridge=yes. An algorithmic approach to error
detection flags errors in names and speed limits is presented in [96] and bases on the com-
parison of two data sets. Londögård and Lindblad [97] employ deep learning to find spelling
errors in tags and correct them. Sehra et al. [12] use a number of basic topological error
detection methods available in the desktop GIS Openjump. They find many basic topological
errors and conclude that the OSM data in the metropolitan area in Punjab (India) needs
preprocessing before using it for navigation. These basic methods include checking mini-
mum segment length, identifying duplicate lines, or finding nodes that almost touch a line.
Keller [18] proposes the software ReMAPTCHA, a map-based anti-spam method that can
correct almost connections in OSM. However, it is not able to detect these almost connections.

Few studies have addressed the issue of road classification errors in the OSM road net-
work. Within this field, two general approaches can be distinguished: An approach by
machine learning and a rule-based approach.

In their master thesis, Stypa and Sandberg [98] use machine learning techniques to classify
roads in OSM with intrinsic methods. The authors identify major challenges due to the
incompleteness of OSM. To address these challenges, they use rule-based data imputation,
for example, for the tags oneway, maxspeed, and lanes. Furthermore, they employ feature
engineering and create synthetic attributes like node count, element length, and mean
density. They achieve an overall accuracy of around 40 % with the original dataset and
around 79 % using their data imputation and feature engineering methods. However, they
test their model on a small dataset in Sweden and do not validate their model against
reference data. Similarly, machine learning has been used to learn the road class in OSM
networks in a series of studies [99, 100, 101]. The authors first develop a representation
of the street network, which combines primal and dual graphs, called multi-granular street
network representation [99]. Then, they propose an intrinsic machine learning model
that learns the geometrical and topological characteristics of different semantic classes
of streets [100]. They test the data set with the London OSM street network and con-
clude that the model’s accuracy varies with the road class because some road classes are
geometrically and topologically similar. In a similar study, the model of [101] achieves
precision and recall values of 68 % and 65 %, respectively.

Rule-based approaches to error detection have mostly been proposed by the OSM com-
munity. Several tools exist to find various types of errors, such as Keep Right, Osmose,
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JOSM/Validator, OSM Inspector, Maproulette, and many others [39]. The error types they
detect range from the validity of spatial objects like non-closed areas to topology related
issues like dead-ended one-ways and attribute incompleteness like POIs without names.
Osmose [102] includes two issue types for possible road classification errors: the issue
sudden highway type change and broken highway continuity. The issue sudden highway type
change is detected when a road connects directly to a road with a much lower level like
a primary road connecting with a residential road. The issue broken highway continuity is
raised when the classification of a highway is not consistent along a path, for example, if
there is a secondary road that connects to a residential road and again to a secondary road.
However, it is only detected if the misclassified part is shorter than 1000 m and if at least
one end of the high-level road does not connect to another road besides the low-level road.
These issues are presented together on a map and can be corrected by contributors.

4.2.2 Gaps in Existing Approaches

In summary, existing machine learning approaches such as [100, 101, 98] either need
sufficient reference data or suffer from the incompleteness of OSM attributes. The presented
studies classify roads with passable accuracy for many applications but create many false
positives in the process. These false positives then have to be checked by humans manually,
which is time-consuming. Furthermore, the presented machine learning approaches such
as [100] are good for low-level road classes but worse for higher-level road classes, which
are more important for routing. Rule-based approaches, like those in the Osmosis tool, can
detect very specific classification issues. However, due to static rules, Osmosis detects only
errors that are specifically described in the rule. Slight variations of the same type of error
are not discovered. Also, it produces a large number of false positives. Additionally, the
presented machine learning and rule-based methods cannot provide the error probability
or select the most important errors for navigability.

Compared to existing approaches, the Error Search presented in this paper aims at finding
only misclassifications that can cause large detours for routing algorithms. Using the detours,
it can provide the user with an importance-based ranking of the errors. This reduces
the number of false positives the user has to check to obtain a network with improved
navigability. Furthermore, it can prioritize the search for classification errors in high-level
road classes that are more important for routing. Because the presented approach does
not rely on static rules but dynamic thresholds, it does not suffer from the limitations of a
rule-based approach.
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4.3 Theoretical Background of the Error Search

A road network can be formally represented as a graph. G is a non-empty set of n nodes
N connected by a set of m links L. The elements of N ≡ n1, n2, ..., nn and the elements
of L ≡ l1, l2, ..., lm. In a graph, each link is defined by two nodes i and j and denoted
as lij. An alternating progression of adjacent nodes with no node visited more than once
is called a path [103]. For this study, the graph G is an undirected graph. We use an
undirected graph to avoid issues with the oneway tag in OSM.

The OSM road network graph is a multi-class graph with each link lij belonging to one
of the classes in Table 2.1. Values of the tag highway beside the road classes and their
link roads in Table 2.1 are not included in this study. For this study, OSM road classes are
also categorized into different hierarchy levels (Table 2.1, right column). The levels range
from L1 (top-level) to L7 (bottom level). Link roads are categorized into the respective
level (e.g., motorway_link in L1 and primary_link in L2). We combine the classes motorway
and trunk in one hierarchy level because in our study region in NSW in Australia, few
motorways exist. The classification might have to be adapted for different study regions
with a more dense motorway network. A road network graph may contain a union of
multiple levels: A graph that contains, for example, motorways (L1), trunks (L1), and
primary roads (L2) contains the union of L1 and L2.

Accordingly, we will refer to seven networks in total: Six subnetworks and the complete
road network. The most sparse subnetwork S1 consists only of L1 (motorway, trunk). The
next subnetwork, S2, contains all L1 roads (motorway, trunk) and all L2 roads (primary). It
is, therefore, less sparse than S1. The subnetworks S3 to S6 are formed correspondingly, as
unions of all roads with a level smaller or equal to the subnetwork’s level. The complete
road network graph is formed as the union of all levels, L1 ∪ . . . ∪ L7, equivalent to S7.
These networks are illustrated in Figure 4.1 for a part of the study region in NSW. In each
subnetwork (S1-S6) of the OSM road network, we search for (a) disconnected network
components and (b) gaps to find potential road classification errors.

Focusing first on the disconnected components, we search for disconnected network com-
ponents in all subnetworks, respectively. Disconnected components are individual graphs
that are not connected by any link with each other. Examples of disconnected network
components are visualized in Figure 4.2. Often, a road network graph of a subnetwork
in OSM consists of one large connected graph with many vertices and links that can be
considered the main road network. Additionally, it may contain disconnected components
that are not connected by any link to the main road network.

With the assumption that subnetworks are typically connected, disconnected network com-
ponents can indicate four types of errors: Connection error, Self error, Disconnected, and
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Figure 4.1: An example of subnetworks in the OSM road network in New South Wales (Australia).
Reprinted from [87].

Border error. If a disconnected network component is a Connection error, the connec-
tion(s) to the disconnected network component is wrongly classified (see Figure 4.2 for
an example). Self error is assigned if the roads of the disconnected network component
itself are in the wrong class (see Figure 4.2 for an example). Network components that
are disconnected both on the subnetwork and on the complete network are called Dis-
connected. These disconnections might happen because of missing roads in OSM but also

Figure 4.2: Examples of two types of errors in disconnected network components. In (a), the
red network component itself is the wrong class. In (b), the green disconnected networks are not
connected to subnetwork S3 because the connection is the wrong class. Reprinted from [87].
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because of real-world disconnections like islands. Due to cuts at the region borders, dis-
connected network components can be generated, which are connected in the bordering
region. These network components are called Border error.

Secondly, regarding the gaps, we search for gaps in the otherwise connected OSM road
network graph. The gap search is the more challenging task because the identification
of gaps is an unsolved problem. The challenge starts with a clear definition of a gap,
which turns out to be context-dependent. We identify a gap between an origin O and a
destination D in any connected subnetwork if the shortest path from O to D is substantially
longer than on the complete network. The exact limit of how much longer it has to be
cannot be determined universally because it varies by many factors such as the level of the
subnetwork (S1-S6), the geography of the region, or the population density. Therefore,
indicators have to be identified that point at possible gaps.

A combination of an origin O and a destination D suspected to be a gap is herein called a
gap candidate. Three distance measures are identified to find gap candidates: the shortest
path distance on the subnetwork from O to D (Pd), the Euclidean distance from O to D (Ed),
and the shortest path distance on the complete network from O to D (cPd). We analyze
five different parameters (G1-G5) which might indicate a gap:

• G1 = Pd/Ed.

• G2 = Pd – Ed.

• G3 = number of destinations on the same spot (only gap candidates where G1 is
highest per origin).

• G4 = Pd/cPd.

• G5 = Pd – cPd.

We are aware that some correlations may exist between the parameters G1 and G2,
as well as G4 and G5. Figure 4.3 is an exemplary road network that helps to visual-
ize these parameters. Calculations of G1, G2, G4, and G5 in the exemplary road net-
work in Figure 4.3 are given in Table 4.1.

The parameter G3 is calculated by first selecting only the gap candidates where G1 is
highest per origin. As a result, we obtain only gap candidates with distinct origins, but
the destinations can still intersect. G3 is calculated as the number of gap candidates
that have the same destination. This calculation is based on the observation that the
more gap candidates with a high G1 per origin map to the same destination, the more
likely this destination is located at a gap.

We distinguish the errors at gap candidates between No error, Near error, and Error. Near
error is assigned if either O or D is not the start or end of the road connection on the
complete network. If both O or D are not the start or end of the road connection on the
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Figure 4.3: Exemplary road network with nodes 1-14 (gray) and links (thick black lines) of the
subnetwork S3. The complete network is represented by dotted thin black lines. The Euclidean
distance is shown exemplary for four gap candidates. The relevant links are labeled with their cost
factor (blue). The figure is not drawn to scale. Reprinted from [87].

Table 4.1: Exemplary G1, G2, G4 and G5 calculations for gap candidates in Figure 4.3. Reprinted
from [87].

Gap candidate Ed Pd cPd G1 G2 G4 G5 Is gap?

3-11 15 21 20 1.4 6 1.1 1 No

8-9 4 57 7 14.3 53 8.1 50 Yes

10-11 5 31 31 6.2 26 1 0 No

10-16 26 41 33 1.6 15 1.2 8 No

12-13 2 81 2 40.5 79 40.5 79 Yes

complete network, No error is assigned. Errors are detected if both O and D are the start
or end of the road connection on the complete network.

Multiple gap candidates often indicate a single class error as multiple OD pairs near a gap
feature high ratings. Also, multiple connection possibilities for a gap might exist leading to
multiple gap candidates labeled Error or Near error. We assign the same error id for every
gap candidate that indicates the same class error. As a result, we obtain a count of Unique
errors where all unique error ids are counted.
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4.4 Implementation of the Error Search

As described in Section 4.3, the developed Error Search consists of two independent parts:
(a) the search for disconnected network components and (b) the gap search. The search
for disconnected network components is presented in Section 4.4.1. Part (b) of the Error
Search is the gap search presented in Section 4.4.2. The results of both parts are compared
against reference data and are described in Section 4.4.3. The implementation is realized in
a PostgreSQL (version 11.5) database with PostGIS (version 2.5) and pgRouting (version
2.6) extensions. We apply the command-line tool osm2pgrouting (version 2.3) [104] to
import the OSM road network into a pgRouting graph in the PostGIS database.

4.4.1 Search for Disconnected Network Components

Disconnected network components are identified by using a depth-first search algorithm.
This algorithm begins at a certain node and notes all connected vertices along each branch
before backtracking such that each node in a connected network is visited. Then, it selects
a node not yet visited and does the same with this network component until all nodes
in the network have been visited. We run this algorithm on each subnetwork to identify
disconnected network components for every subnetwork. As described in Section 4.3, these
components likely indicate errors in the road classification. The identified disconnected
network components can be checked and corrected by a human user if they indicate errors.

4.4.2 Gap Search

This section describes the different steps of implementing the gap search, also illustrated
in Figure 4.4. To prepare the networks for the gap search, meshes in all subnetworks
are identified in Section 4.4.2. In the core module, the gap search is performed for each
identified mesh (Section 4.4.2), and finally, a rating system is employed that rates gap
candidates according to their likelihood of being an error (Section 4.4.2).

Mesh Identification

In order to find gaps in the road network, the shortest paths have to be calculated between
OD pairs. All pairs shortest paths are computationally expensive, especially in large networks
such as the one for the state of NSW in Australia. However, to solve the problem of gap
identification, only the shortest paths between specific OD pairs are required. To find these
specific OD pairs, the theory of planar graphs has been considered.
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Figure 4.4: Overview of the implementation for the gap search. Reprinted from [87].

The planar representation of a graph divides the pane into regions, called faces. One
of these faces – the exterior one – is unbound and is called the infinite face. Faces are
the maximal open, two-dimensional regions that are not further divided into sub-areas.
Each face is bounded by a closed walk we herein call a mesh. Every link of the net-
work belongs to one or at most two meshes, one mesh in each direction. Figure 4.5 is
an exemplary planar representation of a graph.

In this example, five faces exist: the inner faces f1-f4 and the infinite outer face f5. The face
f1 with its corresponding mesh m1 (highlighted in blue in Figure 4.5) and the face f3 with its
corresponding m3 (highlighted in orange in Figure 4.5) are illustrated exemplarily. The link
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Figure 4.5: Planar graph with nodes 1-20 (gray) and links between nodes (black). The graph has
five faces, the inner faces f1-f4 and the infinite outer face f5. The faces are bounded by meshes.
Two meshes are illustrated exemplarily: the mesh m1 is drawn with thick blue lines, the mesh m3
is illustrated with thick orange lines. For illustration purposes, m2, m4 and m5 are not colored.
Reprinted from [87].

l4,5 belongs to two meshes: In direction 5-4 it belongs to m1, and in direction 4-5, it belongs
to m2. Similarly, the link l9,10 belongs to m3 in both the direction 9-10 and in direction 10-9.

As stated above, to solve the problem of gap identification, only the shortest path between
specific OD pairs, namely between OD pairs, where O and D are located on the same mesh,
are required. To illustrate this, Figure 4.5 can be considered. A gap might exist between
nodes n16 and n19 or any other pair of points corresponding to the mesh m3 because a
connection is possible. However, gaps between nodes located on different meshes, for
example, nodes n16 and n4, are already covered by calculating the shortest path between
nodes n16 and n18 or n19, both located in the same mesh as node n16. Thus, instead
of calculating all pairs of shortest paths, we reduce computing time radically by only
calculating the shortest paths between OD pairs located on the same mesh.

The road network itself is not a planar graph because links like bridges or tunnels exist
which cross other links without a node at their intersection. Thus, to create a planar
representation of the road network, we create artificial nodes where two links intersect.
Then, meshes in the road network can be identified, reducing computing time for the
gap search. We can now limit the search for gaps to all pairs of shortest paths within
one mesh instead of all possible OD pairs in the entire graph. Scenarios exist where gaps
occur across meshes, for example, if a bridge over a road is missing. This special case
can not be detected by this methodology. However, the radical reduction of computa-
tion time justifies the discharge of these rare scenarios.
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With the planar representation of the road network graph, an algorithm to find meshes
is then implemented based on maze solving algorithms. Algorithm 1 finds meshes by
following a link from a starting node to the counterclockwise next link and continues to
do so until the start node is reached again. For illustration we show our implementation
of Algorithm 1 in PL/Python procedural language in a PostGIS database with a road network
graph created by the pgRouting extension (see [91]).

Algorithm 1 Finds all meshes in a planar road network graph. Reprinted from [87].

node_id list = all node ids in road network graph
mesh id = 0
for each node id in node id list do

link id list = all links with start = node id or end = node id
for each link id in link id list that has mesh id = NaN in this direction do

set mesh id of link with link id = mesh id
next node = id of the node at the other end of the link link id
link = link id
while next node 6= node id do

next link = the id of the counterclockwise from link next link where the source
or the target is next node
link = next link
set mesh id of link = mesh id
next node = node id of the next node following the trail of link

end while
mesh id = mesh id + 1

end for
end for

Core Module of the Gap Search

After the identification of meshes, the gap search begins in the core module for each
subnetwork individually. Although the meshes are identified for the network with artificial
nodes, the gap search uses the original road network but calculates the shortest paths only
for OD pairs located on the same mesh (see Section 4.4.2). First, the shortest paths on the
respective subnetwork from all nodes of a mesh to all nodes of a mesh are calculated. Then,
the Euclidean distance is calculated for these OD pairs. This is done for all meshes in a
subnetwork. The parameters G1 and G2 are calculated from the resulting path distance and
Euclidean distance. Figure 4.5 can be considered an example of the first step of the gap
search in the core module. In this example, the methodology will calculate the shortest paths
between all nodes in m1, m2, m3, m4, and m5, respectively. Within m3 all shortest path
combinations and the Euclidean distance between all nodes five to nineteen are calculated.
In this example, both resulting parameters G1 and G2 are highest for the OD pair 17-6.
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Table 4.2: Effect of filtering on the OD pair dataset for New South Wales (Australia). Reprinted
from [87].

S2 S3 S4 S5 Total

OD pairs (million) 5.7 7.6 7.9 6.4 27.7

OD pairs after filter 1 15275 39584 71762 78793 205414

OD pairs after filter 2 803 5906 15482 19046 41237

G1 threshold 6.39 4.09 4.21 5.07 4.56

G2 threshold [m] 757 852 645 565 645

Even though all-pairs shortest paths only have to be calculated within meshes on subnet-
works, this still results in a high number of OD pairs. Shortest path calculations on the
complete network are computationally more expensive than on subnetworks because of the
higher level of detail. Thus, the number of OD pairs for the shortest path calculation on the
complete network has to be reduced. Most of the resulting OD pairs are not gap candidates.
The parameter that indicates gap candidates best at this stage is G1 such that OD pairs with
a low G1 can probably be filtered out (for a detailed discussion, see Section 4.6).

We employ two filters on the data. In a first filter, for each start point Sn, only the OD
pair with the highest value of G1 is kept. However, many OD pairs still exist, which are
not gap candidates as many start points are not at gaps. The second filter reduces the
data such that only those OD pairs above the 70 % quantile of G1 and above the 25 %
quantile of G2 are kept. These values are chosen, so that much unnecessary information
is filtered out, and at the same time, possible gap candidates are kept. The selection and
the impact of the filters on the Error Search is also discussed in Section 4.6. Table 4.2
provides values for the number of OD pairs before and after filtering in the study region
and exact values for the 70 % quantile of G1 and 25 % quantile of G2.

The parameter G3, the number of endpoints of gap candidates on one spot, is calculated
after the first and before the second filter. If G3 is calculated before the first filter, it
contains no information because the data set contains all possible OD pairs, so G3 is the
same for every point in one mesh. If G3 is calculated after the second filter, the number
of endpoints on one spot is much lower, and much of the information which makes G3
valuable for gap identification has been filtered out. Because of this, G3 is calculated
after filtering only the OD pairs with the highest G1 per start point and before deleting
all OD pairs under a certain threshold of G1 and G2.

Finally, the path distance on the complete network is calculated only for the filtered OD
pairs. The parameters G4 and G5 result from the relation of the path distance on the
complete road network to the path distance on the subnetwork. The workflow for the
gap search is also illustrated in Figure 4.4 in the gray box.
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Rating System

We employ a rating system to rate the parameters G1, G2, G3, G4, and G5. The rating
system assigns points from 1 to 10 to the parameters mentioned above.

The parameter G3 contains discrete numbers with many low values and very few high
values. To assign points, the distribution of the values has to be evaluated, and points
are assigned according to how high the value is. The point rating is constructed with
expert knowledge (for a more detailed evaluation, see Section 4.6) and is given in Ta-
ble 4.3. It might have to be adapted for different study regions. A classification of the
sorted data by deciles as for the parameters G1, G2, G4, and G5 (see below) is not
applicable for G3 because of the discrete values.

Table 4.3: Exemplary parameter rating for G3. Reprinted from [87].

G3R 1 2 3 4 5 6 7 8 9 10

G3 1 2 3 4 5-6 7-8 9-10 11-12 13-15 > 15

We calculate ten deciles for each parameter G1, G2, G4, and G5 (see Table 4.4), which
divide the sorted data into ten equal parts so that each decile represents one-tenth of
the data. Then, each value is assigned the point rating of the decile is located in. For
example, if a value of G1 lies between the 0 % and 10 % quantile, the point rating 1 is
assigned. Ten points are assigned if the value is above 90 %.

Table 4.4: Deciles for parameter rating for GXR where X = 1, 2, 4, 5. Reprinted from [87].

GXR 1 2 3 4 5 6 7 8 9 10

% < 10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

The resulting point ratings are noted as G1R for all G1 ratings, and similarly for G2, G3,
G4, and G5 as G2R, G3R, G4R, and G5R (see Table 4.3 and Table 4.4). The combination of
point ratings serves as an indicator of how likely a gap candidate is a classification error.
In this study, both the importance of each point rating individually and the influence of
different combinations of point ratings on the result are evaluated.

4.4.3 Reference Data

We employ the authoritative PSMA Street Network data [105] as reference data, espe-
cially the road network data of the state of NSW. This dataset is also chosen because
it is independent of the OSM road network data: Unlike other official road data, PSMA
data has not been integrated into the OSM database.
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The description of the road classes in the PSMA dataset can be found in [105]. The
road classes in the PSMA dataset do not match the OSM road classes. For example, sec-
ondary roads in OSM are mostly (around 60 %) classified as Sub-arterial roads in PSMA.
However, many cases also exist where they are categorized as Arterial roads or Collec-
tor roads. Similarly, Sub-arterial roads in PSMA include OSM primary, secondary and
tertiary roads. Therefore, a direct comparison of road classes to detect errors is not pos-
sible. We manually check both the resulting disconnected network components and gap
candidates and decide if there is a classification error.

To facilitate the generation of reference data, we aim at applying some general rules. These
rules are based on the assumption that even though the classification schemes do not match,
the continuity of a road class in the PSMA dataset still contains some useful information.
If both O and D of a gap candidate are located on roads with the same PSMA road class,
the connection must be a road of the same or higher PSMA class to be an error. In this
case, if the connection is a lower PSMA road class, the gap candidate is not marked as an
error. Similarly, suppose O and D are located on roads with different PSMA road classes.
In that case, the gap is an error if the connection is a road of the same or higher PSMA
road class as the lower one of both PSMA road classes of O and D. This is illustrated
exemplarily in Figure 4.6. However, in some cases, these rules do not apply because of
the incompatible classification schemes. Then, we decided with expert knowledge and
by comparison with additional data sources like Google Maps.

Since it is not feasible to analyze every gap candidate manually, all gap candidates with
high ratings are checked. Furthermore, many gap candidates with medium ratings and

Figure 4.6: Examples of the collection of reference error data for gap candidates. Note that a gap
candidate is always illustrated as two points, an origin and a destination. Reprinted from [87].
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few gap candidates with low ratings are checked. The lower the ratings, the fewer Errors
are found, which supports this methodology (see Section 4.6).

4.5 Results

In this section, we show the results of applying the presented Error Search on the OSM
road network for the study region of NSW. The region is chosen because it is large enough
so that all subnetworks form a network themselves and because of the availability of the
PSMA data as ground truth. Generally, the population density is much higher on the coast
in the east of the region than in the Outback in the west.

In this chapter, the results of applying the presented Error Search in the study region
in NSW are presented. First, we present the results of the Error Search at disconnected
components, then we focus on the results of the gap search. For the gap search, we
calculate the presented point ratings and present the results; first each of the point ratings
separately, then in combination with each other. The error types per subnetwork for all
disconnected network components and gap candidates are presented in Table 4.5. We find
1991 disconnected network components on all levels, with 94.48 % of them in subnetwork
S5. Most disconnected network components are Self errors (95.13 %), and few are Connection
errors (3.37 %). Subnetworks S1-S4 feature a total of 110 disconnected network components
with 22.73 % Connection errors and 59.09 % Self errors.

In total, 11.06 % of all analyzed gap candidates are Errors, 8.47 % are Near errors. The lower
the level, the more errors occur: 64.10 % of all Unique errors are in subnetwork S5, and only
1.80 % of all Unique errors are in subnetwork S2. No Errors or Near errors are found in subnet-
work S1. In subnetworks S1-S4, there are many more unique errors (279) than disconnected

Table 4.5: Error types per subnetwork both at disconnected components and at gap candidates.
Reprinted from [87].

Disconnected components Gap candidates

Con.
error

Self
error

Dis-
con.

Border
error

Error
Near
error

Unique
error

No
error

Subnetwork S1 0 3 0 1 0 0 0 151

Subnetwork S2 0 2 1 0 14 13 14 362

Subnetwork S3 13 12 0 4 66 110 51 1857

Subnetwork S4 22 48 0 4 304 444 214 3362

Subnetwork S5 32 1829 17 3 871 394 498 3514

Sum 67 1894 18 12 1255 961 777 9131
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network components (110). 69.23 % of all Connection errors in subnetwork S3 and 27.27 %
of all Connection errors in subnetwork S4 are also identified by gap candidates. Figure 4.7
shows a map of all detected Errors and Near errors in gap candidates per subnetwork in NSW.

Figure 4.8 shows the distribution of the error types over the ratings 1-10 for all analyzed gap
candidates. Most Errors and Near errors feature a high G1R and G4R. On the other hand,
G1R and G4R values indicate No error more often than Error or Near error. Regarding G2R

and G3R, Errors and Near errors are distributed approximately uniformly over the ratings
1-10, with slightly more Errors for the higher ratings of G2R. G3R is the only point rating
that has many No errors in the lower ratings, especially for the rating 1 (3603 No errors).
G5R features more Errors and Near errors for medium and high ratings than for low ratings.
Also, the number of No errors is high for high ratings for G5R.

Figure 4.7: All Errors and Near errors in New South Wales (Australia) per subnetwork. Reprinted
from [87].

4.5 Results 69



In Figure 4.9, G1R is combined with the other point ratings, respectively. The highest
number of Errors in the high ratings can be observed by adding G1R + G4R. There, 88 %
of all Errors and 41 % of No errors have a rating higher or equal to 16. This results in
a rate of 88/41 = 2.14 of Errors versus No errors for all ratings higher or equal to 16.
The y-axis on the right of Figure 4.9 shows the rate of all Errors and No errors equal
or higher to the current rating. Note that the scale of the rate is different in each plot
in Figure 4.9. The sum of G1R + G2R and G1R + G5R has fewer Errors and a lower rate
in high ratings than G1R + G4R. However, G1R + G5R has slightly higher ratings, and
more Errors in high ratings than G1R + G2R. G1R + G3R has a low absolute number of
Errors in high ratings, but at the same time also a low absolute number of No errors in
high ratings. This leads to a high rate of 2.65 for all ratings higher or equal to 12, where
78 % of all Errors and 29 % of all No errors are analyzed.

Figure 4.10 shows different combinations of point ratings. In Figure 4.10 (a), the point
ratings G1R, G3R, and G4R are added up, resulting in a maximum of 30. Figure 4.10
(b) shows the combination of the point ratings G1R, G3R, G4R, and G5R, ranging from
0 to 40. The absolute numbers of gap candidates per rating are displayed in the upper plots
of Figure 4.10. The middle plots illustrate the percentage of Errors, Near errors, No errors,
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Figure 4.8: Error types per rating for all point ratings. Reprinted from [87].
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Figure 4.9: Combinations of G1R with all other point ratings, respectively. The y-axis on the right
displays the rate of all Errors versus No errors equal or higher to the current rating. Note the different
scale of the rate in the second plot. Reprinted from [87].

and NaN per rating. NaN signifies gap candidates where it is unknown if they are Errors,
Near errors, or No errors. The lower plots of Figure 4.10 show the cumulative percentage
of different values per rating, beginning with high ratings.

For the combination G1R, G3R and G4R, 91 % of all gap candidates with rating 30 are Errors
or Near errors. This declines to 83 % for 29, 71 % for 28 and 63 % for 27. The trend continues
until the percentage of Errors and Near errors is next to zero for ratings lower or equal than
18. Furthermore, 75 % of all data has a rating lower or equal to 18. Simultaneously, 94 % of
all unique errors have a rating above or equal to 18. 50 % of all unique errors can be found
by searching 1.73 % of all data. The combination G1R, G3R, G4R, and G5R shows the same
trend, but slightly more data has to be searched to obtain the same amount of unique errors.
To obtain 50 % of all unique errors, 1.99 % of all data has to be searched in the combination
G1R, G3R, G4R, and G5R. Figure 4.11 compares all presented combinations concerning the
percentage of Errors and unique errors found against the percentage of all data searched.
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Figure 4.11: Percentage of Errors and Unique errors found in respect to the percentage of all data
searched for different combinations of ratings. Reprinted from [87].

4.6 Analysis and Discussion

In this section, we discuss and interpret the results shown in Section 4.5. We focus on the
applied filters, the distribution of errors over the network levels and their spatial distribution
in Section 4.6.1. In Section 4.6.2, we evaluate the parameters and the performance of
different parameter combinations. Finally, we discuss the research hypothesis, the limitations
and sources of errors, and the transferability to other regions in Section 4.6.3.

4.6.1 Analysis and Discussion of Resulting Error Types

Two filters are applied (see Section 4.4.2) to reduce the number of gap candidates prior
to the path calculations on the complete network. The parameters G1, G2, and G3, can be
calculated before the path calculations on the complete network. As shown in Figure 4.8,
the point ratings G1R, which results out of G1, is the most significant for the Error Search
because Errors generally have a high G1R. The lower the rating, the fewer Errors are
found. No errors are found in the ratings 1, 2, or 3 of G1R. It can be assumed that if
No errors occur in the lowest ratings of G1R, No errors will appear with even lower G1
values that are filtered out with the second filter. Furthermore, the first filter only keeps
the gap candidate with the highest G1 per start node. This filter can be justified with the
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same argument that a high G1 has a higher probability for an Error. However, this filter
also discharges Errors in some rare cases. By analyzing the highest G1 values of the gap
candidates discharged by this filter, we find that for discharged Errors there are in almost
all cases Near errors that are found by the methodology. The second filter also removes all
gap candidates below the 25 % quantile of G2. In Figure 4.8, it seems that G2R and with
that G2 are insignificant for error detection. However, in the definition of a gap, we state
that the detour has to be significant for a gap candidate to be considered a gap. Table 4.2
shows that the 25 % quantile of G2 is between 565 m to 852 m. Any potential Error lower
than this range is deemed not significant because the detour is too small.

Because the parameters G1 and G2, as well as G4 and G5, are calculated from the same
values, a correlation might be expected. However, the Pearson correlation coefficient does not
suggest a correlation in both cases: for G1 and G2 it is 0.039, and for G4 and G5 it is 0.048.

The Error Search finds both errors at disconnected components and at gaps. As we argue
in Section 4.1, the important errors are the ones that can potentially cause large detours for
routing applications. While Self errors are indeed classification errors, they are not important
for routing as they do not cause detours. Connection errors are usually more important for
routing because, like Errors at gaps, they can cause large detours (as visible in Figure 4.2).
It can be seen in Table 4.5 that at disconnected network components, many more Self errors
than Connection errors are found. In comparison to Errors at gap candidates, the Connection
errors are few. This leads to the conclusion that the gap search finds more and also more
important errors than the search for disconnected network components. Furthermore, some
of the Connection errors in the subnetworks S3 and S4 are also identified with a gap search.

A hierarchical road network is constructed so that the importance of a road decreases from a
high hierarchy level (e.g., motorways) to a low hierarchy level (e.g., tracks). Considering
subnetworks, as a union of levels, the sum of road network kilometers in subnetworks
is much lower in high-level subnetworks like S1 than in low-level subnetworks like S6.
Furthermore, L5 of the road network are unclassified roads, which are technically defined as
minor public roads and the lowest level of the network (see Table 2.1). However, mappers
might often intuitively tag roads with unknown classification with highway=unclassified, such
that there might be many classification errors in the L5 network. For these reasons, there are
many more Errors (see Table 4.5) in low-level subnetworks than in high-level subnetworks.
However, the Errors in high-level roads are more significant for a country’s transportation
network because high-level roads carry more traffic than low-level roads. Thus, more
vehicles are affected by Errors in high-level roads than by Errors in low-level roads. We do
not search for errors on S6 because we find that level L6 and L7 are often not distinguishable.

Regarding the spatial distribution of Errors at gap candidates, most Errors of S5 are in the
east of the region where the population density is high. We often find Errors in S5 inside a
city’s road network where major roads in cities are classified as residential. Errors in S3 and
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S4 are also often located in rural regions. A significant amount of Errors in rural areas is
also due to bridges that are classified in a different road class than the connecting roads.

4.6.2 Analysis and Discussion of the Rating System

Considering the point ratings G1R – G5R separately in Figure 4.8 provides some information
on how significant the parameters are for the Error Search at gap candidates. This suggests
that the point ratings G1R and G4R might be the most significant point ratings for the Error
Search. Looking only at the absolute number of Errors in high ratings, the point ratings
can be ranked in the following order of significance: G4R > G1R > G5R > G2R > G3R.
This indicates that the calculated ratio of distance is much more significant for the Error
Search than the mathematical difference of distance. However, the absolute number of
Errors in high ratings is just one aspect. If the number of No errors is also high, many
potential gap candidates have to be searched to find Errors. This is the reason why the point
rating G3R is essential even if the number of errors in high ratings is low. Compared to the
other point ratings, it features significantly more No errors in low ratings.

The significance of G3R becomes apparent when looking at the combinations of point rating
G1R with all others in Figure 4.9. The rate of Errors and No errors is crucial because it is an
indicator of how many No errors have to be searched in relation to the numbers of Errors
that are found. Ideally, this rate is high such that most gap candidates that are searched are
Errors and Near errors, and very few are No errors. Figure 4.9 demonstrates that the rate of
Errors and No errors in high ratings is highest for the sum of the point ratings G1R and G3R.
The second-highest rate for high ratings can be seen in G1R + G4R. However, there are fewer
Errors in high ratings in G1R + G3R than in all other combinations. As can be expected by
looking at the ratings of G1R and G4R individually, the sum G1R + G4R features the highest
number of absolute Errors in high ratings. We conclude that, out of the point ratings analyzed
in this study, G1R, G3R, and G4R are the most significant indicators of Errors at gaps.

Therefore, we establish a rating system with the combination of G1R, G3R, and G4R and
then compare it to the combination of G1R, G3R, G4R, andG5R and to the combination of
all point ratings. All three combinations show the desired result where many Errors occur
in high ratings. As it turns out, the combination G1R, G3R, and G4R performs best as the
rate of both Errors and unique errors versus analyzed data is highest. Adding G5R lowers
this rate slightly, and further adding G2R lowers it significantly.

The underlying problem with the different input parameters is basically a multi-criteria
decision problem. Our developed rating system implements a basic multi-criteria deci-
sion system with the parameters G1 – G5 as criteria. This basic decision system can still
be improved. A weighting of the criteria could potentially enhance the rating system’s
performance, but finding the appropriate weights for a study region requires additional
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studies. Furthermore, outranking methods like ELECTRE or PROMETHEE could reduce
the number of gap candidates before applying the rating system. However, because of
the high number of potential gap candidates (41 237 for NSW, see Table 4.2), a pairwise
comparison of gap candidates for the determination of the concordance and discordance
matrix (ELECTRE) and for the determination of deviation (PROMETHEE) would probably
result in huge matrices, and hence, remains the subject of future investigations.

The results of the combination G1R, G3R, and G4R suggest that the error probability is
decreasing with the rating: All gap candidates of rating 30 have a 91 % probability of being
an error, all gap candidates with a rating of 29 an error probability of 83 %, etc. This supports
a methodology by gap detection where a human user can prioritize the Error Search by first
checking the gap candidates with the highest ratings and then eventually continuing to the
lower-rated gap candidates. When checking all gap candidates equal or higher than 22, 80 %
of all errors can be detected by either an Error or a Near error. At the same time, 51 % of
gap candidates with a rating equal or higher than 22 are Errors or Near errors. Moreover, the
errors that significantly impact the accuracy of routing are the ones with the highest ratings
as the possible detour is the largest for high ratings. Thus, a human user can quickly detect
influential errors for routing applications by prioritizing high ratings in gap candidates.

4.6.3 Limitations and Implications for Practical Use

The Error Search is based on the hypothesis that both disconnected parts and gaps of
subnetworks in the OSM road network are indicators for road classification errors if the
disconnection or the gap can be resolved in the complete network. Our results prove
this hypothesis. Disconnected parts and gaps of subnetworks in the OSM road network
prove reliable indicators for road classification errors. However, they are not guaranteed
classification errors. In the real world, a primary road may turns into a lower quality
road for a certain distance and then back into a primary road. This can have numerous
reasons like different jurisdictions, traffic, or missing funding. For example, the US in-
terstate highway system has some well-known true gaps [106]. These gaps occur mostly
because the connecting roads fail to conform to interstate standards fully, and for some of
these gaps plans to close them already exist. Therefore, a human expert has to check
the results of the Error Search to confirm them.

When applying the Error Search, its limitations have to be considered as well. First and
foremost, the method is not able, but also not designed to find all classification errors in a
road network. It is only designed to find the errors which lead to detours when considering
only a subnetwork. We can not clearly state how many Errors are missed to be detected
because it is not feasible to analyze the entire network manually. We argue that the Errors
missed are few and less influential on the accuracy of routing applications because of the
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distribution of Errors in Section 4.5. Roads that are wrongly classified as a higher class
than they actually are can not be detected with this method. Also, using an undirected
graph might cause the Error Search to miss gaps that would otherwise be detected. But,
a directed graph makes use of the OSM tag oneway. The accuracy and completeness of
this tag are often low [13, 54, 107], and its enhancement is not in the scope of this study.
Some missing roads are found by the search for disconnected network components and
gap search, but this is also not the scope of this study.

Generally, we observe two categories of false positive gap candidates, meaning gap candi-
dates with high ratings, which are No errors. Both categories are visualized in Figure 4.12.
On the one hand, the high number of No errors with high ratings is often due to gap candi-
dates in a broader range along Errors that cause a large detour. While they are not classified
as Near error, because they do not start or end at the gap, the point ratings are often high
due to the gap in the vicinity. This phenomenon also leads to Errors near other Errors getting
a high rating even though the detour caused by the fist Error is very small. The combination
of both Errors then leads to large detours, resulting in a misleading high rating for this Error.
On the other hand, false-positive gap candidates sometimes occur because the hypothesis
does not apply. As mentioned above, this can have numerous reasons. We observe is that
the most frequent reason is that there is no need for a high-level connecting road because it
is not used frequently. Especially in the rural parts of NSW, the population is concentrated
in towns, and large areas are uninhabited. Thus, these uninhabited parts of the country
do not require good accessibility. Furthermore, sometimes a high-level connecting road is
impossible because of difficult terrain, for example, in mountain ranges. The methodology
cannot separate these cases, so a human user is required to confirm the result.

Figure 4.12: Examples of false positive gap candidates. On the left, No errors in the vicinity of an
Error are visualized. The Error causes the high rating of the No errors which are not marked as Errors
because they do not start or end at a gap candidate. On the right, No errors are visualized where
there is no need for a high-level connecting road. Reprinted from [87].
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Table 4.6: Summary of strengths and limitations of the Error Search. Reprinted from [87].

Strengths Limitations

• Intrinsic methodology
• Finds road class errors at disconnected

components and gaps
• Based on basic graph theory
• Includes a probability-based ranking of

identified gap candidates
• Errors which might lead to large detours

are found first because of the rating sys-
tem

• Applicable to road network databases
worldwide

• Expendable by the community because
the implementation is freely available

• Does not find all road class errors
• No information about missed errors avail-

able
• Requires human user to check potential

errors
• Can not detect roads wrongly classified

in higher class
• Some errors might be missed because of

the use of an undirected graph
• A gap leading to a large detour can cause

false positives in the surrounding area
• Adaptation to different regions required

Generally, the presented Error Search can be applied for all road networks. However, it has
to be considered that some values have to be adapted to fit the characteristics of a different
region. The classification of the road network into hierarchy levels might have to be adapted
to the country’s circumstances. Especially the thresholds for Filter 2 have to be analyzed
in detail and may be higher for regions with overall lower quality of the road network.
Furthermore, as the rating system is based on relative thresholds, there is the underlying
assumption that there are classification errors in every road network. For road networks with
higher or lower quality of road classification, the resulting probability of error distribution
will be different. To apply the Error Search, a region’s road network has to be more or less
complete such that there are few missing roads because this might hinder the Error Search.

The strengths and limitations of the Error Search are summarized in Table 4.6.

4.7 Conclusion and Outlook

Errors in road classification that occur in crowd-sourced geographic data such as OSM can
hinder routing applications because of false assumptions about travel time or access limita-
tions. We develop a novel approach to detect these road classification errors by searching
for disconnected parts and gaps in subnetworks. A detailed and efficient implementation
of the developed methodology is provided in this study. The methodology is successfully
applied in an exemplary case study on the OSM road network dataset of NSW in Australia.

In the introduction to this chapter, we formulated two main research questions:
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1. Is an approach by searching for disconnected parts or gaps in subnetworks able to find
potential road classification errors? Is this approach able to provide information about
the likelihood that the result is an error?

2. Which parameters (thresholds such as lengths of detours on a subnetwork compared
to the complete network) or combination of parameters indicate gaps in road networks
best?

To answer our first research questions, we conclude that a search for disconnected parts
finds fewer potential road classification errors than a search for gaps. A gap search can
find a significant number of misclassifications together with an error probability that results
from a multi-parameter rating system. As an answer to our second research question, our
study has shown that three parameters are most relevant for the estimation of the error
probability: G1 – the ratio of the shortest path distance on the subnetwork network divided
by the Euclidean distance, G4 – the shortest path distance on the subnetwork network
divided by the shortest path distance on the complete network, and G3 – the number
of filtered destinations on the same spot. A combination of these parameters performs
best as the rate of errors versus analyzed data is highest, meaning few data has to be
checked by a human user to obtain many classification errors. In our case study, only 6 %
of gap candidates have to be checked by a human user to find 80 % of identified road
classification errors using the multi-parameter rating system.

A major advantage of this methodology is the worldwide transferability to all regions
of the world, which have an almost complete road network in OSM. When a different
region is analyzed, some values might have to be adapted to fit the characteristics of
the new region. Furthermore, it can also be applied for road network data from other
sources, as long as it is represented as a graph. The Error Search is intrinsic such that
no additional data besides the road network is required to find misclassifications. The
source code of the implementation is published on GitHub [91], such that the study
can be easily repeated or applied to other datasets.

The findings of this study can be used in many different applications. On the one hand, it
can generally improve OSM data quality by detecting and correcting the errors. On the other
hand, it is also a valuable tool for routing algorithms to improve their underlying data and
search for potential errors. In research on critical road infrastructure, often, only higher road
network levels are analyzed because lower-level roads are less relevant and increase comput-
ing time [65, 108]. In these studies, a gap on a high-level subnetwork can cause false results.
The presented search for misclassifications can be introduced to these studies as a data pre-
processing step. Furthermore, the presented methodology can be applied to assess the quality
of OSM by checking for navigability, an important quality aspect of road network data.

In future research, the methodology can be extended. As disconnected components might
appear more often in other countries, a methodology to rate the error probability at discon-
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nected network components could also ease the job of manually checking these disconnected
network components for errors. Available tags of gap candidates and their connecting roads
can be analyzed for continuity, such as the name, surface, or maximum speed of the road
and could be included as additional parameters. Also, strokes [109] could be computed
to observe their behavior at gap candidates. The information if a connection between gap
candidates consists of a single or multiple strokes could, for example, be considered as a
parameter for the rating system. These parameters could provide additional information on
the error probability. Regarding the rating system as a multi-criteria decision system, it could
still be extended, for example, by adding weights to the parameters or by implementing
outranking methods to reduce the number of gap candidates. Furthermore, remote sensing
can be applied to check if the shape of a road changes at gap candidates, indicating a class
change. More case studies can be performed, including different study regions with different
qualities of OSM data. These case studies would enable a detailed sensitivity analysis. Ideally,
a reference dataset could be used where an automated matching of roads is possible. Then,
it would also be possible to identify which types of classification errors can not be found by
this methodology. It could also be interesting to apply the Error Search and test the human
correction with real OSM contributors to check the applicability of the Error Search.

4.8 Synthesis on the First Part of GRIND

In Part I of this thesis, two independent modules of GRIND, the Fuzzy-FSE and the Er-
ror Search, are developed. The modules aim at improving the routability of OSM data
for routing applications by addressing the two challenges identified in Section 2.5. The
Fuzzy-FSE targets the first challenge of missing speed values by adding estimated average
speed values to every road segment in the OSM road network. These added speed val-
ues enable routing applications to calculate fastest paths in road networks. The second
challenge of misclassified roads is addressed by developing the Error Search. It identi-
fies the most likely misclassifications, which can then be corrected by a human user. As
the errors that lead to the largest detours in a high-level road network are detected with
high ratings, these errors are the first to be corrected. Thus, it can be argued that after
performing the error search and checking and correcting the identified errors with high
ratings manually, the most significant road classification errors are eliminated. The main
advantage of both modules is that they run intrinsically, as they can be applied without
requiring other data besides the OSM road network.

As both modules can run independently, two independent OSM datasets are obtained
as a result. These datasets are then combined into a single enhanced OSM dataset.
For this thesis, the Error Search is performed before the Fuzzy-FSE because the road
class is an input parameter for the Fuzzy-FSE and an incorrect classification falsifies
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the average speed value. However, these few inaccuracies are mostly negligible com-
pared to the overall accuracy of the Fuzzy-FSE.

The resulting enhanced OSM road network serves as database for Part II of this thesis and
for the second part of GRIND. With the now improved routability, the OSM road data
can be applied for the assessment of critical road infrastructure in a disaster context. The
assessment of critical road infrastructure then benefits from the advantages of OSM data
like the free and quick accessibility of data and its global coverage.
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Assessment of Critical Road Infrastructure in a
Disaster Context



Part II - Assessment of Critical Road Infrastructure in a Disaster Context uses the
enhanced OSM dataset generated in Part I to realize the second part of GRIND. It consists of
five modules to assess critical road infrastructure in a disaster context that partly rely on each
other:

• a Core Module (CM), containing core routing functionalities used by the other modules,

• an Accessibility Index Calculation (AIC) module, implementing two accessibility in-
dices,

• a Travel Demand Model (TDM) module, estimating average daily traffic between
locations,

• a Disaster Impact Assessment (DIA) module, focusing on different kinds of natural
disaster impacts on critical road infrastructure, and

• a Disaster Vulnerability Scan (DVS) module, evaluating the road network’s vulnerabil-
ity towards future disruptions during long-term disasters.

The CM employs the enhanced OSM dataset for routing tasks and is used by all other
modules in the second part of GRIND. The other four modules provide different types
of GRIND outputs. The AIC and TDM modules use the CM to obtain pre-disaster out-
puts and can be applied independently of each other. The DIA and DVS modules em-
ploy the AIC or the TDM module, or both, to consider various aspects of disaster conse-
quences. The complete schema of GRIND is illustrated in Figure 4.13 and extends Fig-
ure 1.2 with a schema of the second part of GRIND.

This part begins with an introductory Chapter 5 on critical road infrastructure assessment
in a disaster context, summarizing the related work in this research field. Chapter 5
then highlights major gaps in existing approaches and outlines GRIND’s prerequisites
following the identified gaps. The inner structure of the next three chapters follows the
modular design of GRIND. Chapter 6 presents the methodologies of the modules in the
second part of GRIND. In Chapter 7, case studies of wildfire scenarios in two different
regions are performed, and the results are presented for each module. Finally, Chapter 8
discusses the methodology of the GRIND modules in detail.
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Figure 4.13: Complete schema of the generic concept for the assessment of critical road infrastructure
in a disaster context (GRIND). The CM (dark blue) employs the enhanced OSM data. The other
four modules of the second part provide different outputs. The AIC and TDM modules (light blue)
focus on pre-disaster assessment and the DIA and DVS modules (very light blue) concentrate on
post-disaster analyses.
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Fundamentals on Critical Road
Infrastructure Assessment in a
Disaster Context

5

This chapter includes material from the journal article

Johanna Guth, Sven Wursthorn, Andreas Ch. Braun, and Sina Keller. “Develop-
ment of a generic concept to analyze the accessibility of emergency facilities in
critical road infrastructure for disaster scenarios: exemplary application for the
2017 wildfires in Chile and Portugal”. In: Natural Hazards 97.3 (2019), pp. 979–
999. It is cited as [65] and marked with a blue line.

This chapter also includes material from the author’s unpublished master thesis:

Johanna Stötzer. “Development of a Generic Concept to Analyze the Accessibility
of Emergency Facilities in Critical Road Infrastructure”. Master’s thesis. Institut of
Photogrammetry and Remote Sensing, Karlsruhe Institute of Technology (unpub-
lished). 2017. It is cited as [110] and marked with a dark green line.

Natural disasters happen unexpectedly all over the world and can cause immense damage
to the road network and its functionality. Wildfires, for example, are an increasing threat
as climate change furthers droughts and extreme temperatures in many countries. While
they may often not directly destroy road infrastructure [111], the impact of wildfires on
the road network’s functionality can be severe. Road closures caused by the fires impact
the road network and can cause considerable delays. These delays may last for a long
time after a disaster, as the restoration of the road network’s serviceability often takes
a long time. In the wildfire example, all roads with the danger of fallen trees have to
be checked by skilled workers before reopening [112]. Thus, it is essential to assess the
performance of road infrastructure in the context of natural disasters.

Generally, sources of potential harm or situations with the potential to cause loss are called
hazards [113]. A natural hazard is a geophysical process that involves the potential for
damage or loss that exists in the presence of a vulnerable human community [114]. It
is an unexpected or uncontrollable natural event of an unusual magnitude that might
threaten people [113]. Natural hazards include, for example, wildfires, hurricanes, tsunamis,
earthquakes, floods, and landslides. In regards to the term disaster, the definition of Faturechi
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and Miller-Hooks [115] is used: a disaster is "an event in which such hazard has caused
extensive physical damage; the event is nonrecurring and likely unanticipated, and its
location, impact area, and severity cannot be predicted with certainty" [115, p. 2].

This chapter aims to set up the topic of critical road infrastructure in a natural disaster
context and presents the fundamentals of GRIND. The topic of critical road infrastructure
has been studied extensively in the scientific community. Section 5.1 presents concepts and
studies which are related to the methodology of the AIC and DVS modules, as well as one
part of the DIA module of GRIND (see Figure 4.13). Then, in Section 5.2, the literature on
post-disaster impacts on road infrastructure is considered in detail as fundamentals for the
TDM module and thus also for the other part of the DIA module of GRIND. Concluding from
the preceding sections, Section 5.3 identifies the major gaps in existing studies. Based on
the shortcomings in the related work, the prerequisites of GRIND are stated in Section 5.4.

5.1 Assessing the Functionality of Road Infrastructure in
Disaster Scenarios

A variety of studies address the road infrastructure and aspects associated with disaster
events involving road networks. Several concepts, methods, and performance measures
exist that are used jointly. In general, a study assesses a specific concept (e. g., the con-
cept of vulnerability), uses a particular method (e. g., a transport network analysis), and
quantifies that concept by applying a performance measure (e. g., accessibility) [115]. This
section aims at presenting selected studies to give an overview of the topic. A thorough
review of the field and its development over time is presented by Berdica [116], Kröger
and Zio [117], and Faturechi and Miller-Hooks [115].

Section 5.1.1 briefly presents seven general concepts and often-used methods. Then, selected
studies are presented in Section 5.1.2, which are related to the methodologies used in GRIND.
Finally, the related work on accessibility indices is presented as accessibility is used as a
performance measure in the AIC module of GRIND (Section 5.1.3).

5.1.1 General Concepts and Methods

To assess road infrastructure performance in disasters, Faturechi and Miller-Hooks [115]
distinguish seven interrelated concepts: risk, vulnerability, reliability, robustness, flexibility,
survivability, and resilience. In the following, these concepts are described briefly. Further-
more, often-used methods to address these concepts are listed at the end of this subsection.
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Risk is a concept used to characterize the threat of a disaster event with negative impact,
considering its likelihood of occurrence and its consequences [115]. While risk may be
a suitable measure when considering engineering failures it may be impractical for use
in complex networks consisting of many components [118].

Vulnerability of a road transportation system is the susceptibility to incidents that can result
in considerable reductions of the road networks serviceability [116]. Unlike risk, however, in
the term vulnerability, the probability of a disaster event is not accounted for [119]. Studies
assessing vulnerability are numerous. It has to be mentioned that, especially in the case of
vulnerability, many alternate ways of understanding the term are found in the literature.

Reliability refers to the probability that a given element in a critical infrastructure system
is functional at any given time. It is a probabilistic measure for elements in a critical in-
frastructure system and their ability not to fail or malfunction, given a series of established
benchmarks or performance guidelines [120]. Reliability can be seen as the complement
of vulnerability. While vulnerability identifies potential loss or degradation, reliability
considers remaining functionality [121]. Concerning transportation networks, reliability
can be characterized in three different aspects. The first is the reliability of connectivity,
thus the overall possibility of reaching a chosen destination. The second is the reliabil-
ity of travel time which refers to the probability of consistently arriving within a given
time. The third is the capacity reliability meaning the probability of the network being
invariable towards a higher traffic volume [116]. When probabilities of occurrence for
failures may be significant and predictable (e. g., telecommunication networks, electric
power grids,...), concepts of reliability are very common [115].

Robustness is often seen as synonymous with reliability. If they are to be distinguished, they
differ in the aspect that reliability considers the probability of meeting a given level-of-service
and robustness analyses the remaining functionality for a given event [115]. Originally used
in computer technology [116], robustness concepts have been applied to transportation
networks e. g., by Nagurney and Qiang [122] and Scott et al. [64].

Flexibility (also adaptability, agility) is defined as the ability to adapt and maintain satis-
factory system performance in case of external disturbances [123]. Flexibility, as opposed
to robustness, is the ability of a system to absorb changes with negative impact while
robustness captures the ability to endure them [124].

Survivability is a term that is comparable to robustness. Morlok and Chang [123] define it
using a supply-demand concept. They state that survivability is the fraction of the demand
that can be satisfied after a disruption. The concept is mainly used in telecommunication
networks [125] and needs adaptation for the use in transportation networks [126].

Resilience was initially introduced by Holling [127] as the capacity of a socio-ecological
system to absorb the impact of disruptions while essentially maintaining its structure

5.1 Assessing the Functionality of Road Infrastructure in Disaster Scenarios 87



and functions. It is often transferred to transportation infrastructures and can be
measured by accounting for possible interventions that aid the system to nearly re-
turn to its pre-disaster state [115]. Numerous studies use the concept of resilience
combined with other concepts [128, 129, 130].

Kröger and Zio [117] identify different methods to quantify these concepts depending on
the type of the system, the available data, and the objective of analysis. Common methods
are statistical analyses, which includes parametric and non-parametric models, regression
analyses, hazard models, and accelerated lifetime models [e.g., 131, 132, 133, 134, 135,
136]. Additionally, probabilistic modeling like Markov chains, Petri nets, dynamic modeling,
and Bayesian networks can often be found in studies [e.g., 20, 137, 138]. Probabilistic
risk assessment, expert judgment, and tabular methods are all associated with the general
term of risk analysis [e.g., 139]. Many studies perform simulations such as agent-based or
Monte Carlo methods or use dynamic control system theory [e.g., 23, 24, 25, 140]. Finally,
a wide variety of studies concentrate on complex network theory like graph theory and
network flow theory [e.g., 29, 62, 64, 108, 141, 142, 143, 144, 145].

5.1.2 Exemplary Studies Organized by Performance Measure

As the concepts are too abstract to be quantified, different performance measures can
be applied: travel time and distance, throughput and capacity, accessibility, topological
measures, and economic measures. Performance measures can be found by consider-
ing the input and output of calculations performed in the studies. In the following, a
few examples of studies using different concepts, methods and performance measures
are presented and classified by performance measure. The combination of the three,
characterizes a specific approach or framework.

Examples of using travel time or distance as a performance measure and complex net-
work theory to model vulnerability are Jenelius et al. [119], Jenelius and Mattsson [146],
and Knoop et al. [62]. While Jenelius et al. [119] and Knoop et al. [62] focus on link-level vul-
nerability indicators and single link failure, Jenelius and Mattsson [146] present an approach
simulating area-covering disruptions. Al-Deek and Emam [135] apply a statistical analysis to
road networks using the Weibull and the exponential distribution to compute travel time and
capacity reliability. Also using travel time to asses reliability, Bell [147] presents a completely
different two-player non-cooperative game theory approach: On the one hand, the network
user tries to seek a path to minimize the expected trip cost, on the other hand, another
entity chooses link degradation scenarios to maximize the expected trip cost. The effects of
road closure on traffic flow patterns in New Zealand are assessed by Dalziell and Nicholson
[137] to analyze the risk and impact of natural hazards on a road network. They use Monte
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Carlo simulation to identify probability distributions for the costs of closure for each type of
hazard and probability distributions for the benefit-cost ratios for each mitigation option.

Throughput or capacity are often used to model the concept of resilience. One example
is Vugrin et al. [148] who perform a quantitative and qualitative resilience analysis of petro-
chemical supply chains in case of a hurricane. To describe how properties of a system can
determine system resilience, three fundamental system capacities are used: absorptive capac-
ity, adaptive capacity and restorative capacity. The framework of Vugrin et al. [148] can be
used to choose different recovery strategies by comparing the resilience costs. Capacity per-
formance measures can also assess reliability. Chen et al. [149] further develop their capacity
reliability analysis by combining a reliability and uncertainty analysis, network equilibrium
models and Monte Carlo methods to evaluate the performance of a degradable road network.

Murray-Tuite and Mahmassani [150], Scott et al. [64], Sullivan et al. [141] ,and Snelder et al.
[136] use topological measures to estimate the performance of road networks [115]. Scott
et al. [64] introduce the Network Robustness Index (NRI) by performing a complex network
analysis to identify critical links in transportation networks. The NRI measures the criticality
of a given link to the overall network and yields different highway planning solutions
compared to the traditional volume-capacity ratio. The index is modified by Sullivan
et al. [141] to employ a capacity-disruption level other than 100 %. Furthermore, the
authors introduce the network trip robustness that can be used to compare different physical
transportation networks regardless of scale, topology or level of connectivity. Snelder et al.
[136] also investigate the concept of robustness and develop a framework for short term
variations in supply by performing a statistical analysis. A conceptualization to model
vulnerability with a game theory approach is done by Murray-Tuite and Mahmassani [150].
They look at the concept as a game between an evil entity and the traffic management
agency. A key component is the vulnerability index derived from topological measures.

Finally, some studies employ economic measures. Tatano and Tsuchiya [151] present
a framework for assessing the economic impact of seismic disruption in transportation.
Economic equilibrium in the event of a disruption is calculated with a spatial computable
general equilibrium model. The economic impact of major earthquakes at the New Madrid
Seismic Zone in the center of the USA is described for three hypothetical scenarios in Ham
et al. [26]. They use a model of inter-regional commodity flows and the corresponding
transportation network flows. The results may be used to identify critical sections of the
network and analyze post-event reconstruction strategies.

5.1.3 Accessibility in Critical Road Infrastructure

The introduction of accessibility indices as metrics of e.g vulnerability has been a substantial
development in the research field of critical road infrastructure. Several standard measures
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of accessibility exist [152, 153] that may be applied to evaluate the likely impacts of road
network degradation. The advantage of employing accessibility-based metrics in such
analyses is the consideration of the interaction between a degraded network and the overall
travel behavior of network users [108]. A review of accessibility measures in the context
of land-use and transport strategies is presented in Geurs and van Wee [154].

Accessibility analyses can provide valuable decision-aid tools for long-term network planning.
Antunes et al. [155] present an accessibility-maximization approach for urban road networks.
They calculate the accessibility of a center (city or region) as a sum of the spatial interactions
between this center and all other centers, respectively, and analyze the transformation of
the main road network of Portugal. Santos et al. [156] present a methodology to maxi-
mize accessibility in inter-urban road networks by combining accessibility and robustness
objectives. Luathep et al. [142] develop an approach using a sensitivity analysis. They
employ the Hansen Integral Accessibility Index [153] to assess network vulnerability based
on travel time. Chen et al. [157] also propose accessibility-based performance measures
but a) concentrate on the consequences of one or more link failures in terms of an increase
in travel time and b) include user responses in a combined TDM. In a recent study, Weiss
et al. [158] create a global map of travel time to cities to assess inequalities in accessibility
in 2015 using the OSM and Google road network datasets.

Further studies consider disaster specific accessibility changes: Demirel et al. [159] demon-
strate a framework to estimate the sensitivities of the European road network towards
sea-level rise and storm surges by analyzing accessibility and connectivity indicators. Ac-
cessibility indicators are calculated based on travel time and traffic flow information. Lu
and Peng [30] also analyze sea-level rise but focus on population and residence information
along with travel time. They apply their model to the South Miami road network with two
different sea-level rise scenarios. Another approach employs distance and traffic volume
to derive an accessibility score to quantify the potential impact of flood damage on the
transportation system [20]. Bono and Gutiérrez [160] present a network-based analysis of
the impact of structural damage on urban accessibility following a disaster. They use OSM
datasets to analyze the connectivity of the seismically damaged urban road network in Haiti
after an earthquake of magnitude 7.0 and obtain a reduced accessibility map.

Studies that combine the concept of road network accessibility and emergency logistics
planning are rare. Murawski and Church [161] aim at improving accessibility to rural health
services by upgrading links of the transport network to all-weather roads. Novak and Sullivan
[19] develop a new measure for evaluating accessibility to emergency services called the Crit-
ical Closeness Accessibility. They quantify the relative importance of each link in a roadway
network with respect to its system-wide contribution to emergency service accessibility.

Accessibility indices are also often combined with network or vulnerability scans, which
help identify critical locations in a network. The idea of vulnerability scans is to calculate

90 Chapter 5 Fundamentals on Critical Road Infrastructure Assessment in a Disaster
Context



a vulnerability indicator (e.g., accessibility) in the original network and then degrading
links in the network to find the links where a degradation has the largest impact on the
vulnerability indicator. Taylor and Susilawati [108] perform a vulnerability scan of a road
network in the south of Australia and use a remoteness and accessibility index to see the
effect of link degradation for settlements. They find that the main issue with network
scans is computational efficiency as degrading every link in a network and recalculating
all pairs of shortest paths every time is very expensive computationally.

5.2 Post-Disaster Impact Assessment of Road Infrastructure

The reaction of humans to a disaster can be separated in different temporal phases. The
mitigation and preparedness phase before a disaster as well as the response and recovery
stage during and after an event. Disaster impacts can be considered before an event in the
mitigation and preparedness phase as the impact of past or spatially distant disasters. Then,
they serve as a learning experience for potential future events. In the post-disaster phase at
the response and recovery stage, disaster impacts have to be assessed to develop a response
strategy and estimate the damages and losses caused by the disaster. [162]

Disaster impacts are classified into two categories: direct and indirect impacts [163] or
sometimes also damages and losses [164]. The impact of the destruction of social, environ-
mental, or economic capital caused by a disaster event is summarized as direct impact [163]
or damage [164]. Indirect impacts or losses [164] are secondary occurrences, induced
by direct impacts, and often happen temporally and spatially distanced from the disaster
event [163]. Focusing on the road infrastructure, direct impacts are tied to the value of
investment required to replace the physical assets. Indirect impacts are connected to changes
in transport flow due to the disaster and are mainly measured as an increase in travel time.

While most assessments contain an estimation of direct impact, indirect impacts are often
ignored because they are more difficult to estimate after a disaster [165]. As an example,
Post Disaster Needs Assessments (PDNAs) of different disasters worldwide can be considered.
The indirect transport impacts account for less than 3 % of the total transport impacts for
the earthquakes in Mexico (2003) and Peru (2011), the floods in Mexico (2012), and the
hurricanes in Fiji (2016) and Jamaica (2010) [166, 167, 168, 169, 170]. This phenomenon
can be observed in many PDNAs and is caused by a lack of data to assess indirect transport
impacts with traditional methods [166, 167, 168, 169, 170].

Gajanayake et al. [163] categorize related studies in two categories: transport network
analysis and transport modeling. They define transport network analysis as a branch of
network theory that uses the road network’s functionality to measure disaster impacts. In
contrast, transport modeling employs transport models based on transport demand functions
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to assess impacts [163]. These types of methods have typically been used separately [163]
in past impact assessments. The related studies on post-disaster impact assessment generally
apply the concepts, methods, and performance measures presented in Section 5.1.

The AIC module of GRIND features a transport network analysis while the TDM module
uses transport modeling. In the DIA module, the AIC and TDM modules are used jointly.
Thus, this section presents the fundamentals of both categories of studies. Section 5.2.1
lists selected transport network analysis studies and summarizes their advantages and
disadvantages. The concept of transport modeling for impact assessments is described
with exemplary studies and analyzed in Section 5.2.2.

5.2.1 Transport Network Analysis

Transport network analysis analyzes the transport network from a top-down, graph theory
perspective as it considers the network as sets of links and nodes. A transport network’s
reduction in serviceability caused by a (natural) disaster is taken to measure the transport
impact. Transport network analysis methods assume that the pre-disaster serviceability
is the optimal level of service. The results of these approaches are often presented as a
percentage or ratio of reduction in functionality. [163]

Transport network analysis approaches can be split in two categories [163]: topological
and system-based approaches. Topological approaches are based on the number of links
and nodes of a road network that are serviceable after a disaster. The approach by Bono
and Gutiérrez [160], mentioned above in Section 5.1.3, is such a topological approach.
Also, Muriel-Villegas et al. [171] present a topological approach analyzing connectivity relia-
bility and the vulnerability of interurban transportation systems under network disruptions
like flooding. As a result, a connectivity reliability index is obtained. Generally, topological
approaches like [172, 173] rely on graph-based measures like centrality measures (e.g.,
betweenness centrality), connectivity measures (e.g., giant connected component), and
network distances (e.g., network efficiency [174]). Graph-based evaluation is a powerful
tool to detect, for example, critical nodes and vulnerable locations in a network [175].
However, the results of topological approaches are generally abstract performance measures
like indices that lack comparability and require background knowledge to be interpreted.

System-based approaches allow for a greater variety of consequences to be measured and
presented intuitively [130]. Impacts are often measured as average travel time or distance in-
creases. For example, Chang and Nojima [176] use a system-based approach to measure the
post-disaster transportation system performance with a case study of the Kobe earthquake in
the year 1995. They propose three system performance measures that are based on accessibil-
ity. This is further developed into an accessibility index to assess the overall and distributional
impacts of disasters [177]. In a different system-based approach, Utasse et al. [178] perform
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a vulnerability assessment of alpine roads to a specific debris flow event. They measure
accessibility as a travel time difference before and after the event to assess the impact.

One advantage of transport network analysis is that it generally allows for an impact-
assessment of multiple disruptions, common in natural disaster scenarios. However, the
focus of the method is to analyze the functionality of the road network. This focus renders
the assignment of monetary costs to indirect impacts difficult. [163]

5.2.2 Transport Modeling

Transport modeling is a bottom-up approach to estimate the number of people using
a particular mode of transport [163]. It can be used to model, for example, average
daily traffic in road networks. Transport models are also used to assess the post-disaster
impact on transport networks by accounting for commuter behavior changes after a disaster.
Transport models typically follow four stages: Trip generation, trip distribution, modal
split, and trip assignment (see Section 6.4.1) [179].

Researchers developing transport models either use basic equations to manually calculate
the travel demand [e.g., 27, 28, 180] or use transport modeling software to set up the
transport model [e.g., 21, 22, 181, 182, 183]. The objective of these studies is generally to
assess the economic impact as the cost of delay for a specific disaster. For example, Negi et al.
[27] perform a cost assessment of losses due to a landslide in India, and Wesemann et al.
[28] assess the cost of delay for freeway closures due to an earthquake. Similarly, Winter
et al. [183] and Pfurtscheller, Genovese, et al. [180] analyze the economic losses due
to landslides in Scotland and Austria. Gajanayake et al. [163] find that different indi-
cators are used to estimate the total cost of delay like an increase in individual travel
time [e.g., 21, 27, 28, 183], additional fuel cost [e.g., 27, 28, 180], additional travel
fare [e.g., 27, 180], additional emissions [e.g., 21, 183], and pavement maintenance and
congestion costs [180, 21]. Most studies demonstrate that the cost for rerouting and delay
accounts for the majority of total losses [e.g., 21, 27, 183].

Outside the scientific community, procedures exist which are in practice worldwide to
assess direct and indirect impacts to road infrastructure after a disaster. A Post Disaster
Needs Assessment (PDNA), which is generally performed after a natural disaster, aims at
calculating the economic costs of disasters by assessing direct and indirect impacts. The
United Nations - Economic Commission for Latin America and the Caribbean [164] and the
Global Facility for Disaster Reduction and Recovery, together with the Worldbank [184],
present guidelines for these PDNAs in the transport sector. Both methodologies require
recent OD surveys in the affected area and operating costs for different vehicles [164, 184].
To estimate the total cost of indirect impacts, the cost of temporarily interrupted transport
of cargo and persons and the value of temporary decline in toll receipts is considered [184].

5.2 Post-Disaster Impact Assessment of Road Infrastructure 93



Additionally, the Worldbank guidelines [184] account for the urgent expenditures made
to reopen traffic and the higher cost in transportation due to the temporary utilization
of alternative (longer and lower quality) roads. As part of the procedure, transport mod-
eling is performed to estimate the total cost of delays.

In conclusion, transport models are widely used both in the scientific community and by
governments worldwide to assess the indirect impact of disaster events. Their popularity
stems from the possibility of presenting the results using a monetary value that is easier to
interpret for practitioners. However, transport models require many input data. Origin and
destination surveys and traffic flow data are often unavailable which hinders traditional
transport modeling approaches. Furthermore, transport models are often built for cities
or smaller regions and rarely consider entire countries [163]. Especially for country-scale
disasters, these limitations hinder the post-disaster impact assessment.

5.3 Summary of the Major Gaps of Existing Approaches

The most relevant issue of related approaches is data availability on a global scale. Most
studies of the above-quoted studies use commercial or administrative road network data,
which is only applicable to the city, region, or town of interest and also often not freely
available to the general public. Furthermore, many approaches rely on a combination of
complex datasets, including traffic volume, capacity, OD surveys, and traffic flow [e.g., 19,
20, 26, 164]. These datasets increase the accuracy of, for example, impact assessments, but
they are not available worldwide. Especially in regions with a relatively low GDP per capita
and frequent natural disasters like Latin America and South-East Asia, this data is often
not even available to local authorities for a PDNA [166, 167, 168, 169, 170]. Moreover,
more complicated datasets increase both computing time and, more importantly, the time
the study itself takes as the datasets have to be found and often preprocessed. In this
thesis, only one study by Weiss et al. [158] is found that successfully applies OSM data
on a global scale, but still in combination with other commercial data.

Considering the scale of different studies, most researchers focus on a local or regional
scale and analyze one specific region or city [e.g., 26, 27, 28]. Few generic approaches
exist [e.g., 158, 157]. Additionally, many researchers study critical road networks in urban
environments [e.g., 29, 30, 172], but few focus on rural road networks. However, rural
road networks have to be considered especially because large disparities prevail between
rural and urban communities [185], for example in access to emergency facilities. A
generic approach, which can be applied to different geographical scales, considers local
road conditions, focuses predominantly on rural road networks, and includes the challenge
of handling limited global data availability is not yet developed.

94 Chapter 5 Fundamentals on Critical Road Infrastructure Assessment in a Disaster
Context



Gajanayake et al. [163] state that transport network analysis and transport modeling
approaches have been used separately in the past. Studies combining these methods or using
both of them to assess different aspects of post-disaster impacts do not yet exist. However,
such an approach could be useful, especially for disaster management, who have to consider
all aspects of post-disaster impacts to develop a response strategy.

Furthermore, most disaster-related studies focus on the impact of hurricanes [e.g., 148],
flooding [e.g., 30, 159, 171], earthquakes [e.g., 26, 137, 151, 160], or landslides [e.g., 27,
178, 183]. Wildfires are rarely analyzed in related studies even though they often cause
considerable damage to the road infrastructure [186]. Because of climate change, extreme
temperatures and droughts occur more frequently than before and favor wildfires in many
countries worldwide [65]. The recovery time of road networks after wildfires is often shorter
than for other natural disasters [111]. Therefore, some studies focus on the evacuation of
the affected population [187, 188]. However, the closure of roads during and after wildfires,
for example, because of the danger of falling trees, or subsequent landslides, can cause
massive indirect impacts that are rarely considered in the literature.

Finally, vulnerability scanning is widely used to identify network components where a fail-
ure or degradation has the largest impacts [e.g., 108, 119, 156, 189, 190, 191]. Studies
use vulnerability scans to find vulnerable locations in the original network before disas-
ters happen in the mitigation and preparedness phase. But, to this date, a vulnerability
scan has not been performed during a long-lasting disaster such as wildfires to assess
where a spread of such a disaster would be most critical.

5.4 Prerequisites for GRIND

Following the major gaps of existing approaches identified in Section 5.3, GRIND is de-
signed, which uses the enhanced OSM data generated in Part I to perform pre- and post-
disaster assessment of critical road infrastructure. Before developing the methodology,
it is important to outline the prerequisites which are relevant to the generic approach.
This approach is supposed to be applicable to a) a wide range of regions, b) heteroge-
neous data availability, c) different spatial scales d) analytical as well as prognostic studies
[..., and e) various aspects of disaster impacts.] In order to fulfill these prerequisites,
the following four conditions have to be met:

1. Data simplicity, due to the need to perform on relatively simple datasets like point and
line vector data, which are widely available and readily applicable.

2. Data sparsity, in the sense that the concept does not depend on complex datasets such
as traffic flow, [capacity,] or observations on travelers behavior. Such datasets, first
of all, are not available worldwide and secondly, their behavior is hard to predict in
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face of disasters. They could be used to produce analytical tasks but not to perform
prognostic studies.

3. Adaptability to local road conditions, because in many regions, road quality differs
significantly.

4. Flexibility towards disaster management requirements, because many different aspects
of disaster consequences might have to be considered.
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Methodology of the Critical
Infrastructure Assessment

6

This section describes the methodology of the modules in the second part of GRIND (see Fig-
ure 4.13). It first presents the CM in Section 6.1 and introduces the methodology for
creating a populated places dataset in Section 6.2. Then, the TDM module (see Sec-
tion 6.4) and the AIC module (see Section 6.3) are described. The DIA and DVS mod-
ules are presented in Section 6.5 and Section 6.6.

6.1 Core Module

The CM uses the enhanced OSM data to calculate travel times between locations. It consists
of selecting and preparing the OSM data for a study region, a workflow to integrate locations
into the road network, and the shortest path calculation. All other modules of the second
part of GRIND rely on the workflow in the CM. As input data, the CM requires the enhanced
OSM data as well as origin and destination input locations.

In the first part of the CM, the OSM data for a respective region is selected using the
boundary polygon (boundary=administrative see Section 2.3) or a bounding box to cut
the input OSM data. The Fuzzy-FSE and the Error Search module, which are presented
in Part I, preprocess the OSM road network in a routable graph, such that it consists of edges
and nodes at every real intersection of edges. The spatial scale of the road network can
be adapted by choosing the appropriate level of detail. For example, L1-L3 (see Table 2.1)
could be chosen for a national analysis with an area of more than 100 000 km2, and all
levels could be selected for a local case study (area < 5000 km2). To avoid errors at
the region’s borders, roads, populated places, and facilities within a predefined perimeter
percentage of the region area are included in the calculation.

The second step of the CM integrates origin and destination locations, represented as points,
into the graph. A set of locations L, with L ≡ l1, l2, ..., lr is integrated into the network. For
each location lr, the nearest point on a road lp is identified and the euclidean distance to
the location lr is calculated. Then, lp is inserted into the network graph as a new node.
The edge em, where lp is located on, is split into two parts by lp.
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The third step of the CM implements the Dijkstra Algorithm [192] to calculate all shortest
paths from all input origins to all input destinations. In the core module in our previous
study, Guth et al. [65], we employ road distances multiplied by a weighting factor that
depends on the road class. As a result, a region specific cost factor for the network is
obtained. For this thesis, weighting factors are no longer necessary as the travel times
calculated by the Fuzzy-FSE can be used. The speed values estimated with only OSM data
are used to reduce the amount of data necessary for the concept. The road segments, created
in the second step of the CM, between the input locations and the road network, are also
assigned a speed value. The CM provides all travel times on the shortest paths from all
input origins to all input destinations in the selected study region as an output.

6.2 The Populated Places Dataset

For some GRIND modules, settlements are required as point data that can later serve as
origin or destination for routing applications. Additionally, for various GRIND modules,
the population of each settlement is required. To obtain each settlement’s population
in OSM, we use the Global Human Settlement Population Grid (GHS-POP). In this sec-
tion, the GHS-POP dataset is presented. Then, the workflow to derive the population
of each settlement is described and evaluated.

6.2.1 The Global Human Settlement Population Grid

The GHS-POP [193] is a spatial raster dataset that depicts population distribution, expressed
as the number of inhabitants per cell. The raster dataset has a maximal resolution of 250 m
and features global coverage. The most recent GHS-POP raster, which is used in this thesis,
was created in 2015. The dataset is part of the Global Human Settlement Layer project
founded by the European Commission and the Geo Human Planet Initiative.

The generation of the GHS-POP data is described in detail in Freire et al. [194]. To obtain
the GHS-POP raster, best-available population estimates for the years 1975, 1990, 2000 and
2015 are combined with best-available assessment of the spatial extent of human settlements
as inferred from satellite imagery. Freire et al. [194] use population estimates from the
CIESIN. The CIESIN data consists of country-based layers of the census and administrative
polygons that contain the residential population for the target years. Population data are
collected at the highest possible spatial resolution, which varies by country [194]. The
spatial extent of human settlements is inferred from Landsat and Sentinel-1 data with a
fully automatic supervised classification workflow [195]. The resulting dataset is called
GHS-BUILT and achieves a R2 of 89 % [195]. For the GHS-POP dataset, the GHS-BUILT
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raster is combined with the CIESIN data based on raster-based asymmetric mapping (for
details see [194]). This asymmetric mapping ensures that the total input population is
preserved [194]. The GHS-POP dataset is validated against the official GEOSTAT 2011
resident population, and a correlation analysis yields an R2 of 83 % [194].

6.2.2 From Gridded Population to Population per Settlement

OSM settlement data is combined with GHS-POP data to obtain a global dataset with
settlements as points together with their population. This workflow consists of three
steps, which are described in the following: 1. Extracting relevant settlement point data
from OSM, 2. Creating Voronoi polygons from the point data, and 3. Intersecting the
GHS-POP raster with the Voronoi polygons.

1. The first step to obtain settlements with their population is to extract OSM point data
using the place=* tag, which is described in detail in Section 2.3. All settlements with
the tags place=city, place=town, and place=village are selected and combined in
a point layer. Settlements with the tag place=hamlet are not used because a visual
assessment has shown that in OSM, the value hamlet is often wrongly assigned not
to settlements but places of interest. The result is a global point dataset of populated
places.

2. In a second step, Voronoi cells are created for these populated places. A Voronoi cell
consists of every point in a Euclidean plane where the distance to the corresponding
point is not greater than the distance to the other points in the plane. These Voronoi
cells then form polygons. Voronoi polygons are calculated for each country separately
to avoid problems with the ocean and with country borders, using the OSM state
boundaries (see Section 2.3). The resulting Voronoi polygons for each country are then
combined in a global polygon layer. Figure 6.1 shows exemplary Voronoi polygons for
settlements in NSW in Australia.

3. In the last step, the GHS-POP data is combined with the Voronoi polygons. For that, a
point layer from GHS-POP is created with centroids of each raster cell. The population
values of all centroids intersecting with the respective Voronoi polygon are then added
to obtain the corresponding settlement’s population. The presented workflow preserves
the total input population from the original census data GHS-POP is based on. The
boundaries of exemplary Voronoi polygons and the GHS-POP raster data are displayed
in Figure 6.1 (right) for settlements in NSW.

The resulting populated places dataset may contain large inaccuracies that stem from
different sources. The first source of inaccuracies lies in the GHS-POP dataset. It is a
product derived from built-up area and census data and may contain estimation errors
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Figure 6.1: Exemplary Voronoi polygons for settlements in Australia (left). On the right, the same
area with the gray boundaries of the Voronoi polygons is displayed together with the Global Human
Settlement Population data. White raster cells are cells without population.

regarding the distribution of the population. Furthermore, as discussed in Section 2.4,
the OSM data often contains errors such that settlements may be missing, or there may
be extra settlements. For example, three settlements exist for Canberra: Canberra it-
self, North Canberra, and South Canberra.

Additionally, there are inaccuracies in the presented workflow to combine OSM and GHS-POP
data. As the layout of settlements is often defined by natural boundaries or historical evo-
lution, it does not always fit the form of the corresponding Voronoi polygon. Then, the
population is wrongly assigned to the neighboring Voronoi polygon. A manual evaluation
against 2016 census data from the Australian Bureau of Statistics [196] has shown that
the workflow considerably underestimates larger settlements and slightly overestimates
smaller towns. The estimation for smaller villages is relatively accurate as smaller vil-
lages are often further apart and thus fit into the Voronoi polygon. Differences between
the estimation and the census data are also due to the OSM data, which often has mul-
tiple settlements close to each other, which census data only counts as one settlement.
However, the total input population from the GHS-POP, which is constructed with cen-
sus data, is preserved, such that inaccuracies might be present in the distribution of the
population but not in the total amount of population.

This simple workflow allows the generation of a global populated places dataset using only
freely-available, global data sources which accounts for conditions one and two in Section 5.4.
To obtain origins and destinations for routing applications where the resulting population
value can be a rough estimate, this dataset is sufficient, especially since the total population
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is preserved. For other applications where a more accurate population value per settlement
is necessary, the workflow might have to be improved.

6.3 Accessibility Index Calculation

GRIND enables the calculation of two different accessibility indices: the Accessibility and
Remoteness Index of Australia (ARIA) [197] and the Emergency Facility Accessibility In-
dex (EFAI) [65]. The AIC module requires input points of origins and destinations (emer-
gency facilities and service centers) and the enhanced OSM road network to calculate
both indices. Input points can be point data like the populated places dataset but also
centroids of grid cells. The grid-based calculation enables the analysis of an entire area,
as opposed to the point-based analysis where the indices are only calculated for single
localities. Different grid resolutions, combined with different levels of detail in the road
network, enable the calculation on multiple scales [65].

The ARIA and its calculation are presented in Section 6.3.1. In Section 6.3.2, the calculation
of the EFAI is described. Both indices are adapted for this thesis to use the travel time
calculated by the Fuzzy-FSE instead of road distances.

6.3.1 Accessibility and Remoteness Index of Australia

The ARIA was developed by the National Center for Social Applications of GIS as a joint
project with the Australian Department of Health and Ageing in 1998 [197]. The ARIA
is designed to be comprehensive, sufficiently detailed, as simple as possible, transpar-
ent, defensible, and stable over time. As it is supposed to be an unambiguously ge-
ographical approach to define remoteness, socio-economic and urban or rural factors
are not incorporated in the measure [198].

The ARIA is a continuous index that is calculated initially based on road distance measure-
ments from over 12 000 populated localities to the nearest service centers. For this thesis,
the ARIA is adapted to use the travel time calculated by the Fuzzy-FSE instead of road
distance. Travel time incorporates the road network hierarchy because vehicles can travel
faster on high-level roads than on low-level roads. If road distance is used as a cost factor of
the road network, all road classes are treated equally, resulting in paths that would normally
not be traveled. Service centers are populated localities with a population greater than 1000
and are classified into five categories based on population size (Table 6.1). Each category
offers distinct levels of public and private sector facility availability [108]. The populated
places dataset (see Section 6.2) serves as input data for the service centers.
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Table 6.1: ARIA service centre categories A-E [108].

Service center category Population

A ≥ 250 000

B 48 000 - 249 999

C 18 000 - 47 999

D 5000 - 17 999

E 1000 - 4999

The ARIA for GRIND is calculated with the travel time tiL a person requires to travel
along the road network from a locality i to the nearest service center in category L for
L = A, B, C, D, E (as defined in Table 6.1). The ratio between tiL and the mean travel time tL
of all localities to the nearest category L service center is calculated. To remove the effects
of remaining extreme values, a threshold of three for the tiL and tL ratio is set. All tiL, tL
ratios are summed up to obtain an ARIA value between 0 (high accessibility) and 15 (high
remoteness). Equation (6.1) shows the calculation of the ARIA for locality i [108].

ARIAi =
∑
L

min
{

3,
tiL
tL

}
(6.1)

The minimum travel time to larger centers are substituted for minimum travel times to
smaller centers if the former is shorter than the latter. It is assumed that a higher category
service center can provide the same services and more than a lower category service center.

The index’s aim is to quantify accessibility in non-metropolitan Australia; thus, it does not
consider intra-urban accessibility at all. However, customized ARIA versions have been
developed, including the Metro ARIA that combines intra-urban accessibility to education,
health, shopping, public transport and financial or post services [199].

6.3.2 Emergency Facility Accessibility Index

In Guth et al. [65], a new accessibility index, the EFAI, is designed based on the
above-described ARIA. The EFAI is also a continuous index and considers access to
facilities required in disaster cases: hospitals, police, and fire stations. The OSM tags
amenity=hospital, amenity=police, and amenity=fire_station are used as facility
locations (see Section 2.3). For GRIND, the EFAI for an origin i is defined as:

EFAIi =
∑
F

min
{

3,
tiF
tF

}
, (6.2)
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The factor tiF represents the travel time from origin i to the nearest facility F. tF is the mean
travel time of all origins to the respective nearest facility F. The normalization enables the
index to be relative to local road conditions of infrastructure development [65].

In contrast to Guth et al. [65], travel times are used instead of a class-dependent weighting
factor for the road distance. For the previous study, no speed information was avail-
able, such that a weighting factor was used to account for different road hierarchy levels
and qualities [65]. With the Fuzzy-FSE, a speed estimation is enabled, which already
includes adaptations to local road conditions.

6.4 Travel Demand Model

The TDM module enables generating a simple Travel Demand Model (TDM) for inter-
city transport, solely based on OSM and population data. For that, the populated places
dataset created in Section 6.2 and the OSM road network with travel times per road
segment calculated in Chapter 3 is used. In this section, the classic four-stage TDM (Sec-
tion 6.4.1) is introduced. This TDM is then adapted to enable the estimation of average
daily trips from OSM and population data, only.

6.4.1 The Traditional Four-Stage Travel Demand Model

The development of TDMs to support transport planning is a vast and long-standing research
area that is continually evolving. Travel demand models are usually used to estimate the
number of people traveling in a network using a particular mode of transport from a bottom-
up approach. Generally, models are a simplified representation of a part of the real world
that focuses on certain elements considered important from a particular perspective [179].
The same is true for TDMs as they attempt to replicate the system of interest and its
behavior. However, their value is limited to a specified range of problems under specific
conditions [179]. The choice of a modeling approach is dependent, among other things,
on the precision and accuracy required for the model, the level of detail required for the
model, the availability of data, and the resources available for the study [179].

Years of experimentation and development in the field have resulted in a classic four-stage
TDM: trip generation, trip distribution, mode choice, and trip assignment (see Figure 6.2).
Ideally, the underlying data includes base-year levels of population of different types in each
zone of the study area and levels of activities like employment, shopping space, educational
and recreational facilities. Furthermore, OD surveys in the considered region serve as
baseline for people’s travel behavior. In the trip generation stage, this data is used to
estimate the number of trips generated and attracted by each zone of the study area. The
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Figure 6.2: The traditional four-stage Travel Demand Model.

next stage, the trip distribution, follows with the allocation of these trips from origins to
different destinations, which produces an OD matrix. In the modal split, trips in the matrix
are allocated to different traffic modes (e.g., private vehicle, bus, tram) using a mode choice
sub-model. Finally, the assignment of trips or route choice is the last stage of the classic
TDM. In this stage, trips are assigned to their corresponding networks (public and private
transport) by appointing them to paths in the network. [179]

As the road network is the focus of this thesis, only the road network and vehicle travel are
considered for the TDM such that the modal split can be disregarded for this TDM. The
trip generation sub-model usually estimates the number of trips produced and attracted
by a zone or location by using household characteristics like the number of people and
vehicles in a household, employment level, shopping space and educational and recreational
facilities. However, the required data may differ depending on the level of detail of the
model. For example, intracity travel behavior differs significantly from intercity travel
behavior, where other factors have to be considered.

The trip distribution matches origins and destinations to develop an OD matrix as number of
trips from every origin to every destination. The input values are the trips produced (Gi) and
attracted (Aj) for each zone calculated in the first stage of the TDM. A trip distribution model
follows two key principles: big producers attract more trips than small producers, and nearby
zones attract more trips than far-away zones. A general model to distribute trips is given as:

Tij = Gi ·
Aj · f(wij)∑
j Aj · f(wij)

, (6.3)

where Tij is the number of trips between origin i and destination j, Gi is the number of
trips generated in origin i, Aj is the attractiveness of destination j and f(wij) is a resistance
function. Two resistance functions that are frequently used are:

(a) f(wij) = w α
ij , (b) f(wij) = e α · wij , (6.4)

where α is a measure of cost decay, and wij is a cost factor in the network like network
distance, travel time, or fuel consumption. Equation (6.3), in combination with the resis-
tance function (a) in Equation (6.4), results in the classic gravity model. The combina-
tion of Equation (6.3), and the resistance function (b) in Equation (6.4) yields a utility
maximization model that is based on a gravity model.
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The last step is the trip assignment. It concerns the selection of paths between origins and
destinations in the network. The specific path a trip travels is identified and the trips are
then assigned to that path. The process involves a shortest path calculation for every OD
pair. Ideally, the assigned trip volume is then compared to the capacity of the link. If the
capacity of a link is exceeded, the travel time for the shortest paths changes and some trips
might have to be reassigned. Thus, the trip assignment process is repeated several times
until there is an equilibrium between travel demand and travel supply.

6.4.2 Development of a Travel Demand Model from OSM

The TDM is designed using only freely and globally available data accounting for conditions
one and two in Section 5.4. The TDM is supposed to work with minimal data input
and for intercity and rural transport. It is not intended to model transport within cities
or large urban areas, as different input data is necessary for such a model. The OSM
road network is used as a transport network, and the populated places dataset created
in Section 6.2 is applied as origins and destinations. The network’s cost factor is travel
time, which is obtained by applying the Fuzzy-FSE (see Chapter 3). The population of
each origin and destination serves as an estimate for the number of trips produced and
attracted by a location or, in this case, populated place.

The TDM is similar to the TDM in Scott et al. [64] and is based on Equation (6.3). In the
trip generation stage, the number of trips produced in a populated place per day is derived
from the population like Scott et al. [64]. However, as multiplying the population by 1.5
in every populated place (like Scott et al. [64]) results in too many intercity trips for large
cities, an exponential function depending on the population is employed. For the TDM, the
number of trips per day generated in origin i (Gi) is calculated as the population of origin
i (Pi) times the number of trips per person generated in origin i (g):

Gi = Pi · g

with g = gmax · e –α · Pi .
(6.5)

The parameter α determines the slope of the function. For intercity transport, we hypothesize
that α should be set such that small villages produce the maximum number of trips per day
(gmax) as they probably have to travel for all basic necessities. We assume that large cities pro-
duce almost zero trips per day for intercity transport as most of their necessities can be met
within the city. This assumption might have to be adapted to the cultural background of differ-
ent study regions. Figure 6.3 shows Equation (6.5) with exemplary α values for gmax = 1.5.
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Figure 6.3: Exemplary measure of cost decay α values for Equation (6.5) with gmax = 1.5.

Then, the trip distribution sub-model is designed. The attraction of a destination j is also
based on its population (Pj). As resistance function f(wij), a logit function is employed based
on the cost decay factor β and the travel time from origin i to destination j Cij:

f(wij) = e –β · Cij . (6.6)

A utility maximization model is chosen so that the resistance increase reflects the actual
travel behavior more accurately than with the basic gravity model. The combination of both
stages, trip generation, and trip distribution results in the following intercity TDM:

Tij = Pi · gmax · e –α · Pi ·
Pj · e –β · Cij∑
j Pj · e –β · Cij

. (6.7)

In the trip assignment stage, trips are assigned to their paths by calculating the short-
est path for every OD-pair. As capacity data is not available in OSM, the capacity of
a link is not accounted for. Thus, a capacity overflow of a link is not considered and
each trip is assigned to the shortest path.

Three parameters exist that have to be adapted for each study region to fit the TDM to
local travel behavior. During the trip generation stage, the parameters gmax and α are
set. In the trip distribution stage, the cost decay factor β is set. The parameters can
either be adapted by employing expert knowledge about local travel behavior or using
reference data of daily traffic volume in that region.
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6.5 Disaster Impact Assessment

The assessment of disaster impacts on critical road infrastructure is a broad research field
(see Section 5.2). In this thesis, two distinct approaches are presented to quantify the impact
of a natural disaster on the road network with OSM data. On the one hand, a transport
network analysis is performed, which measures the impact as a decrease of accessibility to
the respective locations in the AIC module. On the other hand, the TDM module, developed
in Section 6.4, is applied to account for the change in average daily travel time. These
distinct approaches can highlight different aspects of natural disaster impacts on the road
network, which might be helpful for disaster management.

The DIA module requires the information, which roads are impassable, for example, in a
natural disaster. It degrades impassable roads by deleting them from the road network.
The resulting road network is herein called a degraded network. Furthermore, the DIA
module requires input data from the AIC module (see Section 6.3) and TDM module
(see Section 6.4). It uses both of the modules mentioned above to calculate different aspects
of natural disaster impacts on the road network. It has to be considered, that all aspects of
natural disaster impacts can only be calculated for a connected network. Locations where the
nearest road is a disconnected network component are considered completely disconnected.

This section presents both approaches to natural disaster impact assessment. The trans-
port network analysis is described in Section 6.5.1. Section 6.5.2 describes the natu-
ral disaster impact assessment with a TDM.

6.5.1 Network Analysis Disaster Impact Assessment

The Network Analysis Disaster Impact Assessment (NADIA) measures the impact as a
decrease of accessibility to (a) service centers and (b) emergency facilities. This enables
the module to consider two different aspects of accessibility. The accessibility to service
centers is essential for the impact on the every-day needs of the affected population. The
impact on the accessibility to emergency facilities is relevant because these facilities are
often required in emergencies. The module uses the CM and the AIC module of GRIND.
The decrease of accessibility can be measured both as an absolute measure like a travel
time difference and a relative measure like an index difference.

As an absolute measure of accessibility decrease, the travel time to (a) all service centers
and (b) all emergency facilities is calculated in the original and degraded network for
every input locality. Input localities can, for example, be settlements for a point-based
analysis or centroids of grid cells for an area-based calculation. The difference in travel
time between the original and degraded network serves as an absolute measure of acces-
sibility decrease to emergency facilities or service centers.
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The relative measure of accessibility decrease is the ARIA and EFAI index difference. The
ARIA-Impacti for origin i can be calculated as:

ARIA-Impacti =
∑
L

tiL deg
tL

–
∑
L

tiL
tL

, (6.8)

with tiL deg being the travel time to the nearest service center L in the degraded network.
Similarly, the EFAI-Impacti for origin i is calculated like in Guth et al. [65] but with travel
time instead of road distance combined with a weighting factor:

EFAI-Impacti =
∑
F

tiF deg
tF

–
∑
F

tiF
tF

. (6.9)

tiF deg is the travel time to the nearest facility F in the degraded network. For both
index impact calculations, no threshold is set. Like the absolute measure, it can also
be calculated both point-based and area-based.

6.5.2 Travel Demand Model Disaster Impact Assessment

The Travel Demand Model Disaster Impact Assessment (TDMDIA) measures the impact of a
natural disaster in travel time increase for average daily traffic. The module uses the CM to
calculate travel times and the TDM module to obtain average daily trips for each location.
In this case, the impact can only be calculated for populated places and not grid-based as
the TDM module requires populated places as origins and destinations.

The travel time from all populated places to each other is calculated in the original and
in the degraded network. The TDM provides the number of average daily trips for each
combination. For this assessment the same number of average daily trips is assumed before
and after the natural disaster scenario. The TM-Impacti is calculated by using the sum of
the travel times of all daily trips from i to all j in the original and in the degraded network:

TM-Impacti = (
∑

j
tij deg · Tij) – (

∑
j

tij · Tij) , (6.10)

with tij as the travel time from populated place i to populated place j in the original network,
Tij as the number of trips from i to j (calculated in the TDM module), and tij deg as the
travel time from populated place i to populated place j in the degraded network. As a result,
the impact of a natural disaster as change in average daily travel time from i to all j is
provided for each populated place. If the origin i and the destination j are disconnected
from each other by the natural disaster, the impact is not calculated for this OD-pair. Like
this, the TDMDIA is also able to assess the number of disconnected daily trips per populated
place, which is an important information in a natural disaster scenario.
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6.6 Disaster Vulnerability Scan

The DVS module is designed to identify the most vulnerable roads during a disaster scenario
in case of a further spread of this scenario. In this case, it is developed for the application in
wildfire scenarios. However, it can be used for other long-lasting natural disasters with a
certain potential to grow like flooding events. The module uses the CM to calculate travel
times as well as the AIC module and the TDM module to find vulnerable road segments.
Furthermore, it requires a disaster footprint in the form of a polygon. For this thesis, the
currently burning region of a wildfire scenario is used.

The DVS consists of five steps:

1. Creating different scenarios of disaster spread.

2. Calculating vulnerability indicators for the network, which is currently degraded by
the natural disaster, herein called degraded network.

3. Degrading the network further by deleting additional roads, respectively, for each sce-
nario of disaster spread. These networks are herein called double degraded networks.

4. Calculating vulnerability indicators for the double degraded network in each scenario
of disaster spread.

5. Determining the resulting changes in the vulnerability indicators to identify the most
critical roads in a scenario of disaster spread.

To simulate the disaster spread in case of a wildfire, the currently burning area polygon is
used. The edge of the polygon is split into segments of a certain length. Listing 6.1 shows an
exemplary implementation of a PL/Python procedural language function to cut a polygon into
segments of a given length. Then, buffers around each segment are drawn to simulate the
wildfire growth in the respective area. Each buffer represents one scenario of wildfire spread.
These buffers overlap to include neighborhood effects. The probability of each scenario,
which is based on many factors like wind direction, temperature, or availability of flammable
material, is not considered. The scenario buffer generation is illustrated in Figure 6.4 (left).

1CREATE OR REPLACE FUNCTION break_segments (
2result_tab text ,
3poly_tab text ,
4segment_length float
5) RETURNS void
6AS $$
7

8## Create a table where the result of this query is inserted into
9plpy. execute ("DROP TABLE IF EXISTS " + result_tab + " CASCADE ")
10plpy. execute (" CREATE TABLE " + result_tab +
11" (id SERIAL PRIMARY KEY , poly_id int , geom geometry ) ")
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12

13## Selects all polygon -IDs into a list
14ids = plpy. execute (" SELECT path FROM " + poly_tab )
15id_list = []
16for i in ids:
17id_list . append (int(i[’path ’]))
18

19## Loop over every polygon
20for poly_id in id_list :
21## Create a new table only containing the exterior ring of that polygon
22plpy. execute ("DROP TABLE IF EXISTS ring CASCADE ")
23plpy. execute (" CREATE TABLE ring AS
24( SELECT st_ExteriorRing (geom) as geom
25FROM " + poly_tab + "
26WHERE path = " + str( poly_id ) + ")")
27

28## Calculate length and no. of segments of the exterior ring
29length = float (plpy. execute ("
30SELECT st_length (geom :: geography ) AS length
31FROM ring")[0][ ’length ’])
32parts = length / segment_length
33

34## If the polygon will be split in more than one segment
35if length >= segment_length + 0.5* segment_length :
36## Calculate the fractions where the ring will be split into segments
37frac_list = [0.]
38frac_list . append (1/ parts)
39for i in range (1, int(parts)):
40frac_list . append ( frac_list [-1] + 1/ parts)
41frac_list . append (1.)
42

43## Split the ring and insert segments into the result table
44for i in range(len( frac_list ) -1):
45plpy. execute (" INSERT INTO " + result_tab + " (geom , poly_id )
46SELECT st_LineSubstring (geom , " + str( frac_list [i]) +
47"," + str( frac_list [i+1]) + "), " + str( poly_id ) + "
48FROM ring")
49

50else:
51plpy. execute (" INSERT INTO " + result_tab + " (geom , poly_id )
52SELECT geom , " + str( poly_id ) + "
53FROM ring")
54

55plpy. execute ("DROP TABLE IF EXISTS ring CASCADE ")
56

57$$ LANGUAGE plpython3u ;

Listing 6.1: Examplary implementation of a PL/Python function to cut a polygon into segments of
a given length.

110 Chapter 6 Methodology of the Critical Infrastructure Assessment



b1
b2

A

BC

b1

b2

Figure 6.4: On the left, the scenario buffer generation for the wildfire spread is visualized. The
currently burning area is colored gray, the segments on the edge of the burning area as well as the
corresponding buffer scenarios are colored blue and orange alternately for better visualization. On
the right, two buffers, b1 and b2, are displayed exemplarily with three points A, B, and C that serve
as origins and destinations in the road network. The road network is illustrated with gray lines.

Network vulnerability scans are computationally expensive [108] because all pairs of shortest
paths have to be calculated for each degradation scenario. For this scan, the computing time
is reduced by only considering the relevant paths during the scan. When calculating the
vulnerability indicators of the degraded network, all used shortest paths are stored in the
database as sequences of road ids and with a unique path identifier. Then, each scenario
buffer gets the information which paths use the roads intersecting with the respective
scenario buffer by assigning path identifiers. Thus, only those paths are recalculated during
the DVS, which use the roads intersecting with the respective scenario buffer.

The scenario in Figure 6.4 on the right can be considered as an example. During the DVS
for scenario buffer b1, all roads intersecting with the blue buffer b1 are degraded. The
shortest path from A to B does not intersect buffer b1 and is, therefore, not recalculated.
The shortest paths from A to C and B to C go through buffer b1 and are recalculated during
the scan. Similarly, during the scan for scenario buffer b2, the shortest paths from A to C
and A to B have to be recalculated because they intersect with the orange buffer b2.

As a result, vulnerability indicator differences are obtained for each scenario buffer. From
the CM, travel time differences are calculated. For facilities it calculates the average of the
travel time from a location i to the nearest facilities hospital, fire station, and police before
and after degrading the scenario buffer for all locations where the travel time is calculable
in the double degraded network. Travel time is not calculable when there exists no shortest
path between origin and destination because the networks are not connected. Then, the
average of travel times from i to all facilities is added up for all locations before and after
degrading the scenario buffer. The resulting vulnerability indicator is the difference of travel
time average. The same is calculated for all locations i to all service centers.

6.6 Disaster Vulnerability Scan 111



From the AIC module the ARIA and EFAI differences are obtained. It calculates all ARIA
and EFAI values before and after degrading the roads in the scenario buffer for all locations
where the index is calculable in the double degraded network using Equation (6.8) and Equa-
tion (6.9). As for the DIA module, no threshold is set for ARIA and EFAI. Then, the average
ARIA and EFAI before and after degrading the scenario buffer for the entire study region is
calculated. The difference of average ARIA and EFAI serves as vulnerability indicator.

The TDM module calculates the average daily travel time difference for each scenario
buffer. It calculates the travel time before and after degrading the scenario buffer for
a location i to all destinations where the number of daily trips is larger than one and
where the travel time in the degraded network can be calculated. The number of daily
trips to every destination is assumed the same as before the event. Then, the sum of
all daily travel times from all locations to all destinations before and after degrading the
scenario buffer, respectively, is calculated. The total delay of daily trips is taken as a
vulnerability indicator. Additionally, the sum of daily trips that get disconnected due to
the degradation of the scenario buffer is calculated.

In summary, the following vulnerability indicators are calculated:

• CM: Travel time difference to facilities, travel time difference to service centers

• AIC: EFAI difference, ARIA difference

• TDM: Average daily travel time difference

These indicators highlight different aspects of vulnerability that are important for
disaster management and can be considered separately or in combination. Scenario
buffers where the vulnerability indicators show a big difference between the degraded
and the double degraded networks are locations where a fire spread would be most
critical for the functionality of the road network.

112 Chapter 6 Methodology of the Critical Infrastructure Assessment



Case Studies and Transferability
of GRIND

7
GRIND is applied exemplarily in two case study regions in Chile and Australia for two
wildfire scenarios to test its potential and transferability. This chapter presents the case
study results and regional analyses of these results. Some modules are applied in both study
regions while others are tested only for the study region in Australia. Figure 7.1 visualizes
which module is applied in which case study region. The TDM module is only applied in
Australia because reference data or expert knowledge to tune the model is not available for
the study region in Chile. Similarly, the DVS is not applied in Chile because of the missing
TDM. Two case study regions are chosen that differ in their quality of OSM data and their
stages of development to prove the generic and transferable design of GRIND.

AustraliaChile

Core Module ✔✔

ARIA ✔✔

EFAI ✔✔

✔✘

AIC ✔✔

TDM ✔✘

✔✘

Travel Demand Model

Accessibility 
Index

Calculation

Disaster 
Impact

Assessment

Disaster Vulnerability Scan

Figure 7.1: Application of GRIND modules in the case study regions in Chile and Australia.

This chapter begins with a presentation of both case study regions and wildfire scenarios
in Section 7.1. Then, the results and a regional analysis of the CM and the AIC module are
presented in Section 7.2. Section 7.3 demonstrates the application of the TDM module for
the study region in Australia. The impact of two wildfire scenarios on the road network’s
functionality is analyzed in Section 7.4 with the DIA module. Finally, the DVS module
is applied during a wildfire scenario in Section 7.5.
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7.1 Case Study Regions and Scenarios

Two exemplary case studies are performed in geographically and economically different re-
gions in Chile and Australia. The same three regions in central Chile as in Chapter 3 and Guth
et al. [65] are considered: the BioBío, the Maule, and the Ñuble region. The Ñuble region is
a new region that was created in 2018 by splitting the former BioBío region into two parts. In
this thesis, the BioBío, Maule, and Ñuble regions are abbreviated as BM regions. In Australia,
the south-eastern part of the state of New South Wales (SE-NSW) is considered. Both regions
are chosen because they have recently had severe wildfires and because they differ in their
state of development and quality of OSM data (see Section 2.2). The enhanced OSM data
created in Part I is used for the road network in both case studies. Two exemplary wildfire
scenarios are analyzed: one in the BM regions in Chile and one in SE-NSW in Australia.

Chile

A series of wildfires burned across Chile in January 2017. Until now, these wildfires are the
largest in the country’s history. The O’Higgins and BM regions were most affected. The wild-
fires destroyed 1644 houses, impacted 7157 people, and killed 11 persons [200]. The town
of Santa Olga in the Maule region was destroyed, and a total area of 5182 km2 was burned.

In this thesis, only the wildfires in the BM regions are considered, which amount to a
total burnt area of 3807 km2. The case study region is illustrated in Figure 7.2. The
entire burnt area is taken as a footprint for the wildfire. In the BM regions, 1910 km of
the road network (levels L1-L5 in Table 2.1) lie within the burnt area. Thereof, 105 km
L1 roads, 133 km L2 roads, 78 km L3 roads, 1208 km L4 roads, and 386 km L5 roads
intersect the burnt area. The total road network in the BM regions amounts to 30 278 km
in L1-L5. The OSM dataset for the BM region contains 202 hospitals, 264 police stations,
and 108 fire stations. In the populated places dataset, 323 settlements exist in the BM
regions, thereof two service centers category A (Talca and Concepcíon), 12 service centers
category B, 14 service centers category C, 66 service centers category D, and 144 service
centers category E. To avoid errors at region borders, service centers, facilities, and roads
that lie within 35 km (10 % of the regions’ area) are included.

Australia

The 2019/2020 bushfire season was an unusually intense series of wildfires, mainly in
NSW, Victoria, and South Australia. The fires burnt a total of 73 876 km2, destroyed 3057
houses, and killed 33 people [201]. The mainly affected region was NSW with 55 957 km2

burnt area, 2475 destroyed houses, and 25 deaths [201].
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Figure 7.2: Case study region in Chile. On the left, the road network with the considered facilities
and major settlements is illustrated. On the right, the burnt area of the 2017 wildfires is shown.

For the case study in this thesis, south-east New South Wales (SE-NSW) is considered
with fires that are actively burning on 5th February 2020 (data source: [202]). This day
is deliberately chosen to perform an example for a vulnerability scan during an ongoing
natural disaster. An overview of the case study region is shown in Figure 7.3. The region
SE-NSW for this thesis is defined as the area in NSW that is within 150 km around the
wildfires. An additional buffer of 10 % of this area (circa 85 km buffer width) is included to
avoid errors at the region borders (see Figure 7.3). The considered road network comprises
131 309 km of L1-L5 roads. 7818 km of road network lie within the wildfire area. Thereof,
278 km L1 roads, 349 km L2 roads, 1153 km L3 roads, 801 km L4 roads, and 5220 km
L5 roads are within the wildfires. In total, there are 733 settlements in the considered
region, thereof 4 service centers category A, 22 service centers category B, 29 service centers
category C, 81 service centers category D, and 240 service centers category E. 85 hospitals,
219 police stations, and 373 fire stations exist in SE-NSW.
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Figure 7.3: Case study region in Australia. On the left, the road network with the considered
facilities and major settlements is illustrated. On the right, the active wildfires as of February 5th
2020 are shown.

7.2 Core Module and Accessibility Index Calculation

The CM calculates travel times to localities, in this case, facilities and service centers, for
both study regions. A grid-based analysis is performed to enable an evaluation of the
entire area. A grid resolution of one kilometer is chosen for the BM regions. The grid
resolution in SE-NSW is two kilometers because of the bigger study area compared to
the BM regions. Grid cells that are further away from a road than 5 km in Chile and
15 km in Australia are considered not accessible via the road network and are deleted.
In Australia, the larger value of 15 km is chosen because of two reasons. First, Australia
features more roads of the class Track than Chile (see Figure 2.2), which are not included
in this analysis, such that there often exist tracks in the vicinity of higher-level roads to
reach places further away. Second, the inner part of the Australian continent features a
very low population density and is very rural compared to Chile, such that a wider radius
around roads can be considered still accessible via the road network.

Figure 7.4 shows the travel time to the respective nearest hospitals and fire stations in
the BM regions. Figure 7.5 illustrates the same for the study region in Australia. The
travel time to hospitals and fire stations is displayed because these facilities are the most
important ones in a wildfire scenario. However, the travel time to the nearest service
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Figure 7.4: Travel time to the nearest hospitals (left) and fire stations (right) in the BM regions in
Chile.

Figure 7.5: Travel time to the nearest hospitals (left) and fire stations (right) in SE-NSW in Australia.
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Table 7.1: Mean, maximum, and SD of travel time in minutes from all grid cells to service centers
and facilities in the two study regions.

BM (Chile) SE-NSW (Australia)

Mean SD Max Mean SD Max

Service
centers

A 101.9 54.4 595.5 232.6 89.2 552.2

B 70.8 47.1 520.1 108.9 55.6 296.0

C 54.4 42.5 501.4 75.4 41.4 268.6

D 37.5 35.1 501.4 49.1 29.8 223.2

E 31.0 33.7 501.4 32.5 21.4 177.2

Facilities

Hospital 39.2 40.8 505.2 63.4 34.7 214.0

Police 28.8 27.7 216.1 36.8 22.9 178.7

Fire station 42.4 34.9 262.4 36.8 23.4 171.6

center in each category and the travel time to the nearest police station is also calculated.
Table 7.1 displays the mean and maximum travel times and the standard deviation to
all service centers and facilities in both study regions.

In the results for the BM regions in Chile and SE-NSW in Australia in Figure 7.5, Figure 7.4,
and Table 7.1, it can be seen that Australia is generally more remote than Chile. The average
travel time to hospitals is almost twice as high in SE-NSW as in the BM regions. Furthermore,
49 % of the study region in Australia is located more than one hour away from a hospital.
In Chile, only 17 % of the area is further away from hospitals than one hour. Interestingly,
the maximum travel times to locations are much higher in the study regions in Chile than
in SE-NSW, which hints at a few very remote places in the Andes.

The density of facilities and service centers is also generally higher in the BM regions
than in SE-NSW. In SE-NSW, most facilities are mostly concentrated in the coastal re-
gions where the majority of the population lives. It is noticeable that Australia has many
more fire stations than hospitals, which are better distributed over the study region than
hospitals. The high number of fire stations is probably caused by the frequent and se-
vere wildfires the continent experiences regularly.

The AIC module calculates the ARIA and EFAI for both study regions, using the travel
times calculated in the CM. Figure 7.6 shows both indices for the study region in Chile,
and Figure 7.7 illustrates the ARIA and EFAI values for SE-NSW in Australia. If the shortest
travel time cannot be calculated because one or more service center categories or facilities
are not accessible via the road network, the entire index cannot be calculated, and the grid
cell is deleted. This can be observed, for example, on the island in the South-West of the BM
region, where a hospital is available, but a fire station is not (see Figure 7.4 and Figure 7.6).
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Figure 7.6: EFAI (left) and ARIA (right) values for the BM regions in Chile. Low index values (yellow
and green) signify accessible grid cells, high index values (blue and lilac) visualize remote areas.

Figure 7.7: EFAI (left) and ARIA (right) values for the SE-NSW region in Australia. Low index values
(yellow and green) signify accessible grid cells, high index values (blue and lilac) visualize remote
areas.
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The EFAI and ARIA in Figure 7.7 and Figure 7.6 demonstrate similar results. The EFAI in
the BM regions shows good accessibility of emergency facilities on the coast and along
the Ruta 5, the main south-north highway in the regions. Accessibility decreases a little
for the coastal mountain ranges and a lot in the far east of the region where the Andes
are located. The ARIA shows a similar picture but highlights the accessibility of service
centers with low ARIA values near the category A service centers Talca and Concepcíon. The
same is visible in SE-NSW as the ARIA clearly shows high accessibility of service centers
in the greater vicinity of Sydney. The rest of SE-NSW features a lower ARIA while high
EFAI values still occur in the middle and west of the study area.

7.3 Travel Demand Model

The TDM module is applied to the SE-NSW region. Data from the Traffic Volume
Viewer [203] from the year 2019 is used as reference data. The Traffic Volume Viewer
provides available traffic count data (volumes) of various stations in NSW. It differentiates
between vehicle classes (light, heavy, or both), directions of traffic (east/westbound,
south/northbound or both), and types of days or times of day (weekdays, weekends, AM
peak hours, PM peak hours, off-peak hours, public holidays or all days average). Only
stations with available data for both vehicle classes and all-days average are selected of
all available data. Stations within big cities (mainly Sydney) are not considered reference
data because the purpose of the model is to estimate intercity transport. As a result, 60
reference stations are obtained; thereof, 46 are located on motorway or trunk, 12 on
primary roads, one on a secondary road, and one on a tertiary road.

The upper map in Figure 7.8 shows the study region with the hierarchical road network, and
the populated places dataset generated in Section 6.2. The populated places serve as origins
and destinations. The objective is to estimate the daily intercity trips between all origins
and all destinations in the populated places dataset to obtain an OD-matrix. The maximum
number of trips per person in a populated place gmax, is set to 1.5 like in Scott et al. [64].

The Traffic Volume Viewer reference data is used to fit the model parameters α and β

in Equation (6.7) to the study region. The combination of α = 0.6 · 10–5 and β = 1.7 · 10–3

performs best. Figure 7.9 shows a scatter plot of the estimated volumes and the reference
volumes. The R2 is 83.4 %, and the Root Mean Square Error (RSME) is 6199 vehicles
per road segment. Without the two stations where the reference volume is greater than
50 000 (see Figure 7.9), the R2 is significantly worse (63.1 %) with a slightly lower RSME
of 6086 vehicles per road segment. The resulting volumes for every road segment and the
model’s error in relation to the reference values are shown in the lower map in Figure 7.8.
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Figure 7.8: The upper map shows the road network (for hierarchy levels see Table 2.1) of the study
area in New South Wales - Australia. Below, volumes of cars per day estimated by the developed TDM
and the error in relation to the reference data (reference volume - estimated volume) is illustrated.
Red road segments are underestimated, blue road segments are overestimated.
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Figure 7.9: Scatter plot of the estimated volumes and the reference volumes in average vehicles per
day. The closer the points are to the orange line, the better is the estimation.

Regarding the regional distribution of model errors, some patterns are noticeable in Fig-
ure 7.8. In the north-west of the region, the Newell and Oxley Highway are overestimated,
while in the south-west, the Newell and other highways are slightly underestimated. The
Hume Highway, which runs from east to west just north of Canberra, is significantly un-
derestimated. The underestimation might stem from the fact that most traffic between
Australia’s largest cities Sydney and Melbourne, travels this route, and Melbourne is not
included in this model. In the urban areas near the east coast, both over- and under-
estimation can be observed in close range. This phenomenon can be explained by the
model not being able to estimate transport volume in urban areas as cities are repre-
sented as points in a network rather than polygons.

7.4 Disaster Impact Assessment

The DIA module is applied for both wildfire scenarios. In Section 7.4.1, a NADIA is con-
ducted. The results for both study regions are presented and analyzed. Section 7.4.2
shows the results of the TDMDIA for SE-NSW in Australia.

7.4.1 Network Analysis Disaster Impact Assessment

The impact of a disaster scenario can be assessed as accessibility decrease in an absolute
way using travel time or relatively with an index. In this subsection, the results for the
two distinct approaches in both study regions are presented.
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The travel time difference between the original and the degraded network from grid centroids
to the nearest locations is calculated for the BM region and SE-NSW (see Section 6.5.1).
In this case, locations are facilities (hospital, police, and fire station) or service centers
in all categories. As a result, travel time differences as accessibility decrease due to the
wildfires are obtained for each grid cell. The results are visualized exemplarily in Figure 7.10
for all facilities in the BM regions and Figure 7.11 for all service centers in SE-NSW. In
some cases, the travel time can not be calculated because the wildfire disconnected an
entire subnetwork. If there exists neither a service center nor a facility in this subnetwork,
the grid cell is considered disconnected. A grid cell is also disconnected if it intersects
but is not contained by the wildfires. Grid cells that are completely within wildfires are
not counted in the analysis. If any facility or service center exists in the subnetwork,

Figure 7.10: Impact of the 2017 wildfires as travel time to facilities difference before and after the
event in the BM regions.
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Figure 7.11: Impact of the wildfire burning on the 5th February 2020 as travel time to service center
(SC) difference before and after the event in SE-NSW.
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Table 7.2: Mean travel time (TT) in minutes from all grid cells to service centers and facilities for
the original and the degraded network (NW) in the two study regions.

BM - mean TT SE-NSW - mean TT

Original NW Degraded NW Original NW Degraded NW

Service
centers

A 103.0 131.6 232.2 235.5

B 69.8 74.9 105.9 107.2

C 54.3 60.7 68.1 69.3

D 37.3 39.7 47.0 47.5

E 31.3 33.1 30.8 31.0

Facilities

Hospital 39.5 40.8 62.5 63.0

Police 28.6 29.2 34.7 35.0

Fire station 42.3 44.5 35.8 36.4

but the facility or service center that is being analyzed does not exist in the subnetwork,
the grid cell is displayed as travel time not calculable.

Table 7.2 shows the mean values of all grid cells for the original and degraded net-
work. Only grid cells are considered where the travel time in the degraded network
can be calculated. The average travel time to high-level service centers is delayed for
up to 28.6 min (BM) and 3.3 min (SE-NSW). In general, the average delay in the BM
regions is higher than in the SE-NSW region.

The impact of wildfire scenarios is first analyzed for each facility and service center category
separately, using travel time differences. Figure 7.10 and Figure 7.11 show that the accessi-
bility decreases significantly, especially for the hospitals and fire stations in the BM regions
and for service center categories A and B in SE-NSW. In SE-NSW, the travel time to service
center categories A, B, and C is not calculable for a large area in the south of the region be-
cause the networks are disconnected. The average travel time to facilities and service centers
increases slightly in both study regions, as visible in Table 7.2. The increase of average travel
time is a little less in SE-NSW than in the BM regions, probably because the wildfires there
hit more remote regions where the accessibility was already low before the event and where
few roads exist. In the BM regions, the accessibility to high-level service centers is decreased
significantly because the fires affected one of the major roads leading to Concepcíon.

The index impact as a relative measure of accessibility decrease is calculated according
to Equation (6.9) and Equation (6.8) in Section 6.5.1. The EFAI-Impact and the ARIA-
Impact are visualized for the BM regions in Figure 7.12 and SE-NSW in Figure 7.13. Note
that the EFAI- and ARIA- Impact are not directly comparable because EFAI values range
from zero to nine, and ARIA values range from zero to 15. The index impact can not be
calculated if the travel time to one of the facilities (for the EFAI) or one of the service
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Figure 7.12: EFAI-Impact (left) and ARIA-Impact (right) values for the MB regions in Chile.

Figure 7.13: EFAI-Impact (left) and ARIA-Impact (right) values for SE-NSW in Australia.
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centers (for the ARIA) can not be computed. Like for the travel time difference, grid
cells are considered disconnected if there is neither a facility nor a service center in the
subnetwork, or the grid cell intersects with the wildfires.

The EFAI-Impact in km2 is visualized in Figure 7.14 for both study regions. In the BM region,
when the EFAI-Impact is considered, 5505.49 km2 are affected by the wildfires, which is 1.4
times the size of the wildfires (3807.17 km2). Similarly, in SE-NSW, also looking at the EFAI-
Impact, 27 209.03 km2 are impacted by the wildfires (0.6 times the size of the wildfires).
Figure 7.15 illustrates the ARIA-Impact in km2. There, the affected area where accessibility
to service centers decreases is 6.4 times the size of the wildfires with 24 380.19 km2 in the
BM regions and 1.6 times the size of the wildfires (42 144.43 km2) in SE-NSW.

SE-NSW
Australia

BM
Chile

802 km²

1459 km²

622 km²
727 km²

167 km²

1672 km²

57 km²

4073 km²

9068 km²

1019 km²

790 km²
244 km²

850 km²

Figure 7.14: EFAI-Impact in square kilometer in both study regions.

SE-NSW
Australia

BM
Chile

7769 km²

7952 km²

3819 km²

2164 km²
772 km²

1672 km²
231 km²

13038 km²

9068 km²

3339 km²

552 km²
327 km²

15821 km²

Figure 7.15: ARIA-Impact in square kilometer in both study regions.

The AIC allows for a combination of the facility and service center accessibility, respectively.
Considering the EFAI-Impact, the accessibility to emergency facilities is decreased signif-
icantly for the center of the BM regions and slightly around the edges of the wildfires in
SE-NSW. The ARIA impacts a larger area because only two service centers category A exist
in Chile and four (thereof three at the coast) in Australia. Thus, for the ARIA, the travel time
to these few service centers is calculated for all grid cells, and small fires might disconnect
many shortest paths to find a longer alternative resulting in a large area of ARIA-Impact.
Relatively, the BM regions are impacted more by the wildfires because more important roads
have been blocked, while in SE-NSW, the fires occurred mainly in remote regions. In both
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regions, significant parts of the study region get entirely disconnected. In regards to road
infrastructure functionality, this is worse than an accessibility decrease because these areas
are completely cut off. Especially in SE-NSW, very large areas on the south-east coast are
completely disconnected by the wildfires. These areas can not access facilities like hospitals,
and fire fighters can not reach the wildfires via the road network. The entire emergency
logistics for this area would have to be provided by other means like ships or helicopters.

7.4.2 Travel Demand Model Disaster Impact Assessment

The TDM module can also be employed to assess a different aspect of the impact of a
wildfire scenario, as described in Section 6.5.2. It is used to assess the total delay of daily
trips for each settlement in SE-NSW in Australia. This subsection presents the TDMDIA
results for the wildfires burning on 5th February 2020 in SE-NSW.

In the original network, 675 trips exist with travel time longer than two hours, in the
degraded network 15 432 daily trips are longer than two hours. The mean duration of
daily trips is 20.42 min in the original network and 20.67 min in the degraded network for
all daily trips that are not disconnected in the degraded network. Table 7.3 displays the
number of trips from all origins to all destinations in the degraded network per delay
in minutes in relation to the original network.

Table 7.3: Number of trips per delay in minutes from all origins to all destinations.

Delay in minutes Number of trips

No delay 4 320 696

< 1 40 435

1 - 5 29 379

5 - 10 19 134

10 - 20 5370

20 - 40 2132

40 - 60 11 975

> 60 1982

The upper map in Figure 7.16 shows the total delay per settlement in hours in SE-NSW in
Australia. The total delay is calculated with Equation (6.10) as the sum of the delay of all
daily trips from a settlement to all other settlements. In total, 171 out of 608 settlements
experience no delay in daily trips due to the wildfires. The daily trips of six settlements
to all other settlements are delayed more than 100 h with a maximum delay of 6528 h for
trips starting in the town of Windsor. The total delay of daily trips caused by the wildfires
as a sum of the delay for all settlements is over 18 314 h.
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Figure 7.16: Impact of the wildfires burning on the 5th February 2020 as total delay in daily trips in
hours (above) and as percentage of disconnected daily trips (below) in SE-NSW.
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The percentage of disconnected daily trips per settlement is illustrated in the lower
map in Figure 7.16. Forty-six settlements are entirely disconnected from the main
network as all daily trips are not calculable. In total, 75 settlements have more
than 50 % of daily trips disconnected.

The TDM in the DIA module assesses demand specific impacts of the wildfire scenario in
SE-NSW. The wildfires delay daily traffic in SE-NSW significantly. The largest impact in form
of delay can be observed close to the wildfires around Sydney where many people live and
therefor a lot of traffic exists. The TDM shows that a delay of under one hour occurs also
for settlements which are up to 100 km away from the wildfires. Hence, the impact of the
wildfires is felt also much further away than the ARIA- and EFAI-Impact would suggest. Also,
in the south-east of the region, where wildfires disconnected a significant amount of daily
trips, a long delay can be observed. Regarding the disconnections, most daily trips for the
settlements on the south-east coast are disconnected. This underlines the results of the EFAI-
and ARIA-Impact and highlights the difficult situation on the south-east coast at this time.

7.5 Disaster Vulnerability Scan

The DVS is performed for SE-NSW using travel time to service centers and facilities
(CM), the ARIA and EFAI (AIC module), and average daily traffic (TDM module) as
vulnerability indicators for the wildfires burning on 5th February 2020. The methodol-
ogy of the DVS is described in Section 6.6.

To generate the scenario buffers, the edges of the wildfire polygons are split into segments
of 2 km length. Because the edge of the wildfire polygons are rarely of a length exactly
dividable by 2 km one segment in each polygon is of different length. It is either up to
1 km longer, if the rest of dividing the total length by 2 km is smaller than 1 km, or up
to 1 km shorter, if the rest is longer than 1 km. An exemplary 3 km-buffer is chosen to
simulate a wildfire spread of 3 km. In total, 5152 scenario buffers are created; thereof,
3304 intersect with a road and 423 intersect with a shortest path.

Figure 7.17 illustrates the results of the DVS using the difference of travel time sum to
facilities and service centers. For 8 scenario buffers, the sum of average travel time from
all locations to facilities is longer than 300 min. For service centers, 36 scenario buffers
cause a travel time rise more than 300 min. A fire spread near the roads close to Sydney
would generally have the biggest impact on road network functionality.

The EFAI- and ARIA-Impact of each scenario buffer is shown in Figure 7.18. Note the
different scales of the indices, as they are not directly comparable. The EFAI-Impact
is, in general, higher than the ARIA-Impact. A fire spread east of the long wildfire in
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Figure 7.17: DVS with travel time sums to facilities (left) and service centers (right) in SE-NSW.

the south-east of the region would have very little impact because it has already been
mostly disconnected (see Figure 7.16 below).

Figure 7.19 visualizes the results of the DVS using the TDM as vulnerability indicator. Two
aspects are illustrated: on the left, the scenario buffers are colored according to how many
daily trips are disconnected if the fire spreads there, on the right, the total daily delay for the
entire network is visualized. As a reference, the degraded network has a total daily travel
time (as sum of all daily trips from all locations to all locations) of circa 1 050 000 h.

The region close to the wildfires around Sydney is the most vulnerable to a wildfire
spread, as demonstrated by all vulnerability indicators. Especially the Barrier Highway,
going through the Blue Mountains (west of Sydney), and the Hume Highway (south-west
of Sydney) are vulnerable towards a fire spread. These highways are two of the most
commonly traveled roads in this region. Especially a fire spread that affects the Bar-
rier Highway would reduce the accessibility of emergency facilities and service centers
significantly (see Figure 7.17 and Figure 7.18).

In the south of SE-NSW, a fire spread would have smaller impacts. The accessibility of
service centers is almost not affected, and the accessibility of facilities is only affected
by three wildfire spread scenarios on the south-east coast. However, the situation in this
region is already severe before a potential further spread of the wildfires. As illustrated
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Figure 7.18: DVS with index impacts of the EFAI (left) and ARIA (right) in SE-NSW.

Figure 7.19: DVS with the TDM in SE-NSW. On the left, the number of disconnected daily trips is
illustrated for each scenario buffer. On the right, the total daily delay is visualized.
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in Figure 7.13 and Figure 7.16, almost the entire south-east coast is already at least partly
disconnected from the rest of the road network. Because travel times can not be calculated
for disconnected parts of the network, the DVS cannot detect further impacts of a wildfire
spread on the road network’s functionality. A vulnerability towards further disconnections
due to wildfire spread can be observed in Figure 7.19 for the entire south-east coast.

In summary, this chapter presents the results of applying GRIND for two wildfire scenar-
ios in different case study regions. As such, it proves the transferability of GRIND. In
the next chapter, the strengths and limitations of each GRIND module seperately, and
of the concept as a whole are discussed in detail.
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Methodological Discussion of the
Assessment of Critical Road
Infrastructure in GRIND

8

This chapter discusses the case study results, demonstrated in Chapter 7, for each mod-
ule of GRIND. A brief regional analysis and comparison of the specific results of both
case study regions is performed in Section 7.1. This discussion’s focus is the applicability
of GRIND for the assessment of critical road infrastructure in the disaster context. The
advantages and limitations of each GRIND module are analyzed in detail, and their ap-
plication potential for disaster management is highlighted.

This chapter starts by analyzing the effect of applying the Fuzzy-FSE and Error Search
in Part I. Then, the results of the CM and AIC module (Section 8.2), the TDM module
(Section 8.3), the DIA module (Section 8.4), and the DVS module (Section 8.5) are discussed.
Finally, the limitations of GRIND are presented in Section 8.6.

8.1 Fuzzy-FSE and Error Search in GRIND

In Part I of this thesis, Chapter 2 demonstrates that the quality of the OSM road net-
work is often not sufficient, especially for routing applications. Two major challenges
are identified: the often missing speed information and the frequently low attribute ac-
curacy regarding the road classification. Two modules are developed to address these
challenges: the Fuzzy-FSE (see Chapter 3), which estimates speed values, and the Error
Search (see Chapter 4), which searches for road classification errors. In GRIND, these
modules are applied to the OSM road network data to obtain an enhanced OSM road
network dataset, which can then be used for part II of GRIND.

In the following, the applications of these modules are discussed with respect to
the assessment of critical road infrastructure in GRIND. First, the benefit of using
the Fuzzy-FSE to estimate travel times is analyzed. Then, the advantages of the
Fuzzy-FSE for the generic concept are discussed.
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Fuzzy-FSE

Travel Times versus Network Distance The Fuzzy-FSE estimates average speed values for
every road segment, which can then be used to calculate travel times. The simplest alterna-
tive for routing applications is to use network distance if speed information is not available.
However, the use of network distance completely disregards road hierarchy and thus road
quality. There is a difference in speed between high-level roads like motorways and low-level
roads like tertiary roads in every country worldwide. The same distance on a high-level
road can be traveled much faster than on a low-level road. For example, the road distance
from Sydney to Newcastle in NSW in Australia is 125 km, and it takes 74 min without traffic
to travel this route (calculated by the GD-API). A similar road distance from the small town
of Towong to Jindabyne in the South-West of NSW of 137 km has a travel time of 132 min
(calculated by the GD-API). The difference is that the route from Sydney to Newcastle
travels the Pacific highway and the route from Towong to Jindabyne follows a low-level road.
This phenomenon highlights the importance of accounting for the average speed on a road.

The original ARIA [197] only considers network distances. This might not lead to large
errors when considering only the highway network like Taylor and Susilawati [108], but,
as soon as more road classes are included, the road quality has to be taken into account.
Network distance overestimates the accessibility of remote regions because these regions
are often only connected with low-level roads. Thus, the region might seem more ac-
cessible using network distance because the bad road quality limits the driving speed.
Using travel time as a cost factor resolves this issue.

Travel Times versusWeighting Factors In our previous study in [65], we employ weighting
factors to account for different road qualities. These weighting factors are adaptable to
different study regions and are an acceptable approximation if speed values are not available.
However, travel times are easier to interpret than weighted road distances which renders
the impact assessment more intuitive. Furthermore, the application of weighting factors,
like the application of fixed speed profiles per road class, is characterized by jumps at class
borders. The Fuzzy-FSE resolves this issue as it relies not only on the road class to estimate
average speed but also on the road surface, the road length, and the curviness of a road.
These parameters are then combined with Fuzzy Control using expert knowledge.

Advantages and Limitations of the Fuzzy-FSE The advantages and limitations of the
Fuzzy-FSE, in general, are discussed in detail in Section 3.8. Regarding the application in
the generic concept, the main advantages are the adaptability to local road conditions and
the possibility to estimate speed values from only OSM data. The Fuzzy-FSE reaches an
acceptable accuracy of around 70 % for both study regions (see Section 3.7). Nevertheless,
it has to be considered that the accuracy is highly dependent on the applied expert
knowledge and that the Fuzzy-FSE is not designed for urban regions.
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Error Search

The Error Search presented in Chapter 4 consists of two independent parts: the
search for disconnected network components and the gap search. Both are applied
in GRIND to obtain the enhanced OSM dataset.

Search for Disconnected Network Components The search for disconnected network com-
ponents is applied for the road network consisting of L1-L5 roads in the BM regions and
NSW. Consequently, disconnected network components are either connected to the main net-
work, if the connection was in the wrong road class, or deleted, if the component itself was
assigned the wrong road class. If these disconnected network components are not detected,
in the generic concept, grid cells close to the roads of the disconnected network component
are assigned to these roads (see Section 6.1). Because the component is not connected to
the rest of the road network, the shortest paths to facilities and service centers for all grid
cells assigned to the roads of the disconnected network component can not be calculated.
This behavior results in large areas where travel times and the indices can not be calculated.

Before applying the search for disconnected network components, travel times are not
calculable for 397.1 km2 of grid cells in the BM regions. Similarly, travel times are not
calculable for 16 611.9 km2 (2.15 % or the area) of the entire state of NSW in Australia
without the treatment of disconnected network components. Thus, a relatively simple
search for disconnected network components can have a big effect on the assessment
of critical road infrastructure in the generic concept.

Gap Search The second part of the Error Search is the gap search. As demonstrated
in Chapter 4, the gap search identifies gap candidates first where the shortest path in a
subnetwork is significantly longer than in the complete network. During the case study
in Section 4.5, the 50 errors with the longest detour in subnetwork S5 feature a detour from
70.97 km to 294.14 km if the error is not corrected. This can lead to wrong accessibility
indicators if the route to the next facility or service center lies on that path. A location is
then deemed much more remote than it is because of road classification errors.

To further elaborate on this issue, the S3 of NSW (all L1-L3 roads in NSW) is considered
before and after correcting the errors identified in Chapter 4. The travel times from all
settlements in NSW (857 settlements) to their nearest service center in each category are
calculated in the network with and without errors. For most settlements, the travel time
to the nearest service center remains unchanged as the shortest paths do not pass over the
roads with classification errors. However, for some settlements, the travel time to service
centers increases significantly when the errors are not corrected (see Table 8.1). The total
increase is higher if the travel time to low-level service centers is considered because then,
low-level roads, which contain more errors, are used more frequently.
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Table 8.1: Travel time (TT) increase in minutes in all settlements and number of settlements where
the travel time to the nearest service center changes if road class errors are not corrected.

TT OSM - TT Enhanced OSM Changed settlements

SC A 162.9 9

SC B 45.65 6

SC C 226.3 24

SC D 219.3 14

SC E 200.8 16

In conclusion, the influence of the error detection by gap search on the results of the critical
infrastructure assessment depends on the location of the errors. If the errors lie on many
shortest paths to facilities or service centers, the correction of these errors improves the
results significantly. Furthermore, suppose access to a region is blocked during the impact
assessment. In that case, undetected road classification errors in the only alternative route
to this region may lead to the false assumption that the region is not accessible.

8.2 Core Module and Accessibility Index Calculation

The CM calculates the travel time from all grid cells to the nearest facilities and service
centers. The AIC module uses the CM to calculate the EFAI and ARIA. In the following,
the methodological aspects of these modules are discussed. The strengths and limitations
of the different approaches are summarized in Table 8.2.

Travel Time versus Index With the generic concept, both travel times as absolute values
and indices as relative indicators of accessibility can be calculated. Both approaches feature
different advantages and limitations. Absolute values of travel times are generally easier
to calculate and very intuitive to interpret. A regional planner or disaster manager can
directly see where a region is, for example, further away from a hospital than one hour
and can act accordingly. However, the combination of travel time in a single measure is
difficult. Considering the example of SE-NSW, the mean travel time to hospitals is almost
double the mean travel time to fire stations (see Table 7.1). A simple sum or average
of all facilities or service centers is then inconclusive and might skew the results in favor
of one facility or service center. The EFAI and ARIA account for that by converting each
travel time to a ratio of travel times such that each facility or service center travel time
is standardized and can be summed up. Thus, a single measure for facility or service
center accessibility can be constructed. The downside of indices is that the values are not
intuitive and require background knowledge to be interpreted. Regarding the comparison
of results, travel times can be compared directly and unambiguously. However, sometimes
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different regions are not directly comparable because one region features much more
rural areas than the other, much like the analyzed study regions in Chile and Australia.
A relative index like the ARIA or EFAI furthers a comparison by taking into account the
different stages of development or urban-rural distribution.

ARIA versus EFAI The ARIA and EFAI index consider two different aspects of accessibility.
The focus of the ARIA is the accessibility to everyday needs, which are located in service
centers. The higher the service center category, the more specialized needs like special
medical care or necessities can be provided. Considering the application in disaster scenarios,
this is especially important for long-lasting disasters as the population requires food in
low-level service centers and other specialized equipment in high-level service centers.
However, it could be argued that the accessibility to category A and B service centers is more
important for everyday needs than for emergency scenarios as special necessities can often
be postponed. The EFAI, on the other hand, only considers access to or from emergency
facilities required in a disaster scenario. This information is especially important for the
short time reaction where people might be hurt or wildfires need to be stopped. The EFAI
and ARIA are based on the same principle but have different value ranges such that their
values are not directly comparable. As the ARIA is a tested and elaborated method [108],
both indices are validated methods that are relatively simple and data-sparse.

Accuracy of the Indices In the context of this generic concept, the accuracy of the ARIA
depends on the accuracy of the populated places dataset, which is itself dependent on the
OSM settlement data quality. However, large settlements in OSM are often wrongly mapped
as several suburbs (for example, Canberra in Australia). For the populated places dataset, the
population is then distributed over multiple settlements. A classification in service centers
might categorize these multiple settlements in a lower class than the higher-order settlement.
This issue has to be considered when calculating the ARIA with the generic concept. The
EFAI, on the other hand, is dependent on the classification quality of OSM facilities.

Grid-Based and Multi-Scale Approach The CM and AIC module include the possibility
of a grid-based analysis. This grid-based analysis is not population-based but considers
accessibility also for uninhabited or sparsely inhabited areas. Especially in disaster scenarios,
this is valuable because disasters may happen in very remote regions but still threaten the
few people living there. On the downside, a grid-based analysis requires more computing
time than a point-based approach and might include some small errors because of the
centroid’s location. Both a point-based and a grid-based analysis are possible in the generic
concept. GRIND includes the possibility to consider multiple scales by using different
grid resolutions and levels of road network. Examples of two case studies on two spatial
scales are shown in Guth et al. [65]. They perform a regional-scale analysis of the 2017
wildfires in Chile and a local scale analysis of the 2017 wildfires in Portugal. Guth et al.
[65] demonstrate that on a local scale, regional planners can analyze the importance of
the minor-level road network such as residential streets and paths.

138 Chapter 8 Methodological Discussion of the Assessment of Critical Road Infras-
tructure in GRIND



Table 8.2: Summary of strengths and limitations of the calculation of travel times, the ARIA, and
the EFAI in the CM and AIC module.

Strengths Limitations

Travel
times

• Absolute measure of accessibility
• Intuitive interpretation
• Directly and unambiguously com-

parable
• Simple and data sparse

• Combination into single measure
for all facilities or service centers
difficult

• Not relative to local road condi-
tions and urban-rural distribution

ARIA • Relative to local road conditions
• Accessibility to everyday needs
• Combined measure for service cen-

ters
• Simple and data sparse

• Requires background knowledge
for interpretation

• Values of indices not directly com-
parable

• Accessibility to service center cat-
egories A and B may be irrelevant
in a disaster context

• Accuracy depends on populated
places dataset

EFAI • Relative to local road conditions
• Accessibility to emergency facili-

ties
• Combined measure for facilities
• Simple and data sparse

• Requires background knowledge
for interpretation

• Values of indices not directly com-
parable

Application The CM and AIC module can be applied before disaster scenarios. In the
mitigation and preparedness phase, places with poor accessibility can be identified which can
support regional planners’ decisions. Three strategies are possible to improve accessibility:
road quality can be enhanced to obtain shorter travel times, shorter or more direct roads
can be constructed, or new facilities or service centers can be built. Furthermore, both
modules can be applied in the DIA and DVS module.

8.3 Travel Demand Model

The results for the TDM module, applied for SE-NSW in Australia, are shown in Sec-
tion 6.4. The following section discusses the limitations and strengths of the model and
its applicability to GRIND and summarizes them in Table 8.3.

Limitations Compared to state-of-the-art, detailed TDMs, this model performs rather poorly,
especially considering the RSME of over 6000 vehicles per day. This is mainly because of the
prerequisite that only globally-available, free data sources should be used. The combination
of OSM settlement points and population estimates is not enough to model such a complex
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Table 8.3: Summary of strengths and limitations of the TDM module.

Strengths Limitations

Travel
demand
model
(TDM)

• Easy and fast to calculate
• Intuitive interpretation
• Estimation based on purely

OSM data
• Adaptable to different regions

worldwide

• Low accuracy
• Capacity of roads not considered
• Accuracy dependent on popu-

lated places dataset and travel
times

system like an intercity TDM in all its detail. For this model, populated places are given as
points, which leads to false results near large settlements as they consist of a separate TDM
themselves. Furthermore, the capacity of roads is not considered in the trip distribution
phase as capacity data is not available in OSM. This furthers the model to overuse roads
that would normally not be used because it would exceed road’s capacity. Additional
uncertainty is caused by the use of population estimates (Section 6.2) and speed estimates
(Chapter 3), which both have estimation errors. Furthermore, an evaluation of the model is
only possible for high-level roads like motorway and trunk, as no reference data exists for
lower-level roads. Ideally, more data and more accurate data could be combined to establish
a more accurate intercity TDM. Such a model could include a road network with capacity
information, a detailed population estimate, economic data like the GDP of a location, the
tourist flows, and other data collected with questionnaires about intercity travel behavior.

Strengths However, the prerequisites for this study have to be considered (see Section 5.4),
especially considering data simplicity and data sparsity. The objective is not to produce
an accurate, detailed TDM as this is not possible with this little data. For GRIND, a rough
estimate of daily trips per OD pair, based on pure population and OSM data is intended. This
model should be easy to use, fast to calculate, and easy to adapt to different regions world-
wide. Considering these limitations, the developed TDM is adequate as it provides an idea
about average daily trips, which can later be used in the DIA and DVS modules in GRIND.

8.4 Disaster Impact Assessment

As described in Section 6.5, the DIA module employs both network analysis and transport
modelling. The results of the DIA of two exemplary wildfire scenarios are presented in Sec-
tion 7.4. This section discusses the impact assessment results regarding its methodological as-
pects. The strengths and limitations of the different approaches are summarized in Table 8.4.

Travel Times versus Indices The DIA module enables an impact assessment both with
travel time and with the ARIA and EFAI. The strengths and limitations of both methods,
which have already been mentioned in Section 8.2, also prevail for the impact calculation.
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Individual travel times are easier to interpret but difficult to stack into a single measure.
The largest disadvantage of both indices is that they cannot be calculated as soon as one
facility or one service center is disconnected. In SE-NSW, this amounts to a total area of
15 821 km2 where the ARIA can not be calculated, mainly in the south of SE-NSW, because
the service centers A-C are not accessible (see Figure 7.11 and Figure 7.13). Furthermore,
the impact of the wildfires on the accessibility to service center category A is much higher
than for other service center categories. This impact makes up most of the area of the
ARIA-Impact in both regions. Arguably, the accessibility to service centers of category A or
B might not be essential in a disaster scenario and could be excluded from the index to
avoid unrealistic impacts. Concerning the EFAI, some facilities might be more important
than others. For example, the accessibility of fire stations is of major importance in a wildfire
scenario, while police stations might not be essential. Therefore the individual travel time
impact might be more interesting for emergency management than the EFAI.

Disconnected Network Components Generally, disconnections are an issue. A disconnec-
tion is usually much worse than a travel time increase because it means that a region is
rendered completely inaccessible. The NADIA can quantify impact, either as travel time
or as index difference, if the shortest path can be found. However, if a road connection
does not exist, it can not quantify the impact but only states that it is disconnected. Ideally,
a quantifiable impact of disconnections would also be included in the impact calculation.
The TDMDIA can provide a little more information on disconnected settlements because
it can provide a percentage of disconnected daily trips. A settlement with all daily trips
disconnected probably experiences a more significant impact of wildfires than a settlement
with only 50 % of daily trips disconnected. In the case of half of all daily trips disconnected,
it can be expected that at least some minimal help is accessible in a disaster scenario.

Travel Demand Model The accuracy of the TDMDIA results highly depends on the accuracy
of the TDM. In this case, the TDM can be considered a rough estimate of daily trips, as
mentioned in Section 8.3. Therefore, the results of the TDMDIA have to be analyzed rather
relatively than absolutely. The TDM does not account for a change of travel behavior after
the event as it aims at analyzing the impact on daily traffic. Evacuation behavior is very hard
to predict in disaster scenarios. It depends on many different and often not tangible factors.
For example, the cultural background and the experience of past events highly influence evac-
uation behavior and compliance with official recommendations [204]. These factors are not
calculable or predictable using only OSM data and, therefore, not in the scope of this thesis.

Network Analysis versus Transport Modelling Both types of impact assessment methods,
the network analysis and transport modeling have their merits (see also Section 5.2). Net-
work analysis with the CM and AIC module has the advantage of being easy to calculate with
very little data. It considers thematic accessibility rather than demand-based accessibility
and focuses on the functionality of the road network. The exact implications are often
more difficult to interpret because of the missing demand aspect. On the other hand, the
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Table 8.4: Summary of strengths and limitations of the application of the CM, AIC module, and
TDM module for a post-disaster impact assessment with the DIA module.

Strengths Limitations

Travel
times
(CM)

• Intuitive interpretation
• Possibility to analyze each facility

or service center accessibility sep-
arately

• Simple and data sparse
• Thematic accessibility

• Combination into single measure
for all facilities or service centers
difficult

• Impact of disconnections not
quantifiable

Indices
(AIC)

• Combined measures for facilities
or service centers

• Simple and data sparse
• Thematic accessibility

• Requires background knowledge
for interpretation

• Impact of disconnections not
quantifiable

• Values of index impacts not di-
rectly comparable

• Impact not calculable if one fa-
cility or service center is discon-
nected

Travel
demand
model
(TDM)

• Intuitive interpretation
• Delays in daily travel time
• Provides percentage of discon-

nected daily trips
• Translatable to monetary values
• Demand-based accessibility

• Low accuracy of the TDM
• Capacity of roads not considered
• Does not account for evacuation

or change in travel behavior after
event

TDM module requires more and more complicated data or suffers uncertainty of the model.
Nevertheless, it can estimate demand-based impacts of wildfires as delays in daily travel time,
which is easy to interpret for disaster management. Furthermore, the results of a TDMDIA
can be translated to monetary values, which is useful for PDNAs (see Section 5.2.2).

Application The advantage of the impact assessment in GRIND is that these approaches
are used jointly. This enables disaster management to consider different aspects of impacts:

• the absolute accessibility decrease to specific facilities or service centers in travel time,

• the relative index difference as a combination of facility or service center accessibility,

• and the absolute impact on daily traffic.

In disaster scenarios, all these aspects can be crucial, and their combined examination can
help decision-makers.
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8.5 Disaster Vulnerability Scan

The results of the DVS, described in Section 6.6, are presented in Section 7.5. In
this section, these methodological aspects of the DVS are discussed. Its strengths
and limitations are summarized in Table 8.5.

Scenario Buffers For the DVS, the wildfire spread is simulated in overlapping buffers.
Another common alternative for a vulnerability scan is the degradation of single links. The
advantage of overlapping buffers is that neighboring effects are included in the analysis.
If the wildfire affects one road, the neighboring road is most likely also affected. A single
link degradation is not able to capture these effects. However, the buffer method is a
simplification of the real world with the assumption that wildfire spread is equal in all
directions. This assumption does not consider the actual potential of fire spread, which
depends on many factors like fuel availability, temperature, and wind direction. In these
case studies, an exemplary buffer width of 3 km is chosen, but other values are possible. A
multi-buffer analysis could also be performed to simulate multiple scenarios of fire spread
Such a multi-buffer analysis could employ different buffer widths (for example, 1 km, 3 km,
and 5 km) to account for variable speeds of fire spread.

Travel Times versus Indices The vulnerability indicators are calculated using the CM, the
AIC module, and the TDM module. As in the DIA module, the vulnerability indicators focus
on different aspects of vulnerability and have their strengths and limitations. The travel time
difference is easy to interpret, but one facility or service center may be overweighted. For
example, the travel time to service center category A is generally longer than the travel time
to a service center category E. Thus, by taking the average of all travel times to service centers,
the category A service center is overrepresented. The relative index eliminates this issue but
leads to hard-to-interpret values. Furthermore, the range of values is very small because the
area of the fire spread is so small compared to the total area that it causes little effects.

Travel Demand Model The TDM module provides a daily delay in hours, which is easy
to interpret. However, it is highly dependent on the accuracy of the underlying model.
Regarding the computing time, the TDM is calculated faster than the travel time to the
nearest facility or service center. For the nearest facility or service center, the closest
facility or service center has to be recalculated every time because a different facility
or service center could now be the closest one. For the TDM, fewer paths have to be
recalculated, and then a simple sum calculates the total delay.

Disconnected Network Components The fact that disconnections can not be measured
as impact remains an issue for the DVS (see also Section 8.4). Therefore, the resulting
vulnerability indicators have to be considered in combination with the number of dis-
connected trips. Furthermore, the situation in the degraded network has to be taken
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Table 8.5: Summary of strengths and limitations of the DVS module. The strengths and limitations
of the CM, AIC module, and TDM module for the DVS module are the same as in Table 8.4.

Strengths Limitations

Disaster
Vulner-
ability
Scan
(DVS)

• Ability to include neighboring
effects by overlapping scenario
buffers

• Index impacts as combined mea-
sure of accessibility decrease to
service centers or facilities

• Fast calculation of TDM
• Provides number of disconnected

daily trips

• Probability of disaster spread not
accounted for

• Range of index impact values very
small

• Slower calculation for Travel time
or index impact than for daily de-
lay

• Impact of disconnections unrepre-
sentable

into account when looking at the results of the DVS. Wildfire spreads in already dis-
connected regions cause no apparent change during the DVS. However, in reality, they
have the potential to threaten already vulnerable communities further. Ideally, this phe-
nomenon could also be displayed by the DVS.

Application The DVS offers a wide range of applications. It can be used to find locations
where a fire spread would be most critical for the functionality of the road network. The
vulnerability is considered in three different aspects: accessibility to emergency facilities,
accessibility to service centers, and daily traffic. Disaster management can then prioritize
fire fighting, and efforts to extinguish fires near critical roads can be reinforced.

8.6 Limitations of GRIND

Uncertainties of GRIND The results of GRIND are subject to some uncertainties that result
from the underlying data and the developed methodologies. On the one hand, errors may
be introduced by low-quality OSM data. Although the Error Search mostly detects road
classification errors, there might be other errors in the OSM data like roads missing or
false classification of facilities. Furthermore, the travel times calculated by the Fuzzy-FSE
might deviate from the true value with a RMSE of around 13 km/h (BM) and 15 km/h
(NSW). The limitations of the Fuzzy-FSE are described in detail in Section 3.8. For the
ARIA calculation and the TDM module, population data is required. This population data
may contain misestimations from the underlying GHS-POP dataset and the methodology to
assign population data to settlements (see Section 6.2). Finally, the TDM is also based on
expert knowledge and delivers only a rough estimate of daily traffic rather than exact values.

These uncertainties largely stem from the prerequisite of using only free, worldwide available
data (see Section 5.4). In a disaster scenario, the quick availability of data is often more
important than exact results to provide a rapid post-disaster impact assessment. Therefore,
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Table 8.6: Summary of strengths and limitations of GRIND.

Strengths Limitations

GRIND • Data sparse (requires only
worldwide available data)

• Fast to calculate after disaster
• Modular and flexible towards re-

quirements of disaster manage-
ment

• Enables grid-based and multi-
scale analysis

• Considers different aspects of ac-
cessibility

• Contains uncertainties caused
by underlying data

• Contains uncertainties caused
by the developed methodologies

• Does not account for behavior
change of network users after a
disaster

• Not applicable for entirely urban
regions

• Requires expert knowledge
about regional specifics (road
quality, daily transport)

this thesis’ objective is not to provide a 100 % accurate result, but a generic concept that can
generate results quickly using OSM without having to search for regional data sources.

Application Constraints Some application constraints exist for GRIND. First, it does not
account for a behavior change of network users after a disaster. Thus, evacuation be-
havior is not included in the model. People react differently to disasters, and predicting
evacuation behavior is a different task that is a vast research field itself as many factors
have to be considered. Secondly, GRIND is not applicable to entirely urban regions. As
discussed in Chapter 3, the estimation of travel time in urban regions requires different
input parameters and is much more subject to temporal changes than rural travel time.
Because the accuracy of GRIND results depends heavily on the accuracy of the travel times,
GRIND’s performance is poor if the travel times are false.

The strengths and limitations of GRIND are summarized in Table 8.6.
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Conclusions and Outlook 9
The third and last part of this thesis recapitulates the research goals towards the main objec-
tive and summarizes the major contributions. The potential of GRIND and its limitations
are highlighted in a comprehensive conclusion (see Section 9.1). Section 9.2 focuses on
possible optimizations and points out future research directions.

9.1 Synoptical Discussion and Conclusions

This thesis’s main objective is to develop a generic, multi-scale concept to assess criti-
cal road infrastructure in a disaster context using OSM data. Based on the observation
that OSM data is not directly usable for routing applications, two consecutive research
goals were established to fulfill the main objective.

The first research goal, addressed in Part I of this thesis, is to improve the routability of OSM
data. Part I can stand autonomously of Part II of this thesis and proves valuable for all kinds
of routing applications. Therefore, Section 9.1.1 concludes Part I independently of GRIND.
The second research goal of assessing critical road infrastructure in a disaster context is
addressed in Part II using the enhanced OSM dataset generated in Part I. GRIND results
from a combination of both parts and is concluded in Section 9.1.2. Finally, the application
potential of GRIND for disaster management is presented in Section 9.1.3.

9.1.1 Synoptical Discussion and Conclusion of Part I

Part I of this thesis concentrates on OSM road network data. In the following, the main
contributions of Part I are briefly discussed and concluded.

Quality Analysis A global quality analysis of OSM road network data regarding attribute
completeness of tags, which might be relevant for routing applications, is performed. Also,
the related work on OSM road network data quality is summarized concerning six widely
known data quality elements for geographic data. In conclusion, the OSM road network
can nowadays be considered relatively complete and accurate as feature completeness and
positional accuracy are sufficiently high. OSM even surpasses authoritative data in some
regions. However, considering OSM data in routing applications, the attribute completeness
and accuracy are still lacking. The most relevant shortcomings of OSM data for routing
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applications and especially for the analysis of critical infrastructure, are identified as the
often missing speed information and frequent road classification errors.

Fuzzy-FSE A multi-parameter Fuzzy Framework for estimating average speed information
in rural road networks is developed. It combines the parameters road class, road slope, road
surface, and link length. These parameters can all be extracted or calculated from OSM.
The Fuzzy-FSE is applied successfully in two case study regions that differ in their state
of development and their OSM data quality. The implementation and the datasets of the
Fuzzy-FSE are published on GitHub. A major advantage of the Fuzzy-FSE is the worldwide
applicability in rural regions. For urban regions, the methodology has to be extended as other
factors influence average speed in urban compared to rural regions. The Fuzzy-FSE offers
the advantages of Fuzzy Control as it allows for fuzzy input parameters and contains the
reasoning process of a human operator. In contrast to machine learning approaches, training
data is not required because the Fuzzy-FSE is based on expert knowledge. The downside
of expert knowledge is that the Fuzzy-FSE is much more susceptible to false assumptions
than, for example, a machine learning model would be. The most significant advantage of
the Fuzzy-FSE is its ability to estimate average speed with only OSM data as input.

Error Search A novel approach to detect, rate, and categorize potential road classification
errors in OSM is designed. It bases on the assumption that both disconnected parts and
gaps of subnetworks in the OSM road network are indicators for road classification errors
if the disconnection or the gap can be resolved in the complete network. The Error
Search searches independently for disconnected parts and gaps in subnetworks. For the
Error Search at gaps, different parameters are identified that indicate gaps that are then
combined in a rating system to obtain an error probability. Identified errors can then be
checked and corrected by a human user. A detailed and efficient implementation of the
developed methodology is published on GitHub. In conclusion, the Error Search finds
fewer road classification errors at disconnected parts than at gaps. A gap search finds a
significant number of misclassifications and can additionally provide an error probability
based on the developed rating system. Some limitations have to be considered. On the
one hand, the underlying assumption is not true in all cases because roads may rarely
turn into lower-quality roads for a certain distance and then turn back to the original
road class. On the other hand, the Error Search is not able, but also not designed to
find all classification errors. Instead, only the errors potentially leading to long detours
if only a high-level network is considered are identified. Because of these limitations, a
human user has to check the identified errors. The Error Search is intrinsic such that
no additional data besides the OSM road network is required.

Enhancement of OSM for Routing Applications The Fuzzy-FSE and the Error Search, de-
veloped in Part I require only OSM data as input data. This fact renders them valuable tools
for all kinds of routing applications working with OSM data to improve their underlying data
and find potential errors. Applications for these modules can be found in all areas where
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routing is necessary, like transport of goods, car travel, and network planning. Especially
for the assessment of critical infrastructure in a disaster context, speed information in rural
road networks and a correctly classified high-level road network prove to be essential. The
free and open-source publication of the implementation on GitHub enables other users to
reproduce the results and transfer the methodology to other regions if needed.

9.1.2 Synoptical Discussion and Conclusion of GRIND

This thesis develops GRIND, a generic, multi-scale concept for the assessment of critical road
infrastructure in a disaster context using OSM data. GRIND consists of two parts, which
correspond to the structure of this thesis. The first part of GRIND enhances the OSM road
network data used in the second part of GRIND. In the following, the main contributions
of GRIND towards the main objective are briefly discussed and concluded.

Application of EnhancedOSMData The application of OSM data in general benefits GRIND
in many ways. OSM is available worldwide, featuring a continuously improving data quality,
which allows for a global application of GRIND. Furthermore, OSM data is free-to-use and
saves valuable time for disaster management by not searching for local data sources in a
disaster case. However, its application for routing purposes proves challenging without
preprocessing the road network data. Therefore, the first part of GRIND is necessary to assess
critical road infrastructure with OSM data. The travel times calculated by the Fuzzy-FSE
are required as a cost factor for the road network. The Fuzzy-FSE can estimate travel times
only based on OSM data and simultaneously allows for adaptations depending on local
road conditions. The Fuzzy-FSE reaches an acceptable accuracy of around 70 % for both
study regions. Road classification errors are inconvenient for routing applications in general.
For multi-scale approaches like GRIND that only consider a high-level road network, road
classification errors are even worse as they can lead to large detours and disconnected
subnetworks. For GRIND, the developed Error Search, and a subsequent correction of
errors, proves to be essential to ensure the correctness of the results.

Absolute and Relative Measures of Accessibility GRIND enables the calculation of abso-
lute and relative accessibility measures using the CM and AIC module for an entire region
(grid-based) or individual locations (point-based). Travel time to service centers and facilities
is provided as an absolute measure of accessibility and features the main advantage of being
easy to interpret. But, the combination of travel time to service centers or facilities in a single
measure by sum or average might skew the results in favor of one service center or facility.
Therefore, GRIND can also calculate relative accessibility measures, namely the ARIA and
EFAI, which each consider different aspects of accessibility. The ARIA accounts for accessibil-
ity to service centers and focuses on the accessibility to everyday needs. The EFAI indicates
accessibility to emergency facilities and therefore specializes in the application in a disaster
context. Both indices are validated methods that are relatively simple and data-sparse.
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Travel Demand Model The TDM module of GRIND estimates intercity daily traffic based on
purely OSM and worldwide available population data. The developed model is easy to use,
fast to calculate, and adaptable to different regions worldwide. Compared to state-of-the-art
detailed travel demand models, it performs inferior and contains many inaccuracies due to
estimation errors of input data and the model itself. However, considering the prerequisites
of GRIND about data simplicity and data sparsity, the model proves adequate for GRIND as
it provides an idea about daily trips. The main benefit of the TDM module is its application
in the DIA and DVS module. The TDM features a lot of potential for future enhancements.

Disaster Impact Assessment The DIA module of GRIND assesses the impact of natural
disasters on road networks in three different aspects: the absolute accessibility decrease
to specific facilities or service centers in travel time, the relative index difference as a
combination of facility or service center accessibility, and the absolute impact on daily traffic.
The main advantage of the DIA in GRIND is that these different approaches are used jointly.
In disaster scenarios, their combined examination can help decision-makers. With the TDM,
a translation to monetary values of impacts is also possible by assigning a cost of delay.
Disconnected road network parts remain an issue for the DIA module because their impact
is not quantifiable. But, the TDM is able to deliver a percentage of disconnected daily trips
for each settlement, which provides some information about the impact of disconnections.

Disaster Vulnerability Scan The DVS is a novel application of the commonly used net-
work scan during a disaster scenario. It uses the AIC and TDM modules of GRIND to
identify areas where a disaster spread would have the most significant impact on the func-
tionality of the road infrastructure. The application of overlapping buffers to simulate a
disaster spread instead of single link failures allows GRIND to include neighboring effects.
The probability of a disaster spread at a certain location is not accounted for. Like in
the DIA module, the different aspects of impacts estimated during the vulnerability scan
enable a differentiated consideration of disaster impacts.

GRIND Summary and Limitations The combination of these contributions results in GRIND.
For the application of GRIND, its limitations have to be considered. It is not applicable
to urban regions, and evacuation behavior is not included in the modules. Furthermore,
GRIND is subject to uncertainties that result from the underlying data and the developed
methodologies. However, in a disaster scenario, the quick availability of data and simple but
fast models are often more important than exact results. GRIND provides such a compre-
hensive, modular, and multi-scale concept that is readily applicable for disaster scenarios
worldwide and overcomes the often-overlooked challenge of limited data availability.
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9.1.3 Application of GRIND for Disaster Management

GRIND assesses critical road infrastructure in different phases of the disaster management
cycle. The GRIND modules in the context of the disaster management cycle are visualized
in Figure 9.1.
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Figure 9.1: The modules of the generic concept in the context of the disaster management cycle.

The AIC and TDM modules can be used in the mitigation and preparedness phase to identify
places with poor accessibility or locate frequently traveled roads. The DIA module can
be employed in the response phase to find regions with decreased accessibility or places
where daily traffic is significantly delayed. During a disaster in the immediate response
phase, the DVS module can be applied to detect regions where a disaster spread would
be most critical. Finally, in the recovery phase, the DIA module can help develop recovery
strategies by quantifying the impact of a disaster. GRIND can also be employed to develop
a preliminary PDNA until more accurate data is available.

GRIND is a comprehensive concept for the assessment of critical road infrastructure.
Using OSM data, GRIND can provide disaster impact assessments relatively fast, even
if no other data besides OSM is available. For regional planners and disaster man-
agement, it is a valuable and flexible tool that can be applied globally and includes
country- or region-specific adaptations.
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9.2 Potential Advances and Outlook

The modules developed in this thesis offer many possibilities for future enhancements. In
the following, these potential advances are presented regarding the Fuzzy-FSE, the Error
Search, and the assessment of critical road infrastructure.

Extension of the Fuzzy-FSE As demonstrated in Keller et al. [86], data-driven machine
learning models can improve the estimation of average speed, but also require an addi-
tional data source for reference data. The combination of Machine Learning and Fuzzy
Control could be a promising direction for future research. The Fuzzy-FSE itself could
benefit from the inclusion of data from additional data sources to produce more accurate
results. Furthermore, it could be investigated if an adaptation of the Fuzzy-FSE to urban
circumstances is possible. This would require different input parameters and possibly also
other data sources. The implementation of the Fuzzy-FSE is freely available on GitHub,
such that the entire community can easily extend it.

Enhancement of the Error Search The Error Search could benefit from analyzing available
tags of gap candidates and their connecting roads for continuity. The effect of strokes on the
error probability could be analyzed. The rating system, as a multi-criteria decision system,
could be extended, for example, by weighting the input parameters. Furthermore, remote
sensing methods could be applied to track the road at gap candidates if a shape change
indicates a class change. Ideally, further case studies are performed in different study regions
worldwide with different qualities of OSM data to enable a detailed sensitivity analysis. The
efficiency of the Error Search could be tested with real-world OSM contributors. The Error
Search implementation is also available on GitHub, which enables everyone to extend it.

Optimization of the Critical Infrastructure Assessment The critical infrastructure assess-
ment presented in Part II of this thesis can be easily extended because of its modular
structure. One limitation, the inability to quantify the impact of disconnections, could be
resolved by calculating indices that do not depend on a connected road network like the Criti-
cal Closeness Accessibility of Novak and Sullivan [19]. Additional data sources might have to
be considered to calculate further indices. The developed travel demand model offers many
possibilities for future optimizations. Following the prerequisite of only using worldwide
available data, other OSM data could be included to estimate a location’s attractiveness.
For example, building densities, land use, and points of interest, like schools or shopping
opportunities, could provide information about how certain areas are used. Additionally,
a global data source with the GDP of subregions might also help the model to estimate
attractiveness. During the trip assignment stage, capacity data would be most beneficial to
avoid an unrealistic overflow on some roads. A capacity estimation of OSM roads using the
road class and lanes information could prove a promising future research direction.
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The disaster impact assessment could benefit from a more accurate travel demand model.
An additional module could be implemented to transform the output of the TDM into
actual economic losses by calculating the total cost of delay. Such a module would have
to differentiate between the transport of goods and people and consider other factors like
the temporary decline in toll receipts. Regarding the DVS module, the vulnerability scan
could be performed with multiple buffers to simulate different speeds of disaster spread.
Furthermore, the probability of a disaster spread could be considered. For example, in a
wildfire scenario, the wind direction, temperature, and availability of flammable material
could be included in a simulation of disaster spread.
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